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Normalization Techniques in Training DNNs:
Methodology, Analysis and Application

Lei Huang, Jie Qin, Yi Zhou, Fan Zhu, Li Liu, Ling Shao

Abstract—Normalization techniques are essential for accelerating the training and improving the generalization of deep neural networks
(DNNs), and have successfully been used in various applications. This paper reviews and comments on the past, present and future of
normalization methods in the context of DNN training. We provide a unified picture of the main motivation behind different approaches
from the perspective of optimization, and present a taxonomy for understanding the similarities and differences between them.
Specifically, we decompose the pipeline of the most representative normalizing activation methods into three components: the
normalization area partitioning, normalization operation and normalization representation recovery. In doing so, we provide insight for
designing new normalization technique. Finally, we discuss the current progress in understanding normalization methods, and provide a
comprehensive review of the applications of normalization for particular tasks, in which it can effectively solve the key issues.

Index Terms—Deep neural networks, batch normalization, weight normalization, image classification, survey
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1 INTRODUCTION

D EEP neural networks (DNNs) have been extensively used
across a broad range of applications, including computer

vision (CV), natural language processing (NLP), speech and audio
processing, robotics, bioinformatics, etc. [1]. They are typically
composed of stacked layers/modules, the transformation between
which consists of a linear mapping with learnable parameters and
a nonlinear activation function [2]. While their deep and complex
structure provides them powerful representation capacity and
appealing advantages in learning feature hierarchies, it also makes
their training difficult [3], [4]. In fact, the success of DNNs heavily
depends on breakthroughs in training techniques [5], [6], [7], [8],
which has been witnessed by the history of deep learning [1].

One milestone technique in addressing the training issues of
DNNs was batch normalization (BN) [8], which standardizes the
activations of intermediate DNN layers within a mini-batch of data.
BN improves DNNs’ training stability, optimization efficiency and
generalization ability. It is a basic component in most state-of-
the-art architectures [9], [10], [11], [12], [13], [14], [15], [16],
and has successfully proliferated throughout various areas of deep
learning [17], [18], [19]. Further, a significant number of other
normalization techniques have been proposed to address the training
issues in particular contexts, further evolving the DNN architectures
and their applications [20], [21], [22], [23], [24]. For example,
layer normalization (LN) [20] is an essential module in Trans-
former [25], which has advanced the state-of-the-art architectures
for NLP [25], [26], [27], [28], while spectral normalization [23] is
a basic component in the discriminator of generative adversarial
networks (GANs) [23], [29], [30]. Importantly, the ability of most
normalization techniques to stabilize and accelerate training has
helped to simplify the process of designing network architectures—
training is no longer the main concern, enabling more focus to
be given to developing components that can effectively encode
prior/domain knowledge into the architectures.
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However, despite the abundance and ever more important roles
of normalization techniques, we note that there is an absence of a
unifying lens with which to describe, compare and analyze them.
This paper provides a review and commentary on normalization
techniques in the context of training DNNs. To the best of our
knowledge, our work is the first survey paper to cover normalization
methods, analyses and applications. We attempt to provide answers
for the following questions:

(1) What are the main motivations behind different normal-
ization methods in DNNs, and how can we present a taxonomy
for understanding the similarities and differences between a wide
variety of approaches?

(2) How can we reduce the gap between the empirical success
of normalization techniques and our theoretical understanding of
them?

(3) What recent advances have been made in designing/tailoring
normalization techniques for different tasks, and what are the main
insights behind them?

We answer the first question by providing a unified picture
of the main motivations behind different normalization methods,
from the perspective of optimization (Section 3). We show that
most normalization methods are essentially designed to satisfy
nearly equal statistical distributions of layer input/output-gradients
across different layers during training, in order to avoid the ill-
conditioned landscape of optimization. Based on this, we provide
a comprehensive review of the normalization methods, including
normalizing activations by population statistics (Section 4), nor-
malizing activations as functions (Section 5), normalizing weights
(Section 6) and normalizing gradients (Section 7). Specifically,
we decompose the most representative normalizing-activations-as-
functions framework into three components: the normalization
area partitioning (NAP), normalization operation (NOP) and
normalization representation recovery (NRR). We unify most
normalizing-activations-as-function methods into this framework,
and provide insights for designing new normalization methods.

To answer the second question, we discuss the recent progress
in our theoretical understanding of BN in Section 8. It is difficult to
fully analyze the inner workings of BN in a unified framework, but
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our review ultimately provides clear guidelines for understanding
why BN stabilizes and accelerates training, and further improves
generalization, through a scale-invariant analysis, condition analysis
and stochasticity analysis, respectively.

We answer the third question in Section 9 by providing a
review of the applications of normalization for particular tasks,
and illustrating how normalization methods can be used to solve
key issues. To be specific, we mainly review the applications of
normalization in domain adaptation, style transfer, training GANs
and efficient deep models. We show that the normalization methods
can be used to ‘edit’ the statistical properties of layer activations.
These statistical properties, when designed well, can represent the
style information for a particular image or the domain-specific
information for a distribution of a set of images. This characteristic
of normalization methods has been thoroughly exploited in CV
tasks and potentially beyond them.

We conclude the paper with additional thoughts about certain
open questions in the research of normalization techniques.

2 DENOTATIONS AND DEFINITIONS

In this paper, we use a lowercase letter x ∈ R to denote a scalar,
boldface lowercase letter x ∈ Rd for a vector, boldface uppercase
letter for a matrix X ∈ Rd×m, and boldface sans-serif notation
for a tensor X, where R is the set of real-valued numbers, and
d,m are positive integers. Note that a tensor is a more general
entity. Scalars, vectors and matrices can be viewed as 0th-order,
1st-order and 2nd-order tensors. Here, X denotes a tensor with an
order larger than 2. We will provide a more precise definition in
the later sections. We follow matrix notation where the vector is in
column form, except that the derivative is a row vector.

2.1 Optimization Objective
Consider a true data distribution p∗(x,y) = p(x)p(y|x) and the
sampled training sets D ∼ p∗(x,y) of size N . We focus on a
supervised learning task aiming to learn the conditional distribution
p(y|x) using the model q(y|x), where q(y|x) is represented as
a function fθ(x) parameterized by θ. Training the model can
be viewed as tuning the parameters to minimize the discrepancy
between the desired output y and the predicted output f(x; θ). This
discrepancy is usually described by a loss function `(y, f(x; θ))
for each sample pair (x,y). The empirical risk, averaged over the
sample loss in training sets D, is defined as:

L(θ) =
1

N

N∑
i=1

(`(y(i), fθ(x
(i)))). (1)

This paper mainly focuses on discussing the empirical risk
from the perspective of optimization. We do not explicitly
analyze the risk under the true data distribution L∗(θ) =
E(x,y)∼p∗(x,y)(`(y

(i), fθ(x
(i)))) from the perspective of general-

ization.

2.2 Neural Networks
The function f(x; θ) adopted by neural networks usually consists
of stacked layers. For a multilayer perceptron (MLP), fθ(x) can
be represented as a layer-wise linear and nonlinear transformation,
as follows:

hl = W lxl−1, (2)

xl = φ(hl), l = 1, ..., L, (3)

where x0 = x, W l ∈ Rdl×dl−1 and dl indicates the number of
neurons in the l-th layer. The learnable parameters θ = {W l, l =
1, ..., L}. Typically, hl and xl are referred to as the pre-activation
and activation, respectively, but in this paper, we refer to both as
activations for simplicity. We also set xL = hL as the output of
the network fθ(x) to simplify denotations.
Convolutional Layer: The convolutional layer parameterized
by weights W ∈ Rdl×dl−1×Fh×Fw , where Fh and Fw are the
height and width of the filter, takes feature maps (activations)
X ∈ Rdl−1×h×w as input, where h and w are the height and
width of the feature maps, respectively. We denote the set of
spatial locations as ∆ and the set of spatial offsets as Ω. For
each output feature map k and its spatial location δ ∈ ∆,
the convolutional layer computes the pre-activation {Hk,δ} as:
Hk,δ =

∑dl−1

i=1

∑
τ∈Ω Wk,i,τXi,δ+τ =< wk,xδ >. Therefore,

the convolution operation is a linear (dot) transformation. Here,
wk ∈ Rdl−1·Fh·Fw can eventually be viewed as an unrolled filter
produced by W.

2.3 Training DNNs
From an optimization perspective, we aim to minimize the
empirical risk L, as:

θ∗ = arg minθ L(θ). (4)

In general, the gradient descent (GD) update is used to minimize
L, seeking to iteratively reduce the loss as:

θt+1 = θt − η
∂L
∂θ
, (5)

where η is the learning rate. For large-scale learning, stochastic
gradient descent (SGD) is extensively used to approximate the
gradients ∂L

∂θ with a mini-batch gradient. One essential step is to
calculate the gradients. This can be done by backpropagation for
calculating ∂L

∂xl−1 :

∂`

∂xl−1
=

∂`

∂hl
W l, (6)

∂`

∂hl−1
=

∂`

∂xl−1
φ
′
(hl−1), l = L, ..., 2, (7)

and ∂`
∂W l :

∂L
∂W l

= ED[(xl−1 ∂`

∂hl
)T ], l = L, ..., 1. (8)

2.4 Normalization
Normalization is widely used in data-preprocessing [9], [31], [32],
data mining and other areas. The definition of normalization may
vary among different topics. In this paper, we define normalization
as a general transformation, which ensures that the transformed
data has certain statistical properties. To be more specific, we
provide the following formal definition.

Definition 2.1. Normalization: Given a set of data D =
{x(i)}Ni=1, the normalization operation is a function Φ : x 7−→ x̂,
which ensures that the transformed data D̂ = {x̂(i)}Ni=1 has
certain statistical properties.

We consider five main normalization operations (Figure 1)
in this paper: centering, scaling, decorrelating, standardizing and
whitening [33].
Centering formulates the transformation as:

x̂ = ΦC(x) = x− ED(x). (9)
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Centering

Scaling

Decorrelating

Standardizing

Whitening

Fig. 1. Illustration of normalization operations discussed in this paper.

