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Abstract—Data augmentation is practically helpful for visual recognition, especially at the time of data scarcity. However, such success
is only limited to quite a few light augmentations (e.g., random crop, flip). Heavy augmentations are either unstable or show adverse
effects during training, owing to the big gap between the original and augmented images. This paper introduces a novel network
design, noted as Augmentation Pathways (AP), to systematically stabilize training on a much wider range of augmentation policies.
Notably, AP tames various heavy data augmentations and stably boosts performance without a careful selection among augmentation
policies. Unlike traditional single pathway, augmented images are processed in different neural paths. The main pathway handles the
light augmentations, while other pathways focus on the heavier augmentations. By interacting with multiple paths in a dependent
manner, the backbone network robustly learns from shared visual patterns among augmentations, and suppresses the side effect of
heavy augmentations at the same time. Furthermore, we extend AP to high-order versions for high-order scenarios, demonstrating its
robustness and flexibility in practical usage. Experimental results on ImageNet demonstrate the compatibility and effectiveness on a
much wider range of augmentations, while consuming fewer parameters and lower computational costs at inference time.

Index Terms—Visual Recognition, Data Augmentation, Neural Network Design, Augmentation Pathways Network.
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1 INTRODUCTION

D EEP convolutional neural networks (CNN) have achieved re-
markable progress on visual recognition. In some cases, deep

models are likely to overfit the training data as well as its noisy
signals [1], even on a large-scale dataset such as ImageNet [2],
[3]. Data augmentation usually serves as a standard technique for
regularizing the training process and reducing the generalization
error, especially when data annotations are scarce.

However, such successes in data augmentation are only re-
stricted to a handful of augmentations that slightly jitters the
original image. A large collection of augmentation operations can
not be easily applied to arbitrary configurations (e.g., datasets,
backbones, hyper-parameters). Sometimes data augmentation only
shows marginal or even adverse effects on image classification.
Following the definition in prior works (e.g., SimCLR [4], imgaug
toolkit [5], DSSL [6]), we roughly group augmentation operations
into two categories (Fig. 1 left). 1) Light Augmentation that only
slightly modifies an image without significant information loss.
Typical operations include random Flip, Crop [2], [7], [8], [9].
Note that the original image can also be treated as a special
case of light augmentation (i.e., Identity). 2) Heavy Augmentation
(or named Strong Augmentation [10]) that largely alters the
image appearance, sometimes striping out a significant amount
of information (such as color, object structure). Typical operations
include Gray (transforming color image to grayscale), GridShuf-
fle [11] (destructing object structures by shuffling image grids)
and CutOut [12] (masking out random area of image), etc.

Based on prior studies [2], [7], [14], light augmentations have
demonstrated stable performance improvements, since lightly aug-
mented images usually share very similar visual patterns with the
original ones. However, heavy augmentations inevitably introduce
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noisy feature patterns, following different distributions with the
original samples. Thus training directly with these images are
often unstable, sometimes showing adverse effect in performance.
For example in Fig. 1 (Middle), GridShuffle is highly unstable on
ImageNet, if trained with standard network (see ResNet column).
This may be due to the implicit gap among three sets of “train,
augmented, test” data.

Intuitively, heavy augmentations also introduce helpful and
complementary information during training [11]. Recent stud-
ies [15], [16] also suggest that networks trained with heavier aug-
mentation yield representations that are more similar between deep
neural networks and human brain. However, heavy augmentation
tends to generate images with larger variations from the original
feature space. Such variations are not always helpful, since irrel-
evant feature bias is also introduced alongside the augmentation.
From the opposite view, there is still useful information implied
in the shared visual patterns between the original and heavily aug-
mented images. For example, contour information is augmented,
but color bias is introduced in Gray augmentation; visual details
are augmented, while object structure is destroyed in GridShuf-
fle augmentation [11]. Therefore, expertise and knowledge are
required to select feasible data augmentation policies [11]. In
most cases, this is quite cumbersome. Even when augmentation
improvements have been found for one specific domain or dataset,
they often do not transfer well to other datasets. Some previous
works employ search algorithms or adversarial learning to auto-
matically find suitable augmentation policies [13], [17], [18], [19].
However, such methods require additional computation to obtain
suitable policies. Moreover, augmentation policies searched for
one setting are usually difficult to fit other settings. For example
in Fig. 1 (Right), RandAugment [13] searched for ResNet leads
to slight performance drop in iResNet [20] (an information flow
version of ResNet).

