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Physics-informed Guided Disentanglement
in Generative Networks
Fabio Pizzati, Pietro Cerri, and Raoul de Charette

Abstract—Image-to-image translation (i2i) networks suffer from entanglement effects in presence of physics-related phenomena in target
domain (such as occlusions, fog, etc), lowering altogether the translation quality, controllability and variability. In this paper, we propose a
general framework to disentangle visual traits in target images. Primarily, we build upon collection of simple physics models, guiding the
disentanglement with a physical model that renders some of the target traits, and learning the remaining ones. Because physics allows
explicit and interpretable outputs, our physical models (optimally regressed on target) allows generating unseen scenarios in a
controllable manner. Secondarily, we show the versatility of our framework to neural-guided disentanglement where a generative network
is used in place of a physical model in case the latter is not directly accessible. Altogether, we introduce three strategies of
disentanglement being guided from either a fully differentiable physics model, a (partially) non-differentiable physics model, or a neural
network. The results show our disentanglement strategies dramatically increase performances qualitatively and quantitatively in several
challenging scenarios for image translation.

Index Terms—image to image translation, feature disentanglement, adversarial learning, adverse weather, physics-based rendering,
vision and rain, GAN, robotics, autonomous driving, representation learning
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1 INTRODUCTION

IMage-to-image (i2i) translation GANs can learn complex style
mappings in an unsupervised manner, otherwise impractical

with traditional physics based rendering. Hence, i2i GANs find
great applicability in artistic style transfer, content generation,
and other scenarios [1], [2], [3]. When coupled with domain
adaptation strategies [4], [5], [6], they also provide an alternative
to manual labeling work for synthetic to real [7] or challenging
conditions generation [8], [9], [10]. However, a common pitfall of
GANs is their inability to accurately learn the underlying physics
of the transformation [11], often resulting in artifacts based on
inaccurate mapping of source and target characteristics, which
significantly impact results. This is the case for example when
learning clear7→rain, as a naive GAN translation will inevitably
entangle inaccurate raindrops, as highlighted in Fig. 1 top. On
the other hand, physics-inspired models can render well-studied
elements of target domain with great realism [12], [13], [14], [15],
though leaving any other appearance trait unmodified. For instance,
in a rainy scene, models can accurately render raindrops but fail
to render the complex scene wetness. We propose a learning-
based comprehensive framework to unify generative networks and
physics priors. We rely on a disentanglement strategy that benefits
from simple physical models to learn the remaining un-modeled
mapping. In brief, we render some of the target visual traits with a
physical model and learn the un-modeled target characteristics with
an i2i network. At inference, we compose them as shown in Fig. 1
to get the output benefiting from the visually pleasant outputs of
GANs and the controllable characteristics of physical models. The
peculiarity of our method is that we achieve disentanglement of
modeled and learned characteristics by just using data in which
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Fig. 1: Guided disentanglement. While naive GANs generate
all target scene traits at once (Target - Entangled), we learn a
disentangled version of the scene from guidance of physical model
WMod(.) with estimated physical parameters (w̃). Our idea is to
combine physical models of well-known phenomena (as raindrops)
with generative capabilities of GANs, in a complementary manner.
We combine a physical model for raindrops with wetness learned
by the GAN (Target - Disentangled), by only training on entangled
data (i.e. rainy scene with raindrops on the lens). See the unrealistic
raindrops in naive GANs. We instead enable the generation of target
style (w̃) or unseen scenarios (here, w1, w2).
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they are both present simultaneously. For example, we can learn to
generate wet scenes without raindrops on the lens, by only looking
at rainy images with raindrops. Our strategy deeply differs from
sequential composition of i2i and physics based rendering [15]
which instead assume underlying independence of the two. Besides
increasing image realism, our physical model-guided framework
enables fine-grained control of physical parameters in rendered
scenes, for increasing generated images variability regardless of
the training dataset. This is beneficial for robotics applications,
which require resistance to unobserved scenarios. A remarkable
use case is vision in rainy conditions since raindrops appearances
vary drastically with the camera setup. From Fig. 1 bottom, our
disentanglement can be used to be resistant to dashcam-like
rain even having only seen out-of-focus rain at training. Other
applications we demonstrate in this paper are: vision for dirty
images, foggy weather, or composite watermarks.

This research greatly extends our prior work [16] that focused
only on occlusion disentanglement for differentiable models. We
propose novel contributions that aim to address a wider spectrum of
disentanglement cases, and tackle scenarios in which differentiable
physical models are cumbersome to use or unavailable. In practice,
we extend our model-guided strategy to non-differentiable models
(Sec. 3.4), new geometry-dependent task (‘Fog’ in Sec. 5.1.2), ex-
panding the evaluation qualitatively and quantitatively (Sec. 5.2.1).
We also conducted an extensive user study to increase the
reliability of our evaluation (Secs. 5.1.5,5.2.1,5.3). We extend our
general framework to the neural-guided disentanglement setting
(Sec. 4), with new ad-hoc experiments (Sec. 5.2.2). We also
extend altogether our adversarial parameters estimation (Sec. 5.3),
ablations (Sec. 5.4) and discussion (Sec. 6). Finally, to encourage
research in this direction, we release the code to replicate our
results: https://github.com/astra-vision/GuidedDisent.

2 RELATED WORKS

2.1 Image-to-image translation
The seminal work on image-to-image translation (i2i) using
conditional GANs on paired images was conducted by Isola et
al. [3], while [17] exploits multi-scale architectures to generate HD
results. Zhu et al. [1] propose a framework working with unpaired
images introducing cycle consistency, exploited also in early work
on paired multimodal image translation [18]. A similar idea is
proposed in [19].

There has been a recent trend for alternatives to cycle con-
sistency for appearance preservation in several approaches [20],
[21], [22], to increase focus on global image appearance and
reduce it on unneeded textural preservation. In [23], they propose
a cycle consistency-free multi-modal framework. Many methods
also include additional priors to increase translation consistency,
using objects [9], [24], instance [25], geometry [26], [27], [28]
or semantics [29], [30], [31], [32], [33], [34], [35], [36], [37].
Other approaches learn a shared latent space using a Variational
Autoencoder, as in Liu et al. [2].

Recently, attention-based methods were proposed, to modify
partly input images while keeping domain-invariant regions un-
altered [38], [39], [40], [41], [42]. Alternatively, spatial attention
was exploited to drive better the adversarial training on unrealistic
regions [43]. Some methods focus instead on generating interme-
diate representations of source and target [44], [45] or continuous
translations [46], [47]. In the recent [48], authors exploit similarity
with retrieved images to increase translation quality.

2.2 Disentanglement in i2i

Disentangled representations of content and appearance seem to be
an emerging trend to increase i2i outputs quality. Recently, Park
et al. [49] proposed a contrastive learning based framework to dis-
entangle content from appearance based on patches. MUNIT [50],
DRIT [51] and TSIT [52] exploit disentanglement between content
and style to achieve one-to-many translations. The idea is further
extended in FUNIT [53], COCO-FUNIT [54] and ManiFest [55] to
achieve few-shot learning, and in TUNIT [56] to translate without
source/target distinctions. In HiDT [57], they exploit multi-scale
style injection to reach translations of high definition, while [58],
[59] conditions disentanglement on domain supervision. Following
different reasoning, [60] disentangles representations enforcing
orthogonality. In [61], they prevent semantic entanglement by
using gradient regularization.

Multi-domain i2i methods [62], [63], [64], [65], [66], [67], [68]
could be also exploited for disentangling representations among
different domains, at the cost of requiring annotated datasets with
separated physical characteristics – practically inapplicable for
real images. Recent frameworks [69], [70] unify multi-domain and
multi-target i2i exploiting multiple disentangled representations.
Some works [71], [72] detach from literature proposing hierarchical
generation. In [7], instead, they learn separately albedo and
shading, regardless of the general scene. A similar result is
performed by [73], only using unpaired images. Recently, VAE-
based alternatives have also emerged [74].

