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GeoTransformer: Fast and Robust Point Cloud
Registration with Geometric Transformer

Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, Slobodan Ilic, Dewen Hu, Kai Xu∗

Abstract—We study the problem of extracting accurate correspondences for point cloud registration. Recent keypoint-free methods
have shown great potential through bypassing the detection of repeatable keypoints which is difficult to do especially in low-overlap
scenarios. They seek correspondences over downsampled superpoints, which are then propagated to dense points. Superpoints are
matched based on whether their neighboring patches overlap. Such sparse and loose matching requires contextual features capturing
the geometric structure of the point clouds. We propose Geometric Transformer, or GeoTransformer for short, to learn geometric
feature for robust superpoint matching. It encodes pair-wise distances and triplet-wise angles, making it invariant to rigid transformation
and robust in low-overlap cases. The simplistic design attains surprisingly high matching accuracy such that no RANSAC is required in
the estimation of alignment transformation, leading to 100 times acceleration. Extensive experiments on rich benchmarks
encompassing indoor, outdoor, synthetic, multiway and non-rigid demonstrate the efficacy of GeoTransformer. Notably, our method
improves the inlier ratio by 18∼31 percentage points and the registration recall by over 7 points on the challenging 3DLoMatch
benchmark. Our code and models are available at https://github.com/qinzheng93/GeoTransformer.

Index Terms—Point cloud registration, transformer, geometric consistency, coarse-to-fine correspondence, point cloud matching

✦

1 INTRODUCTION

POINT cloud registration is a fundamental task in graph-
ics, vision and robotics. Given two partially overlapping

3D point clouds, the goal is to estimate a rigid transfor-
mation that aligns them. The problem has gained renewed
interest recently thanks to the fast growing of 3D point
representation learning and differentiable optimization.

The recent advances have been dominated by learning-
based, correspondence-based methods [1], [2], [3], [4], [5],
[6]. A neural network is trained to extract point correspon-
dences between two input point clouds, based on which
an alignment transformation is calculated with a robust
estimator, e.g., RANSAC. Most correspondence-based meth-
ods rely on keypoint detection [3], [4], [5], [7]. However,
it is challenging to detect repeatable keypoints across two
point clouds, especially when they have small overlapping
area. This usually results in low inlier ratio in the putative
correspondences.

Inspired by the recent advances in image matching [8],
[9], [10], keypoint-free methods [6] downsample the input
point clouds into superpoints and then match them through
examining whether their local neighborhood (patch) over-
laps. Such superpoint (patch) matching is then propagated
to individual points, yielding dense point correspondences.
Consequently, the accuracy of dense point correspondences
highly depends on that of superpoint matches.

Superpoint matching is sparse and loose. The upside is
that it reduces strict point matching into loose patch over-
lapping, thus relaxing the repeatability requirement. Mean-
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(a) Vanilla Transformer, Patch Correspondences (b) Vanilla Transformer, Point Correspondences

(c) GeoTransformer, Patch Correspondences (d) GeoTransformer, Point Correspondences

Fig. 1. Given two low-overlap point clouds, GeoTransformer improves in-
lier ratio over vanilla transformer significantly, both for superpoint (patch)
level (left) and for dense point level (right). A few representative patch
correspondences are visualized with distinct colors. Notice how Geo-
Transformer preserves the spatial consistency of the matching patches
across two point clouds. It corrects the wrongly matched patches around
the symmetric corners of the chair back (see the yellow point cloud).

while, patch overlapping is a more reliable and informative
constraint than distance-based point matching for learning
correspondence; consider that two spatially close points
could be geodesically distant. On the other hand, superpoint
matching calls for features capturing more global context.

To this end, Transformer [11] has been adopted [6], [12]
to encode contextual information in point cloud registration.
However, vanilla transformer overlooks the geometric struc-
ture of the point clouds, which makes the learned features
geometrically less discriminative and induces numerous
outlier matches (Fig. 1(top)). Although one can inject posi-
tional embeddings [13], [14], the coordinate-based encoding
is transformation-variant, which is problematic when regis-
tering point clouds given in arbitrary poses. We advocate
that a point transformer for registration task should be
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learned with the geometric structure of the point clouds so as
to extract transformation-invariant geometric features. We
propose Geometric Transformer, or GeoTransformer for short,
for 3D point clouds which encodes only distances of point
pairs and angles in point triplets.

Given a superpoint, we learn a non-local representa-
tion through geometrically “pinpointing” it w.r.t. all other
superpoints based on pair-wise distances and triplet-wise
angles. Self-attention mechanism is utilized to weigh the
importance of those anchoring superpoints. Since distances
and angles are invariant to rigid transformation, GeoTrans-
former learns geometric structure of point clouds efficiently,
leading to highly robust superpoint matching even in low-
overlap scenarios. Fig. 1(left) demonstrates that GeoTrans-
former significantly improves the inlier ratio of superpoint
(patch) correspondences. For better convergence, we devise
an overlap-aware circle loss to make GeoTransformer focus
on superpoint pairs with higher patch overlap.

Benefitting from the high-quality superpoint matches,
our method attains high-inlier-ratio dense point correspon-
dences (Fig. 1(right)) using an optimal transport layer [15],
as well as highly robust and accurate registration without
relying on RANSAC. Therefore, the registration part of our
method runs extremely fast, e.g., 0.01s for two point clouds
with 5K correspondences, 100 times faster than RANSAC.
Extensive experiments on indoor, outdoor, synthetic, multi-
way and non-rigid benchmarks [5], [16], [17], [18], [19] have
demonstrated the efficacy of GeoTransformer. Specifically,
our method attains significant improvements on challenging
scenarios with low overlap and large rotations. For example,
our method improves the inlier ratio by 18∼31 percentage
points and the registration recall by over 7 points on the
3DLoMatch benchmark [5]. Our main contributions are:

• A fast and accurate point cloud registration method
which is both keypoint-free and RANSAC-free.

• A geometric transformer architecture which learns
transformation-invariant geometric representation of
point clouds for robust superpoint matching.

• An overlap-aware circle loss which reweights the
loss of each superpoint match according to the patch
overlap ratio for better convergence.

A previous version of this work was published at CVPR
2022 [20]. This paper extends the conference version with
the following new contributions: First, to reduce the mem-
ory footprint and the computational cost of GeoTransformer,
we propose shared geometric self-attention which makes the
attention weights for the geometric structure embeddings
shared across all self-attention modules. Second, we extend
our method to deal with non-rigid registration through re-
laxing the selection of superpoint correspondences, demon-
strating the strong generality of GeoTransformer. Third, we
further conduct more extensive experiments and detailed
ablation analysis to provide a thorough understanding of
the effectiveness of GeoTransformer.

2 RELATED WORK

Correspondence-based methods. Our work follows the
line of the correspondence-based methods [1], [2], [3],
[21]. They first extract correspondences between two point

clouds and then recover the transformation with robust pose
estimators, e.g., RANSAC. Thanks to the robust estimators,
they achieve state-of-the-art performance in indoor and
outdoor scene registration. These methods can be further
categorized into two classes according to how they extract
correspondences. The first class aims to detect more repeat-
able keypoints [4], [5] and learn more powerful descriptors
for the keypoints [3], [7], [22]. While the second class [6]
retrieves correspondences without keypoint detection by
considering all possible matches. Our method follows the
detection-free methods and improves the accuracy of corre-
spondences by leveraging the geometric information.
Direct registration methods. Recently, direct registration
methods have emerged. They estimate the transformation
with a neural network in an end-to-end manner and elim-
inate the use of a robust estimator. According to how the
alignment transformation is estimated, these methods can
be further classified into two classes. The first class [12], [23],
[24], [25], [26], [27], [28] follows the idea of ICP [29], which
iteratively establishes soft correspondences and computes
the transformation with differentiable weighted SVD. And
the second class [30], [31], [32], [33] first extracts a global
feature vector for each point cloud and regresses the trans-
formation with the global feature vectors. Due to the lack of
a robust estimator, direct registration methods opt to adopt
an iterative registration scheme to progressively refine the
estimated transformation. Albeit achieving promising re-
sults on single synthetic shapes, direct registration methods
could still fail in large-scale scenes as stated in [5].
Deep robust estimators. As traiditional robust estimators
such as RANSAC suffer from slow convergence and in-
stability in case of high outlier ratio, deep robust estima-
tors [34], [35], [36] have been proposed as the alternatives for
them. They usually contain a classification network to reject
outliers and an estimation network to compute the trans-
formation. Compared with traditional robust estimators,
they achieve improvements in both accuracy and speed.
However, they require training a specific network. In com-
parison, our method achieves fast and accurate registration
with a parameter-free local-to-global registration scheme.
Geometric consistency in point cloud registration. Geo-
metric consistency has been an important and long-standing
research topic in point cloud registration. Given two point
clouds in arbitrary poses, certain geometric properties such
as distances and angles are preserved between them, which
provides a strong geometric guidance for registration. To
this end, previous hand-crafted methods [37], [38], [39] di-
rectly encode lengths and angles around an anchor point to
obtain transformation-invariant descriptors. However, these
descriptors are not aware of the global structure, which
restricts their distinctiveness. Besides, geometric consistency
has also been adopted to reject outlier correspondences such
that more accurate transformation could be recovered [36],
[40], [41]. These methods need a preceding correspondence
extractor and are orthogonal to this work.