In this work, we design a network architecture to handle
a wide range of data augmentation policies, rather than adapt
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Fig. 1: Left: Examples of original images and their lightly augmented (randomly Resize, Crop, Flip) and heavily augmented (Gray,
GridShuffle, RandAugment) versions. Middle: Improvement on Top-1 accuracy by applying two heavy augmentations (Gray and
GridShuffle) on ImageNet and its subsets (ImageNetn, n indicates the number of images used per category). Standard network
(ResNet-50) performs quite unstable, showing marginal or adverse effects. Right: Improvement on Top-1 accuracy by applying
searched augmentation (RandAugment [13]: A collection of randomly selected heavy augmentations) on ImageNet. Augmentation
policy searched for ResNet-50 leads to performance drop on iResNet-50. In contrast, Augmentation Pathways (AP) based network can
steadily benefit from a much wider range of augmentation policies for robust classification.

augmentation policies for specific datasets or architectures. A
plug-and-play “Augmentation Pathways” (AP) is proposed for
restructuring the neural paths by discriminating different augmen-
tation policies. Specifically, a novel augmentation pathway based
convolution layer (AP-Conv) is designed to replace standard Conv
layer to stabilize training with a wide range of augmentations.
As an alternative to the standard convolutional layer, AP-Conv
adapts network design to a much wider range of heavy data
augmentations. As illustrated in Fig. 2, traditional convolutional
neural networks directly feed all images into the same model.
In contrast, our AP-Conv (right of Fig. 2) process the lightly
and heavily augmented images through different neural pathways.
Precisely, a basic AP-Conv layer consists of two convolutional
pathways: 1) the main pathway focuses on light augmentations,
and 2) the augmentation path is shared among lightly and heav-
ily augmented images for learning common representations for
recognition. Two pathways interact with each other through the
shared feature channels. To further regularize the feature space, we
also propose an orthogonal constraint to decouple features learned
from different pathways. Notably, our AP-Conv highlights the
beneficial information shared between pathways and suppresses
negative variations from heavy data augmentation. In this way,
the Augmentation Pathways network can be naturally adapted to
different data augmentation policies, including manually designed
and auto-searched augmentations.

Furthermore, different augmentation hyperparameters may
lead to different visual appearances and classification accuracy.
Tuning such hyperparameters is non-trivial. Some works propose
to automatically search for a proper hyperparameter. However,
these methods usually require additional computation or searching
cost [17], and the learned augmentation policies are dataset or
network dependent [18], [21]. Thus these methods are usually
with limited generalization capability. To address this, we gather
all useful information from one augmentation policy with various
hyperparameters, instead of selecting one most appropriate hyper-
parameter as previous works did. Specifically, we extend the aug-
mentation pathways into high-order for processing training data
from multiple hyperparameter selections of data augmentation
pass different pathways. In this way, the information dependencies
among different hyperparameters of data augmentation policies
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Fig. 2: Illustration of standard CNN (Left) and our proposed
Augmentation Pathways network (Right) for handling data aug-
mentations. Details of the basic AP-Conv in purple dashed box is
illustrated in Fig. 3.

can be well structured, and the information from different neural
network pathways can be gathered to organize a well-structured
and rich feature space.

Comparing to the standard convolutional layer, our AP-Conv
contains fewer connections and parameters. Moreover, it is highly
compatible with standard networks. AP-Conv based network can
even be directly finetuned from the standard CNN. The experi-
mental results on ImageNet dataset demonstrated AP-Conv’s ef-
ficiency and effectiveness by equipping manually designed heavy
augmentations and the searched data augmentations collection.

2 RELATED WORK

Manually designed augmentation Since data augmentation can
increase the training data diversity without collecting additional
samples, it usually plays an essential role in deep neural network
based vision tasks and benefits the model generalization capability
and performance improvement as a standard operation in deep
vision model training. In general, light data augmentation policies,
including random cropping, horizontal flips are commonly used
in various tasks [14], [22], [23], [24]. Such data augmentation
methods keep the augmented images in the original training set
and lead to steady performance improvement in different neural
network architectures trained on various datasets. Recently, heavy
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data augmentation methods have received more attention from the
computer vision research community. Some methods [12], [25],
[26] randomly erase image patches from the original image or
replace the patches with random noise. GridShuffle [11] is pro-
posed for destructing the global structure of the object in images
and force the model to learn local detail features. However, such
manually designed heavy data augmentation is dataset-specific and
usually suffer from adapting to different datasets.
Searched augmentation Inspired by the successes of Neu-
ral Architecture Search algorithms on various computer vision
tasks [27], [28], there are several current studies proposed for
automatically search algorithms to obtain augmentation policies
for given datasets and network architectures. These studies try to
find the best augmentation policy collection from the predefined
transformation functions by RL based strategy [17], Population
based training [21], Bayesian optimization [18] or the latest grid
search based algorithms [13]. Such methods usually takes lots of
GPU hours for searching a proper data augmentation collection
before training model. Moreover, theoretically, these data aug-
mentation strategies are dataset specific and network architecture
specific. These two limitations hurt the practical value of the
searched-based data augmentation methods.