Disentangled representations could also help in physics-
informed i2i tasks, such as [75] where a fog model is exploited to
dehaze images. Similarly, Gong et al. [76] perform fog generation
exploiting paired simulated data. Even though these methods
effectively learn physical transformations in a disentangled manner,
they simply ignore the mapping of other domain traits.

2.3 Physics-based generation

Many works in literature rely on rendering to generate physics-
based traits in images, for rain streaks [14], [15], [77], [78], [79],
snow [80], fog [14], [81] or others. In many cases, physical
phenomena cause occlusion of the scene – well studied in the
literature. For instance, many models for raindrops are available,
exploiting surface modeling and ray tracing [12], [82], [83]. In [84],
raindrop motion dynamics are also modeled. Recent works instead
focus on photorealism relaxing physical accuracy constraints [13],
[85]. A general model for lens occluders has been proposed in [86].
Logically, it is extremely challenging to entirely simulate the
appearance of scene encompassing multiple physical phenomena
(for rain: rain streaks, raindrops on the lens, reflections, etc.),
hence in [15], [87] they also combine i2i networks and physics-
based rendering. In [88], they propose to exploit night physics
characteristics to perform domain adaptation. However, this is
quite different from our objective since they assume to physically
model features not present in the target images. To the best of our
knowledge, there is no method which unifies rendering based on
physical models and i2i translations in a complementary manner.

3 PHYSICAL MODEL-GUIDED DISENTANGLEMENT

Standard i2i GANs solely rely on context mapping between source
and target only – which would be impractical relying only on
physical rendering. In some setups, however, the target domain
encompasses some visual traits, for example adverse weather or

https://github.com/astra-vision/GuidedDisent
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Fig. 2: Model-guided disentanglement. Our unsupervised disentanglement process consists of applying a physical model WMod(.)
to the generated image G(x). Subsequently, the composite image is forwarded to the discriminator and the GAN loss (LG or LD) is
backpropagated (dashed arrows). The model rendering depends on the estimated parameters w̃, composed by differentiable (w̃d) and
non-differentiable ones (w̃nd). We use a Disentanglement Guidance (DG) to avoid interfering with the gradient propagation in the
learning process. Green stands for real data, red for fake ones.

lens occlusions, whose modeling is well understood from physics.
Hence, it may be amenable to integrate a priori physics knowledge
in the adversarial learning process.

To formalize i2i transformations as a composition of physics
and learned characteristics, we propose a setting shown in Fig. 2
where the GAN learns to disentangle the physically modeled traits
from target (Sec. 3.1). Disentanglement is achieved relying on
physical model-guided strategies (Sec. 3.2), where we exploit as
the only prior the nature of the physical trait we aim to disentangle
(e.g. raindrop, dirt, fog, etc.). Because these may have infinite
variations of appearances, we estimate differentiable (Sec. 3.3) and
non-differentiable (Sec. 3.4) target parameters of the physical model
which ease disentanglement by reducing differences with target.
Our approach boosts image quality and realism guiding model
injection during training with gradient-based guidance (Sec. 3.5).
An extensive explanation of training strategies is in Sec. 5.

3.1 Adversarial disentanglement

In image-to-image translation we aim to learn a transformation
between a source X and a target Y , thus mapping X 7→ Y in
an unsupervised manner. We assume that Y appearance is partly
characterized by a well-identified phenomenon such as occlusions
on the lens (e.g. rain, dirt) or weather phenomena (e.g. fog). Hence,
we propose a sub-domain decomposition (as in [10]) of Y =
{YW , YT }, separating the identified traits (YW ) from the other
ones (YT ). We assume this only on target, so X = {XT }. In
adversarial learning, the task of the generator is to approximate the
probability distributions PX and PY associated with the problem
domains, such as

∀x ∈ X,x ∼ PX(x),

∀y ∈ Y, y ∼ PY (y).
(1)

For explaining the intuition, we assume that the traits identifiable in
this manner are independent from the recorded scene. For instance,
physical properties of raindrops on a lens (such as thickness or
position) do not change with the scene, as it happens also with
fog, where visual effects are only depth-dependent. Therefore, YW
is fairly independent from YT , hence we formalize PY as a joint
probability distribution with independent marginals, such as

PY (y) = PYW ,YT (yW , yT ) = PYW (yW )PYT (yT ). (2)

Intuitively, approximating one of the marginals with a priori
knowledge will force the GAN to learn the other one in a
disentangled manner. During training, this translates into injecting
features belonging to YW before forwarding the images to the
discriminator, which will provide feedback on the general realism
of the image.

Formally, we modify a LSGAN [90] training, which enforces
adversarial learning minimizing

yd = G(x),

Lgen = LG(yd) = Ex ∼PX(x)[(D(yd)− 1)2],

Ldisc = LD(yd, y) = Ex ∼PX(x)[D(yd)
2]+

+ Ey ∼PY (y)[(D(y)− 1)2],

(3)

where Lgen and Ldisc are tasks of generator G and discriminator D,
respectively. We instead learn a disentangled mapping injecting
physically modeled traits WMod(.) on translated images. We newly
define yd as the disentangled composition of translated scene G(x)
and WMod(.), hence

yd = αwG(x) + (1− αw)WMod(.) . (4)

We define as αw a pixel-wise measure of blending between modeled



4

Noise

Pretrained and frozen

Blend

Source

Model

Source + Model

Parameters

Forward pass

backward

Parameters

(a) Differentiable parameters.

CMA-ES

Sec. 3.3

Sec. 3.4

Fr
ee

ze
Fr

ee
ze

(b) Joint differentiable and non-differentiable strategy.

Fig. 3: Model-guided parameters estimation. a) We exploit a pretrained discriminator Dent, to calculate an adversarial loss LG on
source data augmented with the model WMod having differentiable parameters wd. In this process, the gradient flows only in direction
of the differentiable parameters. b) We optimize until convergence differentiable (blue) and non-differentiable (purple) parameters,
alternatively reaching new minima (w̃d and w̃nd) used during optimization of the other parameter set. While differentiable parameters
are regressed (Sec. 3.3), non-differentiable ones require black-box genetic optimization (Sec. 3.4), here CMA-ES [89].

and learned scene traits. Pixels which depend only on WMod(.) (as
opaque occlusions) will show αw = 1 while others (e.g. transparent
ones) will have αw < 1.

3.2 Physics models as guidance
One can easily obtain physical model (i.e. WMod) from existing
literature – typically to render visual traits like drops, fog, or
else. Injecting such physical models in our guided-GAN enables
disentanglement and learning of visual traits not rendered by
physical models, like wet materials for rain models [14], clouds in
the sky for fog models [81], etc.

However, these models often have extremely variable appear-
ance depending on their physical parameters w so we propose
adversarial-based strategies to regress optimal w̃ mimicking the
target dataset appearance. This is in fact needed for disentangled
training where we assume modeled traits to resemble target ones.
Other parameters are of stochastic nature (e.g. drop positions
on the image) and are encoded as noise z regulating random
characteristics. Additionally, some models appearance – like
refractive occlusions – varies with the underlying scene1 s, so
we write WMod(.) = WMod(s, w, z), with s = G(x). Following
our pipeline in Fig. 2, if w̃ properly estimates target physical
parameters, WMod(s, w̃, z) estimates marginal PYW (yW ) which
again enables disentanglement.

During inference instead, w and z can be arbitrarily varied,
greatly increasing generation variability while still obtaining a
realistic target scene rendering. In the following, we describe our
adversarial parameter estimation strategy, while distinguishing
differentiable (wd) and non-differentiable (wnd) parameters, such
that w = {wd, wnd}.

