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Guaranteed Tensor Recovery Fused
Low-rankness and Smoothness
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Abstract—Vast visual data like multi-spectral images and multi-frame videos are essentially with the tensor format. However, due to
the defects of signal acquisition equipments, the practically collected tensor data are always with evident degradations like corruptions
or missing values. The tensor data recovery task has thus attracted much research attention in recent years. Solving such an ill-posed
problem generally requires to explore intrinsic prior structures underlying tensor data, and formulate them as certain forms of
regularization terms for guiding a sound estimate of the restored tensor. Recent research have made significant progress by adopting
two insightful tensor priors, i.e., global low-rankness (L) and local smoothness (S) across different tensor modes, which are always
encoded as a sum of two separate regularization terms into the recovery models. However, unlike the primary theoretical
developments on low-rank tensor recovery, these joint “L+S” models have no theoretical exact-recovery guarantees yet, making the
methods lack reliability in real practice. To this crucial issue, in this work, we build a unique regularization term, which essentially
encodes both L and S priors of a tensor simultaneously. Especially, by equipping this single regularizer into the recovery models, we
can rigorously prove the exact recovery guarantees for two typical tensor recovery tasks, i.e., tensor completion (TC) and tensor robust
principal component analysis (TRPCA). To the best of our knowledge, this should be the first exact-recovery results among all related
“L+S” methods for tensor recovery. We further propose ADMM algorithms for solving the proposed models, and prove their fine
convergence properties. Significant recovery accuracy improvements over many other SOTA methods in several TC and TRPCA tasks
with various kinds of visual tensor data are observed in extensive experiments. Typically, our method achieves a workable performance
when the missing rate is extremely large, e.g., 99.5%, for the color image inpainting task, while all its peers totally fail in such
challenging case. Source code is released at https://github.com/wanghailin97.

Index Terms—Tensor recovery, regularization, low-rankness, smoothness, exact recovery guarantee, tensor completion, tensor robust
principal component analysis, color image inpainting.
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1 INTRODUCTION

T ENSORS, or multidimensional arrays, are the natural
representation format of a wide range of real-world

data, e.g., multi-frame/spectral/view data, network flow
data, etc. Compared with representation in vector/matrix
structure, tensor tends to more faithfully and accurately
deliver intrinsic multidimensional structural information
underlying data, and thus show more potential usefulness
in the recent years across various multifarious fields, such as
statistics [1], signal processing [2], data mining [3], machine
learning [4] and computer vision [5].

However, due to the defects of signal acquisition equip-
ments, such as sensor sensitivity, photon effects and calibra-
tion error, tensor data collected in real world are always with
evident degradations like corruptions or missing values.
Tensor recovery has thus become one of the fundamental
problems in tensor research. Mathematically speaking, this
is a typical inverse problem that aims to recover an un-
known tensor T ∈ Rn1×n2×···×nd with certain structural
priori assumptions from the observation Y = Φ(T ), where
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Φ(·) is the operator modeling certain degradation process.
Two typical degradations are information loss and noise
disturbance, corresponding to two common tensor recovery
tasks, tensor completion (TC) [6] and tensor robust component
principal analysis (TRPCA) [7], respectively.

Solving such an ill-posed problem generally depends on
characterizing intrinsic prior structures underlying tensor
data, and encoding them as certain regularization terms for
guiding a sound estimate of the restored tensor. One of the
most employed priors is the low-rankness (denoted as “L”).
This structural prior considers that a tensor resides in a
proper low-dimensional subspace over the entire range of
its certain tensor mode, revealing its information correlation
at a global scale along this tensor mode. This prior then
leads to the following low-rank tensor recovery model,

min
T

R(T ) s.t. Y = Φ(T ), (1)