In the paper, we introduce a new viewpoint for the inter-
dependency among dataset, network architecture, and data aug-
mentation policies. Rather than selecting proper data augmentation
policies for each dataset or network architecture, we propose a
network architecture design method for dealing with various data
augmentations, including not only the manually designed augmen-
tation but also searched augmentation. With lower computational
cost, our method can achieve stable performance improvements
on various network architectures and datasets equipping different
kinds of data augmentation methods.

3 METHODOLOGY

In this section, we start with a general description of the basic
augmentation pathway (AP) network (Sec. 3.1), then introduce
two extensions of AP (Sec. 3.2) for handling multiple hyper-
parameters of given augmentation policy.

We focus on deep convolutional neural network (CNN)
based fully supervised image classification problem. A typical
CNN architecture consists of T stacked convolutional layers
{c1, c2, ..., cT }, and a classifier f . Given training image Ii with its
category label li, φi denotes the lightly augmented version of Ii.
Note that the original input image I can be regarded as a special
case of φ. The overall objective of a typical image classification
network is to minimize:

Lcls =
N∑
i=1

L (f(cT (φi)), li) , (1)

where ct(φi) = Wtct−1(φi) + bt, L is the cross-entropy loss,
Wt ∈ Rnt−1×ht×wt×nt , bt ∈ Rnt×1 are the learnable parameters
in ct with kernel size ht×wt, nt−1 and nt are the sizes of input
and output channels of ct, respectively.

3.1 Augmentation Pathways (AP)
We first introduce convolutional operations with augmentation
pathways (AP-Conv), the basic unit of our proposed AP net-
work architecture. Different from the standard convolution ct
(t = 1, ..., T , denoting the layer index), AP version convolution
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Fig. 3: The detailed structure of basic augmentation pathway based
convolutional layer.

nt consists of two convolutions c1t and c2t . c1t is equipped in
the main pathway, learning feature representations of lightly aug-
mented input φ (with similar distributions with original images).
c2t is the pathway to learn shared visual patterns between lightly
augmented image φ and heavily augmented image ϕ. ϕ varies
from different data augmentation policies, and differs from the
original original image distribution. The operations of a basic AP-
Conv nt can be defined as:

nt(φi) = c1t (φi) ++ c2t (φi)

=
(
W 1
t nt−1(φi)+b

1
t

)
++
(
W 2
t c

2
t−1(φi)+b

2
t

)
,

nt(ϕi) = c2t (ϕi) =W 2
t c

2
t−1(ϕi) + b2t , (2)

where ++ indicates the vector concatenation operation,
W 1
t ∈ Rnt−1×ht×wt×(nt−mt), b1t ∈ R(nt−mt)×1 and W 2

t ∈
Rmt−1×ht×wt×mt , b2t ∈ Rmt×1 represent the convolutional
weights and biases of c1t and c2t respectively. mt−1 and mt denote
the numbers of input and output channels of nt for processing
heavily augmented inputs and lightly augmented inputs jointly,
which is smaller than nt. For light augmentation inputs, the output
size of nt is same with ct. As shown in Fig. 3, AP-Conv contains
two different neural pathways inner one neural layer for φ and ϕ
respectively.
Comparison to Standard Convolution A standard convolu-
tion can be transformed into a basic AP-Conv by splitting an
augmentation pathway and disabling a fraction of connections. In
general, the number of parameters in nt is δt less than a standard
convolution under same settings, where

δt = (nt−1 −mt−1)×mt × ht × wt. (3)

For example, if we set mt =
1
2nt and mt−1 =

1
2nt−1, AP-Conv

only contains 75% parameters in the standard Conv.
The only additional operation in AP-Conv is a conditional

statement to assign the features of φ to c1t and c2t , or feed the
features of ϕ to c2t .
Augmentation Pathways based Network The key idea of
basic augmentation pathways based network is to mine the shared
visual patterns between two pathways handling inputs following
different distributions. A basic constraint is that the shared features
should boost object classification, which is also common objective
functions of two different neural pathways:

Lcls =
N∑
i=1

L (fφ(nT (φi)), li) + L (fϕ(nT (ϕi)), li) + λSi

Si =
T∑
t=1

〈
c1t (φi), c

2
t (φi)

〉
, (4)

where fφ and fϕ are the classifiers for light and heavy augmen-
tations respectively, S is a Cross Pathways Regularization item to
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TABLE 1: Examples of data augmentations with their hyperparameters. Gray, Blur, Gridshuffle, MPN are manually designed heavy
augmentations. RandAugment is a searched augmentation combination including 14 different image transformations (e.g., Shear,
Equalize, Solarize, Posterize, Rotate. Most of them are heavy transformations).