This ensures that the normalized output x̂ has a zero-mean property,
which can be represented as: ED̂(x) = 0.
Scaling formulates the transformation as:

x̂ = ΦSC(x) = Λ−
1
2x. (10)

Here, Λ = diag(σ2
1 , . . . , σ

2
d), where σ2

j is the mean square over
data samples for the i-th dimension: σ2

j = ED(x2
j ). Scaling ensures

that the normalized output x̂ has a unit-variance property, which
can be represented as: ED̂(x̂2

j ) = 1 for all j = 1, ..., d.
Decorrelating formulates the transformation as:

x̂ = ΦD(x) = Dx, (11)

where D = [d1, ...,dd] are the eigenvectors of Σ and Σ =
ED(xxT ) is the covariance matrix. Decorrelating ensures that the
correlation between different dimensions of the normalized output
x̂ is zero (the covariance matrix ED̂(x̂x̂T ) is a diagonal matrix).
Standardizing is a composition operation that combines centering
and scaling, as:

x̂ = ΦST (x) = Λ−
1
2 (x− ED(x)). (12)

Standardizing ensures that the normalized output x̂ has zero-mean
and unit-variance properties.
Whitening formulates the transformation as1:

x̂ = ΦW (x) = Λ̃−
1
2Dx, (13)

where Λ̃ = diag(σ̃1, . . . , σ̃d) and D = [d1, ...,dd] are the
eigenvalues and associated eigenvectors of covariance matrix Σ.
Whitening ensures that the normalized output x̂ has a spherical
Gaussian distribution, which can be represented as: ED(x̂x̂T ) = I.
The whitening transformation, defined in Eqn. 13, is called principal
components analysis (PCA) whitening, where the whitening matrix
Σ
− 1

2

PCA = Λ̃
− 1

2

d D. There are an infinite number of whitening
matrices since a whitened input stays whitened after an arbitrary
rotation [33], [35], which will be discussed in the subsequent
sections.

3 MOTIVATION AND OVERVIEW OF NORMALIZA-
TION IN DNNS

Input normalization is extensively used in machine learning
models. Intuitively, normalizing an input removes the difference
in magnitude between different features, which benefits learning.
There are also theoretical advantages to normalization for linear
models.

1. Whitening usually requires the input to be centered [33], [34], which
means it also includes the centering operation. In this paper, we unify the
operation as whitening regardless of whether it includes centering or not.

Consider a linear regression model with a scalar output
fw(x) = wTx, and mean square error loss ` = (y− fθ(x))2. As
shown in [31], [36], the learning dynamics for such a quadratic
surface are fully controlled by the spectrum of the Hessian
matrix H = ED(xxT ). There are two statistical momentums
that are essential for evaluating the convergence behaviors of the
optimization problem. One is the maximum eigenvalue of the
curvature matrix λmax, and the other is the condition number of
the curvature matrix, denoted by κ = λmax

λmin
, where λmin is the

minimum nonzero eigenvalue of the curvature matrix. Specifically,
λmax controls the upper bound and the optimal learning rate
(e.g., the training will diverge if η ≥ 2

λmax(h) ). Meanwhile, κ
controls the number of iterations required for convergence (e.g.,
the lower bound of the iterations is κ(h) [31], [36], [37]). If H
is an identity matrix that can be obtained by whitening the input
through Eqn. 13, the GD can converge within only one iteration.
Therefore, normalizing the input can surely accelerate convergence
during the optimization of linear models.

These theoretical results do not apply to neural networks
directly, since the input x is only directly connected to the first
weight matrix W 1, and it is not clear how input x affects the sub-
landscapes of optimization with respect to other weight matrices
W l, l = 2, ..., L. Luckily, the layer-wise structure (Eqn. 2) of
neural networks can be exploited to approximate the curvature
matrix, e.g., the Fisher information matrix (FIM). One successful
example is approximating the FIM of DNNs using the Kronecker
product (K-FAC) [38], [39], [40], [41]. In the K-FAC approach,
there are two assumptions: 1) weight-gradients in different layers
are assumed to be uncorrelated; 2) the input and output-gradient in
each layer are approximated as independent. Thus, the full FIM can
be represented as a block diagonal matrix, F = diag(F1, ..., FL),
where Fl is the sub-FIM (the FIM with respect to the parameters
in a certain layer) and computed as:

Fl ≈ Ex∼p(x)[x
l−1(xl−1)T ]⊗ E(x,y)∼p(x)q(y|x)[

∂`

∂hl

T ∂`

∂hl
]. (14)

Note that [38], [42], [43] have provided empirical evidence to
support their effectiveness in approximating the full FIM with
block diagonal sub-FIMs. We denote the covariance matrix of
the layer input as Σlx = Ep(x)[x

l−1(xl−1)T ] and the covariance

matrix of the layer output-gradient as Σl∇h = Eq(y|x)[
∂`
∂hl

T ∂`
∂hl

].
Based on the K-FAC, it is clear that the conditioning of the FIM
can be improved, if:

• Criteria 1: The statistics of the layer input (e.g., Σx) and
output-gradient (e.g., Σ∇h) across different layers are equal.

• Criteria 2: Σx and Σ∇h are well conditioned.

A variety of techniques for training DNNs have been designed
to satisfy Criteria 1 and/or Criteria 2, essentially. For example, the
weight initialization techniques aim to satisfy Criteria 1, obtaining
nearly equal variances for layer input/output-gradients across
different layers [3], [44], [45], [46], [47] by designing initial weight
matrices. However, the equal-variance property across layers can be
broken down and is not necessarily sustained throughout training,
due to the update of weight matrices. From this perspective, it is
important to normalize the activations in order to produce better-
conditioned optimization landscapes, similar to the benefits of
normalizing the input.

Normalizing activations is more challenging than normalizing
an input with a fixed distribution, since the distribution of layer
activations xl varies during training. Besides, DNNs are usually
optimized over stochastic or mini-batch gradients, rather than the
full gradient, which requires more efficient statistical estimations
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for activations. This paper discusses three types of normalization
methods for improving the performance of DNN training:

(1) Normalizing the activations directly to (approximately)
satisfy Criteria 1 and/or Criteria 2. Generally speaking, there are
two strategies for normalizing the activations of DNNs. One is to
normalize the activations using the population statistics estimated
over the distribution of activations [48], [49], [50]. The other
strategy is to normalize the activations as a function transformation,
which requires backpropagation through this transformation [8],
[20], [34].

(2) Normalizing the weights with a constrained distribution,
such that the activations/output-gradients (Eqns 2 and 6) can be
implicitly normalized. This normalization strategy is inspired by
weight initialization methods, but extends them towards satisfying
the desired property during training [21], [23], [51], [52].

(3) Normalizing gradients to exploit the curvature information
for GD/SGD, even though the optimization landscape is ill-
conditioned [53], [54]. This involves performing normalization
solely on the gradients, which may effectively remove the negative
effects of the ill-conditioned landscape caused by the diversity of
magnitude in gradients from different layers (i.e., Criteria 1 is not
well satisfied) [3].

4 NORMALIZING ACTIVATIONS BY POPULATION
STATISTICS

In this section, we will discuss the methods that normalize
activations using the population statistics estimated over their
distribution. This normalization strategy views the population
statistics as constant during backpropagation. To simplify the
notation, we remove the layer index l of activations xl in the
subsequent sections, unless otherwise stated.

Gregoire et al. [48] proposed to center the activations (hidden
units) in a Boltzmann machine to improve the conditioning of the
optimization problems, based on the insight that centered inputs
improve the conditioning [31], [55], [56]. Specifically, given the
activation in a certain layer x, they perform the normalization as:

x̂ = x− û, (15)

where û is the mean of activations over the training dataset.
Note that û indicates the population statistics that need to be
estimated during training, and is considered as constant during
backpropagation. In [48], û is estimated by running averages.
Wiesler et al. [49] also considered centering the activations to
improve the performance of DNNs, reformulating the centering
normalization by re-parameterization. This can be viewed as a pre-
conditioning method. They also used running average to estimate
û based on the mini-batch activations. One interesting observation
in [49] is that the scaling operation does not yield improvements
in this case. One likely reason is that the population statistics
estimated by running average are not accurate, and thus cannot
adequately exploit the advantages of standardization.

Desjardins et al. [50] proposed to whiten the activations using
the population statistics as:

x̂ = Σ̂−
1
2 (x − û), (16)

where Σ̂−
1
2 is the population statistics of the whitening matrix.

One difficulty is to accurately estimate Σ̂−
1
2 . In [50], [57], Σ̂−

1
2

is updated over T intervals, and the whitening matrix is further
pre-conditioned by one hyperparameter ε, which balances the
natural gradient (produced by the whitened activations) and the

naive gradient. With these two techniques, the networks with
whitened activations can be trained by finely adjusting T /ε. Luo
[57] investigated the effectiveness of whitening the activations
(pre-whitening) and pre-activations (post-whitening). They also
addressed the computational issues by using online singular value
decomposition (SVD) when calculating the whitening matrix.

Although several improvements in performance have been
achieved, normalization by population statistics still faces some
drawbacks. The main disadvantage is the training instability, which
can be caused by the inaccurate estimation of population statistics:
1) These methods usually use a limited number of data samples to
estimate the population statistics, due to computational concerns. 2)
Even if full data is available and an accurate estimation is obtained
for a current iteration, the activation distribution (and thus the
population statistics) will change due to the updates of the weight
matrix, which is known as internal covariant shift (ICS) [8]. 3)
Finally, an inaccurate estimation of population statistics will be
amplified as the number of layers increases, so these methods
are not suitable for large-scale networks. As pointed out in [50],
[57], additional batch normalization [8] is needed to stabilize the
training for large-scale networks.

5 NORMALIZING ACTIVATIONS AS FUNCTIONS

BN [8] paved the way to viewing normalization statistics as
functions over mini-batch inputs, and addressing backpropagation
through normalization operations. Let x denote the activation for
a given neuron in one layer of a DNN. BN [8] standardizes the
neuron within m mini-batch data by:

x̂(i) =
x(i) − u√
σ2 + ε

, (17)

where ε > 0 is a small number to prevent numerical instability,
and u = 1

m

∑m
i=1 x

(i) and σ2 = 1
m

∑m
i=1(x(i) − u)2 are the

mean and variance, respectively.2 During inference, the population
statistics {û, σ̂2} are required for deterministic inference, and
they are usually calculated by running average over the training
iterations, as follows:{

û = (1− λ)û+ λu,

σ̂2 = (1− λ)σ̂2 + λσ2.
(18)

Compared to the normalization methods based on population
statistics, introduced in Section 4, this normalization strategy
provides several advantages: 1) It avoids using the population
statistics to normalize the activations, thus avoiding the instability
caused by inaccurate estimations. 2) The normalized output for
each mini-batch has a zero-mean and unit-variance constraint that
stabilizes the distribution of the activations, and thus benefits
training. For more discussions please refer to the subsequent
Section 8.