3.3 Differentiable parameters estimation
To estimate the target optimized derivable parameters w̃d, we
exploit an adversarial-based strategy benefiting from entangle-
ment in naive trainings. We consider a naive baseline trained
on source 7→ target mapping, where target entangles two sub-
domains as specified in Sec. 3.1. We refer to generator and discrim-
inator trained in this way as entangled generator and discriminator,
respectively. The entangled discriminator Dent successfully learns

1. In Sec. 6, we explain how WMod depending of s is not violating the
independence assumption of Eq. 2, and evaluate its effect in Sec. 5.4.

to distinguish fake target images. This results in being able to
discriminate PX = PXT from PY = PYT (yT )PYW (yW ). Consid-
ering a simplified scenario where PYT is arbitrarily confused with
the source domain, such that PYT = PXT , regressing wd is the only
way to minimize the domain shift. In other words, considering the
derivable model parametrized by wd, the above domain confusion
prevents any changes in the scene. To minimize differences between
source and target the network is left with updating the injected
physical model appearance, ultimately regressing wd. Fig. 3a
shows our differentiable parameter pipeline. From a training
perspective, we first pretrain an i2i baseline (e.g. MUNIT [50]),
learning a X 7→ Y mapping with an entangled generator Gent and
discriminator Dent. We then freeze Dent and use it to solve

yp = αwx+ (1− αw)WMod(x,w, z),min
wd

LG(yp) , (5)

backpropagating the GAN loss through the differentiable model.
Since many models may encompass pixelwise transparency, often
the blending mask αw is αw = αw(w, z). Please not this is not
a traditional adversarial training, since freezing the discriminator
is mandatory to preserve the previously learned target domain
appearance during the estimation process. After convergence, we
extract the optimal parameter set w̃d. Alternatively, w̃d could be
manually tuned by an operator, at the cost of menial work and
inaccuracy, possibly leading to errors in the disentanglement.

From Fig. 3a, notice that the gradient flows only through
differentiable parameters (wd). We now detail our strategy to
optimize jointly inevitable non-differentiable parameters (wnd).

3.4 Non-differentiable parameters estimation

The previously described strategy only holds for differentiable
parameters wd, since we use backpropagation of an adversar-
ial loss. Nonetheless, many models include non-differentiable
parameters wnd that could equally impact the realism of our
model WMod(.). For example, a model generating raindrops
occlusion would include differentiable parameters like the imaging
focus, but also non-differentiable ones like the shape or number
of drops – all of which significantly impact visual appearance.
However, the sizing of non-differentiable parameters wnd is both
complex and time-consuming (as evaluated in Sec. 5.4), and
incorrect sizing is likely to achieve suboptimal disentanglement.
Manual approximation of optimal wnd parameters via trial-and-
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Fig. 4: Neural-guided disentanglement. We exploit here a sepa-
rate frozen GAN (WGAN) which renders specific target traits (here,
dirt) on generator G output images before forwarding them to
the discriminator D. We do not show gradient propagation for
simplicity.

error might also be cumbersome or impractical for vast search space.
To circumvent this, we exploit a genetic strategy estimating wnd.

In our method, non-differentiable parameters are fed to a
genetic optimization strategy. The evolutionary criteria remain
the same as for differentiable parameters, that is the pretrained
discriminator (Dent) adversarial loss. In practice, to avoid noisy
updates after genetic estimation, we average adversarial loss over a
fixed number of samples to reliably select a new population. After
convergence, we extract the optimal parameter set w̃nd. In our
experiments, we use CMA-ES [89] as evolutionary strategy, but
the proposed pipeline is extensible to any other genetic algorithm.

3.5 Disentanglement guidance
It is worth noting that too sparse injection of model WMod(.)
negatively impacts disentanglement because the guided-GAN will
entangle similar physical traits to fool the discriminator, while
injecting too much of WMod(.) will prevent the discovery of the
disentangled target. Spatially, we observe that regions that do
not differ from source to target are most frequently impacted by
entanglement. This is because the discriminator naturally provides
less reliable predictions due to the local source-target similarities,
which leads the generator to produce artifacts resembling target
physical characteristics to fool the discriminator, eventually leading
to unwanted entanglement. In rainy scenes this happens for trees
or buildings, whose appearance little varies if dry or wet, whereas
ground or road exhibit puddles which are strong rainy cues.

To balance the injection of WMod(.), we guide disentanglement
by injecting WMod(.) only on low domain shift areas, pushing
the guided-GAN to learn the disentangled mapping of the scene.
Specifically, we learn a Disentanglement Guidance (DG) dataset-
wise by averaging the GradCAM [91] feedback on the source
dataset, relying on the discriminator Dent gradient on fake classi-
fication. Areas with high domain shift will be easily identified as
fake, while others will impact less on the prediction. To take into
account different resolutions, we evaluate GradCAM for all the
discriminator layers. Formally, we use LSGAN to obtain

DG = Ex ∼PX(x)[El∈L[GradCAMl(D
ent(x))]] , (6)

with L being the discriminator layers. At training, we inject
models only on pixels (u, v) where DGu,v < γ, with γ ∈ [0, 1]
as hyperparameter. In Sec. 5.4 we visually assess the effect of DG.

3.6 Training strategy
For models having differentiable and non-differentiable parameters
we employ a joint optimization shown in Fig. 3b. We first initialize
a set of parameters w, then alternatively use our strategy for

differentiable parameters estimation wd (Sec. 3.3) and the genetic
strategy for non differentiable ones wnd (Sec. 3.4). Notice that
the alternation of optimized parameters prevents divergence due
to simultaneous optimization. We apply updates until optimum,
reaching the two sets of target style parameters, w̃ = {w̃d, w̃nd}.
The complete training strategy for model-guided disentanglement
is in Sec. 5.1.1.

4 NEURAL-GUIDED DISENTANGLEMENT

For some visual traits, a physical model may not be immediately
available so we consider also the case in which the guidance is
provided by a neural model, learned separately. Referring to our
adversarial strategy in Sec. 3.1, we simply substitute WMod with
WGAN in Eq. 4, where WGAN is our neural guidance – a GAN in
our experiments. Following our past explanations, assuming WGAN

generates specific visual traits – may it be dirt, drop, watermark or
else – it is an approximation of the marginal PYW (yW ). We define
θ̃ as the optimal set of parameters of the network to reproduce
target occlusion appearance. Subsequently, processing generated
images with WGAN before forwarding them to the discriminator
pushes the guided-GAN we aim to train in a disentangled manner
(not to be confused with WGAN) to achieve disentanglement, as
illustrated in Fig. 4, following the same reasoning as in Sec. 3.1.

Of importance here, even if WGAN is trained supervisedly
– for example, from annotated pairs of images / dirt – the
disentanglement strategy is itself fully unsupervised. Also, referring
to Eq. 2, the guided-GAN can only achieve disentanglement and
estimate PYT (yT ) from images in Y , if WGAN (i.e. W (·)) correctly
estimates PYW (yW ). Suppose WGAN augments rain on images,
it will be sensitive to the intensity as well as the appearance
of drops of Y . In other words, it would be possible only to
recreate target-like scenes, being only able to modify parameters
that do not depend from appearance, as raindrops position. With
the model-guided disentanglement strategy we could instead re-
inject physical traits of arbitrary appearance, greatly increasing
the generative capabilities of our guided framework. Hence, the
primary goal of this pipeline shall not be seen as a competitor to
model-based disentanglement, but rather as a viable alternative
when a physical model is not available. We present the training
strategy in Sec. 5.1.1.

5 EXPERIMENTS

We evaluate our disentanglement strategies on the real datasets
nuScenes [92], RobotCar [85], Cityscapes [93] and Wood-
Scape [94], and on the synthetic Synthia [95] and Weather
Cityscapes [14]. Our evaluation methodology is in Sec. 5.1
including training, tasks, user study, and model/neural guidance.