Augmentation Hyperparameter Description

Gray
the alpha value α ∈ [0, 1] of the grayscale image when overlayed
over the original image for Gray

α close to 1.0 means that mostly the
new grayscale image is visible

Blur the kernel size k of Blur larger k leads to more blurred image

GridShuffle the number of grids g × g in image for GridShuffle
larger g results in smaller grid and the
image is destructed more drastically

MPN the scaling factor s of pixel values for Multiplicative Noise larger s results in brighter image

RandAugment [13]
the number n of augmentation transformations to apply sequentially,
and magnitude m for all the transformations

larger n and m results in heavier
augmented image

measure the similarity of visual patterns between neural pathways.
The formulation of S is similar to the standard weight decay.
Both of them are L2 regularization. Denoting the loss weight of
standard decay as ω, for all experiments in our paper, we simply
set λ = 0.1ω. Minimizing Si penalizes filter redundancy in c1t
and c2t . As a result, c1t focuses on learning the φ-specific features.
Moreover, owing to classification losses in Eq 4, c2t is expected to
highlight patterns shared between φ and ϕ. Finally, these common
visual patterns assist fφ to classify φ correctly. During inference,
we use the label with max confidence score in fφ(nT (Ii)) as the
prediction of image φ=Ii.

Notably, AP based network can be constructed by simply
replacing the standard convolutional layers in typical CNN with
our AP-Conv layers, as shown in Fig. 2. In practice, the low-level
features between φ and ϕ can be directly shared with each other. In
most cases, the performance of a typical CNN can be significantly
improved by only replacing the last few standard Conv layers with
AP-Conv.

3.2 Extensions for Augmentation Pathways

As shown in Table 1, some augmentation policies have several
choices of hyperparameters. Deep models are usually sensitive to
these hyperparameters, since different augmentation hyperparam-
eters for the same image may lead to a wide variety of appear-
ances. Previous methods tend to find one proper hyperparameter
according to expert knowledge or automatically searching results.

We found that common visual patterns exist among augmenta-
tion policy under different hyperparameters, and the shared feature
space among them usually present dependencies. For example,
the shared feature learned from Blur(k = 5) can benefit the
recognition of image with Blur(k < 5). For GridShuffle, some
visual detail patterns learned from small grids can be reused to
represent images with large grids. Thus we extend the augmen-
tation pathways for handling augmentation policy under various
hyperparameter settings. We rank the hyperparameters of aug-
mentation according to their distribution similarities to the original
training image, and then feed the images augmented with different
hyperparameters into different pathways in a high-order (nested)
manner. In this way, our high-order AP can gather and structure
information from augmentations with various hyperparameters.
Extension-1: High-order Homogeneous Augmentation Path-
ways We extend the basic augmentation pathway into high-order
to mine shared visual patterns in different levels. Take GridShuffle
as an example, we choose two different hyper-parameters to

GridShuffle

𝑔=2

𝑔=7

Light Aug.

..

..

..

..

..

..

𝜑

𝜑′

𝜙
𝑐𝑡
1

𝑐𝑡
2

𝑐𝑡
3

𝑓𝜙

𝑓𝜑

𝑓𝜑
′ ...

...
...

AP3-Conv

Fig. 4: The 3rd-order homogeneous augmentation pathways net-
work is extended from the basic AP but handle heavy augmen-
tations under two different hyperparameters (g for Grid Shuffle)
according to the visual feature dependencies among input images.

generate augmented image ϕ = GridShuffle(g = 2) and ϕ′ =
GridShuffle(g = 7). The images augmented by GridShuffle are
expected to learn visual patterns inner grids, since the positions of
all grids in image have been shuffled [11]. Considering grids in ϕ′

are smaller than φ and grids in ϕ, the local detail features learned
from ϕ′ can be reused in ϕ and φ. We propose a convolution
with 3rd-order homogeneous augmentation pathways (AP3-Conv),
which consists of three homogeneous convolutions c1t , c2t , and c3t
for handling different inputs. Similar to the basic AP-Conv, c1t is
the main augmentation pathway targeting at light augmentations
φ-specific feature, while augmentation pathway c2t and c3t are
designed for learning the shared visual patterns of {φ, ϕ} and
{φ, ϕ, ϕ′}, respectively. The operation of AP3-Conv can be
formulated as:

nt(φi) = c1t (φi) ++ c2t (φi) ++ c3t (φi),

nt(ϕi) = c2t (ϕi) ++ c3t (ϕi), nt(ϕ′i) = c3t (ϕ
′
i).