where R(·) denotes the regularizer measuring tensor low-
rankness. Different from that defined on matrices, there
are various notions of tensor rank defined on the basis
of different tensor decompositions. The most classic ones
contain CP [8], Tucker [9], and HOSVD [10]. In the last few
years, several new low-rank tensor approximation frame-
works were proposed, such as tensor train [11], tensor ring
[12], and tensor singular value decomposition (t-SVD) [13].
Among them, t-SVD presents the first closed multiplicative
operation, named t-product, on tensor rank, and establishes
a complete tensor decomposition algebraic framework. Es-
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pecially, the recent work [14] revolutionarily proved the
optimal representation and compression theories of t-SVD,
making it more notable in characterizing the intrinsic low-
rank structure underlying tensors. Therefore, the model (1)
under t-SVD has captured lots of interest recently [15]–[19].
Especially, in recent works [7], [15]–[17], accurate recovery
theory has been proved to guarantee such L-prior model
able to achieve an exact recovery of an original true tensor,
further validating its reliability for tensors purely possessing
such structural prior.

Besides the low-rankness prior, the smoothness (denoted
as “S”) prior is also widely adopted in tensor recovery tasks.
This prior reflects a general structural property of a practical
visual tensor. The adjacent pixels along a tensor mode tend
to be changed continuously, representing a type of informa-
tion similarity at a relatively local scale. To guarantee a good
performance, most related works incorporate such S prior
into the L-prior model, and then use the following model
with two regularization items for tensor recovery:

min
T

R(T ) + αS(T ) s.t. Y = Φ(T ), (2)

where S(·) denotes the regularizer for measuring the S
prior, and α > 0 is a balancing parameter. In the recent
years, a series of works [20]–[28] have emerged with the
form of (2) applied in visual tensor data restoration tasks,
and achieve excellent performance beyond purely L-prior
methods. This reflects the universality of such mixture pri-
ors possessed by visual tensor data.

Although the recovery performance have a pleasing
lifting by adopting the L+S-prior model (2), it has not
succeeded in a fundamental aspect of tensor recovery from
the L-prior model. That is, the theoretical exact recovery
guarantee has still not been proved for the related methods.
Comparatively, as aforementioned, the pure L-prior model
(1) is provable with exact recovery [15]–[17]. This issue of
theory vacancy inclines to make the related methods lack
reliability in applications. Besides, the performance of (2) are
highly affected by the trade-off parameter imposed between
L and S regularizers. For a practically collected visual tensor,
the L and S priors are usually coupled with each other, each
representing a type of information redundancy property.
This always makes it fairly difficult to build a general rule
for finely tuning this balancing parameter in real scenarios.

Against these issues, in this study we propose a theoret-
ically exact-recovery guaranteed method without balancing
parameter for joint low-rank and smooth tensor recovery.
The main contributions can be summarized as follows.

1. Under the high-order t-SVD framework [29], a new
regularizer named tensor correlated total variation (or t-CTV
briefly) is introduced to characterize both L+S priors of a
tensor with a unique term. The underlying mathematical
principles indicate that this single regularizer can promote
the two priors simultaneously.

2. The t-CTV is applied to two typical tensor recovery
tasks, i.e., TC and TRPCA. With some mild assumptions of
tensor incoherence conditions, the exact recovery theories
can be proved for the conducted t-CTV-TC and t-CTV-
TRPCA models. To the best of our knowledge, these should
be the first theoretical exact-recovery guarantees among
all related joint L+S tensor recovery studies. Furthermore,

(a) Observed (b-1) KBR (b-2) SNN (b-3) TNN (c-1) SPC+TV (c-2) SNN+TV (c-3) TNN+TV (d) t-CTV

Missing 90%
Model (1) Types Model (2) Types

Missing 95%

Missing 98%

Missing 99%

Missing 99.5%

Fig. 1: Illustration of recovery performance of all competing
methods in color image inpainting. (a) Observed “Einstein”
image with 90%, 95%, 98%, 99% and 99.5% missing pixels
(from up to bottom); (b) Recovery obtained by several SOTA
methods built under model (1): (b-1) KBR [30], (b-2) SNN
[6], (b-3) TNN [29]; (c) Recovery obtained by several SOTA
methods built under model (2): (c-1) SPC+TV [23], (c-2)
SNN+TV [21], (c-3) TNN+TV [28]; (d) Recovery by our
method. It can be seen that our method can still work while
all its peers largely failed in the last extreme missing case.

we obtain a lower bound of sampling complexity in an
interpretable manner that manifests our t-CTV based model
possessing more powerful recovery ability than classic mod-
els purely considering L and S, as well as L+S priors.