In Sec. 5.2 we extensively study the disentanglement of
raindrop, dirt, composite occlusions, and fog – on a qualita-
tive/quantitative basis, and using proxy tasks and human judgement.
Our method is compared against the recent DRIT [51], U-GAT-
IT [41], AttentionGAN [40], CycleGAN [1], and MUNIT [50]
frameworks. Opposite to the literature, our method enables disen-
tanglement of the target domain, so we report both the disentangled
translations as well as the translations with the injection of optimal
target physical traits. The disentanglement is greatly visible in
images presented in this section. Because physical models are
readily available, we emphasize our physical model-guided strategy
(Sec. 3) evaluated on 4 models in Sec. 5.2.1. Conversely, the neural-
guided strategy (Sec. 4), requires rare separate neural networks
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Fig. 5: Training pipelines. For model-guided disentanglement,
we 1) train a naive i2i entangled baseline, 2) use the entangled
discriminator feedback to estimate optimal parameters w̃ and 3)
Disentanglement Guidance (DG), and finally 4) train the guided-
GAN with model injection. For neural-guided disentanglement,
we 1) train a GAN (WGAN) exploiting additional knowledge as
semantics and 2) use it to inject target traits during our guided-GAN
training.

for rendering traits. It is subsequently only evaluated on dirt
disentanglement in Sec. 5.2.2, relying on DirtyGAN [96], for
comparison purposes with the model-guided strategy. In Sec. 5.3,
we study the accuracy of our physical model parameters estimation
on the well-documented raindrop model, and finally ablate our
proposal in Sec. 5.4.
Formalism. We formalize disentangled trainings as Tdis, guided
either with a full physical model (TWMod ), a model with only
differentiable parameters (TWwd

Mod
), or neural-guided (TWGAN ). When

re-injecting physical traits, we also show their parameters in paren-
theses. For example, TWMod(w̃) means model-guided disentangled
output with injection of the full model estimated on target (w̃).

5.1 Methodology

5.1.1 Training

Our disentangled GAN is architecture agnostic. Here, we rely on
the MUNIT [50] backbone for its multi-modal capabilities, and
exploit LSGAN [90] for training. Fig. 5 shows our two training
pipelines.
For model-guided training (Fig. 5, top), we leverage on a multi-
step pipeline, only assuming the known nature of features to disen-
tangle (e.g. raindrop, dirt, fog, etc.). First, an i2i source 7→ target
baseline is trained in an entangled manner, obtaining entangled
discriminator (Dent). Second, we make use of Dent to regress the op-
timal parameters w̃ with adversarial (Sec. 3.3) and genetic (Sec. 3.4)
estimation. Third, we extract Disentanglement Guidance (Sec. 3.5),
also using Dent. Finally, we train from scratch the disentangled
guided-GAN (Sec. 3).
For neural-guided training (Fig. 5, bottom), we use a prior-
agnostic two-step pipeline. First, we train the third-party WGAN

to render occlusions, exploiting semantic supervision in our
experiments though it could realistically be replaced with self-

Task Entanglement Datasets Guidance
Model wd wnd

M
od

el

clear 7→ raindrop Raindrop nuScenes [92] Raindrop σ t,(s, p)x4
gray 7→ colordirt Dirt WoodScape [94] Dirt σ, α -
synth 7→ WCSfog Fog Synthia [95],

Weather CS [14]
Fog β -

clear 7→ snowcmp Composite Synthia [95] Composite - -

N
eu

ra
l Network

gray 7→ colordirt Dirt WoodScape [94] DirtyGAN [96]

TABLE 1: Disentanglement tasks. For each task, we indicate the
features entangled in the target domain (also, shorten as indices
of task name), the datasets, and the model or neural guidance
employed for disentanglement.

supervision. Then, we train our disentangled guided-GAN without
any supervision.

5.1.2 Tasks

Tab. 1 lists the tasks evaluated and ad-hoc datasets. When referring
to a task, we denote as indices the entangled features in target
domain. Thus, clear 7→ raindrop literally means ‘translation from
clear to rain with entangled drops’. We later describe models used
for disentanglement.

clear 7→raindrop We exploit the recent nuScenes [92] which
includes urban driving scenes, and use metadata to build clear/rain
splits obtaining 114251/29463 training and 25798/5637 testing
clear/rain images. Target rain images entangle highly unfocused
drops on the windshield, which would hardly be annotated as seen
in Fig. 6, first row.

gray7→colordirt Here, we rely on the recent fish-eye
WoodScape [94] dataset which has some images with soiling
on the lens. We separate the dataset in clean/dirty images using
soiling metadata getting 5117/4873 training images and 500/500
for validation. Because clean/dirty splits do not encompass other
domain shifts, we additionally transform clean images to gray.
Subsequently, we frame this as a colorization task where target
color domain entangles dirt. For disentanglement, we experiment
using both a physical model-guided and a neural-guided strategy.

clear 7→snowcmp With Synthia [95] we also investigate
entanglement of very different alpha-blended composites,
like "Confidential" watermarks or fences. We split Synthia
using metadata into clear/snow images and further augment
snow target with said composite at random position. As
clear/fog splits, we use 3634/3739 images for training and
901/947 for validation. To guide disentanglement, we consider a
composite model, inspiring from the concept of thin occluders [77].

synth7→WCSfog We learn here the mapping from synthetic Syn-
thia [95] to the foggy version of Weather CityScapes [14] – a foggy-
augmented Cityscapes [93]. The goal is to learn the synthetic to
real mapping, while disentangling the complex fog effect in target.
For training we use 3634/11900 and 901/2000 for validation as
Synthia/WeatherCityscapes. We use a fog model to guide our
network.
Note that this task differentiates from others, since target has fog of
heterogeneous intensities (max. visibility 750, 375, 150 and 75m)
making disentanglement significantly harder.
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5.1.3 Physical model guidance

To correctly fool the discriminator, it is crucial to choose a
model that realistically resembles the entangled feature. We
leverage 4 physical models, listed in Tab. 1 ‘Model’ with their
differentiable (wd) and non-differentiable (wnd) parameters.
Raindrop model. We extend the model of Alletto et al. [13], which
is balanced between complexity and realism. Drops are approxi-
mated by simple trigonometric functions, while we encompass also
noise addition for shape variability [97]. For drops photometry, we
use fixed displacement maps (U, V ) for coordinate mapping on
both x and y axes, technically encoded as 3-channels images [13].
To approximate light refraction, a drop at (u, v) has its pixel (ui, vi)
mapped to (

u+ U(ui, vi) · ρ, v + V(ui, vi) · ρ
)
, (7)

where ρ is a drop-wise value representing water thickness. Most
importantly, we also model imaging focus, since it may extremely
impact the rendered raindrop appearance [13], [98], [99]. Hence,
we use a Gaussian point spread function [100] to blur synthetic
raindrops. We implement kernel variance σ as differentiable, while
drops size (s), frequency (p), and shape (t) related parameters are
non differentiable. We use a single shape parameter and generate 4
types of drops, with associated p and t.
Dirt model. Here, we naively extend our raindrop model removing
displacement maps as soil has no refractive behaviors. Instead, we
introduce a color guidance that forces synthetic dirt to be brighter
in peripherals regions, also depending on a parameter α which
regulates occlusion maximum opacity (hence, maximum αw value).
We also estimate σ as aforementioned.
Composite occlusions model. We exploit the model of thin
occluder proposed in [77] to render composite occlusions on
images, i.e. randomly translated alpha-blended transparent images
such as watermarks or fence-like grids. We assume to fully know
transparency, thus no parameter is learned.
Fog model. We leverage the physics model of [14] using an input
depth map. Fog thickness is regulated by a differentiable extinction
coefficient β which regulates maximum visibility.

5.1.4 Neural guidance

Finding appropriate neural networks to render visual traits is not
trivial. Here we experiment only with Dirt, as listed in Tab. 1
‘Neural’.
Dirt neural. DirtyGAN [96] is a GAN-based framework for opaque
soiling occlusion generation. It is composed by two components, i.e.
a VAE for occlusion map generation (trained using soiling semantic
maps) and an i2i network conditioned on the generated map to
include synthetic soiling on images. To train DirtyGAN, we first
train a VAE to learn the shape of soiling, and then proceed to train
a modified CycleGAN [1] to generate realistic soiling, conditioning
the soiling shape on the VAE outputs. For more details on this we
refer to [96].