(5)

In general, the standard convolution cjt (x) can be defined as an
operation filtering information from the j-th to the last neural
pathways,

cjt (x) =W 1
t

(
cjt−1(x) ++ cj+1

t−1(x)...++ ckt−1(x)
)
+ bkt , (6)

where 1≤ j ≤ k, k is the count of neural pathways in total. For
AP3-Conv, we set k=3. c1t takes the outputs of c1t−1, c2t−1, c3t−1
as inputs, while c2t takes the outputs of c2t−1, c3t−1 as inputs. In
this way, the dependency across φ, ϕ and ϕ′ can be built. Fig. 4
indicates a network with 3rd-order homogeneous augmentation
pathways (AP3) handling two different hyperparameters for Grid-
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Fig. 5: The network architecture of our high-order heterogeneous augmentation pathways network. Four heterogeneous neural pathways
(HeAP4) are responding to four different input images (lightly augmented images, GridShuffled images with g=(2, 4, 7)). Note that
only the main neural pathway in red color is activated during inference.

Shuffle, whose objective function is defined as:

Lcls =
N∑
i=1

L (fφ(nT (φi)), li) + L (fϕ(nT (ϕi)), li)

+ L
(
f ′ϕ(nT (ϕ

′
i)), li

)
+ λSi, (7)

Si =
T∑
t=1

〈
c1t (φi), c

2
t (φi), c

3
t (φi)

〉
+
〈
c2t (ϕi), c

3
t (ϕi)

〉
.

The original image φ= Ii is predicted by fφ(nT (Ii)) during
inference.

By analogy, we can design higher-order augmentation path-
ways network of k different homogeneous dataflow pathways, for
handling k−1 different settings of a given heavy data augmentation
policy. In general, our high-order APk-Conv can handle various
settings of the given augmentation and collect useful visual pat-
terns in different levels. At last, all features are integrated in a
dependency manner and results in well-structured feature space
for original image classification.
Extension-2: High-order Heterogeneous Augmentation Path-
ways We have adapted homogeneous neural pathways and loss
functions for various hyperparameters of given heavy data aug-
mentation in a high-order augmentation pathway network. The
basic structure and settings (e.g., kernel sizes, strides in each sub-
convolutional layer) of these neural pathways are the same in APk.
However, images augmented using different hyperparameters may
have different characteristics, which is a reasonable motivation for
customizing the basic settings of neural pathways for inputs with
different properties. Again we take GridShuffle as an example,
higher-resolution representations are more suitable for learning
from detailed features in smaller grids. It means that the neural
pathway consists of convolutions with larger feature map outputs
that would be more friendly to GridShuffle with a larger g.

Here we introduce another high-order extension of basic
augmentation pathways for integrating representations learned
from heterogeneous augmentation pathways for different char-
acteristics. Fig. 5 shows the pipeline of a 4th-order heteroge-
neous augmentation pathways (HeAP4) based network with heavy
augmentation in three different settings GridShuffle(g = 2, 4, 7).
Similar to the architecture of HRNet [29], [30], different neural
pathways are configured with convolutions with different kernel
sizes and channel sizes and result in feature maps in different
resolutions. The augmentation pathway in green color is shared
among all pathways since detailed visual patterns inner grids of
GridShuffle(g = 7) is useful for the classification of all other
inputs. Four-resolution feature maps are fed into the main pathway

in a nested way during inference of the original image. We
apply convolution-based downsample for zooming out the feature
maps to its dependent ones. Our heterogeneous neural pathway
based convolutions are used for integrating features learned from
different augmentations. Each neural pathway is followed by one
specific classification head. The objective function of HeAP4

network is the same as the 4th-order homogeneous augmentation
pathways network.

4 IMAGENET EXPERIMENTS AND RESULTS

We evaluate our proposed method on ImageNet [31] dataset
(ILSVRC-2012), due to its widespread usage in supervised image
recognition. Since the main purpose of data augmentation is to
prevent overfitting, we also construct two smaller datasets from the
training set of ImageNet by randomly sampling 100 and 20 images
for each class, named ImageNet100 and ImageNet20. ImageNet100
is also used for ablation studies in this paper.

We apply augmentation pathways on six widely used backbone
networks covering typical ConvNet developments from 2015 to
2022, including:
• ResNet [14] (2015), stacking residual and non-linear blocks.
• ResNeXt [32] (2017), repeating blocks that aggregates a set

of transformations with the same topology.
• MobileNetV2 [33] (2018), mobile architecture based on the

inverted residuals and linear bottlenecks.
• HRNet [30] (2019), exchanging information across steams

with different resolutions.
• iResNet [20] (2020), using ResGroup blocks with group con-

volutional layers, improved information flow and projection
shortcut.