3. Efficient algorithms based on ADMM are designed for
solving the corresponding proposed models, with closed-
form updating equation for each involved variable. Besides,
the computational complexity and convergence of the pro-
posed algorithms are well analyzed.

4. The proposed t-CTV based algorithms are verified to
be with an evidently stronger capacity in tensor recovery
than the baseline L-prior model (1) and L+S-prior model (2)
by comprehensive simulated experiments. Extensive appli-
cations in various visual tensor recovery tasks demonstrate
that our algorithms markedly enhances the recovery accu-
racy compared with many SOTA methods, including those
considering L, S and L+S-priors. Typically, our method
achieves a significant improvement in color image inpaint-
ing task when missing-pixel rates are up to 90%, 95% and
even 99.5%, as clearly depicted in Fig. 1.

The remainder of this work is organized as follows.
Section 2 reviews a series of related works. Section 3 intro-
duces the fundamental high-order t-SVD framework, based
on which the t-CTV regularizer is defined and analyzed in
Section 4. The main models and theories are given in Section
5. Sections 6 and 7 present the algorithms and experiments,
respectively. Finally, we conclude our work in Section 8. All
proof details are given in supplementary materials.

2 RELATED WORKS

2.1 Low-rank tensor recovery

We take TC and TRPCA, two of the most commonly studied
tensor recovery tasks, as examples to introduce the related
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L-prior works. Specifically, TC refers to the problem of
recovering a low-rank tensor T0 from its partial entries, i.e.,

min
T

R(T ) s.t. PΩ(T ) = PΩ(T0), (3)

where Ω is the known elements’ index and P(·) is the
projection operator. TRPCA aims to achieve recovery from
grossly corrupted observations, modeled as:

min
T ,E

R(T ) + λ‖E‖1 s.t. M = T + E , (4)

where E represents the noise component characterized by
the L1-norm ‖·‖1 and λ > 0 denotes the trade-off parameter.

Low-rank tensor recovery is originally developed from
low-rank matrix recovery [31], [32], but fraught with more
challenges since the low-rank representation of a tensor is
not unique. The early works are mainly established upon
Tucker decomposition. Liu et al. [6] first proposed the sum
of nuclear norm (SNN) and implemented it in TC tasks as
an extension of matrix’s nuclear norm method to tensors,
which greatly promotes the development of tensor recov-
ery in visual data processing. Later on, Goldfarb and Qin
[33] extended TRPCA problem in aspect of algorithm and
Huang et al. [7] filled the gap in theory. Unfortunately, it’s
proved that SNN is not the tightest convex relaxation [34],
thus leading to suboptimality of the solution [35]. Several
literatures attempted to ameliorate this issue. E.g., Mu et
al. [35] proposed a better convexification based on a bal-
anced matricization strategy and proved a lower bound in
sampling complexity. Xie et al. [30] further transformed the
Tucker decomposition as a representation form of Kronecker
basis and proposed the KBR tensor sparsity, resulting sig-
nificant improvements both in TC and TRPCA tasks. Some
other works are proposed with nonconvex relaxation and
matrix factorization (MF) on Tucker mode-wise matrices [36],
[37]. Except for the Tucker decomposition based research,
in [38], Zhao et al. proposed a fully Bayesian probabilistic
CP factorization for TC problem, and several works further
studied robust tensor CP decomposition problem [39], [40].
Besides, there also exist a series of works using certain type
of tensor network decompositions [11], [12], see [41]–[44].