Due to the constraints introduced by standardization, BN also
uses an additional learnable scale parameter γ ∈ R and shift
parameter β ∈ R to recover a possible reduced representation
capacity [8]:

x̃ = γx̂+ β. (19)

In this paper, we also refer to the scale parameter and shift
parameter as affine parameters. BN has been shown to be a
milestone in the deep learning community [9], [12], [22]. It is

2. Note that here u and σ2 are functions over the mini-batch data.
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Algorithm 1 Framework of algorithms normalizing activations as
functions.
1: Input: mini-batch inputs X ∈ Rd×m×h×w.
2: Output: X̃ ∈ Rd×m×h×w.
3: Normalization area partitioning: X = Π(X).
4: Normalization operation: X̂ = Φ(X).
5: Normalization representation recovery: X̃ = Ψ(X̂).
6: Reshape back: X̃ = Π−1(X̃).

widely used in different networks [9], [10], [11], [12], [13], [15],
[16], [58] and various applications [59]. However, despite its great
success in deep learning, BN still faces several issues in particular
contexts: 1) The inconsistent operation of BN between training and
inference limits its usage in complex networks (e.g. recurrent neural
networks (RNNs) [20], [60], [61]) and tasks [29], [62], [63]; 2) BN
suffers from the small-batch-size problem — its error increases
rapidly as the batch size becomes smaller [22]. To address BN’s
weaknesses and further extend its functionality, plenty of works
related to feature normalization have been proposed.

In the following sections, we first propose a framework to
describe normalizing-activations-as-function methods in Algo-
rithm 1, and review the basic single-mode normalization methods,
which ensure that the normalized output has a single-mode
(Gaussian) distribution. We then introduce the approaches that
extend single-mode method to multiple modes, and that further
combine different normalization methods. Lastly, we discuss the
more robust estimation methods that address the small-batch-size
problem of BN.

5.1 A Framework for Decomposing Normalization

We divide the normalizing-activations-as-function framework into
three abstract processes: normalization area partitioning (NAP),
normalization operation (NOP), and normalization representation
recovery (NRR). We consider the more general mini-batch (of
size m) activations in a convolutional layer X ∈ Rd×m×h×w,
where d, h and w are the channel number, height and width of
the feature maps, respectively.3 NAP transforms the activations X
into X ∈ RS1×S24, where S2 indexes the set of samples used to
compute the estimators. NOP denotes the specific normalization
operation (see main operations in Section 2) on the transformed
data X . NRR is used to recover the possible reduced representation
capacity.

Take BN as an example. BN [8] considers each spatial position
in a feature map as a sample [8], [66] and the NAP is:

X = ΠBN (X) ∈ Rd×mhw, (20)

which means that the statistics are calculated along the batch,
height, and width dimensions. The NOP is the standardization,
represented in the form of a matrix as:

X̂ = ΦSD(X) = Λ−
1
2 (X − u1T ). (21)

Here, u is the mean of data samples, 1 is a column vector of all
ones, and Λd = diag(σ2

1 , . . . , σ
2
d) + εI , where σ2

j is the variance
over data samples for the j-th neuron/channel. The NRR is the

3. Note that the convolutional activation is reduced to the MLP activation,
when setting h = w = 1.

4. NAP can be implemented by the reshape operation of PyTorch [64] or
Tensorflow [65].

affine transformation with channel-wise learnable affine parameters
γ, β ∈ Rd, defined as:

X̃ = ΨAF (X̂) = X̂ � (γ1T ) + (β1T ). (22)

In the following sections, we will discuss the research progress
along these three lines.

5.1.1 Normalization Area Partitioning
In this section, the default NOP is the standardization operation
(Eqn. 21), and the NRR is the affine transform (Eqn. 22).

LN [20] proposes to standardize the layer input within the
neurons for each training sample, to avoid the drawbacks of
normalization along batch dimensions. Specifically, the NAP of LN
is X = ΠLN (X) ∈ Rm×dhw, where the normalization statistics
are calculated along the channel, height and width dimensions. LN
has the same formulation during training and inference, and is
extensively used in NLP tasks [25], [26], [27].

Group normalization (GN) [22] generalizes LN, dividing the
neurons into groups and standardizing the layer input within the
neurons of each group for each sample independently. Specifically,
the NAP of GN is X = ΠGN (X) ∈ Rmg×shw, where g is
the group number and d = gs. LN is clearly a special case of
GN with g = 1. By changing the group number g, GN is more
flexible than LN, enabling it to achieve good performance on visual
tasks limited to small-batch-size training (e.g., object detection and
segmentation [22]).

Instance normalization (IN) [67] proposes to normalize each
single image to remove instance-specific contrast information.
Specifically, the NAP of IN is X = ΠIN (X) ∈ Rmd×hw. Due to
its ability to remove style information from the inputs, IN is widely
used in image style transfer tasks [68], [69], [70].

Position normalization (PN) [71] standardizes the activations at
each position independently across the channels. The NAP of PN
is X = ΠPN (X) ∈ Rmhw×d. PN is designed to deal with spatial
information, and has the potential to enhance the performance of
generative models [71], [72].

Batch group normalization (BGN) [73] expands the grouping
mechanism of GN from being over only channels to being
over both channels and batch dimensions. The NAP of BGN
is X = ΠBGN (X) ∈ Rgmg×smshw, where m = gmsm. BGN
also normalizes over batch dimensions and needs to estimate the
population statistics, similar to BN in Eqn. 18. However, the group
mechanism adds ‘examples’ for normalization, thus relieving the
small-batch problem of BN to some degree.
Local Normalization: In the above normalization methods, the
statistics are shared by all examples/positions in the same area that
are used to calculate these statistics. There are also methods in
which the statistics for each example/position are calculated over
the neighboring regions and thus vary. This kind of normalization
is called local normalization [74]. Jarrett et al. proposed local
contrast normalization (LCN) to standardize each example’s feature
using the statistics calculated by its neighbors in a window of size
9× 9. Local response normalization (LRN) [75] proposes to scale
the activation across n ‘adjacent’ kernel maps at the same spatial
position. Local contex normalization [74] extends the neighborhood
partition, where the normalization is performed within a window
of size p × q, for groups of filters with a size predefined by the
number of channels per group (c groups) along the channel axis.
Divisive normalization (DN) [76] generalizes the neighborhood
partition of these local normalization methods as the choices of the
summation and suppression fields [76], [77].
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5.1.2 Normalization Operation
As previously discussed, current normalization methods usually
use a standardization operation. However, other operations can also
be used to normalize the data. We divide these operations into three
categories: 1) Extending standardization towards the whitening
operation, which is a more general operation; 2) Variations of
standardization; 3) Reduced standardizations that use only centering
or scaling for some special situations. Unless otherwise stated, the
NAP is ΠBN , the data transferred after the NAP is denoted as
X ∈ Rd×m, and the NRR is the affine transform as shown in
Eqn. 22.

Beyond Standardization Towards Whitening: Huang et al.
proposed decorrelated BN [34], which extends BN to batch
whitening (BW). The NOP of BW is whitening, represented as:

X̂ = ΦW (X) = Σ−
1
2 (X − u1T ). (23)

Here, Σ−
1
2 is the whitening matrix, which is calculated from

the corresponding mini-batch covariance matrix Σ = 1
m (X −

u1T )(X − u1T )T + εI .
One main challenge for extending standardization to whitening

is how to back-propagate through the inverse square root of
a matrix (i.e. ∂Σ−

1
2 /∂Σ) [8], [34]. This can be achieved by

using matrix differential calculus [78], as proposed in [34]. One
interesting question is the choice of how to compute the whitening
matrix Σ−

1
2 . PCA based BW with Σ

− 1
2

PCA = Λ̃−
1
2D suffers

significant instability in training DNNs and hardly converges, due
to the so-called stochastic axis swapping (SAS), as explained
in [34]. Zero-phase component analysis (ZCA) whitening, using
Σ
− 1

2

ZCA = DΛ̃−
1
2DT , is advocated for in [34], where the PCA-

whitened input is rotated back by the corresponding rotation
matrix D. ZCA whitening has been shown to avoid the SAS
issue and achieve better performance over standardization (used
in BN) on discriminative classification tasks [34]. Siarohin et
al. [79] used Cholesky decomposition (CD) based whitening
Σ
− 1

2

CD = L−1, where L is a lower triangular matrix from the
CD, with LLT = Σ. CD whitening has been shown to achieve
state-of-the-art performance in training GANs. For more details on
comparing different whitening methods for training DNNs, please
refer to [35].

Given a particular batch size, BW may not have enough
samples to obtain a suitable estimate for the full covariance
matrix, which can heavily harm the performance. Group-based
BW—where features are divided into groups and whitening is
performed within each one—was proposed [34], [80] to control
the extent of the whitening. One interesting property is that group-
based BW reduces to BN if the channel number in each group is
set to 1. Besides, group-based BW also has the added benefit of
reducing the computational cost of whitening. Later, Huang et al.
proposed iterative normalization (IterNorm) [81] to improve the
computational efficiency and numerical stability of ZCA whitening,
since it can avoid eigen-decomposition or SVD by employing
Newton’s iteration for approximating the whitening matrix Σ−

1
2 .

An similar idea was also used in [80] by coupled Newton-
Schulz iterations [82] for whitening. One interesting property of
IterNorm is that it stretches the dimensions along the eigenvectors
progressively, so that the associated eigenvalues converge to 1
after normalization. Therefore, IterNorm can effectively control the
extent of whitening by its iteration number.

There also exist works that impose extra penalties on the loss
function to obtain approximately whitened activations [83], [84],

[85], [86], [87], or exploit the whitening operation to improve the
network’s generalization [88], [89].

Variations of Standardization: There are several variations of
the standardization operation for normalizing the activations.
As an alternative to the L2 normalization used to control the
activation scale in a BN layer [8], the L1 normalization was
proposed in [90], [91], [92] for standardization. Specifically, the
dimension-wise standardization deviation of L1 normalization is:
σ = 1

m

∑m
i=1 |x(i) − u|. Note that L2 normalization is made

equivalent to L1 normalization (under mild assumptions) by
multiplying it by a scaling factor

√
π
2 [91], [92].

L1 normalization can improve numerical stability in a low-
precision implementation, as well as provide computational and
memory benefits, over L2 normalization. The merits of L1

normalization originate from the fact that it avoids the costly
square and root operations of L2 normalization. Specifically, Wu
et al. [91] showed that the proposed sign and absolute operations
in L1 normalization can achieve a 1.5× speedup and reduce
the power consumption by 50% on an FPGA platform. Similar
merits also exist when using L∞, as discussed in [92], where
the standardization deviation is: σ = maxi |x(i)|. The more
generalized Lp was investigated in [90] and [92], where the
standardization deviation is: σ = 1

m
p

√∑m
i=1(x(i))p.