3 METHOD

Given two point clouds P = {pi ∈ R3 | i = 1, ..., N} and
Q = {qi ∈ R3 | i = 1, ...,M}, our goal is to estimate a
rigid transformation T = {R, t} which aligns the two point
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Fig. 2. The overall pipeline of our method. The backbone downsamples the input point clouds and learns features in multiple resolution levels. The
Superpoint Matching Module extracts high-quality superpoint correspondences between P̂ and Q̂ using the Geometric Transformer which iteratively
encodes intra-point-cloud geometric structures and inter-point-cloud geometric consistency. The superpoint correspondences are then propagated
to dense points P̃ and Q̃ by the Point Matching Module. Finally, the transformation is computed with a local-to-global registration method.

clouds, with a 3D rotation R ∈ SO(3) and a 3D translation
t ∈ R3. The transformation can be solved by:

min
R,t

∑
(p∗

xi
,q∗

yi
)∈C∗

∥R · p∗
xi

+ t − q∗
yi
∥22. (1)

Here C∗ is the set of ground-truth correspondences between
P and Q. Since C∗ is unknown in reality, we need to first
establish point correspondences between two point clouds
and then estimate the alignment transformation.

Our method adopts the hierarchical correspondence
paradigm which finds correspondences in a coarse-to-fine
manner. We adopt KPConv-FPN to simultaneously down-
sample the input point clouds and extract point-wise fea-
tures (Sec. 3.1). The first and the last (coarsest) level down-
sampled points correspond to the dense points and the
superpoints to be matched. A Superpoint Matching Module
is used to extract superpoint correspondences whose neigh-
boring local patches overlap with each other (Sec. 3.2). Based
on that, a Point Matching Module then refines the super-
point correspondences to dense points (Sec. 3.3). At last,
the alignment transformation is recovered from the dense
correspondences without relying on RANSAC (Sec. 3.4). The
pipeline is illustrated in Fig. 2.

3.1 Superpoint Sampling and Feature Extraction
We utilize the KPConv-FPN backbone [42], [43] to extract
multi-level features for the point clouds. A byproduct of
the point feature learning is point downsampling. We work
on downsampled points since point cloud registration can
actually be pinned down by the correspondences of a much
coarser subset of points. The original point clouds are
usually too dense so that point-wise correspondences are
redundant and sometimes too clustered to be useful.

The points correspond to the coarsest resolution, de-
noted by P̂ and Q̂, are treated as superpoints to be matched.
The associated learned features are denoted as F̂P ∈R|P̂|×d̂

Point-to-node
Partition

Fig. 3. Point-to-node grouping strategy. Each point is assigned to
its nearest superpoint. Left: the point cloud (in blue) and the sampled
superpoints (in red). Right: the points are color-coded according to the
superpoints that they are assigned to.

and F̂Q ∈R|Q̂|×d̂. The dense point correspondences are com-
puted at 1/2 of the original resolution, i.e., the first level
downsampled points denoted by P̃ and Q̃. Their learned
features are represented by F̃P ∈R|P̃|×d̃ and F̃Q ∈R|Q̃|×d̃.

For each superpoint, we construct a local patch of points
around it using the point-to-node grouping strategy [6], [44].
As shown in Fig. 3, each point in P̃ and its features from F̃P

are assigned to its nearest superpoint in the geometric space:

GP
i = {p̃ ∈ P̃ | i = argminj(∥p̃ − p̂j∥2), p̂j ∈ P̂}. (2)

This essentially leads to a Voronoi decomposition of the
input point cloud seeded by superpoints. The feature matrix
associated with the points in GP

i is denoted as FP
i ⊂ F̃P . The

superpoints with an empty patch are removed. The patches
{GQ

i } and the feature matrices {FQ
i } for Q are computed

and denoted in a similar way.

3.2 Superpoint Matching Module

Geometric Transformer. Global context has proven critical
in many computer vision tasks [6], [10], [45]. For this reason,
transformer has been adopted to leverage global contextual
information for point cloud registration. However, exist-
ing methods [5], [6], [12] usually feed transformer with
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Fig. 4. Geometric self-attention module. Left: The structure of geo-
metric self-attention module. Right: The computation graph of geometric
self-attention mechanism.

only high-level point cloud features and does not explicitly
encode the geometric structure. This makes the learned
features geometrically less discriminative, which causes se-
vere matching ambiguity and numerous outlier matches,
especially in low-overlap cases. A straightforward recipe is
to explicitly inject positional embeddings [13], [14] of 3D
point coordinates. However, the resultant coordinate-based
transformers are naturally transformation-variant, while reg-
istration requires transformation invariance since the input
point clouds can be in arbitrary poses.

To this end, we propose Geometric Transformer which
not only encodes high-level point features but also ex-
plicitly captures intra-point-cloud geometric structures and
inter-point-cloud geometric consistency. GeoTransformer is
composed of a geometric self-attention module for learning
intra-point-cloud features and a feature-based cross-attention
module for modeling inter-point-cloud consistency. The two
modules are interleaved for Nt times to extract hybrid
features ĤP and ĤQ for reliable superpoint matching (see
Fig. 2 (bottom left)).
Geometric self-attention. We design a geometric self-
attention to learn the global correlations in both feature
and geometric spaces among the superpoints for each point
cloud. In the following, we describe the computation for P̂
and the same goes for Q̂. Given the input feature matrix
X ∈R|P̂|×dt , the output feature matrix Z ∈R|P̂|×dt is the
weighted sum of all projected input features:

zi =
|P̂|∑
j=1

ai,j(xjWV ), (3)

where the weight coefficient ai,j is computed by a row-wise
softmax on the attention score ei,j , and ei,j is computed as:

ei,j =
(xiWQ)(xjWK + ri,jWR)T√

dt
. (4)

Here, ri,j ∈Rdt is a geometric structure embedding to be de-
scribed in the next. WQ,WK ,WV ,WR ∈ Rdt×dt are the
respective projection matrices for queries, keys, values and
geometric structure embeddings. Fig. 4 shows the structure
and the computation of geometric self-attention.

We design a novel geometric structure embedding to en-
code the transformation-invariant geometric structure of the
superpoints. The core idea is to leverage the distances and

Sinusoidal 
Function

Fig. 5. Geometric structure embedding. Left: An illustration of the
pair-wise distance and the triplet-wise angles encoded. Right: The com-
putation graph of the geometric structure embedding.

angles computed with the superpoints which are consistent
across different point clouds of the same scene. Given two
superpoints p̂i, p̂j∈P̂ , their geometric structure embedding
consists of a pair-wise distance embedding and a triplet-wise
angular embedding, which will be described below.

(1) Pair-wise Distance Embedding. Given the distance
ρi,j=∥p̂i− p̂j∥2 between p̂i and p̂j , the distance embedding
rDi,j ∈ Rdt between them is computed by applying a sinusoi-
dal function [11] on ρi,j :

rDi,j,2k = sin(
di,j/σd

100002k/dt
)

rDi,j,2k+1 = cos(
di,j/σd

100002k/dt
)

, (5)

where σd is a temperature hyper-parameter used to tune the
sensitivity on distance variations.