5.1.5 User study

We also conducted a qualitative anonymous online study collecting
answers from 56 users (22 males, 33 females, 1 non-binary) from
21 to 65 years old (mean 27.9, std. 7.6). Each user had to evaluate
85 randomized scenes with a Likert-5 scale, providing the image
looks realistic and efficiently disentangled. For ease of reading we
included the results in each ad-hoc subsections (Secs. 5.2.1, 5.3).
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Fig. 6: Raindrop disentanglement on clear 7→ raindrop. We
compare qualitatively with the state-of-the-art on the clear 7→
raindrop task with rain drops model-guided disentanglement. In the
first row, we report samples of the target domain. Subsequently,
the Source image (2nd row), the translations by different baselines
(rows 3-7) and our results (rows 8-13). Our model-guided network
is able to disentangle the generation of peculiar rainy characteristics
from the drops on the windshield (‘Disentangled’ rows) and re-
injection with estimated parameters (‘Target-style’). We evaluate
both the differentiable-only parameter estimation (rows 8-9) and the
genetic-based full estimation (rows 10-11). We also show injection
of other arbitrary parameters w1, w2 (last 2 rows).
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Fig. 7: Dirt disentanglement on gray 7→ colordirt. We compare
with MUNIT [50] for the gray 7→ colordirt task. Although MUNIT
successfully mimics the Target style (rows 1,3), our approach lead
to a more realistic image colorization disentangling the presence
of dirt (‘Disentangled’ row TWMod ) We also use the dirt model to
reproduce Target images (‘Target-style’ row TWwd

Mod
(w̃)).

5.2 Disentanglement
In this section, we evaluate our disentanglement strategy both
using physical model-guidance (Sec. 5.2.1) or neural-guidance
(Sec. 5.2.2).

5.2.1 Physical model-guided
Referring to the 4 tasks and 4 ad-hoc models in Tab. 1 ‘Model’, we
evaluate our ability to disentangle visual traits with our physical
model guidance from Sec. 3, reporting quality, quantitative and
human judgment.

Hereafter, we separate experiments on Raindrop, Dirt and
Composite disentanglement from the Fog experiments, since only
the former have homogeneous physical parameters (w) throughout
the dataset2. Since non-differentiable parameters were fairly easy
to manually tune, we thoroughly experiment in the differentiable-
only {wd} setup and compare it later on to our full {wd, wnd}
estimation (Sec. 5.3).
Qualitative disentanglement. We present different outputs for
the clear 7→ raindrop trained on nuScenes [92], comparing to
state-of-the-art methods [1], [40], [41], [50], [51] (Fig. 6) and
for gray 7→ colordirt and clear 7→ snowcmp with respect to the
backbone (Figs. 7,8, respectively). In all cases, baselines entangle
occlusions in different manners. For instance, in Fig. 6 it is
noticeable the constant position of rendered raindrops between
different frameworks, as in the 1st column on the leftmost tree,
which is a visible effect of entanglement and limits image variability.
Also, occlusion entanglement could cause very unrealistic outputs
where the structural consistency of either the scene (Fig. 7) or the
occlusion (Fig. 8) is completely lost.

2. For Raindrop, Dirt and Composite we consider wd and wnd to be dataset-
wise constant. E.g. all raindrops have the same defocus blur, transparency, etc.
Conversely, Fog images have varying fog intensity.
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Fig. 8: Composite disentanglement on clear 7→ snowcmp. We
extend the applicability of our method to composite occlusions,
that we validate in the clear 7→ snowcmp scenario. We add a
fence-like occlusion (left) and a confidential watermark (right) to
synthetic_snow, with random position. As expected, we encounter
entanglement phenomena for MUNIT, while our model-guided
network is successful in learning the disentangled appearance
(‘Disentangled’ row TWwd

Mod
). In our ‘Target-style’ row TWwd

Mod
(w̃d),

we inject the occlusions to mimic the target style.

Referring to Figs. 6,7,8, our method is always able to produce
high quality images without occlusions (‘Disentangled’ rows)
including typical target domain traits such as wet appearance
without drops, colored image without dirt or snowy image without
occlusions, respectively. Furthermore, we can inject occlusions
with optimal estimated parameters (‘Target-style’ rows) to mimic
target appearance which enables a fair comparison with baselines3.

We also inject raindrops with arbitrary parameters to simulate
unseen dashcam-style images in Fig. 6 (last 2 rows). The realistic
results demonstrate both the quality of our disentanglement and
the realism of the Raindrop model.
Quantitative disentanglement. We use GAN metrics to quantify
the quality of the learned mappings. Results are reported in Tab. 2a,
where Inception Score (IS) [101] evaluates quality and diversity
against target, LPIPS distance [102] evaluates translation diversity
(thus avoiding mode-collapse), and Conditional Inception Score
(CIS) [50] single-image translations diversity for multi-modal
baselines. In practice, IS is computed over all the validation
set while CIS is estimated on 100 different translations of 100
random images following [50]. The InceptionV3 network for
Inception Scores was finetuned on the source/target classification as
in [50]. LPIPS distance is calculated on 1900 random pairs of 100
translations as in [50]. For fairness, we only compare ‘Target-style’
outputs to baselines, since those are not supposed to disentangle
physical traits, and can only output images resembling Target.
Tab. 2a shows we outperform all baselines on IS/CIS, including
MUNIT – our i2i backbone. This is due to disentanglement, since
entanglement phenomena limit occlusions appearance and position
variability. Even the scene translation quality is improved by
disentanglement since the generator learns a simpler target domain
mapping without any occlusions. As regards LPIPS distance, we

3. For comparing with neural methods we set α = 1 (cf. Sec. 5.2.2).
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Experiment Network IS↑ LPIPS↑ CIS↑

clear 7→ raindrop

CycleGAN [1] 1.15 0.473 -
AttentionGAN [40] 1.41 0.464 -

U-GAT-IT [41] 1.04 0.489 -
DRIT [51] 1.19 0.492 1.12

MUNIT [50] 1.21 0.495 1.03
Ours TWw

Mod
(w̃) 1.25 0.502 1.08

Ours TW
wd
Mod

(w̃d) 1.53 0.515 1.15

gray 7→ colordirt
MUNIT [50] 1.06 0.656 1.08

Ours TW
wd
Mod

(w̃d) 1.25 0.590 1.15

clear 7→ snowcmp MUNIT [50] 1.26 0.547 1.11
(fence) Ours TW

wd
Mod

(w̃d) 1.31 0.539 1.19

clear 7→ snowcmp MUNIT [50] 1.17 0.567 1.01
(WMK) Ours TW

wd
Mod

(w̃d) 1.19 0.551 1.02

synth 7→ WCSfog

CycleGAN [1] 1.31 0.384 -
AttentionGAN [40] * * *

U-GAT-IT [41] 1.05 0.406 -
DRIT [51] 1.22 0.424 1.10

MUNIT [50] 1.22 0.429 1.13
Ours TW

wd
Mod

(w̃d) 1.33 0.420 1.17

* AttentionGAN converges to the identity transformation.

(a) GAN metrics.

Method AP↑
Original (from [14]) 18.7

Finetuned w/ Halder et al. [14] 25.6
Finetuned w/ Model-guided TW

wd
Mod

(w̃d) 27.7

(b) Semantic segmentation on rain.