Yuan et al. [93] proposed generalized batch normalization
(GBN), in which the mean statistics for centering and the deviation
measures for scaling are more general operations, the choice of
which can be guided by the risk theory. They provided some
optional asymmetric deviation measures for networks with ReLU,
such as, the Right Semi-Deviation (RSD) [93].

Reduced Standardization: As stated in Section 2, the standard-
izing operation usually includes centering and scaling. However,
some works only consider one or the other, for specific situations.
Note that either centering or scaling along the batch dimension can
benefit optimization, as shown in [8], [31]. Besides, the scaling
operation is important for scale-invariant learning, and has been
shown useful for adaptively adjusting the learning rate to stabilize
training [94].

Salimans et al. proposed mean-only batch normalization
(MoBN) [21], which only performs centering along the batch
dimension, and works well when combined with weight normal-
ization [21]. Yan et al. [95] proposed to perform scaling only
in BN for small-batch-size training, which also works well when
combined with weight centralization. Shen et al. [96] also proposed
to perform scaling only in BN to improve the performance for NLP
tasks.

Karras et al. [72] proposed pixel normalization, where the
scaling only operation is performed along the channel dimension
for each position of each image. This works like PN [71] but
only uses the scaling operation. Pixel normalization works well for
GANs [71] when used in the generator.

Zhang et al. [97] hypothesized that the re-centering invariance
produced by centering in LN [20] is dispensable and proposed to
perform scaling only for LN, which is referred to as root mean
square layer normalization (RMSLN). RMSLN takes into account
the importance of the scale-invariant property for LN. RMSLN
works as well as LN on NLP tasks but reduces the running time [97].
This idea was also used in the variance-only layer normalization for
the click-through rate (CTR) prediction task [98]. Chiley et al. [99]
also proposed to perform scaling along the channel dimension
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(like RMSLN) in the proposed online normalization to stabilize the
training.

Singh and Krishnan proposed filter response normalization
(FRN) [100], which performs the scaling-only operation along each
channel (filter response) for each sample independently. This is
similar to IN [67] but without performing the centering operation.
The motivation is that the benefits of centering for normalization
schemes that are batch independent are not really justified.

5.1.3 Normalization Representation Recovery
Normalization constrains the distribution of the activations, which
can benefit optimization. However, these constraints may hamper
the representation ability, so an additional affine transformation is
usually used to recover the possible representation, as shown in
Eqn. 22. There are also other options for constructing the NRR.

Siarohin et al. [79] proposed a coloring transformation to
recover the possible loss in representation ability caused by the
whitening operation, which is formulated as:

X̃ = ΨLR(X̂) = X̂W + (β1T ), (24)

where W is a d× d learnable matrix. The coloring transformation
can be viewed as a linear layer in neural networks.

In Eqn. 22, the NRR parameters are both learnable through
backpropagation. Several works have attempted to generalize these
parameters by using a hypernetwork to dynamically generate them,
which is formulated as:

X̃ = ΨDC(X̂) = X̂ � Γφγ +Bφβ , (25)

where Γφγ ∈ Rd×m and Bφβ ∈ Rd×m are generated by the
subnetworks φγθγ (·) and φβθβ (·), respectively. The affine parameters
generated depend on the original inputs themselves, making them
different from the affine parameters shown in Eqn. 22, which are
learnable by backpropagation.

Kim et al. proposed dynamic layer normalization (DLN) [101]
in a long short-term memory (LSTM) architecture for speech
recognition, where φγθγ (·) and φβθβ (·) are separate utterance-level
feature extractor subnetworks, which are jointly trained with the
main acoustic model. The input of the subnetworks is the output of
the corresponding hidden layer of the LSTM. Similar ideas are also
used in adaptive instance normalization (AdaIN) [69] and adaptive
layer-instance normalization (AdaLIN) [102] for unsupervised
image-to-image translation, where the subnetworks are MLPs
and the inputs of the subnetworks are the embedding features
produced by one encoder. Jia et al. [103] proposed instance-level
meta normalization (ILMN), which utilizes an encoder-decoder
subnetwork to generate affine parameters, given the instance-level
mean and variance as input. Besides, ILMN also combines the
learnable affine parameters shown in Eqn. 22. Rather than using
the channel-wise affine parameters shared across spatial positions,
spatially adaptive denormalization (SPADE) uses the spatially
dependent β, γ ∈ Rd×h×w, which are dynamically generated by a
two-layer CNN with raw images as inputs.

The mechanism for generating affine parameter Γφγ shown in
Eqn. 25 resembles the squeeze-excitation (SE) block [104], when
the input of the subnetwork φγθγ (·) is X itself, i.e., Γφγ = φγθγ (X).
Inspired by this, Liang et al. proposed instance enhancement batch
normalization (IEBN)) [105], which combines the channel-wise
affine parameters in Eqn. 22 and the instance-specific channel-
wise affine parameters in Eqn. 25 using SE-like subnetworks,
with fewer parameters. IEBN can effectively regulate noise by

introducing instance-specific information for BN. This idea is
further generalized by attentive normalization [106], proposed by
Li et al., where the affine parameters are modeled by K mixture
components.

Rather than using a subnetwork to generate the affine parame-
ters, Xu et al. proposed adaptive normalization (AdaNorm) [27],
where the affine parameters depend on the standardized output X̂
of layer normalization:

X̃ = X̂ � φ(X̂). (26)

Here, φ(X̂) used in [27] is: φ(x̂) = C(1−kx̂), C = 1
d

∑d
i=1 x̂i

and k is a constant that satisfies certain constraints. Note that
φ(X̂) is treated as a changing constant (not a function) and the
gradient of φ(X̂) is detached in the implementation [27]. We
also note that the side information can be injected into the NRR
operation for conditional generative models. The typical works are
conditional BN (CBN) [107] and conditional IN (CIN) [68]. We
will elaborate on these in Section 9 when we discuss applications
of normalization.

In summary, we list the main single-mode normalization
methods under our proposed framework in Table 1.

5.2 Multi-Mode and Combinational Normalization

In previous sections, we focused on single-mode normalization
methods. In this section, we will introduce the methods that extend
to multiple modes, as well as combinational methods.

Multiple Modes: Kalayeh and Shah proposed mixture normalizing
(MixNorm) [110], which performs normalization on subregions
that can be identified by disentangling the different modes of the
distribution, estimated via a Gaussian mixture model (GMM).
MixNorm requires a two-stage process, where the GMM is
first fitted by expectation-maximization (EM) [111] with K-
means++ [112] for initialization, and the normalization is then
performed on samples with respect to the estimated parameters.
MixNorm is not fully differentiable due to the K-means++ and EM
iterations.

Deecke et al. proposed mode normalization (ModeNorm),
which also extends the normalization to more than one mean and
variance to address the heterogeneous nature of complex datasets.
MN is formulated in a mixture of experts (MoE) framework, where
a set of simple gate functions is introduced to assign one example
to groups with a given probability. Each sample in the mini-batch
is then normalized under voting from its gate assignment. The gate
functions are trained jointly by backpropagation.

Combination: Since different normalization strategies have dif-
ferent advantages and disadvantages for training DNNs, some
methods try to combine them. Luo et al. proposed switchable
normalization (SN) [113], which combines three types of statistics,
estimated channel-wise, layer-wise, and mini-batch-wise, by using
IN, LN, and BN, respectively. SN switches between the different
normalization methods by learning their importance weights,
computed by a softmax function. SN was designed to address the
learning-to-normalize problem and obtains good results on several
visual benchmarks [113]. Shao et al. [114] further introduced
sparse switchable normalization (SSN), which selects different
normalizations using the proposed SparsestMax function, which is
a sparse version of softmax. Pan et al. [115] proposed switchable
whitening (SW), which provides a general way to switch between
different whitening and standardization methods under the SN
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TABLE 1
Summary of the main single-mode normalization methods, based on our proposed framework for describing normalizing-activations-as-functions

methods. The order is based on the time of publication.

Method NAP NOP NRR Published In
Local contrast

normalization [108]
ΠIN (X) ∈ Rmd×hw: local

spatial positions
Standardizing No ICCV, 2009

Local response
normalization [75]

ΠPN (X) ∈ Rmhw×d: local
channels

Scaling No NeurIPS, 2012

Batch normalization (BN) [8] ΠBN (X) ∈ Rd×mhw Standardizing Learnable γ, β ∈ Rd ICML, 2015
Mean-only BN [21] ΠBN (X) ∈ Rd×mhw Centering No NeurIPS, 2016

Layer normalization (LN) [20] ΠLN (X) ∈ Rm×dhw Standardizing Learnable γ, β ∈ Rd Arxiv, 2016
Instance normalization (IN) [67] ΠIN (X) ∈ Rmd×hw Standardizing Learnable γ, β ∈ Rd Arxiv, 2016

Lp-Norm BN [90] ΠBN (X) ∈ Rd×mhw Standardizing with
Lp-Norm divided

Learnable γ, β ∈ Rd Arxiv, 2016

Divisive normalization [76] ΠLN (X) ∈ Rm×dhw: local
spatial positions and channels

Standardizing Learnable γ, β ∈ Rd ICLR, 2017

Conditional IN [68] ΠIN (X) ∈ Rmd×hw Standardizing Side information ICLR, 2017
Dynamic LN [101] ΠLN (X) ∈ Rm×dhw Standardizing Generated γ, β ∈ Rd INTERSPEECH,

2017
Conditional BN [107] ΠBN (X) ∈ Rd×mhw Standardizing Side information NeurIPS, 2017

Pixel normalization [72] ΠPN (X) ∈ Rmhw×d Scaling No ICLR, 2018
Decorrelated BN [34] ΠBN (X) ∈ Rd×mhw ZCA whitening Learnable γ, β ∈ Rd CVPR, 2018

Group normalization (GN) [22] ΠGN (X) ∈ Rmg×shw Standardizing Learnable γ, β ∈ Rd ECCV, 2018
Adaptive IN [69] ΠIN (X) ∈ Rmd×hw Standardizing Generated γ, β ∈ Rd ECCV, 2018

L1-Norm BN [91], [92] ΠBN (X) ∈ Rd×mhw Standardizing with
L1-Norm divided

Learnable γ, β ∈ Rd NeurIPS, 2018

Whitening and coloring BN [79] ΠBN (X) ∈ Rd×mhw CD whitening Color transformation ICLR, 2019
Generalized BN [93] ΠBN (X) ∈ Rd×mhw General standardizing Learnable γ, β ∈ Rd AAAI, 2019

Iterative normalization [81] ΠBN (X) ∈ Rd×mhw ZCA whitening by
Newton’s iteration