Another class of works are based on t-SVD [13]. It
provides a more appropriate extension of matrix SVD. Com-
pared with Tucker decomposition, t-SVD does not need
matricization, and more importantly, equips the optimality
property in low-rank representation as well as the matrix
SVD [14]. Formally, it decomposes a tensor into a tensor-
tensor product of two orthogonal tensors and a f-diagonal
tensor (also called as singular value tensor), and thus in-
duces the t-SVD rank, also called tubal rank [45] for third-
order tensors, defined as the number of nonzero tubes of the
singular value tensor. Based on that, a heuristic tensor nuclear
norm (TNN) as the convex surrogate of tubal rank is defined
in [46], and then Zhang and Aeron [15] used it in TC tasks
with theoretical guarantee. Then, a new form of TNN was
proposed with the tightest convex envelope property and
investigated in several tensor recovery problems [16], [47].
Recently, substantial investigations on t-SVD based tensor-
related problems have been constructed, such as [17], [18],
[48]–[51]. Although these methods have attracted much at-
tention, they cannot be applied to tensors of arbitrary order
directly. Very recently, as an extension of the series of works

TABLE 1: Summary of some related works on tensor recov-
ery with joint L+S priors

Literature Problem Model Theory
Ji et al. [20] TC MF + STV 8
Li et al. [21] TC SNN + TV-1 8
Ko et al. [27] TC TT + TV-2 8
Yokota et al. [23] TC CP + TV-1/TV-2 8

He et al. [22] TRPCA MF + STV 8
Wang et al. [24] TRPCA SNN + SSTV 8
Chen et al. [25] TRPCA TNN + HTV 8
Zhang et al. [26] TRPCA NLTRD + SSTV 8

This work TC&TRPCA t-CTV 4

by Kilmer et al. [13], [14], [52], [53], in [29], Qin et al. made a
successful advancement with transform induced high-order
t-SVD, exhibiting fine potentials in tensor recovery.

2.2 Joint low-rank and smooth tensor recovery

We then review related methods for jointly considering L
and S priors for tensor recovery.

The S-prior structure is well possessed by a variety of
visual tensor data, and generally modeled by total variation
(TV). It can be simply divided into anisotropic TV (TV-1)
and isotropic TV (TV-2) cases, defined by the absolute dis-
tance and square distance on the difference of the neighbor
elements, respectively [54]. In practice, researchers always
design certain variations of TV form corresponding to the
type of data. For a simple image, one often use spatial
TV (STV) to characterize the piecewise smooth structure
along its spatial dimensions [55]–[57]. For hyperspectral
images (HSIs), there also exists smoothness along its spectral
direction, thus leading to the spectral-spatial TV (SSTV) [58],
[59]. Similarly, the temporal-spatial TV is also formulated for
videos [60]. For other TV variations, see [61]–[63].

Recently, the TV approaches have been widely adopted
in the visual tensor data recovery tasks, most of which are
used via a joint model with low-rank and TV regularizers.
Typically, Ji et al. [20] investigated the TC problem by
embedding the STV into the low-rank matrix factorization to
all-mode matricization framework, While Li et al. [21] used
the SNN to characterize the L prior, and the simple TV-1 on
all-mode unfolding matrices for S prior. Other typical works
along this line include [22]–[27], partially summarized in
Table 1. These methods all employ a sum of L and S regu-
larization terms, and have not proved exact-recovery results
from a theoretical perspective. As a contrast, the basic tensor
recovery models by purely using L regularizer can often
establish the related theory guarantees, e.g., [7], [15]–[19],
[51]. By the way, it should be noted that there are several
theoretical works related to smooth data recovery, e.g., [64]–
[67], but the corresponding modeling and analyzing are
only considered in vector or matrix space which cannot be
directly used for joint low-rank and smooth tensor recovery.

Against the aforementioned issues, this work proposes a
unique tensor recovery regularizer encoding both L and S
priors simultaneously. It adopts a type of fused prior model-
ing manner under the advanced high-order t-SVD algebraic
framework, wherein the considered TC and TRPCA models
both have exact recoverability guarantees in theory beyond
current L+S tensor recovery models. The concise form of
this specifically designed regularizer also naturally helps
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get rid of the difficulty of tuning the trade-off parameter
imposed between two regularizers as conventional.

3 HIGH-ORDER T-SVD FRAMEWORK

We first introduce high-order t-SVD framework briefly and
provide its optimal representation theory in this section.
Please refer to [13], [14], [29], [52], [53] for more details.