(2) Triplet-wise Angular Embedding. We compute angular
embedding with triplets of superpoints. We first select the k
nearest neighbors Ki of p̂i. For each p̂x∈Ki, we compute the
angle αx

i,j=∠(∆x,i,∆j,i), where ∆i,j := p̂i− p̂j . The triplet-
wise angular embedding rAi,j,x ∈ Rdt is then computed with
a sinusoidal function on αx

i,j :
rAi,j,x,2l = sin(

αx
i,j/σa

100002l/dt
)

rAi,j,x,2l+1 = cos(
αx
i,j/σa

100002l/dt
)

, (6)

where σa controls the sensitivity on angular variations.
Finally, the geometric structure embedding ri,j is com-

puted by aggregating the pair-wise distance embedding and
the triplet-wise angular embedding:

ri,j = rDi,jWD +maxx
{

rAi,j,xWA
}
, (7)

where WD,WA ∈ Rdt×dt are the respective projection ma-
trices for the two types of embeddings. We use max pooling
here to improve the robustness to the varying nearest neigh-
bors of a superpoint due to self-occlusion. Fig. 5 illustrates
the computation of geometric structure embedding.
Shared geometric self-attention. Albeit enjoying a strong
representation capability, the geometric self-attention suffers
from the heavy computation of the embedding projection
ri,jW

R in Eq. (4). The computational complexity of the stan-
dard geometric self-attention is O(|P̂|d2t + |P̂|2d2t ), which
limits its scalability and efficiency especially when the num-
ber of superpoints is large. To reduce the computation,
we design a shared geometric self-attention which makes the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

 

Softmax

Cross-Attention

Linear

Add & Norm

Feed Forward

Add & Norm

output

Fig. 6. Feature-based cross-attention module. Left: The structure of
feature-based cross-attention module. Right: The computation graph of
cross-attention mechanism.

projection weights WR shared across all geometric self-
attention modules and apply WR in Eq. (7) instead:

ei,j =
(xiWQ)(xjWK + ri,j)√

dt
. (8)

The geometric structure embedding is then computed as

ri,j = σ(rDi,jWD +maxx
{

rAi,j,xWA
}
)WR, (9)

where σ is the LeakyReLU function. With this modification,
the computation complexity of geometric self-attention is
reduced to O(|P̂|d2t ). As shown in Sec. 4.2, shared geometric
self-attention attains comparable accuracy with the standard
version with a significant reduction of computation time.
Feature-based cross-attention. Cross-attention is a typical
module for point cloud registration task [5], [6], [12], used to
perform feature exchange between two input point clouds.
Given the self-attention feature matrices XP , XQ for P̂ , Q̂
respectively, the cross-attention feature matrix ZP of P̂ is
computed with the features of Q̂:

zPi =

|Q̂|∑
j=1

ai,j(xQj WV ). (10)

Similarly, ai,j is computed by a row-wise softmax on the
cross-attention score ei,j , and ei,j is computed as the feature
correlation between the XP and XQ:

ei,j =
(xPi WQ)(xQj WK)T

√
dt

. (11)

Fig. 6 shows the structure and the computation of the cross-
attention. The cross-attention features for Q are computed
in the same way. While the geometric self-attention module
encodes the transformation-invariant geometric structure
for each individual point cloud, the feature-based cross-
attention module can model the geometric consistency
across the two point clouds. The resultant hybrid features
are both invariant to transformation and robust for reason-
ing correspondence.
Superpoint matching. To find the superpoint correspon-
dences, we propose a matching scheme based on global
feature correlation. We first normalize ĤP and ĤQ onto
a unit hypersphere and compute a Gaussian correlation
matrix S∈R|P̂|×|Q̂| with si,j= exp(−∥ĥP

i − ĥQ
j ∥22). In prac-

tice, some patches of a point cloud are less geometrically

discriminative and have numerous similar patches in the
other point cloud. Besides our powerful hybrid features, we
also perform a dual-normalization operation [8], [10] on S
to further suppress ambiguous matches, leading to S̄ with

s̄i,j =
si,j∑|Q̂|

k=1 si,k
· si,j∑|P̂|

k=1 sk,j
. (12)

We found that this suppression can effectively eliminate
wrong matches. Finally, we select the largest Nc entries in S̄
as the superpoint correspondences:

Ĉ = {(p̂xi
, q̂yi

) | (xi, yi) ∈ topkx,y(s̄x,y)}. (13)

Due to the powerful geometric structure encoding of Geo-
Transformer, our method is able to achieve accurate regis-
tration in low-overlap cases and with less point correspon-
dences, and most notably, in a RANSAC-free manner.

3.3 Point Matching Module
Having obtained the superpoint correspondences, we ex-
tract point correspondences using a simple yet effective
Point Matching Module. At point level, we use only local
point features learned by the backbone. The rationale is that
point level matching is mainly determined by the vicinities
of the two points being matched, once the global ambiguity
has been resolved by superpoint matching. This design
choice improves the robustness.

For each superpoint correspondence Ĉi = (p̂xi
, q̂yi

), an
optimal transport layer [15] is used to extract the local dense
point correspondences between GP

xi
and GQ

yi
. Specifically, we

first compute a cost matrix Ci ∈ Rni×mi :

Ci = FP
xi
(FQ

yi
)T /

√
d̃, (14)

where ni = |GP
xi
|, mi = |GQ

yi
|. The cost matrix Ci is then aug-

mented into C̄i by appending a new row and a new column
as in [15], filled with a learnable dustbin parameter α. We
then utilize the Sinkhorn algorithm [46] on C̄i to compute
a soft assignment matrix Z̄i which is then recovered to Zi

by dropping the last row and the last column. We use Zi as
the confidence matrix of the candidate matches and extract
point correspondences via mutual top-k selection, where a
point match is selected if it is among the k largest entries of
both the row and the column that it resides in:

Ci=
{(

GP
xi
(xj),GQ

yi
(yj)

)
|(xj , yj)∈mutual topkx,y(z

i
x,y)

}
.

(15)
The point correspondences computed from each superpoint
match are then collected together to form the final global
dense point correspondences: C =

⋃Nc

i=1 Ci.

3.4 RANSAC-free Local-to-Global Registration
Previous methods generally rely on robust pose estimators
to estimate the transformation since the putative correspon-
dences are often predominated by outliers. Most robust
estimators such as RANSAC suffer from slow convergence.
Given the high inlier ratio of GeoTransformer, we are able
to achieve robust registration without relying on robust
estimators, which also greatly reduces computation cost.

We design a local-to-global registration (LGR) scheme. As
a hypothesize-and-verify approach, LGR is comprised of
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Algorithm 1: Local-to-Global Registration
Input: Ci: local point correspondences of superpoint

correspondences
Output: R, t: alignment transformation
1. local step
for i← 1, ..., Nc do

Compute Ri, ti by solving Eq. (16) on Ci.
end
2. global step
Select best transformation candidate R, t by Eq. (17).
C ← C1 ∪ ... ∪ CNc

for t← 1, ..., Nr do
(t)C ← inliers in C under R and t.
Update R, t by solving Eq. (16) on (t)C.

end

a local phase of transformation candidates generation and
a global phase for transformation selection. In the local
phase, we solve for a transformation Ti={Ri, ti} for each
superpoint match using its local point correspondences:

Ri, ti = min
R,t

∑
(p̃xj

,q̃yj
)∈Ci

wi
j∥R · p̃xj

+ t − q̃yj
∥22. (16)

This can be solved in closed form using weighted SVD [29].
The corresponding confidence score for each correspon-
dence in Zi is used as the weight wi

j . Benefitting from the
high-quality correspondences, the transformations obtained
in this phase are already very accurate. In the global phase,
we select the transformation which admits the most inlier
matches over the entire global point correspondences:

R, t = max
Ri,ti

∑
(p̃xj

,q̃yj
)∈C

J∥Ri · p̃xj
+ ti − q̃yj

∥2 < τaK, (17)

where J·K is the Iverson bracket. τa is the acceptance radius.
We then iteratively re-estimate the transformation with the
surviving inlier matches for Nr times by solving Eq. (16).
Alg. 1 shows the computation of the local-to-global regis-
tration. As shown in Sec. 4.2, our approach achieves com-
parable registration accuracy with RANSAC but reduces
the computation time by more than 100 times. Moreover,
unlike deep robust estimators [34], [35], [36], our method is
parameter-free and no network training is needed.

3.5 Loss Functions
The loss function L = Loc + Lp is composed of an overlap-
aware circle loss Loc for superpoint matching and a point
matching loss Lp for point matching.
Overlap-aware circle loss. Existing methods [6], [10] usu-
ally formulate superpoint matching as a multi-label classi-
fication problem and adopt a cross-entropy loss with dual-
softmax [10] or optimal transport [6], [15]. Each superpoint
is assigned (classified) to one or many of the other super-
points, where the ground truth is computed based on patch
overlap and it is very likely that one patch could overlap
with multiple patches. By analyzing the gradients from the
cross-entropy loss, we find that the positive classes with
high confidence scores are suppressed by positive gradients
in the multi-label classification. This hinders the model from
extracting reliable superpoint correspondences.