• ConvNeXt [34] (2022), designed for “modernizing” Con-
vNet toward the design of a vision Transformer (e.g. Swin-T).

Single central-crop testing accuracies on the ImageNet validation
set are applied as the evaluation metric for all experiments.

4.1 Implementation Details

Following standard practices [2], [14], [35], we perform standard
(light) data augmentation with random cropping 224×224 pixels
and random horizontal flipping for all baseline methods except
ConvNeXt. Same with the original setting of ConvNeXt [34] train-
ing implementation1, we adopt schemes including Mixup, Cutmix,

1. https://github.com/facebookresearch/ConvNeXt

https://github.com/facebookresearch/ConvNeXt
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TABLE 2: The performance on ImageNet / #Parameters / MACs on ResNet, iResNet, ResNeXt, MobileNet V2, ConvNeXt and their
basic Augmentation Pathways (AP) version on given additional heavy augmentation policy RandAugment (for generating ϕ). repro:
our reproduction of each method with their original augmentation settings.

Metrics Method ResNet-50 ResNeXt-50 32x4d MobileNetV2 iResNet-50 ConvNeXt-Tiny

repro. 25.6M 25.0M 3.5M 25.6M 28.6M
#Params.

w/ AP 21.8M 21.4M 3.3M 21.8M 25.5M

repro. 4.11G 4.27G 0.32G 4.15G 4.47G
MACs

w/ AP 3.91G 4.06G 0.30G 3.95G 4.30G

repro. 76.19 / 93.13 77.48 / 93.66 71.97 / 90.37 77.59 / 93.55 81.98 / 95.88
w/ ϕ 77.12 / 93.45 77.67 / 93.76 72.04 / 90.38 77.20 / 93.52 81.56 / 95.75Acc.(%)

w/ AP 77.97 / 93.92 78.18 / 94.07 72.34 / 90.48 78.20 / 93.95 82.23 / 96.01

RandAugment, and Random Erasing as the light augmentations
policies for ConvNeXt models. All other hyperparameters are
consistent with each method’s default settings. The augmentation
pathways version of baseline methods is designed by replacing all
standard convolutional layers in the last stage [14], [35] (whose
input size is 14×14, and output feature map size is 7×7) by
APk-Conv. We set the input and output channel sizes of each
sub-convolution c1, c2, ..., ck in APk-Conv as 1/k of the input
and output channel size in the replaced standard convolutional
layer, respectively. For architectures containing group convolution
layers, e.g. ResNeXt, MobileNetV2 and ConvNeXt, we remain
the number of groups of each convolution inner every APk-Conv
to be the same with its corresponding original group convolution
layer. For HeAP networks, we equip heterogeneous augmentation
pathways after each stage. More implementation details can be
found in our released source code2.

4.2 Performance Comparison
Following the settings of other heavy augmentation related
works [6], [10], we firstly apply RandAugment with hyperpa-
rameter m = 9, n = 2 for generating heavy augmented view ϕ.
The experimental results on different network architectures are
reported in Table 2. Our proposed AP consistently benefits all
these ConvNets with fewer model parameters and lower inference
computational cost. It can be found that the RandAugment policy
searched for ResNet-50 architecture results in a performance drop
on iResNet-503. While our augmentation pathways stably improve
all architectures. The performance improvement of MobileNetV2
w/ AP is not as significant as the results on other architectures. It is
mainly due to the limited parameters of MobileNetV2 bounded its
feature representation ability and restricted the capacity of visual
patterns from various augmented views. Besides, since we apply
additional RandAugment policy based on the lightly augmented
view φ to generate the heavier augmented view ϕ for ConvNeXt,
using RandAugment twice results in performance degradation on
ConvNeXt-Tiny. However, our AP can still aggregate information
beneficial to the classification task from the heavier augmented
view ϕ. These experimental results demonstrate the robustness
and generality of AP.
AP on Fewer Labels We also applied augmentation pathways in
small datasets ImageNet100 and ImageNet20 to test on the practi-
cal scenario of data scarcity. We selected three manually designed
heavy data augmentations GridShuffle(g = 7), Gray(α = 1),
MPN(s = 1.5) and RandAugment(m = 9, n = 2) besides light

2. https://github.com/ap-conv/ap-net
3. https://github.com/iduta/iresnet

TABLE 3: Performance comparison on ImageNet subsets. AP-
ResNet achieves significant improvements with different heavy
data augmentation policies.