Learnable γ, β ∈ Rd CVPR, 2019

Instance-level meta
normalization [103]

ΠLN (X)/ΠIN (X)/ ΠGN (X) Standardizing Learnable & generated
γ, β ∈ Rd

CVPR, 2019

Spatially adaptive
denormalization [109]

ΠBN (X) ∈ Rd×mhw Standardizing Generated
γ, β ∈ Rd×h×w

CVPR, 2019

Position normalization (PN) [71] ΠPN (X) ∈ Rmhw×d Standardizing Learnable γ, β ∈ Rd NeurIPS, 2019
Root mean square LN [97] ΠLN (X) ∈ Rm×dhw Scaling Learnable γ ∈ Rd NeurIPS, 2019
Online normalization [99] ΠLN (X) ∈ Rm×dhw Scaling No NeurIPS, 2019

Batch group normalization [73] ΠBGN (X) ∈ Rgmg×smshw Standardizing Learnable γ, β ∈ Rd ICLR, 2020
Instance enhancement BN [105] ΠBN (X) ∈ Rd×mhw Standardizing Learnable & generated

γ, β ∈ Rd
AAAI, 2020

PowerNorm [96] ΠBN (X) ∈ Rd×mhw Scaling Learnable γ, β ∈ Rd ICML, 2020
Local contex normalization [74] ΠGN (X) ∈ Rmg×shw: local

spatial positions and channels
Standardizing Learnable γ, β ∈ Rd CVPR, 2020

Filter response
normalization [100]

ΠIN (X) ∈ Rmd×hw Scaling Learnable γ, β ∈ Rd CVPR, 2020

Attentive normalization [106] ΠBN (X)/ΠIN (X)/
ΠLN (X)/ΠGN (X)

Standardizing Generated γ, β ∈ Rd ECCV, 2020

framework. Zhang et al. [116] introduced exemplar normalization
(EN) to investigate a dynamic ‘learning-to-normalize’ problem. EN
learns different data-dependent normalizations for different image
samples, while SN fixes the importance ratios for the entire dataset.
Besides, Luo et al. [117] proposed dynamic normalization (DN),
which generalizes IN, LN, GN and BN in a unified formulation
and can interpolate them to produce new normalization methods.

Considering that IN can learn style-invariant features [67],
Nam et al. [118] introduced batch-instance normalization (BIN)
to normalize the styles adaptively to the task and selectively to
individual feature maps. It learns to control how much of the style
information is propagated through each channel by leveraging a
learnable gate parameter to balance between IN and BN. A similar
idea was also used in the adaptive layer-instance normalization

(AdaLIN) [102] for image-to-image translation tasks, where a
learnable gate parameter is leveraged to balance between LN and
IN. Bronskill et al. [119] introduced TaskNorm, which combines
LN/IN with BN for meta-learning scenarios. Rather than designing
a combinational normalization module, Pan et al. proposed IBN-
Net, which carefully integrates IN and BN as building blocks,
and can be wrapped into several deep networks to improve their
performances. Qiao et al. introduced batch-channel normalization
(BCN), which integrates BN and channel-based normalizations
(e.g., LN and GN) sequentially as a wrapped module.

Recently, Liu et al. [120] searched for a combination of
normalization-activation layers using AutoML [121], leading to
the discovery of EvoNorms, a set of new normalization-activation
layers with sometimes surprising structures that go beyond existing
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design patterns.

5.3 BN for More Robust Estimation
As illustrated in previous sections, BN introduces inconsistent nor-
malization operations during training (using mini-batch statistics,
as shown in Eqn. 17) and inference (using population statistics
estimated in Eqn. 18). This means that the upper layers are trained
on representations different from those computed during inference.
These differences become significant if the batch size is too small,
since the estimates of the mean and variance become less accurate.
This leads to significantly degenerated performance [22], [122],
[123], [124]. To address this problem, some normalization methods
avoid normalizing along the batch dimension, as introduced in
previous sections. Here, we will discuss the more robust estimation
methods that also address this problem of BN.

5.3.1 Normalization as Functions Combining Population
Statistics
One way to reduce the discrepancy between training and inference
is to combine the estimated population statistics for normalization
during training.

Ioffe et al. [122] proposed batch renormalization (BReNorm),
augmenting the normalized output for each neuron with an affine
transform, as:

x̂ =
x− µ
σ
· r + z, (27)

where r = σ
σ̂ and z = µ−µ̂

σ̂ . Note that r and z are bounded between
( 1
rmax

, rmax) and ( 1
zmax

, zmax), respectively. Besides, r and z are
treated as constants when performing gradient computation. Eqn. 27
is reduced to standardizing the activation using the estimated
population (which ensures that the training and inference are
consistent) if r and z are between their bounded values. Otherwise,
Eqn. 27 implicitly exploits the benefits of mini-batch statistics.

Dinh et al. [125] were the first to experiment with batch normal-
ization using population statistics, which were weighted averages
of the old population statistics and current mini-batch statistics,
as shown in Eqn. 18. The experimental results demonstrate that,
combining population and mini-batch statistics can improve the
performance of BN in small-batch-size scenarios. This idea is also
used in diminishing batch normalization [126], full normalization
(FN) [127], online normalization [99], moving average batch
normalization (MABN) [95], PowerNorm [96] and momentum
batch normalization (MBN) [128]. One challenge for this type of
method is how to calculate the gradients during backpropagation,
since the population statistics are computed by all the previous mini-
batches, and it is impossible to obtain their exact gradients [90].
One straightforward strategy is to view the population statistics as
constant and only back-propagate through current mini-batches, as
proposed in [125], [126] and [127]. However, this may introduce
training instability, as discussed in Section 4. Chiley et al. [99]
proposed to compute the gradients by maintaining the property of
BN during backpropagation. Yan et al. [95] and Shen et al. [96]
proposed to view the backpropagation gradients as statistics to be
estimated, and approximate these statistics by moving averages.

Rather than explicitly using the population statistics, Guo
et al. [129] introduced memorized BN, which considers data
information from multiple recent batches (or all batches in an
extreme case) to produce more accurate and stable statistics. A
similar idea is exploited in cross-iteration batch normalization [130],
where the mean and variance of examples from recent iterations

are approximated for the current network weights via a low-
order Taylor polynomial. Besides, Wang et al. proposed Kalman
normalization [131], which treats all the layers in a network as
a whole system, and estimates the statistics of a certain layer by
considering the distributions of all its preceding layers, mimicking
the merits of Kalman filtering. Another practical approach for
relieving the small-batch-size issue of BN in engineering systems
is the synchronized batch normalization [132], [133], [134], which
performs a synchronized computation of BN statistics across GPUs
(Cross-GPU BN) to obtain better statistics.

5.3.2 Robust Inference Methods for BN

Some works address the small-batch-size problem of BN by finely
estimating corrected normalization statistics during inference only.
This strategy does not affect the training scheme of the model.

In fact, even the original BN paper [8] recommended estimating
the population statistics after the training has finished (Algorithm
2 in [8]), rather than using the estimation calculated by running
average, as shown in Eqn. 18. However, while this can benefit a
model trained with a small batch size, where estimation is the main
issue [8], [113], [135], it may lead to degenerated generalization
when the batch size is moderate.

Singh et al. analyzed how a small batch size hampers the
estimation accuracies of BN when using running averages, and
proposed EvalNorm [123], which optimizes the sample weight
during inference to ensure that the activations produced by
normalization are similar to those provided during training. A
similar idea is also exploited in [73], where the sample weights are
viewed as hyperparameters, which are optimized on a validation
set.

Compared to estimating the BN statistics (population mean
and standardization deviation), Huang et al. [35] showed that
estimating the whitening matrix of BW is more challenging. They
demonstrated that, in terms of estimating the population statistics
of the whitening matrix, it is more stable to use the mini-batch
covariance matrix indirectly (the whitening matrix can be calculated
after training) than the mini-batch whitening matrix directly.

6 NORMALIZING WEIGHTS

As stated in Section 3, normalizing the weights can implicitly nor-
malize the activations by imposing constraints on the weight matrix,
which can contribute to preserving the activations (gradients) during
forward (backpropagation). Several seminal works have analyzed
the distributions of the activations, given normalized inputs, under
the assumption that the weights have certain properties or are under
certain constraints, e.g., normalization propagation [136], variance
propagation [137], self normalization [138], bidirectional self-
normalization [139]. The general idea of weight normalization is to
provide layer-wise constraints on the weights during optimization,
which can be formulated as:

θ∗ = arg minθ E(x,y)∈D[L(y, f(x; θ))]

s.t. Υ(W ), (28)

where Υ(W ) are the layer-wise constraints imposed on the weights
W ∈ Rdout×din . It has been shown that the imposed constraints
can benefit generalization [51], [52], [140]. In the following
sections, we will introduce different constraints and discuss how to
train a model with the constraints satisfied.
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6.1 Constraints on Weights

Salimans et al. proposed weight normalization (WN), which re-
quires the input weight of each neuron to be unit norm. Specifically,
given one neuron’s input weight Wi ∈ Rdin , the constraints
imposed on W are:

Υ(W ) = {‖Wi‖ = 1, i = 1, ..., dout}. (29)

Weight normalization has a scale-invariant property like BN, which
is important for stabilizing training.

Inspired by the practical weight initialization technique [3], [44],
where weights are sampled from a distribution with zero mean and
a standard deviation for initialization, Huang et al. [51] further
proposed centered weight normalization (CWN), constraining the
input weight of each neuron to have zero mean and unit norm, as:

Υ(W ) = {W T
i 1 = 0 & ‖Wi‖ = 1, i = 1, ..., dout}. (30)

CWN can theoretically preserve the activation statistics between
different layers under certain assumptions (Proposition 1 in [51]),
which can benefit optimization. Weight centering is also advocated
for in [95], [141]. Qiao et al. proposed weight standardization
(WS), which imposes the constraints on the weights [142] with
Υ(W ) = {W T

i 1 = 0 & ‖Wi‖ =
√
dout, i = 1, ..., dout}. Note

that WS cannot effectively preserve the activation statistics between
different layers, since the weight norm is

√
dout, which may cause

exploding activations. Therefore, WS usually needs to be combined
with activation normalization methods (e.g., BN/GN) to relieve this
issue [141].