TABLE 2: Image quality evaluation. In (a), we quantify GAN
metrics for all tasks. While quality-aware metrics are always
successfully increased, LPIPS depends on the visual complexity of
the model and presence of artifacts. In (b), we compare our pipeline
for finetuning semantic segmentation network outperforming the
state-of-the-art for rain generation.

outperform the baseline on raindrops while we rank lower on
the other tasks. While IS/CIS quantify both quality and diversity,
LPIPS metric is evaluating variability only thus penalizing simpler
occlusion generation. For instance, our rendered dirt in Fig. 7 is
often black while MUNIT-generated artifacts are highly variable
(compare rows MUNIT and ours TWwd

Mod
(w̃d)). The same happens

for watermarks in Fig. 8, where unrealistic artifacts are highly
variable. For raindrops, instead, MUNIT tends to just blur images,
while we benefit from the refractive capabilities of our physical
model which increase LPIPS.
Semantic segmentation. To provide additional insights on the
effectiveness of our framework and compensate for the well-known
noisiness of GAN metrics [102], we quantify the usability of
generated images for semantic segmentation in the clear 7→ raindrop

setup. Therefore, we process the popular Cityscapes [93] dataset
for semantic segmentation with our best clear 7→ raindrop model-
guided training, obtaining a synthetic rainy version TWwd

Mod
(w̃d) that

we use for finetuning PSPNet [103], following Halder et al. [14].
Please note that this also demonstrates the generation capabilities
to new scenarios of our GAN, since we use the pretrained network
on nuScenes given the absence of rainy scenes in Cityscapes. We
report the mAP for the 25 rainy images with semantic labels
provided by [14] in Tab. 2b. We experience a significant increase
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Fig. 9: synth 7→WCSfog translations. As visible, MUNIT shows
entanglement phenomena, leading to artifacts. Our model-guided
disentanglement, instead, enables to generate a wide range of
foggy images, with arbitrary visibility, while mantaining realism.
Since the fog model WMod always blocks the gradient propagation
in the sky region, the network can not achieve photorealistic
disentanglement but still improves the generated image quality.

(+9%) with respect to baseline PSPNet trained on original clear
images (Original), and also outperform (+2.1%) the finetuning
with rain physics-based rendering [14]. Both networks finetune
Original weights. The overall low numbers reported are impacted
by the significant domain shift between Cityscapes and nuScenes.
Disentanglement on heterogeneous datasets. We now evaluate
the effectiveness of the synth 7→ WCSfog experiment which
translates from synthetic Synthia to the real-augmented Weather
CityScapes [14] entangling fog of various intensities (from light
to thick fog). Notice this task significantly differs from others for
two reasons. First, unlike other experiments the model parameter –
the optical extinction coefficient, β – varies in the target dataset.
Second, the fog model is depending on the scene geometry [104].
This makes the disentanglement task non-trivial. In our adversarial
disentanglement, we however still regress a single β = 28.61
somehow averaging the ground truth values (β ∈ [4, 40]).

In Fig. 9 results show we are able to generate images stylisti-
cally similar to target ones, but with geometrical consistency and
varying β (last 3 rows). Instead, MUNIT [50] fails to preserve
realism due to entanglement artifacts, visible in particular on
elements at far (as buildings in the background). Please note that
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(a) “The camera lens is clean” (b) “The scene looks wet” (c) “The colors look natural”

Fig. 10: Disentanglement user study. We asked 56 users (cf. Sec. 5.1.5) to judge the lens cleanness (a) on raindrops (r) and dirt (d), or
the wetness (b) or coloring (c) of clear 7→ raindrop and gray 7→ colordirt generated scenes, respectively. Details are in the text. Our system
greatly improves results following human evaluation metrics.

we intentionally do not show disentangled output for fairness, since
the physical model always blocks the gradient propagation in the
sky. More details on this will be discussed in Sec. 6. Randomizing
β ∈ [4, 40] we report GAN metrics results in Tab. 2a, where the
increased quality of images is quantified. LPIPS distance suffers
from the absence of artifacts in our model-guided TWwd

Mod
(w̃d),

which artificially increases image variability. The physical model
always renders correctly regions at far (e.g. the sky, which is always
occluded), hence pure variability quantified by LPIPS is reduced
(cf. above LPIPS definition).
User study. To further evaluate our disentanglement quality, we
asked 56 users to rate images (details in Sec. 5.1.5). First, we
presented our disentangled outputs and real images with occlusions
on the clear7→raindrop and gray7→colordirt tasks, where users were
asked to rate for each image if "The camera lens is clean (no dirt,
no raindrops)". Results in Fig. 10a show our strategy is better since
the lens in our images is judge cleaner than target images. However,
this does not assess if the underlying transformation (i.e. wetness
or color) was properly learned.

Hence, secondly we compare translation realism with the
MUNIT baseline, rating the statement “The scene looks wet” for
clear7→raindrop and “The scene looks colorful” for gray 7→colordirt.
We also include real source images (i.e. gray) in gray7→colordirt

to evaluate performances in the naive identity transformation, and
target images in both to set upper bounds. Results in Figs. 10b, 10c
clearly show the superiority of our approach with respect to the
MUNIT, heavily reducing the gap with real target images.

In a nutshell, the study demonstrates that disentanglement is
fairly perceived by users (Fig. 10a) while preserving the learned
underlying transformation (Figs. 10b, 10c).

5.2.2 Neural-guided disentanglement
Referring to Tab. 1 ‘Neural’, we now evaluate our ability to
disentangle visual traits with our neural guidance from Sec. 4,
for Dirt disentanglement in the gray 7→ colordirt task, by using
available annotations instead of a physics-based prior.
Evaluation. We leverage here the WoodScape [94] datasets having
soiling semantic annotation as polygons. Following our training
strategy (Fig. 5, bottom), our neural guidance DirtyGAN [96]
(cf. Sec. 5.1.4) is trained beforehand and frozen during the
disentanglement.

The use of annotations boosts the overall quality and diversity,
which is proved in Tab. 11a where our neural-guided outperforms
both MUNIT baseline and our own model-guided version. Fur-
thermore, since the ground truth for colorization is available, we
evaluate in Tab. 11b the effectiveness of disentanglement with SSIM
and PSNR metrics (higher is better). Here both disentanglement
outperform MUNIT [50] significantly, but model-guided is better.

Arguably, we attribute this to the worse gradient propagation due
to more occluded pixels with respect to our physical model4.

Finally, last 2 rows of Fig. 11c show our neural-guided strategy
produces high quality colored images without occlusions (‘Disen-
tangled’ row, TWGAN ) while injection of occlusions with optimal
estimated parameters θ̃ (‘Target-style’ row, TWGAN(θ̃)) also mimics
target appearance. In fact while both neural-guided disentanglement
(Sec. 5.2.2) and physical model-guided disentanglement (Sec. 5.2.1)
perform well, only our model-guided strategies controllability of
the occlusion at inference. This is because of the explicit physical
parameters in the models, that allows reinjecting unseen models at
inference.

5.3 Parameters estimation

We now evaluate the effectiveness of our parameter estimation
for physical model-guided disentanglement, considering only
differentiable parameters first and later extending to our full system.
The neural-guided disentanglement strategy precludes this analysis
due to the lack of explicit parameters.
Differentiable model (w = {wd}). To evaluate realism, we
leverage the RobotCar [85] dataset having pairs of clear/raindrop
images. Since there is no domain shift between image pairs, we set
G(x) = x and regress the defocus blur (σ) again following Sec. 3.3.
The regressed σ = 3.87 is used to render raindrops on clear images.
Using FID and LPIPS distances we measure perceived distance
between real raindrop images and our model-guided raindrops
translations (TWwd

Mod
(w̃d)) or the one of Porav et al. [85]. Fig. 12b

shows we greatly boost similarity5 (−72.02 FID) with real raindrop
images. This is qualitatively verified in Fig. 12a, where our rendered
raindrops are more similar to Target. To provide insights about
the quality of our minima, we also evaluate FID for arbitrary
σ values (σ ∈ {0.0, 2.5, 5.0, 7.5, 10}). Fig. 12c proves that our
estimated sigma best minimized perceptual distances despite the
weak discriminator signal.