Augmentation Model ImageNet100 ImageNet20

Random Crop,Flip ResNet 45.01 / 70.04 9.59 / 23.75

GridShuffle
ResNet 43.95 / 68.97 9.88 / 23.81
AP-ResNet 45.62 / 70.93 11.53 / 27.85

MPN
ResNet 45.51 / 70.78 10.64 / 25.36
AP-ResNet 46.98 / 71.64 11.14 / 26.57

Gray
ResNet 45.83 / 71.08 9.63 / 24.49
AP-ResNet 46.83 / 72.01 11.68 / 27.85

RandAugment
ResNet 51.75 / 75.66 17.59 / 37.06
AP-ResNet 53.74 / 76.83 20.80 / 40.86

augmentations. The experimental results are reported in Table 3.
We can find that AP-Net significantly boosts the performance on
small datasets. Note this is practically useful when training data is
expensive to obtain.
High-order Homogeneous Augmentation Pathways In Ta-
ble 4, we compare the results from the standard ResNet-50,
its basic AP version, and 3rd-order version AP3. In detail, our
3rd-order augmentation pathway is designed for adapting two
RandAugment with different hyper-parameters. We find that AP3

can further improve the performance of the 2nd-order basic AP-
Conv based network. The significant gains as introducing more
different hyper-parameters indicate that structuring the subdivision
of generalities among different features spaces in a dependent
manner benefits the object recognition.
High-order Heterogeneous Augmentation Pathways Follow-
ing the framework described in Fig. 5, we adapt an HRNet-W44-
C [30] style network architecture for 4th-order heterogeneous
augmentation pathways network by replacing all multi-resolution
convolution with HeAP4-Conv. Unlike the HRNet, which can only
pass one image once, its HeAP4 variant can handle four differ-
ent inputs simultaneously. The hierarchical classification head of
HRNet is disabled in HeAP4. Four parallel loss functions follow
four different neural pathways in HeAP4-HRNet. Only the neural
pathway for lightly augmented inputs is activated during inference.
Table 4 summarizes the classification results of HRNet and our
HeAP4-HRNet. HeAP4-HRNet significantly outperforms HRNet
on ImageNet100 with fewer parameters and lower computational
cost. Recall that HeAP4-HRNet and HRNet are two different
architectures due to the completely different data flow, HeAP
convolutional layers, and classification heads.

https://github.com/ap-conv/ap-net
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TABLE 4: Recognition accuracy of: 1) 3rd-order augmentation pathway (AP3)
based ResNet-50 by equipping additional augmentation RandAugment2((n,m) ∈
{(1, 5), (2, 9)}), and 2) heterogeneous augmentation pathways (HeAP4) based
network by equipping additional augmentation RandAugment3((n,m) ∈
{(1, 5), (2, 9), (4, 15)}).

Method #Params. MACs Augmentation ImageNet100 ImageNet

ResNet [13], [14] 25.6M 4.11G
Baseline 45.01 / 70.04 76.64 / 93.24
RandAugment2 51.67 / 75.45 77.03 / 93.41

AP-ResNet 21.8M 3.91G RandAugment2 53.58 / 76.61 77.59 / 93.68

AP3-ResNet 20.6M 3.84G RandAugment2 54.08 / 77.11 78.06 / 93.92

HRNet [30] 67.1M 14.93G
Baseline 51.53 / 75.58 78.81 / 94.41
RandAugment3 53.52 / 77.54 77.28 / 93.95

HeAP4-HRNet 59.9M 13.97G RandAugment3 54.35 / 78.24 79.25 / 94.78

TABLE 5: AP-ResNet-50 w/o sharing weights for
GridShuffle(7).

mt =
1
2
nt

2
3
nt nt

Acc. 45.59 ±0.13 45.53 ±0.11 43.95 ±0.11
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Fig. 6: The structure of augmentation pathway
based convolutional layer without sharing feature.

TABLE 6: The effect of removing cross pathways connections,
and randomly feeding inputs to different pathways. Heavy aug-
mentation is RandAugment.

Method ImageNet100

ResNet-50 51.69 ±0.09

AP-ResNet-50 w/o sharing feature 52.58 ±0.11

AP-ResNet-50 w/ randomly input 52.80 ±0.14

AP-ResNet-50 53.76 ±0.08

4.3 Discussions

To evaluate the statistical significance and stability of the proposed
method, we report the mean and standard deviation of the accuracy
from five trials for all below ablation experiments on ImageNet100.
Impact of the Cross Pathways Connections We design abla-
tion studies by removing cross-pathways connections (w/o feature
sharing among pathways) in AP-Conv but remaining the loss
functions in Eq. (4) and Eq. (7) (as shown in Fig. 5). For
standard ConvNet, heavily augmented views can directly influence
the training of all parameters. However for AP-Net w/o sharing
weights, heavily augmented views can only affect a half set of
parameters’ training (if we set mt=

1
2nt as default).