Another widely used constraint on weights is orthogonality,
which is represented as

Υ(W ) = {WW T = I}. (31)

Orthogonality was first used in the square hidden-to-hidden weight
matrices of RNNs [143], [144], [145], [146], [147], [148], [149],
and then further extended to the more general rectangular matrices
in DNNs [52], [150], [151], [152], [153]. Orthogonal weight
matrices can theoretically preserve the norm of activations/output-
gradients between linear transformations [24], [152], [153]. Further,
the distributions of activations/output-gradients can also be pre-
served under mild assumptions [24], [52]. These properties of
orthogonal weight matrices are beneficial for the optimization of
DNNs. Furthermore, orthogonal weight matrices can avoid learning
redundant filters, benefitting generalization.

Rather than bounding all singular values as 1, like in orthogonal
weight matrices, Miyato et al. [23] proposed spectral normalization,
which constrains the spectral norm (the maximum singular value)
of a weight matrix to 1, in order to control the Lipschitz constant of
the discriminator when training GANs. Huang et al. [24] proposed
orthogonalization by Newton’s iterations (ONI), which controls the
orthogonality through the iteration number. They showed that it is
possible to bound the singular values of a weight matrix between
(σmin, 1) during training. ONI effectively interpolates between
spectral normalization and full orthogonalization, by altering the
iteration number.

Note that the constraints imposed on the weight matrix
(Eqns. 29, 30, 31) may harm the representation capacity and result
in degenerated performance. An extra learnable scalar parameter
is usually used for each neuron to recover the possible loss in
representation capacity, which is similar to the idea of the affine
parameters proposed in BN.

6.2 Training with Constraints

It is clear that training a DNN with constraints imposed on the
weights is a constraint optimization problem. Here, we summarize
three kinds of strategies for solving this.

Re-Parameterization One stable way to solve constraint opti-
mization problems is to use a re-parameterization method. Re-
parameterization constructs a fine transformation ψ over the
proxy parameter V to ensure that the transformed weight W
has certain beneficial properties for the training of neural networks.
Gradient updating is executed on the proxy parameter V by back-
propagating the gradient information through the normalization
process. Re-parameterization was first used in learning the square
orthogonal weight matrices in RNNs [143], [144], [145]. Salimans
et al. [21] used this technique to learn a unit-norm constraint
as shown in Eqn. 29. Huang et al. [51] formally described the
re-parameterization idea in training with constraints on weight
matrices, and applied it to solve the optimization with zero-mean
and unit-norm constraints as shown in Eqn. 30. This technique
was then further used in other methods for learning with different
constraints, e.g., orthogonal weight normalization [52], weight
standardization [141], spectral normalization [23] and weight
centralization [95]. Re-parameterization is a main technique for
optimizing constrained weights in DNNs. Its main merit is that
the training is relatively stable, because it updates V based on the
gradients computed by backpropagation, while simultaneously
maintaining the constraints on W . The downside is that the
backpropagation through the designed transformation may increase
the computational cost.

Regularization with an Extra Penalty Some works have tried
to maintain the weight constraints using an additional penalty on
the objective function, which can be viewed as a regularization.
This regularization technique is mainly used for learning the
weight matrices with orthogonality constraints, for its efficiency
in computation [4], [16], [146], [154], [155]. Orthogonal regu-
larization methods have demonstrated improved performance in
image classification [16], [154], [156], [157], resisting attacks from
adversarial examples [158], neural photo editing [159] and training
GANs [23], [30]. However, the introduced penalty works like a
pure regularization, and whether or not the constraints are truly
maintained or training benefited is unclear. Besides, orthogonal
regularization usually requires to be combined with activation
normalization, when applied on large-scale architectures, since it
cannot stabilize training.

Riemannian Optimization A weight matrix W with constraints
can be viewed as an embedded submanifold [52], [160], [161],
[162]. For example, a weight matrix with an orthogonality con-
straint (Eqn.31) is a real Stiefel manifold [52], [160]. One possible
way of maintaining these constraints when training DNNs is to use
Riemannian optimization [163], [164]. Conventional Riemannian
optimization techniques are based on a gradient descent method
over a manifold, which iteratively seeks updated points. In each
iteration, there are two main phases: 1) Computing the Riemannian
gradient based on the inner dot product defined in the tangent space
of the manifold; 2) Finding the descent direction and ensuring that
the new point is on the manifold [52], [164]. Most Riemannian
optimization methods in the deep learning community address the
second phase by either QR-decomposition-type retraction [164],
[165] or Cayley transformation [144], [146], [162], [166]. The
main difficulties of applying Riemannian optimization in training
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DNNs are: 1) The optimization space covers multiple embedded
submanifolds; 2) The embedded submanifolds are inter-dependent
since the optimization of the current weight layer is affected by
those of preceding layers. To stabilize the training, activation
normalizations (e.g. BN) [162] or gradient clips [160] are usually
required. One interesting observation is that using BN will probably
improve the performance of projection-based methods (where the
gradient is calculated based on the Euclidean space) [161], [167].

6.3 Combining Activation Normalization
Normalizing weights has its own advantages in training DNNs,
compared to normalizing activations. For example, it is data-
independent, and is more convenient to use for theoretical analysis
[168], [169]. However, normalizing weights has some drawbacks
when used in large-scale networks in practice: 1) It may not
effectively improve the optimization efficiency when residual
connections are introduced or when the nonlinearity does not satisfy
the assumptions required for preserving distributions between
different layers, since the Criteria 1 in Section 3 is not readily
satisfied in these situations; 2) Normalizing the weight usually has
significantly lower test accuracy than BN on large-scale image
classification [170]. Huang et al. showed that CWN combined
with BN can improve the original networks with only BN. The
idea of combining normalizing weights and activations to improve
performance has been widely studied [24], [52], [141], [171].
Moreover, Luo et al. proposed cosine normalization [172], which
merges layer normalization and weight normalization together.

7 NORMALIZING GRADIENTS

As stated previously, normalizing activations and weights aims to
provide a better optimization landscape for DNNs, by satisfying
Criteria 1 and 2 in Section 3. Rather than providing a good
optimization landscape by design, normalizing gradients in DNNs
aims to exploit the curvature information for GD/SGD, even
though the optimization landscape is ill-conditioned. It performs
normalization solely on the gradients, which may effectively
remove the negative effects of an ill-conditioned landscape caused
by the diversity in magnitude of gradients from different layers [3].
Generally speaking, normalizing gradients is similar to second-
order optimization [173], [174], [175], [176] or coordinate-wise
adaptive learning rate based methods [7], [177], [178], but with the
goal of exploiting the layer-wise structural information in DNNs.

Yu et al. [53] were the first to propose block-wise (layer-wise)
gradient normalization for training DNNs to front the gradient
explosion or vanishing problem. Specifically, they perform scaling
over the gradients w.r.t. the weight in each layer, ensuring the norm
to be unit-norm. This technique can decrease the magnitude of a
large gradient to a certain level, like gradient clipping [4], and also
boost the magnitude of a small gradient. However, the net-gain of
this approach degenerates in the scale-invariant DNNs (e.g. with
BN). In [53], an extra ratio factor that depends on the norm of the
layer-wise weight was used to adaptively adjust the magnitude of
the gradients. A similar idea was also introduced in the layer-wise
adaptive rate scaling (LARS), proposed by You et al. [54], for
large-batch training. LARS and its follow-up works [179], [180],
[181] are essential techniques in training large-scale DNNs using
large batch sizes, significantly reducing the training times without
degradation of performance.

Rather than using the scaling operation, Yong et al. [182]
recently proposed gradient centralization (GC), which performs

centering over the gradient w.r.t. the input weight of each neuron in
each layer. GC implicitly imposes constraints on the input weight,
and ensures that the sum of elements in the input weight is a
constant during training. GC effectively improves the performances
of DNNs with activation normalization (e.g. BN or GN).

8 ANALYSIS OF NORMALIZATION

In Section 3, we provided high-level motivation of normalization
in benefiting network optimization. In this section, we will further
discuss other properties of normalization methods in improving
DNNs’ training performance. We mainly focus on BN, because
it displays nearly all the benefits of normalization in improving
the performance of DNNs, e.g., stabilizing training, accelerating
convergence and improving the generalization.

8.1 Scale Invariance in Stabilizing Training
One essential functionality of BN is its ability to stabilize training.
This is mainly due to its scale-invariant property [20], [183],
[184], [185], i.e., it does not change the prediction when rescaling
parameters and works by adaptively adjusting the learning rate in a
layer-wise manner [92], [94], [160]. Specifically,

BN(x; aW ) = BN(x;W ) (32)
∂BN(x; aW )

∂(aW )
=

1

a

∂BN(x;W )

∂W
, (33)

where a is a constant factor. The scale-invariant property also
applies to other methods that normalize the activations [20], [22],
[34], [67] or weights [21], [51], [52]. This property was first
shown in the original BN paper, and then investigated in [20] to
compare different normalization methods, and further extended for
rectifier networks in [43]. Specifically, in [43], Huang et al. showed
how the scaled factor a of the weight in a certain layer will lead
to exponentially increased/decreased gradients for unnormalized
rectifier networks, and how normalization can avoid this problem
with its scale-invariant property.

The scale-invariant weight vector in a network is always
perpendicular to its gradient [21], [94], [183], [184], [186], which
has an auto-tuning effect [91], [94], [187], [188]. Wu et al. proposed
WNgrad [169], which introduces an adaptive step-size algorithm
based on this fact. In [94], Arora et al. proved that GD/SGD with
BN can arrive a first-order stationary point with any fixed learning
rate, under certain mild assumptions. Cai et al. [187] showed that,
for the simple problem of ordinary least squares (OLS), GD with
BN converges under arbitrary learning rates for the weights, and
the convergence remains linear under mild conditions.

Another research direction is to analyze the effect of weight
decay [189] when combined with scale-invariant normalization
methods [92], [142], [161], [185], [190], [191], [192]. In this case,
weight decay causes the parameters to have smaller norms, and
thus the effective learning rate is larger. In [192], Li and Arora
showed that the original learning rate schedule and weight decay
can be folded into a new exponential schedule, when scale-invariant
normalization methods are used.

8.2 Improved Conditioning in Optimization
As stated in previous sections, one motivation behind BN is
that whitening the input can improve the conditioning of the
optimization [8] and thus accelerate training [34], [50]. This
motivation is theoretically supported for linear models [36], [192],
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but is difficult to further extend to DNNs. In [193], Santurkar et
al. argue that BN may improve optimization by enhancing the
smoothness of the Hessian of the loss. However, this conclusion is
based on a layer-wise analysis [43], [193], which corresponds to
the diagonal blocks of the overall Hessian. Ghorbani et al. [194]
further empirically investigated the conditioning of the optimization
problem by computing the spectrum of the Hessian for a large-scale
dataset. It is believed that the improved conditioning enables large
learning rates for training, thus improving the generalization, as
shown in [195]. Karakida et al. [196] investigated the conditioning
of the optimization problem by analyzing the geometry of the
parameter space determined by the Fisher information matrix (FIM),
which also corresponds to the local shape of the loss landscape
under certain conditions.