To measure the accuracy of our differentiable parameter
regression (Sec. 3.3) we need paired images with and without
physical traits with completely known physical parameters. To
the best of our knowledge such dataset does not exists. Instead,
we augment RobotCar [85], WoodScape [94] and Synthia [95]
with synthetic raindrops, dirt, and fog, respectively, with gradually
increasing values of defocus blur (σ) for raindrop, transparency (α)

4. On average, DirtyGAN dirt covers 25.4% of the image while our
physical model covered 20.1%. While this provides more realistic dirt masks
(ground truth annotation is 29.6%) we conjecture this leads to worse gradient
propagation.

5. Please note that unlike previous experiments, here LPIPS is used for
distance estimation (not diversity), so lower is better.
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Network IS↑ LPIPS↑CIS↑
MUNIT [50] 1.06 0.656 1.08

Model-guided TW
wd
Mod

(w̃d)1.25 0.590 1.15
Neural-guided TWGAN(θ̃) 1.58 0.663 1.47

(a) GAN metrics.

Network SSIM↑PSNR↑
MUNIT [50] 0.414 13.4

Model-guided TW
wd
Mod

0.755 20.2
Neural-guided TWGAN 0.724 19.3

(b) Colorization.
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(c) Qualitative evaluation.

Fig. 11: Comparison of model- and neural- guided disentangle-
ment on gray 7→ colordirt. Although our neural-guided strategy
excels in image quality and diversity, mostly due to the complex
nature of generated dirt (a), with model guidance we achieve more
realistic image colorization (b). Qualitative results are coherent with
metrics (c). With both pipelines, we still outperform MUNIT [50],
used as backbone.

for dirt6 and optical thickness (β) for fog. Using each augmented
dataset, we then regress said parameters following Sec. 3.3.

Plots in Fig. 13 show estimation versus ground-truth. In
average, the estimation error is 0.99% for raindrop, 3.55% for
dirt, and 23.51% for fog. The very low σ error for raindrop
is to be imputed to the defocus blur that drastically changes
scene appearance, while higher error for β must be imputed
to the logarithmic dependency of the fog model. Nevertheless,
translations preserve realism (cf. Fig. 9).

Full model (w = {wd, wnd}). To evaluate the quality of our full
raindrop model, we incorporate this time the non-differentiable pa-

6. In this experiment, we consider dirt with a fixed defocus blur value σ and
regress only α to increase the diversity of tasks.

rameters (i.e. s, p, t) which are estimated with our genetic strategy
in Sec. 3.4 for 4 types of drops, with a genetic population size of
10. As shown in Fig. 12b, LPIPS metric privileges our full model-
guided estimation (TWMod(w̃)) while FID suffers compared to using
differentiable parameters only. However, we very significantly
outperform [85] also qualitatively (Fig. 12a). The mitigated results
are explained by the much more complex optimization problem
having many more parameters, and by the limited computation
time for genetic iterations. However, this let us foresee applications
in high-dimensionality problems where manual approximation is
not always possible or with a less accurate model (see ablations
Sec. 5.4). Moreover, we stress that the manual optimization could
be challenging and time consuming (cf. Sec. 5.4).
Results on the clear 7→ raindrop task in Fig. 14 are coherent with
above insights as the full model estimation, although effective,
exhibits slightly lower quality disentanglement.
User study. We presented to users (see Sec. 5.1.5) couples of
images with independent scenes in which the left one presented
images with real drops taken from RobotCar [85], while the right
one included fake drops rendered with our model with differentiable
only / all parameters estimated, or with Porav et al. [85]. Users were
asked to compare raindrops appearance between the two images
regardless of the represented scenes. From results shown in Fig. 15,
it is evident that our method largely outperform the baseline in
both configurations, indicating a higher quality of our raindrops
also for the human preference metric.

5.4 Ablation studies

We now ablate our proposal. We focus on the model-guided setting
by tuning genetic processing, altering model complexity, changing
models, or removing disentanglement guidance. We also further
investigate and compare different training strategies.
Model complexity. We study the influence of the model on
disentanglement for the clear 7→ raindrop on nuScenes [92] task.
Specifically, we evaluate three raindrop models of decreasing
complexity: 1) Our model from Sec. 5.1.3 (named Ours). 2) The
same model but without shape and thickness variability (Refract),
and 3) A naive non-parametric colored Gaussian-shape model
(Gaussian). Note that Gaussian is deprived of any refractive
property as it uses fixed color, and does not regress any physical
parameters. In Fig. 16a, we report GAN metrics for all models
following Sec. 5.2.1. Even if increasing model complexity is
beneficial for disentanglement, very simple models still lead
to a performance boost. We advocate the best performances of
Ours to a more effective discriminator fooling during training, as
consequence of increased realism.
Model choice. To also evaluate whether injected features only
behave as adversarial noise regardless of the chosen model, we
trained on RobotCar [85] (as in Sec. 5.3) though purposely using
an incorrect model as watermark, dirt, fence. Evaluating the FID
against real raindrop images, we measure 135.32 (raindrop) /
329.17 (watermark) / 334.76 (dirt) / 948.71 (fence), proving
necessity of using the ad-hoc model.
Disentanglement Guidance (DG). We use the nuScenes clear 7→
raindrop task to visualize the effects of different DG strategies
(Sec. 3.5). For varying values of the DG threshold γ in Fig. 16b
we see results ranging from no guidance (γ = 0) to strict guidance
(γ = 1). With lax guidance (γ = 0), we fall back in the baseline
scenario with visible entanglement effects, while with γ = 1 we
do achieve disentanglement, at the cost of losing important visual
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Model-guided

Source Target Porav et al. [85] TWwd
Mod

(w̃d) TWMod
(w̃)

(a) Sample images

Method FID↓ LPIPS↓
Porav et al. [85] 207.34 0.53

Model-guided TW
wd
Mod

(w̃d) 135.32 0.44
Model-guided TWMod(w̃) 157.44 0.43

(b) Benchmark on [85]
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Porav et al.

(c) FID

Fig. 12: Realism of the injected occlusion. Our defocus blur σ estimation grants an increased realism in raindrop rendering on the
RobotCar [85] dataset (a), compared with Porav et al. [85]. This is confirmed by quantitative metrics (b). We report our model-guided
translations using either differentiable parameter estimation only (TWwd

Mod
(w̃d)) or the full model parameter estimation (TWMod(w̃)),

outperforming Porav et al. [85] in both. In (c), we evaluate the FID for different σ values in [0, 10], showing that our regressed σ value
(σ = 3.81) actually leads to a local minimum.
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Fig. 13: Evaluation of the model parameters regression. The
reliability of our parameter estimation is assessed on synthetic
datasets augmented with arbitrary physical models acting as ground
truth values. Comparing against our regressed value, our strategy
performs better when low modifications on the estimated values
corresponds to big visual changes (average error is 0.99% for
raindrops (a), 3.55% for dirt (b)). For fog (c), we get an higher
error of 23.51% due to the low visual impact of high β values.

Model-guided

Source MUNIT [50] TW
wd
Mod

TWMod

Fig. 14: Full model on clear 7→ raindrop. With complete
parameter estimation (TWMod , rightmost), we achieve a slightly
worse disentanglement than with manually-tuned non-differentiable
parameters (T wdWMod

), visible in red areas of TWMod . However, in both
of our translations we generate typical rain traits as reflections with
reasonable disentanglement, while baseline MUNIT [50] has very
evident raindrops entangled highlighted in red.

features as reflections on the road. Only appropriate guidance
(γ = 0.75) achieves disentanglement and preserves realism.

5.4.1 Full model
Non-differentiable genetic estimation. We study the effective-
ness of our genetic estimation ablating the population size
of our raindrop model on RobotCar [85] as in Sec. 5.3. We
test our algorithm with population size 10/25/50/100, obtaining
FID 157.44/153.32/151.21/149.09 and LPIPS 0.43/0.44/0.44/0.43.
While we observe an obvious increase in performances, this comes
with additional computation times, hence we used the lowest
population size of 10 for all tests. Nevertheless, this opens doors to
potential improvements in the full parametric estimation.