To address this issue, we opt to extract superpoint de-
scriptors in a metric learning fashion. A straightforward

solution is to adopt a circle loss [47] similar to [4], [5].
However, the circle loss overlooks the differences between
the positive samples and weights them equally. As a result,
it struggles in matching patches with relatively low overlap.
For this reason, we design an overlap-aware circle loss to focus
the model on those matches with high overlap. We select
the patches in P which have at least one positive patch in
Q to form a set of anchor patches, A. A pair of patches are
positive if they share at least 10% overlap, and negative if
they do not overlap. All other pairs are omitted. For each
anchor patch GP

i ∈ A, we denote the set of its positive
patches in Q as εip, and the set of its negative patches as
εin. The overlap-aware circle loss on P is then defined as:

LP
oc=

1

|A|
∑

GP
i ∈A

log[1 +
∑

GQ
j ∈εip

eλ
j
iβ

i,j
p (dj

i−∆p) ·
∑

GQ
k ∈εin

eβ
i,k
n (∆n−dk

i )],

(18)
where dji =∥ĥP

i − ĥQ
j ∥2 is the distance in the feature space,

λj
i =(oji )

1
2 and oji represents the overlap ratio between GP

i

and GQ
j . The positive and negative weights are computed

for each sample individually with βi,j
p = γ(dji −∆p) and

βi,k
n = γ(∆n − dki ). The margin hyper-parameters are set

to ∆p=0.1 and ∆n=1.4. The overlap-aware circle loss
reweights the loss values on εip based on the overlap ratio
so that the patch pairs with higher overlap are given more
importance. The same goes for the loss LQ

oc on Q. And the
overall loss is Loc = (LP

oc + LQ
oc)/2.

Point matching loss. The ground-truth point correspon-
dences are relatively sparse because they are available only
for downsampled point clouds. We simply use a negative
log-likelihood loss [15] on the assignment matrix Z̄i of each
superpoint correspondence. During training, we randomly
sample Ng ground-truth superpoint correspondences {Ĉ∗

i }
instead of using the predicted ones. For each Ĉ∗

i , a set of
ground-truth point correspondences Mi is extracted with
a matching radius τ . The sets of unmatched points in the
two patches are denoted as Ii and Ji. The individual point
matching loss for Ĉ∗

i is computed as:

Lp,i = −
∑

(x,y)∈Mi

log z̄ix,y −
∑
x∈Ii

log z̄ix,mi+1 −
∑
y∈Ji

log z̄ini+1,y,

(19)
The final loss is computed by averaging the individual loss
over all sampled superpoint matches: Lp = 1

Ng

∑Ng

i=1 Lp,i.

4 EXPERIMENTS

In this section, we conduct extensive experiments to eval-
uate the effectiveness of our GeoTransformer. We first in-
troduce the implementation details in the experiments in
Sec. 4.1. Then, we evaluate our method and compare with
previous state-of-the-art methods on indoor 3DMatch and
3DLoMatch benchmarks [5], [16] (Sec. 4.2), outdoor KITTI
odometry benchmark [17] (Sec. 4.3), synthetic ModelNet40
benchmark [48] (Sec. 4.4), and multiway Augmented ICL-
NUIM benchmark [18] (Sec. 4.5). We further investigate the
generality of GeoTransformer to non-rigid registration [19]
(Sec. 4.6). Next, the ablation study is shown in Sec. 4.7
to provide a comprehensive understanding of our design.
At last, we compare our method with recent deep robust
estimators in Sec. 4.8.
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4.1 Implementation Details

Network architecture. As the point clouds from different
benchmarks differ in density and size, we use slightly dif-
ferent backbones in the experiments. To be specific, we use a
4-stage backbone for 3DMatch, ModelNet40 and 4DMatch,
while a 5-stage backbone is used for KITTI due to the much
larger point clouds. Please refer to our code for more details.

In the superpoint matching module, we interleave the
geometric self-attention module and the feature-based cross-
attention module for Nt=3 times on all benchmarks. All
attention modules have 4 attention heads. To compute the
geometric structure embedding, we simply set σd to the
voxel size in the superpoint level for the pair-wise distance
embedding, and use σa=15◦ and k=3 for the triplet-wise
angular embedding. We study the influence of these hyper-
parameters in Sec. 4.7.

In the local-to-global registration, only the superpoint
matches with at least 3 local point correspondences are
used to compute the transformation candidates. At last, we
iteratively recompute the transformation with the surviving
inlier matches for Nr=5 times.
Training and testing. We implement and evaluate Geo-
Transformer with PyTorch [49] on a RTX 3090 GPU. The
models are trained with Adam optimizer [50] for 40 epochs
on 3DMatch/4DMatch, 200 epochs on ModelNet40 and 80
epochs on KITTI. The batch size is 1 and the weight decay is
10−6. The learning rate starts from 10−4 and decays expo-
nentially by 0.05 every epoch on 3DMatch/4DMatch, every
5 epochs on ModelNet40, and every 4 epochs on KITTI.
The same data augmentation as in [5] is adopted. Unless
otherwise noted, we randomly sample Ng=128 ground-
truth superpoint correspondences during training, and use
Nc=256 putative superpoint matches during testing.

4.2 Indoor Benchmark: 3DMatch & 3DLoMatch

Dataset. 3DMatch [16] contains 62 scenes among which
46 are used for training, 8 for validation and 8 for testing.
We use the training data preprocessed by [5] and evaluate
on both 3DMatch and 3DLoMatch [5] protocols. The point
cloud pairs in 3DMatch have > 30% overlap, while those in
3DLoMatch have low overlap of 10% ∼ 30%.
Metrics. Following [4], [5], we evaluate the performance
with three metrics: (1) Inlier Ratio (IR), the fraction of puta-
tive correspondences whose residuals are below a certain
threshold (i.e., 0.1m) under the ground-truth transforma-
tion, (2) Feature Matching Recall (FMR), the fraction of point
cloud pairs whose inlier ratio is above a certain threshold
(i.e., 5%), and (3) Registration Recall (RR), the fraction of point
cloud pairs whose transformation error is smaller than a
certain threshold (i.e., RMSE < 0.2m).
Correspondence results. We first compare the correspon-
dence results of our method with the recent state of the
arts: PerfectMatch [2], FCGF [3], D3Feat [4], SpinNet [7],
Predator [5], YOHO [22] and CoFiNet [6] in Tab. 1(top and
middle)1. Following [4], [5], we report the results with dif-
ferent numbers of correspondences. To control the number
of the correspondences, we vary the hyper-parameter k of

1. We refine our code and retrain the models, so the results are
slightly better than our conference version [20].

TABLE 1
Evaluation results on 3DMatch and 3DLoMatch. RANSAC is used

for registration with 50K iterations. † indicates the lite model with shared
geometric self-attention. Boldfaced numbers highlight the best and the

second best are underlined.

3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) ↑

PerfectMatch [2] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2
FCGF [3] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [4] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet [7] 97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6
Predator [5] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
YOHO [22] 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
CoFiNet [6] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
GeoTransformer (ours) 98.1 98.1 98.1 98.2 98.1 87.7 87.7 87.8 88.0 88.2
GeoTransformer† (ours) 98.1 98.1 98.1 98.1 97.8 88.7 88.8 88.7 89.1 88.7

Inlier Ratio (%) ↑

PerfectMatch [2] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8
FCGF [3] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat [4] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
SpinNet [7] 47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1
Predator [5] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
YOHO [22] 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
CoFiNet [6] 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
GeoTransformer (ours) 72.5 75.9 76.8 82.8 85.6 44.7 45.8 46.7 53.3 58.0
GeoTransformer† (ours) 72.7 76.1 76.9 82.9 85.7 43.9 45.9 46.7 53.6 58.3

Registration Recall (%) ↑

PerfectMatch [2] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0
FCGF [3] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [4] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet [7] 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
Predator [5] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
YOHO [22] 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
CoFiNet [6] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
GeoTransformer (ours) 92.3 92.1 92.0 91.7 91.2 75.4 75.0 74.6 74.0 73.9
GeoTransformer† (ours) 92.2 92.0 91.6 91.5 91.1 74.9 74.5 73.9 73.6 73.0

the mutual top-k selection in the point matching module
and select the correspondences with the highest confidence
scores. For Feature Matching Recall, our method achieves
improvements of at least 5 percentage points (pp) on 3DLo-
Match, demonstrating its effectiveness in low-overlap cases.
For Inlier Ratio, the improvements are even more promi-
nent. It surpasses the baselines consistently by 8∼33 pp
on 3DMatch and 18∼31 pp on 3DLoMatch. The gain is
larger with less correspondences. It implies that our method
extracts more reliable correspondences.
Registration results. To evaluate the registration perfor-
mance, we first compare the Registration Recall obtained
by RANSAC in Tab. 1(bottom). Following [4], [5], we run
50K RANSAC iterations to estimate the transformation.
GeoTransformer attains new state-of-the-art results on both
3DMatch and 3DLoMatch. It outperforms the previous best
by 1.5 pp on 3DMatch and 7.9 pp on 3DLoMatch, showing
its efficacy in both high- and low-overlap scenarios. And
the shared geometric self-attention based model (i.e., the lite
model) attains very close performance to the standard one.
More importantly, our method is quite stable under different
numbers of samples, so it does not require sampling a large
number of correspondences to boost the performance as
previous methods [3], [6], [7], [22].