One intriguing phenomenon is that the theoretical benefits of
whitening the input for optimization only hold when BN is placed
before the linear layer, while, in practice, BN is typically placed
after the linear layer, as recommended in [8]. In [43], Huang et
al. experimentally observed, through a layer-wise conditioning
analysis, that BN (placed after the linear layer) not only improves
the conditioning of the activation’s covariance matrix, but also
improves the conditioning of the output-gradient’s covariation.
Similar observations were made in [197], where BN prevents
the rank collapse of pre-activation matrices. Some works have
also empirically investigated the position, at which BN should be
plugged in [34], [46], [198]. Results have shown that placing it
after the linear layer may work better, in certain situations.

Other analyses of normalization in optimization include an
investigation into the signal propagation and gradient backpropaga-
tion [199], [200], [201], based on the mean field theory [199], [200],
[202]. Besides, the work of [203] demonstrated that BN obtains an
accelerated convergence on the (possibly) nonconvex problem of
learning half-spaces with Gaussian inputs, from a length-direction
decoupling perspective. Dukler et al. [204] further provided the
first global convergence result for two-layer neural networks with
ReLU [6] activations trained with weight normalization.

8.3 Stochasticity for Generalization

One important property of BN is its ability to improve the
generalization of DNNs. It is believed such an improvement is
obtained from the stochasticity/noise introduced by normalization
over batch data [8], [105], [205]. It is clear that both the normalized
output (Eqn.17) and the population statistics (Eqn.18) can be
viewed as stochastic variables, because they depend on the mini-
batch inputs, which are sampled over datasets. Therefore, the
stochasticity comes from the normalized output during training [81],
and the discrepancy of normalization between training (using
estimated population statistics) and inference (using estimated
population statistics) [35], [206].

Ioffe and Szegedy [8] were the first to show the advantages
of this stochasticity for the generalization of networks, like
dropout [207], [208]. Teye et al. [209] demonstrated that training
a DNN using BN is equivalent to approximating inference in
Bayesian models, and that uncertainty estimates can be obtained
from any network using BN through Monte Carlo sampling
during inference. This idea was further efficiently approximated by
stochastic batch normalization [210] and exploited in prediction-
time batch normalization [211]. Alexander et al. jointly formulate
the stochasticity of the normalized output and the discrepancy of
normalization between training and inference in a mathematical

way, under the assumptions that the distribution of activations
over the full dataset is approximately Gaussian and i.i.d. In [81],
Huang et al. proposed an empirical evaluation for the stochasticity
of normalization over batch data, called stochastic normalization
disturbance (SND), and investigated how the batch size affects the
stochasticity of BN. This empirical analysis was further extended
to the more general BW in [35].

Some studies exploit the stochasticity of BN to improve the
generalization for large-batch training, by altering the batch size
when estimating the population statistics. One typical work is
ghost batch normalization [73], [212], [213], which reduces the
generalization error by acquiring the statistics on small virtual
(‘ghost’) batches instead of the real large batch.

9 APPLICATIONS OF NORMALIZATION

As previously stated, normalization methods can be wrapped as
general modules, which have been extensively integrated into
various DNNs to stabilize and accelerate training, probably leading
to improved generalization. For example, BN is an essential module
in the state-of-the-art network architectures for CV tasks [9], [11],
[12], [15], [16], [17], and LN is an essential module in NLP
tasks [25], [26], [27]. In this section, we discuss the applications of
normalization for particular tasks, in which normalization methods
can effectively solve the key issues. To be specific, we mainly
review the applications of normalization in domain adaptation,
style transfer, training GANs and efficient deep models. However,
we note that there also exist works exploring how to apply
normalization to meta learning [59], [214], [215], reinforcement
learning [216], [217], [218], unsupervised representation learn-
ing [219], [220], permutation-equivariant networks [221], [222],
graph neural networks [223], ordinary differential equation (ODE)
based networks [224], symmetric positive definite (SPD) neural
networks [225], and guarding against adversarial attacks [226],
[227], [228].

9.1 Domain Adaptation

Machine learning algorithms trained on some given data (source
domain) usually perform poorly when tested on data acquired under
different settings (target domain). This is explained in domain
adaptation as resulting from a shift between the distributions of the
source and target domains. Most methods for domain adaptation
thus aim to bridge the gap between these distributions. A typical
way of achieving this is to align the distributions of the source
and target domains based on the mini-batch/population statistics of
BNs [229].

Li et al. [229] proposed the first work to exploit BNs in domain
adaptation, named adaptive batch normalization (AdaBN), where
the BN statistics for the source domain are calculated during
training, and then those for the target domain are modulated during
testing. AdaBN enables domain-invariant features to be learnt
without requiring additional loss terms and the extra associated
parameters. The hypothesis behind AdaBN is that the domain-
invariant information is stored in the weight matrix of each
layer, while the domain-specific information is represented by
the statistics of the BN layer. However, this hypothesis may not
always hold because the target domain is not exploited at the
training stage. As a result, it is difficult to ensure that the statistics
of the BN layers in the source and target domains correspond to
their domain-specific information.



NORMALIZATION TECHNIQUES IN TRAINING DNNS: METHODOLOGY, ANALYSIS AND APPLICATION 13

One way to overcome this limitation is to couple the network
parameters for both target and source samples in the training stage,
which has been the main research focus of several follow-up works
inspired by AdaBN. In [230], Carlucci et al. proposed automatic
domain alignment layers (AutoDIAL), which are embedded in
different levels of the deep architecture to align the learned source
and target feature distributions to a canonical one. AutoDIAL
exploits the source and target features during the training stage, in
which an extra parameter is involved in each BN layer as the trade-
off between the source and target domains. Chang et al. further pro-
posed domain-specific batch normalization (DSBN) [231], where
multiple branches of BN are used, each of which is exclusively in
charge of a single domain. DSBN learns domain-specific properties
using only the estimated population statistics of BN and learns
domain-invariant representations with the other parameters in
the network. This method effectively separates domain-specific
information for unsupervised domain adaptation. Similar ideas have
also been exploited in unsupervised adversarial domain adaptation
in the context of semantic scene segmentation [232] and adversarial
examples for improving image recognition [233]. In [234], Roy
et al. further generalized DSBN by a domain-specific whitening
transform (DWT), where the source and target data distributions are
aligned using their covariance matrices. Wang et al. [235] proposed
transferable normalization (TransNorm), which also calculates the
statistics of inputs from the source and target domains separately,
while computing the channel transferability simultaneously. The
normalized features then go through channel-adaptive mechanisms
to re-weight the channels according to their transferability.

Besides population statistics, Seo et al. also exploited the affine
transform (Eqn.22) of BN to represent the domain-specific infor-
mation in their proposed domain-specific optimized normalization
(DSON) [236]. Moreover, DSON normalizes the activations by a
weighted average of multiple normalization statistics (typically BN
and IN), and keeps track of the normalization statistics of each
normalization type if necessary, for each domain. DSON targets
domain generalization, where examples in the target domain cannot
be accessed during training. This task is considered to be more
challenging than unsupervised domain adaptation.

9.1.1 Learning Universal Representations

The idea of applying BN in domain adaptation can be further
extended to the learning of universal representations [237], by
constructing neural networks that work simultaneously in many
domains. To achieve this, the networks need to learn to share
common visual structures where no obvious commonality exists.
Universal representations cannot only benefit domain adaptation
but also contribute to multi-task learning, which aims to learn
multiple tasks simultaneously in the same data domain.

Bilen et al. [237] advocate to learn universal image repre-
sentations using 1) the convolutional kernels to extract domain-
agnostic information and 2) the BN layers to transform the internal
representations to the relevant target domains. Data et al. [238]
exploited BN layers to learn discriminate visual classes, while other
layers (e.g. convolutional layers) are used to learn the universal
representation. They also provided a way to interpolate BN layers to
solve new tasks. Li et al. [239] proposed covariance normalization
(CovNorm) for multi-domain learning, which provides efficient
solutions to several tasks defined in different domains.

9.2 Style Transfer

Style transfer is an important image editing task that enables the
creation of new artistic works [240], [241]. Image style transform
algorithms aim to generate a stylized image that has similar content
and style to the given images. The key challenge in this task is to
extract effective representations that can disentangle the style from
the content. The seminal work by Gatys et al. [242] showed that
the covariance/Gram matrix of the layer activations, extracted by a
trained DNN, has a remarkable capacity for capturing visual styles.
This provides a feasible solution to matching the styles between
images by minimizing Gram matrix based losses, pioneering the
way for style transfer.

A key advantage of applying normalization to style transfer
is that the normalization operation (NOP) can remove the style
information (e.g., whitening can ensure the covariance matrix
to be an identity matrix), while the normalization representation
recovery (NRR), in contrast, introduces it. In other words, the style
information is intuitively ‘editable’ by normalization [71], [243].
In a seminal work, Ulyanov et al. proposed instance normalization
(IN) [67] to remove instance-specific contrast information (style)
from the content image. Since then, IN has been a basic module
for image style transfer tasks.

In [68], Dumoulin et al. proposed conditional instance nor-
malization (CIN), an efficient solution to integrating multiple
styles. Specifically, multiple distinct styles are captured by a single
network, by encoding the style information in the affine parameters
(Eqn.22) of IN layers, after which each style can be selectively
applied to a target image. Huang et al. [70] proposed adaptive
instance normalization (AdaIN), where the activations of content
images are standardized by their statistics, and the affine parameters
(β and γ) come from the statistics of style activations. AdaIN
transfers the channel-wise mean and variance feature statistics
between content and style feature activations. AdaIN can also work
well in text effect transfer, which aims at learning the visual effects
while maintaining the text content [105]. Rather than manually
defining how to compute the affine parameters so as to align the
mean and variance between content and style features, dynamic
instance normalization (DIN) [244], introduced by Jing et al., deals
with arbitrary style transfer by encoding a style image into learnable
convolution parameters, upon which the content image is stylized.

To address the limitations of AdaIN in only trying to match up
the variances of the stylized image and the style image feature, Li et
al. [240] further proposed whitening and coloring transformations
(WCT) to match up the covariance matrix. This shares a similar
spirit to the optimization of the Gram matrix based cost in neural
style transfer [240], [245]. Some methods [246] also seek to
provide a good trade-off between AdaIN (which enjoys higher
computational efficiency) and WCT (which synthesizes images
visually closer to a given style).