Fig. 15: Parameter estimation user study. We presented users
with {Reference, Model} image pairs where Reference includes
real drops and Model has fake drops rendered with our method
with differentiable only (Ours) or full (Ours - full) parameters
estimation, or with Porav et al. [85]. Users were asked whether
they agree on the statement "The drops of the Model resemble
the drops of Reference". Thanks to our estimation strategy, we
dramatically improve similarity to real raindrops.

Model IS↑ LPIPS↑ CIS↑
none 1.21 0.50 1.03

Gaussian 1.35 0.51 1.13
Refract 1.46 0.50 1.12
Ours 1.53 0.52 1.15

(a) Model complexity.
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(b) Disentanglement Guidance.

Fig. 16: Ablations of model complexity and Disentanglement
Guidance. In (a), we quantify disentanglement effects with simpler
model having less variability (Refract), or only color guidance
(Gaussian). Even if complexity is beneficial for disentanglement
(Ours), simple models permits disentanglement to some extent. In
(b), we study the efficacy of the Disentanglement Guidance (DG)
for different γ values on clear 7→ raindrop task. With γ = 0 our
approach fallbacks to the baseline and entangles occlusions, while
with guidance γ = 1 the translation lacks important features such
as reflections and glares. With γ = 0.75 we simultaneously avoid
entanglements and preserve translation capabilities.

Non-differentiable boundaries of wnd. Genetic algorithms re-
quires optimization boundaries for each parameter (i.e. the min
and the max of each parameter), so one could argue that wnd
still requires manual tuning, therefore lowering the interest of
our full estimation pipeline. However, our empirical studies
demonstrate that parameter boundaries only takes a few minutes,
while precise manual tuning required for differentiable-only opti-
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Source {w̃d, w
rand-1
nd } {w̃d, w

rand-2
nd } {w̃d, w

rand-3
nd } {w̃d, w

rand-4
nd } {w̃d, w

rand-5
nd } {w̃d, w̃nd}

Fig. 17: Benefit of genetic parameters optimization. While genetic algorithms require to set optimization boundaries, even coarsely-
defined boundaries can be used for achieving disentanglement. We sample 5 different random sets of parameters ({wrand-1

nd , ..., wrand-5
nd })

from boundaries set in minutes and combine them with w̃d estimation, achieving visible entanglement artifacts (highlighted with red
boxes). Instead, using the same coarsely-defined boundaries for our genetic optimization our full parameter estimation {w̃, w̃nd} achieves
reasonable disentanglement and qualitatively better results. Hence, our full optimization pipeline can benefit even from quick and coarse
tuning of parameter boundaries.
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Expert 1
Expert 2
Expert 3
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(a) IS of trained models.

Source Genetic

output output

(b) Qualitative evaluation.

Fig. 18: User-based VS Genetic-based optimization of wnd. In
(a), we compare IS of user- or genetic-optimized wnd. Expert
computer vision users struggle to reach performances comparable
to our genetic estimation due to the complexity of the parameter
estimation task. In (b), qualitative evaluation of the GAN output
advocates that manual tuning can still lead to good performances
( model), but it can also lead to entanglement even after several
iterations ( model). Tuning wnd with our full pipeline (Genetic)
prevents such failures, requiring also only one disentangled training.

mization (Sec. 3.3) takes days as it requires multiple training. In an
effort to provide evidence of the coarse boundaries definition,
we randomly sampled 5 sets of wnd within said boundaries
and report disentanglement results in Fig. 17. Simply sampling
parameters within the boundaries (center) achieve far less good
disentanglement w.r.t. our full estimation pipeline (right).

5.4.2 Differentiable-only model

Manual estimation of wnd. To provide further proof on the
interest of optimizing wnd with genetic algorithms, we perform an
additional user study with three computer vision experts. To each
expert, we show real rainy images of clear 7→ raindrop (see Tab. 1)
and ask the latter to manually tune wnd of the drop model to
reproduce the target drop appearance. We then estimate the optimal
remaining differentiable parameters w̃d and train a disentangled
network, showing to the same expert the qualitative results
obtained with the tuned parameters. We finally asked to update the
manually estimated values to improve disentanglement. We perform
multiple iterations and quantify performances in terms of Inception
Score (IS). In Fig. 18, it is visible how users difficultly improve
performances even after 5 iterations, while with the full estimation
pipeline we boost results with no manual tuning. Altogether, this
demonstrates how using our full pipeline can ease the estimation
task and save computational time.

Guidance Param. estimation Editable Requirements
Annotations Ad-hoc GAN Model design Manual wnd tuning

Neural None
Model wd

Model {wd, wnd}

TABLE 3: Comparison of the disentanglement strategies.
Model-guided strategies do not require annotations and ad-hoc
generative networks, but they rely on the availability of a somehow
realistic physics model. When using neural-guided disentanglement,
the ability to modify physical parameters of the model (“Editable”)
is lost. We overcome the need of cumbersome manual tuning of
wnd with genetic optimization in our full strategy. However, results
in Sec. 5 advocate that best disentanglement performances are still
obtained by manually sizing each non differentiable parameter, at
the cost of intensive labor and many trainings.

6 DISCUSSION

To our best knowledge, we have designed the first unsupervised
strategy to disentangle physics-based features in i2i. Good qualita-
tive and quantitative performances showcase promising interest for
several applications, still there are peculiar points and limitations
which we now discuss.
Comparison of different disentanglement strategies. We pro-
pose three different disentanglement strategies. In Tab. 3, we
compare them, highlighting advantages and disadvantages that
could be crucial for choosing a disentanglement strategies in
an applicative scenario. While the differentiable-only estimation
strategy performs best in terms of disentanglement, it is also time
consuming due to manual tuning of wnd. The applicability of
neural-guided disentanglement depends on annotations availability,
and prevents outputs editing capabilities at inference. Ultimately,
one should prefer model-guided disentanglement if a model is
accessible.
Independence assumption. For unsupervised disentanglement, we
assume the physical model to be completely independent from the
scene, in order to use our intuition about marginal separation (see
Sec. 3.1 and Eq. 2). However, since physical models may need
the underlying scene to correctly render desired traits, one may
argue their appearance is not completely disentangled. While this
is true from a visual point of view, it is not from a physical one.
Let’s interpret disentanglement properties to be dependent on scene
elements. In presence of disentanglement, the same physical model
could be applied to different objects regardless of what they are.
For instance, we could use the same raindrop refraction map on
either roads or buildings with identical parameters. In this sense,
G(x) dependency in physical models is not impacting our visual
independence assumption.
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On partial entanglement issues. We observe in some cases
that gradient propagation can be affected by fixed entanglement
of occlusion features. This is the case for example for sky
regions in fog (Sec. 5.2.1) because physics [104] formalizes
that regardless of its intensity fog is always entangled at far. In
such scenarios, disentanglement will perform poorly because the
generator will not get any discriminative feedback. In many other
cases however, Disentanglement Guidance (DG, Sec. 3.5) mitigates
the phenomenon as it blocks injection of the physical model in
relevant image regions. We conjecture that the effectiveness could
be extended by varying DG at training time to ensure a balanced
gradient propagation.
On genetic estimation effectiveness. The sub-optimal perfor-
mances of our genetic estimation of wnd are imputed to the much
more complex search space, in which we vary all parameters of our
physical model simultaneously. It is worth noting that manually
tuning non-differentiable parameters requires many trainings, while
relying on genetic optimization achieves acceptable results in
a single complete training. Also, we did set fairly large search
boundaries for wnd (as evaluated in Sec. 5.4), but one could
envisage a mixed training in which the search space is limited to
reasonable hand-tuned boundaries. In this sense, genetic estimation
of wnd could be seen as a minimum mining technique, ensuring
increased performances on the hand-tuned values.
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