For an order-d tensor T sized n1 × n2 × · · · × nd,
T (i1, i2, · · · , id) denotes its (i1, i2, · · · , id)-th element, and
T (:, :, i3, · · · , id) is called as its (i3, · · · , id)-th face slice
containing the first two modes which is also written as
T(i3,··· ,id). Then bdiag(T ) sized n1

∏d
j=3 nj × n2

∏d
j=3 nj

is the block diagonal matrix constructed by all face slices,
which is also written as T .

For the t-SVD framework with invertible transform L
[29], a high-order tensor T ’s transform form is given by
TL := L(T ) = T ×3 Un3 ×4 · · · ×d Und , where ×j denotes
mode-j product (Y = X ×j M means each Y(· · · , ij−1, :
, ij+1, · · · ) equals M · X (· · · , ij−1, :, ij+1, · · · ) )and Unj is
transform matrix sized nj × nj , j = 3, · · · , d, such as
the discrete fourier transform (DFT) and discrete cosine trans-
form (DCT) matrices. Its inverse operation is L−1(T ) :=
T ×3 U−1

n3
×4 · · · ×d U−1

nd
and satisfies L−1(L(T )) = T . The

transform matrices {Unj}dj=3 of L are assumed to satisfy

(U∗nd ⊗ · · · ⊗U∗n3
) · (Und ⊗ · · · ⊗Un3

) = ` · In3···nd , (5)

where (·)∗ is conjugate transpose, ⊗ denotes the Kro-
necker product, I denotes unitary matrix and ` > 0 is a
specific scale factor corresponding to the transform, e.g.,
` =

∏d
j=3 nj for DFT matrix Fnj since F∗njFnj = njInj , and

` = 1 for DCT matrix Cnj since C∗njCnj = Inj , j = 3, · · · , d.

Definition 1 (tensor-tensor product [29]). For order-d tensors
A ∈ Rn1×l×n3×···×nd and B ∈ Rl×n2×n3×···×nd , its transform
L based product is defined as

A ∗L B = L−1(L(A)∆L(B)), (6)

where ∆ denotes the face-wise product (Z = X∆Y ⇔
Z(i3,··· ,id) = X(i3,··· ,id)Y(i3,··· ,id) for all face slices).

The tensor-tensor product leads that C = A ∗L B is
equivalent to CL = AL · BL. This conducts a simple im-
plement of (6) by

∏d
j=3 nj times pairwise matrix product in

the transform domain and then run inverse transformation.

Definition 2 (transpose [29]). For T ∈ Rn1×n2×n3×···×nd ,
its transpose T T ∈ Rn2×n1×n3×···×nd satisfies that T T

L (:, :
, i3, · · · , id) = TL(:, :, i3, · · · , id)T for all face slices.

Definition 3 (identity tensor [29]). An order-d tensor In ∈
Rn×n×n3×···×nd is called as identity tensor if it satisfies IL(:, :
, i3, · · · , id) = In for all face slices.

Definition 4 (orthogonal tensor [29]). An order-d tensor U ∈
Rn×n×n3×···×nd is orthogonal if UT ∗L U = U ∗L UT = In.

Definition 5 (f-diagonal tensor [29]). An order-d tensor T ∈
Rn×n×n3×···×nd is f-diagonal if all its face slices is diagonal.

Theorem 1 (t-SVD [29]). For any order-d tensor T ∈
Rn1×n2×···×nd , it can be decomposed as

T = U ∗L S ∗L VT, (7)

where U ∈ Rn1×n1×···×nd and V ∈ Rn2×n2×···×nd are orthogo-
nal, and S ∈ Rn1×n2×···×nd is a f-diagonal tensor.

Similar to the normal t-SVD with DFT transform [13],
[52], the above general invertible linear transforms induced
t-SVD can be realized by performing SVD on each slice of
TL in the transform domain and then inverting the corre-
sponding components back to the original domain. Besides,
the t-SVD has a skinny form [29] with the following t-SVD
rank, and some concepts can be further established.

Definition 6 (t-SVD rank [29]). For T ∈ Rn1×n2×···×nd with
t-SVD T = U ∗L S ∗L VT, its t-SVD rank is defined as

rankt-SVD(T ) := ]{i : S(i, i, :, · · · , :) 6= 0}, (8)

where ] denotes the cardinality of a set.