We then compare the registration results without using
RANSAC in Tab. 2. We start with weighted SVD over cor-
respondences in solving for alignment transformation. For
the baselines, we first sample 5000 keypoints and generate



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a) Input (b) Ground truth (c) CoFiNet (d) GeoTransformer (a) Input (b) Ground truth (c) CoFiNet (d) GeoTransformer

Fig. 7. Comparison of the registration results on 3DLoMatch. GeoTransformer can effectively recognize small overlapping area in complex
scenes (see the first and third rows on the right) and distinguish similar objects at different positions (see the second and third rows on the left)
thanks to the structure information from geometric self-attention.

TABLE 2
Registration results w/o RANSAC on 3DMatch (3DM) and

3DLoMatch (3DLM). The model time is the time for feature extraction,
while the pose time is the time for transformation estimation. The time
is averaged over all point cloud pairs in 3DMatch and 3DLoMatch. †

indicates the lite model with shared geometric self-attention. Boldfaced
numbers highlight the best and the second best are underlined.

Model Estimator #Samples RR(%) Time(s)
3DM 3DLM Model Pose Total

FCGF [3] RANSAC-50k 5000 85.1 40.1 0.052 3.326 3.378
D3Feat [4] RANSAC-50k 5000 81.6 37.2 0.024 3.088 3.112
SpinNet [7] RANSAC-50k 5000 88.6 59.8 60.248 0.388 60.636
Predator [5] RANSAC-50k 5000 89.0 59.8 0.032 5.120 5.152
CoFiNet [6] RANSAC-50k 5000 89.3 67.5 0.115 1.807 1.922
GeoTransformer (ours) RANSAC-50k 5000 92.3 75.4 0.075 1.558 1.633
GeoTransformer† (ours) RANSAC-50k 5000 92.2 74.9 0.060 1.546 1.606

FCGF [3] weighted SVD 250 42.1 3.9 0.052 0.008 0.056
D3Feat [4] weighted SVD 250 37.4 2.8 0.024 0.008 0.032
SpinNet [7] weighted SVD 250 34.0 2.5 60.248 0.006 60.254
Predator [5] weighted SVD 250 50.0 6.4 0.032 0.009 0.041
CoFiNet [6] weighted SVD 250 64.6 21.6 0.115 0.003 0.118
GeoTransformer (ours) weighted SVD 250 86.7 60.5 0.075 0.003 0.078
GeoTransformer† (ours) weighted SVD 250 87.5 61.4 0.060 0.003 0.063

CoFiNet [6] LGR all 87.6 64.8 0.115 0.028 0.143
GeoTransformer (ours) LGR all 91.8 74.5 0.075 0.013 0.088
GeoTransformer† (ours) LGR all 91.8 74.2 0.060 0.013 0.073

the correspondences with mutual nearest neighbor selection
on their descriptors, and then the top 250 correspondences
are used to compute the transformation. The baselines either
fail to achieve reasonable results or suffer from severe per-
formance degradation. In contrast, GeoTransformer (with
weighted SVD) achieves the registration recall of 86.7%
on 3DMatch and 60.5% on 3DLoMatch, close to Predator
with RANSAC. Note that the lite model performs even
better than the standard model thanks to the higher inlier
ratio. Without outlier filtering by RANSAC, high inlier
ratio is necessary for successful registration. However, high
inlier ratio does not necessarily lead to high registration
recall since the correspondences could cluster together as
noted in [5]. Nevertheless, our method without RANSAC

Fig. 8. Visualizing geometric self-attention scores on four pairs of
point clouds. The overlap areas are delineated with purple lines. The
anchor patches (in correspondence) are highlighted in red and the at-
tention scores to other patches are color-coded (deeper is larger ). Note
how the attention patterns of the two matching anchors are consistent
even across disjoint overlap areas.

performs well by extracting reliable and well-distributed
superpoint correspondences.

When using our local-to-global registration (LGR) for
computing transformation, our method brings the regis-
tration recall to 91.8% on 3DMatch and 74.5% on 3DLo-
Match, surpassing all RANSAC-based baselines by a large
margin. The results are also very close to those of ours
with RANSAC, but LGR gains over 100 times acceleration
over RANSAC in the pose time. These results demonstrate
the superiority of our method in both accuracy and speed.
Moreover, our lite model achieves very similar results but
reduces the overall time by 17%, running at 13 fps. We
believe it has a good potential in real-time applications such
as online 3D reconstruction and camera relocalization.
Qualitative results. We provide some qualitative compar-
ison of CoFiNet [6] and GeoTransformer on 3DLoMatch in
Fig. 7. Our method performs quite well in these low-overlap
cases. It is noteworthy that our method can distinguish
similar objects at different positions (see the comparison of
CoFiNet and GeoTransformer in the 2nd and 3rd rows on the
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TABLE 3
Registration results on KITTI odometry. Boldfaced numbers

highlight the best and the second best are underlined.

Model RTE(cm) RRE(◦) RR(%)

3DFeat-Net [51] 25.9 0.25 96.0
FCGF [3] 9.5 0.30 96.6
D3Feat [4] 7.2 0.30 99.8
SpinNet [7] 9.9 0.47 99.1
Predator [5] 6.8 0.27 99.8
CoFiNet [6] 8.2 0.41 99.8
GeoTransformer (ours, RANSAC-50k) 7.4 0.27 99.8

FMR [31] ∼66 1.49 90.6
DGR [35] ∼32 0.37 98.7
HRegNet [52] ∼12 0.29 99.7
GeoTransformer (ours, LGR) 6.8 0.24 99.8

left) and recognize small overlapping regions in complex
environment thanks to the geometric structure information
obtained from the geometric self-attention.

Fig. 8 visualizes the attention scores learned by our
geometric self-attention, which exhibits significant consis-
tency between the anchor patch matches. It shows that
our method is able to learn inter-point-cloud geometric
consistency which is important to accurate correspondences.

4.3 Outdoor Benchmark: KITTI odometry
Dataset. KITTI odometry [17] consists of 11 sequences of
outdoor driving scenarios scanned by LiDAR. We follow [3],
[4], [5] and use sequences 0-5 for training, 6-7 for validation
and 8-10 for testing. As in [3], [4], [5], the ground-truth poses
are refined with ICP and we only use point cloud pairs that
are at least 10m away for evaluation.
Metrics. We follow [5] to evaluate our GeoTransformer
with three metrics: (1) Relative Rotation Error (RRE), the
geodesic distance between estimated and ground-truth ro-
tation matrices, (2) Relative Translation Error (RTE), the Eu-
clidean distance between estimated and ground-truth trans-
lation vectors, and (3) Registration Recall (RR), the fraction
of point cloud pairs whose RRE and RTE are both below
certain thresholds (i.e., RRE<5◦ and RTE<2m).
Registration results. In Tab. 3(top), we compare to the
state-of-the-art RANSAC-based methods: 3DFeat-Net [51],
FCGF [3], D3Feat [4], SpinNet [7], Predator [5] and CoFi-
Net [6]. Our method performs on par with these methods,
showing good generality on outdoor scenes. Note that the
backbone in Predator is 2 times wider than that in Geo-
Transformer, demonstrating the efficacy and the parameter
efficiency of our method.

We further compare to three RANSAC-free methods in
Tab. 3(bottom): FMR [31], DGR [35] and HRegNet [52]. Our
method outperforms all the baselines by large margin. In ad-
dition, our method with LGR beats all the RANSAC-based
methods. To the best of our knowledge, GeoTransformer
is the first RANSAC-free method that surpasses RANSAC-
based methods on this benchmark.

4.4 Synthetic Benchmark: ModelNet40
Dataset. ModelNet40 [48] contains man-made CAD mod-
els from 40 categories. Following [5], [26], we use the pro-
cessed data from [53], which uniformly samples 2048 points
on the surface of each CAD model. We first normalize the

TABLE 4
Registration results on ModelNet40. Boldfaced numbers hightlight

the best and the second best are underlined.