9.2.1 Image Translation

In computer vision, image translation can be viewed as a more
general case of image style transfer. Given an image in the source
domain, the aim is to learn the conditional distribution of the
corresponding images in the target domain. This includes, but is
not limited to, the following tasks: super-resolution, colorization,
inpainting, and attribute transfer. Similar to style transfer, AdaIN
is also an essential tool for image translation used in, for example,
multimodal unsupervised image-to-image translation (MUIT) [69].
Note that the affine parameters of AdaIN in [69] are produced by a
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learned network, instead of computed from statistics of a pretrained
network as in [70]. Apart from IN, Cho et al. [247] proposed the
group-wise deep whitening-and-coloring transformation (GDWCT)
by matching higher-order statistics, such as covariance, for image-
to-image translation tasks. Moreover, since the whitening/coloring
transformation can be considered a 1× 1 convolution, Cho et al.
[248] further proposed adaptive convolution-based normalization
(AdaCoN) to inject the target style into a given image, for
unsupervised image-to-image translation. AdaCoN first performs
standardization locally on each subregion of an input activation
map (similar to the local normalization shown in Section 5.1.1)
and then applies an adaptive convolution, where the convolution
filter weights are dynamically estimated using the encoded style
representation. Besides, Yu et al. proposed region normalization
(RN) [249] for image inpainting network training. RN divides
spatial pixels into different regions according to the input mask and
standardizes the activations in each region. Wang [250] introduced
attentive normalization (AN) for conditional image generation,
which is an extension of instance normalization [67]. AN divides
the feature maps into different regions based on their semantics,
and then separately normalizes and denormalizes the feature points
in the same region.

9.3 Training GANs

GANs [251] can be regarded as a general framework to produce a
model distribution that mimics a given target distribution. A GAN
consists of a generator, which produces the model distribution,
and a discriminator, which distinguishes the model distribution
from the target. From this perspective, the ultimate goal when
training GANs shares a similar spirit to model training in the
domain adaptation task. The main difference lies in that GANs try
to reduce the distance between different distributions, while domain
adaptation models attempt to close the gap between different
domains. Therefore, the techniques that apply BN to domain
adaptation, as discussed in Section 9.1, may work for GANs as
well. For example, combining samples form different domains in a
batch for BN may harm the generalization in domain adaptation,
and this also applies for the training of GANs [62], [252].

One persisting challenge in training GANs is the performance
control of the discriminator and the learning pace control between
the discriminator and generator [23]. The density ratio estimated
by the discriminator is often inaccurate and unstable during
training, and the generator may fail to learn the structure of the
target distribution. One way to remedy this issue is to impose
constraints on the discriminator [253]. For instance, Xiang et
al. [254] leveraged weight normalization to effectively improve
the training performance of GANs. Miyato et al. [23] proposed
spectral normalization (SN), which enforces Lipschitz continuity
on the discriminator by normalizing its parameters with the
spectral norm estimated by power iteration. Since then, SN has
become an important technique in training GANs [23], [29], [30].
In [255], Zhang et al. further found that employing SN in the
generator improves the stability, allowing for fewer training steps
for the discriminator per iteration. Another important constraint
in training GANs is the orthogonality [24], [30], [256], [257].
Brock et al. [30] found that applying orthogonal regularization to
the generator renders it amenable to a simple ‘truncation trick’,
allowing fine control over the trade-off between sample fidelity and
variety by reducing the variance of the generator input. Huang
et al. [24] proposed orthogonalization by Newton’s iteration,

which can effectively control the orthogonality of the weight
matrix, and interpolate between spectral normalization and full
orthogonalization by altering the iteration number.

As discussed in Section 9.2 for style transfer, the NRR operation
of activation normalization can also be used as the side information
for GANs, under the scenario of conditional GANs (cGANs) [258].
cGANs have shown advancements in class conditional image
generation [259], image generation from text [260], [261], and
image-to-image translation [262].

In [107], Vries et al. proposed conditional batch normalization
(CBN), which injects a linguistic input (e.g., a question in a VQA
task) into the affine parameters of BN. This shares a similar spirit
to the conditional instance normalization for style transfer, and
has been extensively explored in [30], [255], [263], [264]. In
[265], Karras et al. proposed a style-based generator architecture
for GANs, where the style information is embedded into the affine
parameters of AdaIN [70]. Note that the style comes from the latent
vector instead of an example image, enabling the model to work
without external information. Similarly, Chen et al. [266] proposed
a more general self-modulation based on CBN, where the affine
parameters can also be generated by the generators own input or
provided by external information.

9.4 Efficient Deep Models

In real-world applications, it is essential to consider the efficiency of
an algorithm in addition to its effectiveness due to the often limited
computational resources (such as in smartphones). As such, there is
also an active line of research exploiting normalization techniques
(e.g., BN) to develop efficient DNNs based on network slimming
or quantization. In network slimming, the general idea is to exploit
the channel-wise scale parameter γ ∈ Rd of BN, considering that
each scale γi corresponds to a specific convolutional channel (or
a neuron in a fully connected layer) [267]. For example, Liu et
al. [267] proposed to identify and prune insignificant channels
(or neurons) based on the scale parameter in BN layers, which
are imposed by L1 regularization for sparsity. Ye et al. [268]
also adopted a similar idea, and developed a new algorithmic
approach and rescaling trick to improve the robustness and speed
of optimization. In [269], Li et al. proposed an efficient evaluation
component based on adaptive batch normalization [229], which has
a strong correlation between different pruned DNN structures and
their final settled accuracy.

In [270], Yu et al. trained a slimmable network with a new
variant of BN, namely switchable batch normalization (SBN), for
the networks executable at different widths. SBN privatizes BN
for different switches of a slimmable network, and each individual
BN has independently accumulated feature statistics. SBN can thus
be used as a general solution to obtain a good trade-off between
accuracy and latency on the fly. As a complement to BN that
normalizes the final summation of the weighted inputs, Luo et
al. [271] proposed fine-grained batch normalization (FBN) to build
light-weight networks, where FBN normalizes the intermediate
state of the summation.

Network quantization is another essential technique in building
efficient DNNs. This challenging task can also be tackled using
normalization algorithms like BN. For instance, Banner et al. [272]
proposed range batch normalization (RBN) for quantized networks,
normalizing activations according to the range of the activation
distribution. RBN avoids the sum of squares, square-root and recip-
rocal operations and is more friendly for low-precise training [273].
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Lin et al. [274] proposed to quantize BN in model deployment
by converting the two floating points affine transformations to
a fixed-point operation with shared quantized scale. Ardakani et
al. [275] employed BN to train binarized/ternarized LSTMs, and
achieved state-of-the-art performance in network quantization. Hou
et al. [276] further studied and compared the quantized LSTMs with
WN, LN and BN. They showed that these normalization methods
make the gradient invariant to weight scaling, thus alleviating the
problem of having a potentially large weight norm increase due
to quantization. In [277], Sari et al. analyzed how the centering
and scaling operations in BN affect the training of binary neural
networks.

10 SUMMARY AND DISCUSSION

In this paper, we have provided a research landscape for normal-
ization techniques, covering methods, analyses and applications.
We believe that our work can provide valuable guidelines for
selecting normalization techniques to use in training DNNs. With
the help of these guidelines, it will be possible to design new
normalization methods tailored to specific tasks (by the choice of
NAP) or improve the trade-off between efficiency and performance
(by the choice of NOP). We leave the following open problems for
discussion.

Theoretical Perspective: While the practical success of DNNs is
indisputable, their theoretical analysis is still limited. Despite the
recent progress of deep learning in terms of representation [278], op-
timization [279] and generalization [280], the networks investigated
theoretically are usually different from those used in practice [199].
One clear example is that, while normalization techniques are
ubiquitously used in the current state-of-the-art architectures, the
theoretical analyses for DNNs usually rule out them.

In fact, the methods commonly used for normalizing activations
(e.g., BN, LN) often conflict with current theoretical analyses. For
instance, in the representation of DNNs, one important strategy
is to analyze the number of linear regions, where the expressivity
of a DNN with rectifier nonlinearity can be quantified by the
maximal number of linear regions it can separate its input space
into [278], [281]. However, this generally does not hold if BN/LN
are introduced, since they create nonlinearity, causing the the
theoretical assumptions to no longer be met. It is thus important
to further investigate how BN/LN affect a model’s representation
capacity. As for optimization, most analyses require the input data
to be independent, such that the stochastic/mini-batch gradient is an
unbiased estimator of the true gradient over the dataset. However,
BN typically does not fit this data-independent assumption, and its
optimization usually depends on the sampling strategy as well as
the mini-batch size [127]. There is thus a need to reformulate the
current theoretical framework for optimization when BN is present.

In contrast, normalizing-weights methods do not harm the
theoretic analysis of DNNs, and can even attribute to boosting the
theoretical results. For example, the Lipschitz constant w.r.t. a linear
layer can be controlled/bounded during training by normalizing
the weight with (approximate) orthogonality [23], [24], which
is an important property for certified defense against adversarial
attacks [282], [283], [284], and for theoretically analyzing DNNs
generalization [285], [286]. However, normalizing weights is
still not as effective as normalizing activations when it comes
to improving training performance, leaving room for further
development.

Applications Perspective: As mentioned previously, normalization
methods can be used to ‘edit’ the statistical properties of layer
activations, which has been exploited in CV tasks to match partic-
ular domain knowledges. However, we note that this mechanism
is seldom used in NLP tasks. It would thus be interesting to
investigate the correlation between the statistical properties of layer
activations and the domain knowledge in NLP, and further improve
the performance of the corresponding tasks. In addition, There
exists an intriguing phenomenon that, while BN/GN work for the
CV models, LN is more effective in NLP [96]. Intuitively, BN/GN
should work well for NLP tasks, considering that the current state-
of-the-art models for CV and NLP tend to be similar (e.g., they
both use the convolutional operation and attention) and GN is
simply a more general version of LN. It is thus important to further
investigate whether or not BN/GN can be made to work well for
NLP tasks, and, if not, why.

Another interesting observation is that normalization is not very
common in deep reinforcement learning (DRL) [63]. Considering
that certain DRL frameworks (e.g., actor-critic [287], [288]) are
very similar to GANs, it should be possible to exploit normalization
techniques to improve training in DRL, borrowing ideas from
GANs (e.g., normalizing the weights in the discriminator [23], [24],
[30]).

As the key components in DNNs, normalization techniques are
links that connect the theory and application of deep learning. We
thus believe that these techniques will continue to have a profound
impact on the rapidly growing field of deep learning, and we
hope that this paper will aid readers in building a comprehensive
landscape for their implementation.
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