Definition 7 (tensor nuclear norm [29]). For order-d tensor
T ∈ Rn1×n2×···×nd under the t-SVD framework with transform
L, its tensor nuclear norm (TNN) is defined as

‖T ‖~,L :=
1

`

n3∑
i3=1

· · ·
nd∑
id=1

‖TL(:, :, i3, · · · , id)‖∗, (9)

where ‖ · ‖∗ denotes the nuclear norm of a matrix.

Theorem 2 (order-d t-SVT [29]). Given T ∈ Rn1×n2×···×nd

with t-SVD T = U ∗L S ∗L VT, its tensor singular value
thresholding (t-SVT) is defined by t-SVTτ (T ) := U∗LSτ ∗LVT,
where Sτ = L−1((SL − τ)+), t+ = max(0, t), which obeys

t-SVTτ (T ) = arg min
X

τ‖X‖~,L +
1

2
‖X − T ‖2F. (10)

Very recently, Kilmer et al. [14] proved that tensor format
equips the optimality over its flattening matrix in low-
rank approximation via the normal order-3 t-SVD. Here,
we present a generic result, which reveals the necessity and
natural advantage of the direct study on high-order tensors.

Theorem 3 (optimality principle). Given the t-SVD of T ∈
Rn1×n2×···×nd by T = U ∗L S ∗L VT, then, Tk :=

∑k
i=1 U(:

, i, :, · · · , :) ∗L S(i, i, :, · · · , :) ∗L V(:, i, :, · · · , :)T is the best
Frobenius norm approximation over all t-SVD rank-k tensor.
Moreover, suppose M is any unfolding matrix of T , we have,

rankt-SVD(T ) ≤ rank(M), (11)

and
‖T − Tk‖F ≤ ‖M−Mk‖F, (12)

where Mk is the rank-k approximation of the matrix M.

4 TENSOR CORRELATED TOTAL VARIATION

Considering a tensor T ∈ Rn1×···×nd with joint L and S
priors, its low-rank property can be well characterized via
the rank surrogates under the aforementioned high-order
t-SVD decomposition, like the TNN. Its smoothness, on
the other hand, is often captured by the low energy of
T ’s gradient tensors using certain TV (semi)-norm. We first
formally define such gradient tensor as follows:

Definition 8 (gradient tensor). For T ∈ Rn1×···×nd , its
gradient tensor along the k-th mode is defined by

Gk := ∇k(T ) = T ×k Dnk , k = 1, 2, · · · , d, (13)
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mode-1 difference

mode-2 difference mode-2 difference

mode-1 difference

mode-3 difference mode-4 difference

mode-2 difference

mode-1 difference

(a-1) RGB Image (a-2) Gradient tensors (a-3) Low-rank&Sparsity (b-1) HSI (b-2) Gradient tensors (b-3) Low-rank&Sparsity (c-1) Color Video (c-2) Gradient tensors (c-3) Low-rank&Sparsity

0                         0.2                        0.4                        0.6                       0.8                         1

Fig. 2: Illustrations of simultaneous L and S prior structures in correlated gradient tensors. (a-1), (b-1), (c-1): three typical
types of visual tensor data: RGB image, HSI and color video; (a-2), (b-2), (c-2): their correlated gradient tensors; (a-3), (b-3),
(c-3): the corresponding curves of tensor singular values (upper) and frequency histograms of all their elements (below).

where Dnk is a row circulant matrix of (−1, 1, 0, · · · , 0).

The anisotropic TV (TV-1) and the isotropic TV (TV-2)
are defined as ‖T ‖TV-1 :=

∑
k∈Γ ‖Gk‖1 and ‖T ‖TV-2 :=∑

k∈Γ ‖Gk‖F, respectively, where Γ is a priori set consist-
ing of certain directions that T equips smooth continuity
along these modes. For instances, images are often assumed
with local smoothness along the spatial directions, i.e.,
Γ = {1, 2}. HSIs and color videos have further spectral and
temporal smoothness respectively, except spatial smooth-
ness, thus Γ can be set as {1, 2, 3} and {1, 2, 4} respectively.
For easy notation, the two forms of TV norm are all denoted
as ‖T ‖TV throughout the paper.