Model ModelNet ModelLoNet
RRE(◦) RTE CD RRE(◦) RTE CD

Small Rotation

RPM-Net [26] 2.357 0.028 0.00130 8.123 0.086 0.00611
RGM [27] 4.548 0.049 0.00268 14.806 0.139 0.01482
Predator [5] 2.064 0.023 0.00145 5.022 0.084 0.00734
CoFiNet [6] 3.584 0.044 0.00205 6.992 0.091 0.00599
GeoTransformer (ours) 2.160 0.024 0.00143 3.638 0.064 0.00448

Large Rotation

RPM-Net [26] 31.509 0.206 0.01074 51.478 0.346 0.01985
RGM [27] 45.560 0.289 0.01697 68.724 0.442 0.03634
Predator [5] 24.839 0.171 0.01940 46.990 0.378 0.05052
CoFiNet [6] 10.496 0.084 0.00319 32.578 0.226 0.02273
GeoTransformer (ours) 6.436 0.047 0.00154 23.478 0.152 0.01296

CAD model into a unit sphere and adopt the same strategy
as in [26] to generate the source and the target point clouds:
a half-space with a random direction is sampled and shifted
to retain a proportion p of the points. The source point
cloud is then randomly transformed with a rotation within
[0, r] and a translation within [−0.5, 0.5]. Both point clouds
are then jittered with a noise sampled from N (0, 0.01) and
clipped to [−0.05, 0.05]. At last, 717 points are randomly
sampled from each point cloud independently as the final
point cloud pair. We evaluate our method on two overlap
settings (ModelNet with p=0.7 and ModelLoNet with p=0.5)
and two rotation settings (Small with r=45◦ and Large with
r=180◦). We follow [5] to use the first 20 categories in the
official training/testing split for training/validation and the
other 20 categories in the official testing split for testing.
We further remove 8 symmetric categories (i.e., bottle, bowl,
cone, cup, flower pot, lamp, tent, and vase) as their poses
are ambiguous. As a result, we have 4194 CAD models for
training, 1002 for validation, and 1146 for testing.
Metrics. We follow [26] to evaluate GeoTransformer with
two metrics: (1) Relative Rotation Error (RRE), (2) Relative
Translation Error (RTE), and (3) Chamfer Distance (CD) be-
tween two aligned point clouds. And we use the modified
Chamfer distance from [26] which compares with the clean
and complete versions of the other point cloud.
Registration results. We compare GeoTransformer with
four baseline methods in Tab. 4: RPM-Net [26], RGM [27],
Predator [5] and CoFiNet [6]. RPM-Net and RGM are end-
to-end registration methods, while Predator, CoFiNet and
GeoTransformer are correspondence-based methods. All the
models are train for 200 epochs. For fair comparison, we
adopt the same KPConv-based backbone in Predator, CoFi-
Net and GeoTransformer. To estimate the transformation,
Predator and CoFiNet use RANSAC-50k while LGR is used
in GeoTransformer. As the point clouds are relatively small,
we use Nc=128 superpoint correspondences during testing.

When the rotation is small, RPM-Net, Predator and
GeoTransformer achieve comparable results on the high-
overlap setting. As this setting is relatively easy, the per-
formance tends to be saturated. For the low-overlap setting,
GeoTransformer surpasses other methods by a large margin,
demonstrating the effectiveness of our method. When the
rotation is large, as all the methods are not completely
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TABLE 5
Registration results on Augmented ICL-NUIM. ATE (cm) are

reported. Boldfaced numbers highlight the best and the second best
are underlined.

Model Living1 Living2 Office1 Office2 Mean

FGR [54] 78.97 24.91 14.96 21.05 34.98
RANSAC [55] 110.9 19.33 14.42 17.31 40.49
DGR [35] 21.06 21.88 15.76 11.56 17.57
PointDSC [36] 20.25 15.58 13.56 11.30 15.18
GeoTransformer (ours) 17.54 15.31 13.85 9.78 14.12

invariant to transformation (i.e., the backbone part), the
performance inevitably drops compared with the small-
rotation setting. Nevertheless, as the geometric self-attention
provides more structure information about the point clouds,
our GeoTransformer attains significantly better results than
the baseline methods on both high- and low-overlap set-
tings, showing strong robustness to low overlap and large
rotations. Moreover, it is noteworthy that GeoTransformer
requires neither iterative registration as in RPM-Net and
RGM, nor RANSAC as in Predator and CoFiNet, thus
achieves very fast registration speed.

Besides, we have more interesting observations. First, the
correspondence-based methods perform much better than
the end-to-end methods in complicated scenarios with large
perturbations or heavy occlusion. In this case, the end-to-
end methods have difficulty learning accurate soft corre-
spondences, while the correspondence-based methods are
more robust because they establish hard correspondences
directly from the existing points. And robust estimators such
as RANSAC further improve the stability of them. Second,
the coarse-to-fine methods are more robust to large rotations
than the detection-based methods. Compared with directly
matching dense points with their descriptors, the superpoint
matching is more sparse and discriminative. The two-stage
pipeline can effectively alleviate the risk of mismatching and
contributes to better registration performance.

4.5 Multiway Benchmark: Augmented ICL-NUIM
Dataset. Augmented ICL-NUIM [18] augments the syn-
thetic scenes in ICL-NUIM [56] with a realistic noise model.
It consists of four camera trajectories from two scenes for
testing. Following [35], [36], we fuse 50 consecutive RGB-
D frames to generate the point cloud fragements. To solve
multiway registration, we follow [35], [36] to first conduct
pair-wise registration with GeoTransformer and then opti-
mize the poses with the global pose graph optimization [57]
implemented in [58].
Metrics. We follow [35], [36] to evaluate GeoTransformer
with the metric of Absolute Trajectory Error (ATE). It first
aligns the ground-truth and the estimated trajectories with
SVD, and then computes the root mean square error (RMSE)
of the differences between the points at the same timestamp
in the two trajectories.
Registration results. We compare GeoTransformer with
four baseline methods in Tab. 5: FGR [54], RANSAC [55],
DGR [35], and PointDSC [36]. Following [36], we directly
use the models trained on 3DMatch without fine-tuning.
However, the point clouds in Augmented ICL-NUIM are
larger than those in 3DMatch due to faster camera motion,

(a) living1 (b) living2

(c) office1 (d) office2

Fig. 9. Comparison of per-frame ATE on Augmented ICL-NUIM. Our
GeoTransformer attains better results on most of the frames.

so we further downsample the superpoints to reduce mem-
ory footprint. And the superpoint features F̂P and F̂Q are
downsampled by kNN interpolation, where the geometric
transformer module is then applied. At last, the resultant
features are interpolated and upsampled to generate ĤP

and ĤQ. This modification effectively improves the memory
efficiency without sacrificing the performance. GeoTrans-
former attains the best performance on all testing trajectories
except Office1, showing strong generality to unknown
scenes and more complex applications. Fig. 9 visualizes the
ATE of each frame in the four trajectories and GeoTrans-
former achieves better results on most of the frames.

4.6 Non-rigid Benchmark: 4DMatch & 4DLoMatch

Dataset. 4DMatch [19] is a challenging benchmark for non-
rigid point cloud registration. It is constructed using the
animation sequences from DeformingThings4D [59], where
1232 sequences are used for training, 176 for validation
and 353 for testing. The point cloud pairs in the testing
sequences are divided into 4DMatch and 4DLoMatch based
on an overlapping ratio threshold of 45%.
Metrics. Following [19], we evaluate our GeoTransformer
with two metrics: (1) Non-rigid Inlier Ratio (NIR), the frac-
tion of putative correspondences whose residuals are below
a certain threshold (i.e., 0.04m) under the ground-truth
warping function, and (2) Non-rigid Feature Matching Recall
(NFMR), the fraction of the ground-truth matches that can
be successfully recovered by the putative correspondences.
Implementation details. Unlike rigid registration which
can be pinned down by a set of sparse correspondences,
non-rigid registration is more challenging due to the com-
plex and irregular deformation and requires denser corre-
spondences to cover the overlapping region as much as pos-
sible. To this end, we modify our superpoint matching strat-
egy to increase the overall coverage of the correspondences.
Specifically, we first select the superpoint matches whose
feature distances are below a certain threshold (i.e., 0.75),
and augment them with the top 128 ones if there are too
few superpoint matches. We use all point correspondences
for evaluation and LGR is not performed.
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NFMR: 86.0

Overlap: 42.4 NIR: 32.4
NFMR: 41.0
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NFMR: 84.5

NIR: 88.7
NFMR: 92.5

NIR: 40.2
NFMR: 80.4

Overlap: 34.2

NIR: 88.3
NFMR: 93.4

NIR: 17.2
NFMR: 14.0

Overlap: 78.7

NIR: 83.5
NFMR: 78.8

NIR: 42.0
NFMR: 27.1

Overlap: 93.1

(b) Aligned (c) Lepard (d) GeoTransformer (b) Aligned (c) Lepard (d) GeoTransformer(a) Input (a) Input

Fig. 10. Comparison of the correspondences on 4DMatch and 4DLoMatch. GeoTransformer shows two advantages. First, it extracts much
denser correspondences, which contributes to more precise description of the deformations. Second, it achieves higher inlier ratio despite significant
deformations, which is important for non-rigid registration.