The results in Table 6 show that (1) our proposed loss function
leads to +0.87% improvement over baselines, and (2) AP-style
architecture further boost 1.18% gain, due to the visual common-
ality learned among pathways.

Moreover, Table 5 shows that increasing the influence of
heavily augmented views leads to performance drop (ConvNet
is equal to AP-Net w/o sharing weight when mt = nt). Such
phenomenon is owing to the irrelevant feature bias introduced
by the heavy augmentations. The divided pathways design can
suppress such irrelevance.
Impact of Distortion Magnitudes of Augmentations The ex-
perimental results in Fig. 7 shows that our AP method can stably
boosts the performance of ConvNet under various hyperparame-
ters for RandAugment.
Impact of Cross Pathways Regularization S To demonstrate
the effects of S, we perform the regularization item separation
experiments on AP-ResNet-50 with RandAugment. The results
are shown in Table 7. We also compared the AP-ResNet-50
performance by applying different settings of λ = n × ω for
evaluating AP-Net’s sensitivity to the choice of λ. It shows that
cross pathways regularization benefits the feature space structure

50
51
52
53
54
55

(1,1) (1,9) (1,15) (2,1) (2,9) (2,15) (4,1) (4,9) (4,15)

ResNet-50 AP-ResNet-50

Fig. 7: Top-1 accuracy (%) on ImageNet100 by using RandAug-
ment with different (n,m).

TABLE 7: The impact of cross pathways regularization term S
and its weight for AP-ResNet-50 with RandAugment.

λ 10ω ω 0.1ω 0.01ω 0 (w/o S)

Acc. 52.86 ±0.09 53.14 ±0.08 53.76 ±0.08 53.45 ±0.10 53.19 ±0.13

across different neural pathways, resulting in better performance.
But too high loss weight for S would lead to a performance drop,
behaving similarly to the standard weight decay in the common
neural network training.
Generalize the ‘light vs. heavy” Augmentation Policy Settings
to “basic vs. heavier” Inspired by the related work [6], defining
d as the deviation of augmented view from the original view, given
two augmented view φ and ϕ, we denote ϕ is heavier than φ only
if d(ϕ) > d(φ). There are two situations to adjudge d(ϕ) > d(φ):
1) ϕ and φ are augmented by the same policies, but ϕ is aug-
mented with more aggressive hyperparameter. 2) ϕ is augmented
by policies which is a proper superset of augmentations used for
generating φ. In AP, the basic view φ and the heavier view ϕ are
fed to the main and augmentation pathway, respectively.

It means some heavy augmentation policies may generate
basic view φ, e.g. ConvNeXt applies the combination of Random
Crop, Mixup, Cutmix, RandAugment, and Random Erasing as
basic augmentations for generating φ. We can introduce another
RandAugment on φ to generate heavier view ϕ for ConvNeXt.
The experimental results in Table 2 show that AP-ConvNeXt-Tiny
with twice RandAugment outperforms ConvNeXt-Tiny.

Accordingly, heavier view ϕ can be generated by applying
additional light augmentation, e.g. we can apply another crop
operation based on φ to generate the heavier view ϕ (simulating
the aggressive crop operation), and it still results in performance
improvement, as shown in Table 8.
Model Inference The augmented pathways are designed to
stabilize main-pathway training when heavy data augmentations
are present. During inference, no heavy augmentation are adopted,
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TABLE 8: Accuracy after introducing aggressive crop operation.

Method Augmentation ImageNet100

ResNet-50
Standard Crop 44.98 ±0.10

Aggressive Crop 50.07 ±0.12

AP-ResNet-50 Aggressive Crop 52.46 ±0.09

only fφ in the main neural pathway for the original image are used
for computing probability.
Model Complexity Although AP usually takes more memory
cost during model training than the standard ConvNet, many
connections can be cut out while replacing traditional convolutions
with AP-Convs. Thus the AP version of a given standard CNN
network has fewer parameters (#Params.) to learn and lower
computational cost (GMACs, Multiply-Accumulate Operations)
during inference, as specified in Tables 2, 4 and Eq. (3)..

5 CONCLUSION

The core concepts of our proposed Augmentation Pathways for
stabilizing training with data augmentation can be concluded as:
1) Adapting different neural pathways for inputs with different
characteristics. 2) Integrating shared features by considering visual
dependencies among different inputs. Two extensions of AP are
also introduced for handling data augmentations in various hyper-
parameters. In general, our AP based network is more efficient
than traditional CNN with fewer parameters and lower compu-
tational cost, and results in stable performance improvement on
various datasets on a wide range of data augmentation polices.
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