Considering a structured tensor with simultaneous L
and S priors, it is natural for existing research to generally
use a sum of two separate regularizers for encoding such
two priors, easily following the L+S models. Different from
the previous methods, our aim is to represent both L+S
priors on the gradient tensors, and especially specify a
unique regularization term for concisely delivering both
prior information simultaneously. This also finely complies
with the fact that the two priors are always coexist with each
other in natural visual tensor data, but not independently
occur as the conventional models with separate L and S
regularizers implicitly imply. This can be evidently observed
from Fig. 2, which illustrates such phenomenon visually on
several typical types of visual tensor data. We name this
proposed regularizer as tensor correlated total variation (t-
CTV1), defined in the following:

Definition 9 (t-CTV). For T ∈ Rn1×···×nd , denote Γ as a priori
set consisting of directions along which T equips L+ S priors, and
Gk, k ∈ Γ as its correlated gradient tensors. We define a tensor
correlated total variation (t-CTV) norm2 as

‖T ‖t-CTV :=
1

γ

∑
k∈Γ

‖Gk‖~,L, (14)

1. The idea of fusing L and S priors into a unique regularizer on
gradient images is firstly proposed in our previous work [68], and
mainly specified for hyper-spectral images. Differently, this work con-
siders more general tensor cases, proposes more formal and adaptable
t-CTV definition, and has a wider range of application tasks.

2. It is easy to verify that the t-CTV is a well-defined tensor (semi)-
norm since the TNN item ‖ · ‖~,L is well-defined.

(a) TNN (b) TV-1 (c) TV-2 (d) t-CTV
Fig. 3: Manifolds of the TNN, TV and t-CTV norm.

where γ := ]{Γ} equals the cardinality of Γ.

From the perspective of L-prior encoding, the t-CTV
constrains the TNN metric of correlated gradient tensors
Gk intuitively, which naturally promotes Gk’s low-rankness
property, and then enhances the similar prior structure of
the original tensor, as validated in the following remark:

Remark 1. For T ∈ Rn1×···×nd with t-SVD rank R, it can
be verified that R − 1 ≤ rankt-SVD(Gk) ≤ R, where Gk is
the gradient tensor along k-th mode. This means that the low-
rankness between the original and gradient tensors are consistent,
indicating that the t-CTV can indirectly induce the expected L-
prior structure of the original tensor like a low-rank regularizer.

Besides, from the perspective of S-prior encoding, since
the t-CTV is a norm defined in the gradient domain, it
measures as an energy control term that tends the dis-
crete first-order derivatives of the tensor data along certain
smoothness prior modes being small numerical values. This
is similar to the TV norm.

Remark 2. For T ∈ Rn1×···×nd with t-SVD rank R, it can
be verified that ‖T ‖TV . 3‖T ‖t-CTV .

√
R‖T ‖TV, meaning

that the t-CTV and TV are compatible in sense of norm. From the
viewpoint of energy minimization, both t-CTV and TV norm tend
to be smaller when T becomes smoother, and take the minimum
value of zero only if T is absolutely flat, indicating that the t-
CTV can also indirectly induce the expected S-prior structure of
the targeted tensor like a TV regularizer.

Combining the above two points, it is expected that
the t-CTV can finely encode both the L and S priors. To
more intuitively observe its capability on constraining the
two priors, we plot the manifolds4 of TNN, TV and t-CTV

3. a . b means that a ≤ Cb, where C is a fixed absolute constant.
4. The manifold polytope constrains the solution space based corre-

sponding regularization norm. Here, these manifolds are plotted on an
2×2×2 tensor with slices [0 x; y z] and [z y;x 0] for easy visualization.
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norm in Fig. 3. One can see that the manifold of t-CTV has
evident similarity to that of TV norm in the whole shape,
and also exists some close characteristics with TNN like the
two tangent planes seen from the front, showing the close
connections in constraining the solution space in terms of
low-rankness and smoothness, respectively.

Besides, it should be noted that although the t-CTV is not
the unique encoding term for L nor S prior, it still achieves
much better performance for joint low-rank and smooth
tensor recovery than existing pure L, S and L+S models,
which will be demonstrated in the following experiments.