TABLE 6
Evaluation results on 4DMatch and 4DLoMatch. NIR and NFMR are

measured in %. Our method uses shared geometric self-attention.
Boldfaced numbers are the best and the second best are underlined.

Model 4DMatch 4DLoMatch
# Corr NIR NFMR # Corr NIR NFMR

D3Feat [4] 697 55.3 56.1 204 21.3 28.1
Predator [5] 698 59.3 56.8 480 25.0 32.1
Lepard [19] 596 82.7 83.7 407 55.7 66.9
Lepard (w/o repos) [19] 624 80.5 80.8 448 53.7 63.6
GeoTransformer (ours) 2331 82.2 83.2 1212 63.6 65.4

Evaluation results. We compare GeoTransformer with
three recent methods in Tab. 6: D3Feat [4], Predator [5] and
Lepard [19]. Our method surpasses D3Feat and Predator
by a large margin on both high- and low-overlap scena-
rios. Compared with Lepard, GeoTransformer achieves very
close performance on 4DMatch and significantly better inlier
ratio on 4DLoMatch. Note that Lepard benefits from a
repositioning mechanism with a coarse rigid registration,
which effectively boosts the performance. Without reposi-
tioning, our GeoTransformer consistently outperforms Lep-
ard on both benchmarks. Albeit not carefully designed and
optimized to handle deformation, GeoTransformer shows
strong generality to non-rigid registration. In most cases,
the non-rigid deformation could be approximated by a set
of local rigid transformations. We suppose that the novel
geometric self-attention emdows GeoTransformer with the
capability to capture the local rigidity consistency between
two point clouds, which helps extracting high-quality corre-
spondences in non-rigid scenarios.
Qualitative results. Fig. 10 compares the correspondences
from Lepard [19] and GeoTransformer on some cases with
relatively large deformations. GeoTransformer has two ad-
vantages as shown in these cases. First, our method can ex-
tract much denser correspondences, which is important for
precisely describing the deformation. Due to the irregularity
of the deformations, it is diffcult to capture the deforma-
tion details if the correspondences are too sparse. Second,
our method attains much higher inlier ratio especially in

low-overlap cases, which benifits the following registration
algorithms such as Non-rigid ICP [60], [61]. As there are
few effective outlier rejection methods for non-rigid regis-
tration, high inlier ratio is crucial for estimating a proper
deformation field. Thanks to the coarse-to-fine framework
and the geometric self-attention, our method can establish
high-quality correspondences for non-rigid registration.

4.7 Ablation Studies
We conduct extensive ablation studies on 3DMatch and
3DLoMatch for a better understanding of the various mod-
ules in our method. To evaluate superpoint (patch) match-
ing, we introduce another metric Patch Inlier Ratio (PIR)
which is the fraction of patch matches with actual overlap.
The FMR and IR are reported with all global dense point
correspondences, with LGR being used for registration.
Geometric self-attention. To study the effectiveness of the
geometric self-attention, we compare seven methods for
intra-point-cloud feature learning in Tab. 7(a.1-7): (1) graph
neural network [5], (2) self-attention with no positional
embedding [6], (3) absolute coordinate embedding [15], (4)
relative coordinate embedding [13], (5) point pair features
embedding [38], [39], (6) pair-wise distance embedding,
and (7) geometric structure embedding. Generally, injecting
geometric information boosts the performance. But the gains
of coordinate-based embeddings are limited due to their
transformation variance. Surprisingly, GNN performs well
on RR thanks to the transformation invariance of kNN
graphs. However, it suffers from limited receptive fields
which harms the IR performance. Although PPF embedding
is theoretically invariant to transformation, it is hard to esti-
mate accurate normals for the downsampled superpoints in
practice, which leads to inferior performance. Our method
outperforms the alternatives by a large margin on all the
metrics, especially in the low-overlap scenarios, even with
only the pair-wise distance embedding, demontrating the
strong robustness of our method. Fig. 11 provides a gallery
of the registration results of the models with vanilla self-
attention and our geometric self-attention. Geometric self-
attention helps infer patch matches in structure-less regions
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(a) input (b) ground truth (c) vanilla - pose (d) geometric - pose (e) vanilla - patch correspondences (f) geometric - patch correspondences (g) vanilla - point correspondences (h) geometric - point correspondences

Overlap:  20.8% RMSE:  4.186m RMSE:  0.027m # Patch Corr:  256
Inlier Ratio:  15.6%

# Patch Corr:  256
Inlier Ratio:  59.8%

# Point Corr:  500
Inlier Ratio:  16.0%

# Point Corr:  500
Inlier Ratio:  62.6%

RMSE:  6.516m RMSE:  0.089m # Patch Corr:  256
Inlier Ratio:  7.4%

# Patch Corr:  256
Inlier Ratio:  62.9%

# Point Corr:  500
Inlier Ratio:  5.8%

# Point Corr:  500
Inlier Ratio:  53.0%Overlap:  19.5%

Overlap:  24.7% RMSE:  2.638m RMSE:  0.114m # Patch Corr:  256
Inlier Ratio:  30.9%

# Patch Corr:  256
Inlier Ratio:  80.1%

# Point Corr:  500
Inlier Ratio:  24.0%

# Point Corr:  500
Inlier Ratio:  90.4%

Fig. 11. Registration results of the models with vanilla self-attention and geometric self-attention. In the columns (e) and (f), we visualize
the features of the patches with t-SNE. In the first row, the geometric self-attention helps find the inlier matches on the structure-less wall based on
their geometric relationships to the more salient regions (e.g., the chairs). In the following rows, the geometric self-attention helps reject the outlier
matches between the similar flat or corner patches based on their geometric relationships to the bed or the sofa.

TABLE 7
Ablation experiments on 3DMatch and 3DLoMatch. The results are

measured in %. * indicates the default settings of GeoTransformer.
Boldfaced numbers are the best and the second best are underlined.

Model 3DMatch 3DLoMatch
PIR FMR IR RR PIR FMR IR RR

(a.1) graph neural network 73.3 97.9 56.5 89.5 39.4 84.9 29.2 69.8
(a.2) vanilla self-attention 79.6 97.9 60.1 89.0 45.2 85.6 32.6 68.4
(a.3) self-attention w/ ACE 83.2 98.1 68.5 89.3 48.2 84.3 38.9 69.3
(a.4) self-attention w/ RCE 80.0 97.9 66.1 88.5 46.1 84.6 37.9 68.7
(a.5) self-attention w/ PPF 83.5 97.5 68.5 88.6 49.8 83.8 39.9 69.5
(a.6) self-attention w/ RDE 84.9 98.0 69.1 90.7 50.6 85.8 40.3 72.1
(a.7) geometric self-attention* 86.1 98.1 71.0 91.8 54.6 87.8 43.8 74.5

(b.1) cross-entropy loss 80.0 97.7 65.7 90.0 45.9 85.1 37.4 68.4
(b.2) weighted cross-entropy loss 83.2 98.0 67.4 90.0 49.0 86.2 38.6 70.7
(b.3) circle loss 85.1 97.8 69.5 90.4 51.5 86.1 41.3 71.5
(b.4) overlap-aware circle loss* 86.1 98.1 71.0 91.8 54.6 87.8 43.8 74.5

(c.1) distance only 84.9 98.0 69.1 90.7 50.6 85.8 40.3 72.1
(c.2) k = 1 angles 86.5 97.9 70.6 91.0 54.6 87.1 42.7 73.1
(c.3) k = 2 angles 86.1 97.9 70.4 91.3 55.0 88.2 43.5 73.5
(c.4) k = 3 angles* 86.1 98.1 71.0 91.8 54.6 87.8 43.8 74.5
(c.5) k = 4 angles 86.4 98.2 71.1 92.1 54.8 87.8 43.9 75.1

(d.1) σd = 0.1m 86.6 97.6 71.4 90.7 54.6 87.7 43.8 73.2
(d.2) σd = 0.2m* 86.1 98.1 71.0 91.8 54.6 87.8 43.8 74.5
(d.3) σd = 0.3m 86.7 98.4 70.3 92.0 55.3 87.0 43.0 74.1
(d.4) σd = 0.4m 86.7 98.1 71.4 91.8 54.3 87.8 43.5 74.0
(d.5) σd = 0.5m 86.0 97.8 70.3 91.0 54.2 86.3 43.3 73.7

(e.1) σa = 5◦ 86.1 97.9 70.4 91.3 53.7 86.9 42.4 72.6
(e.2) σa = 10◦ 87.0 98.0 71.4 91.4 54.5 87.3 43.6 74.2
(e.3) σa = 15◦* 86.1 98.1 71.0 91.8 54.6 87.8 43.8 74.5
(e.4) σa = 20◦ 86.7 97.9 70.7 92.1 54.7 86.7 43.0 73.6
(e.5) σa = 25◦ 86.5 97.8 70.6 91.2 54.0 86.6 42.7 73.6

(f.1) w/ max pooling* 86.1 98.1 71.0 91.8 54.6 87.8 43.8 74.5
(f.2) w/ average pooling 86.3 98.0 70.2 91.3 54.6 87.3 42.8 74.0

(g.1) w/ dual-normalization* 86.1 98.1 71.0 91.8 54.6 87.8 43.8 74.5
(g.2) w/o dual-normalization 86.2 98.1 70.9 91.8 53.5 87.9 43.4 74.4

from their geometric relationships to more salient regions
(1st row) and reject outlier matches which are similar in the
feature space but different in positions (2nd and 3rd rows).
Overlap-aware circle loss. To investigate the efficacy of the
overlap-aware circle loss, we compare four loss functions
for supervising the superpoint matching in Tab. 7(b.1-4): (1)
cross-entropy loss [15], (2) weighted cross-entropy loss [6],
(3) circle loss [47], and (4) overlap-aware circle loss. For the
first two models, an optimal transport layer is used to com-

pute the matching matrix as in [6]. Circle loss works much
better than the two variants of cross-entropy loss, verifying
the effectiveness of supervising superpoint matching in a
metric learning fashion. Our overlap-aware circle loss beats
the vanilla circle loss by a large margin on all the metrics.
Geometric structure embedding. Next, we study the de-
sign of geometric structure embedding. We first vary the
number of nearest neighbors for computing the triplet-wise
angular embedding. As shown in Tab. 7(c.1-5), the model
with both the distance and angular embeddings outper-
forms the one with only the distance embedding by a large
margin, which is consistent with our motivation. Moreover,
increasing the number of neighbors slightly improves the
performance as it provides more precise structure informa-
tion, but also requires more computation. To better balance
accuracy and speed, we select k=3 in our experiments
unless otherwise noted.

We further investigate the influence of the temperature
hyper-parameters σd in Eq. (5) and σa in Eq. (6). From
Tab. 7(d.1-5), the best results are achieved around the voxel
size of the superpoint level (i.e., 0.2m). A too small (where
the embedding is too sensitive to distance changes) or too
large (where the embedding neglects small distance vari-
ations) σd could harm the performance, but the differences
are not significant. And similar observations can be obtained
from Tab. 7(e.1-5) for the angular temperature σa. Neverthe-
less, all of these models outperforms pervious methods by a
large margin, indicating that GeoTransformer is still robust
to the temperature hyper-parameters.

At last, we replace max pooling with average pooling
when aggregating the triplet-wise angular embedding in
Eq. (7). As shown in Tab. 7(f.1-2), max pooling performs
better than average pooling. Due to self-occlusion from
viewpoint changes, the nearest neighbors of a given su-
perpoint in one point cloud could be missing in the other.
Compared with average pooling, max pooling provides
better robustness to the varying neighbors. For this reason,
we use max pooling as the default setting.
Dual-normalization. We then investigate the effective-
ness of the dual-normalization operation in the superpoint
matching module. As observed in Tab. 7(g.1-2), it slightly
improves the accuracy of the superpoint correspondences in
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(a) 3DMatch (b) 3DLoMatch

Fig. 12. Ablation study of the pose refinement. Pose refinement
consistently improves the results and gets saturated after 5 iterations.

low-overlap scenarios. As there is less overlapping context
when the overlapping area is small, it is much easier to
extract outlier matches between the less geometrically dis-
criminative patches. The dual-normalization operation can
mitigate this issue and slightly improves the performance.
Pose refinement. At last, we evaluate the impact of the
pose refinement in LGR. We vary the number of refinement
steps Nr from 1 to 10. As shown in Fig. 12, the registration
recall consistently improves with more refinement iterations
and quickly gets saturated. To better balance accuracy and
speed, we choose 5 iterations in the experiments.

4.8 Comparison with Deep Robust Estimators

At last, we compare GeoTransformer with recent deep ro-
bust estimators: 3DRegNet [34], DGR [35], PointDSC [36],
DHVR [62] and PCAM [63] on 3DMatch and KITTI odom-
etry benchmarks. For fair comparison with these methods,
we follow common practice to report RTE, RRE and RR on
both benchmarks. Here RR is defined as in Sec. 4.3 but with
different thresholds. The RTE threshold is 30cm on 3DMatch
and 60cm on KITTI, while the RRE threshold is 15◦ on
3DMatch and 5◦ on KITTI.

As shown in Tab. 8, our method outperforms all the
baselines by a large margin on both benchmarks. The re-
sults demonstrate the superiority of GeoTransformer over
the alternative methods, although different correspondence
extractors are used by those methods. It is noteworthy that
our LGR is parameter-free and does not require training
a specific network, which contributes to faster registration
speed (0.08s of PointDSC [36] vs. 0.013s of LGR according to
our experiments).

5 CONCLUSION

We have presented Geometric Transformer to learn robust
coarse-to-fine correspondences for point cloud registration.
Through encoding pair-wise distances and triplet-wise an-
gles among superpoints, our method captures the geometric
consistency across point clouds with transformation in-
variance. Thanks to the reliable correspondences, it attains
fast and accurate registration in a RANSAC-free manner.
Extensive experiments on five challenging benchmarks have
demonstrated the efficacy of GeoTransformer.
Limitations. In spite of the state-of-the-art performance,
there are still some limitations in GeoTransformer. (1) Geo-
Transformer relies on uniformly downsampled superpoints
to hierarchically extract correspondences. However, there

TABLE 8
Comparison with deep robust estimators on 3DMatch and KITTI.

Boldfaced numbers are the best and the second best are underlined.

Model RTE(cm) RRE(◦) RR(%)

3DMatch

FCGF+3DRegNet [34] 8.13 2.74 77.8
FCGF+DGR [35] 7.36 2.33 86.5
FCGF+PointDSC [36] 6.55 2.06 93.3
FCGF+DHVR [62] 6.61 2.08 91.4
PCAM [63] ∼7 2.16 92.4
GeoTransformer (ours, LGR) 5.69 1.92 95.7

3DLoMatch

FCGF+PointDSC [36] 10.50 3.82 56.2
FCGF+DHVR [62] 11.76 3.88 55.6
GeoTransformer (ours, LGR) 8.55 2.95 78.0

KITTI

FCGF+DGR [35] 21.7 0.34 96.9
FCGF+PointDSC [36] 20.9 0.33 98.2
FCGF+DHVR [62] 19.8 0.29 99.1
PCAM [63] ∼8 0.33 97.2
GeoTransformer (ours, LGR) 6.5 0.24 99.5

could be numerous superpoints if the input point clouds
cover a large area, which could cause huge memory foot-
print and computational cost. For this reason, we might
need to carefully select the downsampling rate to balance
performance and efficiency. For example, we add an addi-
tional downsampling stage on KITTI and Augmented ICL-
NUIM, which effectively improves the memory and compu-
tational efficiency without sacrificing the accuracy. (2) The
inflexibility of uniformly sampling superpoints (patches)
is another concern. In practice, it is common that a single
object is decomposed into multiple patches, but it could be
easily registered as a whole. So we believe that it is a very
promising topic to integrate point cloud registration with se-
mantic scene understanding tasks (e.g., object detection and
instance segmentation), which converts scene registration
into semantic object registration.
Future work. Besides the aforementioned limitations, there
are also many directions where GeoTransformer could be
extended, including cross-modality (e.g., 2D-3D) registration
and end-to-end non-rigid registration.
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