5 TENSOR RECOVERY VIA T-CTV MINIMIZATION

5.1 Models

Suppose T0 ∈ Rn1×···×nd is the underlying unknown ten-
sor with joint L and S structural assumption. For the TC
problem, we adopt the commonly used random Bernoulli
sampling scheme, Ω ∼ Ber(p). Using t-CTV to characterize
the L and S priors, the conducted t-CTV based TC model is

min
T
‖T ‖t-CTV s.t. PΩ(T ) = PΩ(T0). (15)

For the TRPCA problem, the observation of T0 is a corrup-
tion with outlier or noise E0, denoted asM = T0 +E0. Then
the t-CTV based TRPCA problem is modeled as

min
T ,E
‖T ‖t-CTV + λ‖E‖1 s.t. M = T + E . (16)

The following recovery guarantees aim to ensure that T0,
(T0, E0) are the exact solutions of (15) and (16), respectively,
with some mild conditions.

5.2 Incoherence Conditions

Note that t-CTV is actually constructed by the tensor nu-
clear norm imposed on related gradient tensors under the
high order t-SVD framework. Thus the theoretical analytical
framework of classic low-rank tensor recovery can be read-
ily borrowed. The incoherence condition is one of the most
vital theoretical tools in low-rank recovery [15] [29] [31] [69].
Below, we define the gradient tensor incoherence conditions,
whose purpose is the same with that in the classic low-rank
analysis. That is to impose or constraint the low-rankness
structure of the underlying tensor, avoiding the pathological
issue or hopeless case, i.e., most elements of T0 are zero but
it is low-rank. More descriptions are in [15] [29] [31] [69].

Definition 10. For T ∈ Rn1×···×nd with t-SVD rank R, and
any k ∈ Γ, assume that the gradient tensors Gis have the skinny
t-SVD Gk = Uk ∗L Sk ∗L VT

k , and then T is said to satisfy the
gradient tensor incoherence conditions with parameter µ > 0 if

max
i1=1,··· ,n1

‖UT
k ∗L e̊

(i1)
1 ‖2F ≤ µR/n1`, (17)

max
i2=1,··· ,n2

‖VT
k ∗L e̊

(i2)
2 ‖2F ≤ µR/n2`, (18)

and
‖Uk ∗L VT

k ‖2∞ ≤ µR/n1n2`
2, (19)

where e̊(i1)
1 is the order-d tensor mode-1 basis sized n1×1×n3×

· · · × nd, whose (i1, 1, 1, · · · , 1)-th entry equals 1 and the rest
equal 0, and e̊

(i2)
2 := (̊e

(i2)
1 )T is the mode-2 basis.

The difference between the above incoherence conditions
and previous ones is that it is imposed on the gradient ten-
sors instead of the original tensor. Note that [69] has proved
that almost all uniformly bounded low-rank matrices equip
incoherence property well. Since difference operation on a
tensor changes neither its boundness nor low-rankness, the
incoherence conditions naturally hold on its gradient maps.
The first two conditions (17), (18) and the third one (19) are
normally called the standard and joint incoherence condi-
tions, associated with TC and TRPCA problem, respectively.

5.3 Main Results

We firstly show the exact recovery guarantee of the pro-
posed t-CTV-TC model (15).

Theorem 4. Consider t-CTV based TC model (15). Suppose that
T0 obeys the standard gradient tensor incoherence conditions (17)-
(18) and Ω ∼ Ber(p). Then, there exist universal constants
c0, c1, c2 > 0 such that T0 is the unique solution to model (15)
with probability at least 1−c1γ(n(1)n3 · · ·nd)−c2 , provided that

p ≥ c0µR(log(n(1)`))
2/n(2)`, (20)

where ` is the specific scale factor given in (5), n(1) :=
max{n1, n2} and n(2) := min{n1, n2}.

The above result shows that minimizing t-CTV norm
can achieve exact tensor completion with considerable prob-
ability. The corresponding sampling complexity needs to
be around p ·

∏d
i=1 ni ≈ O(µRn(1)n3 · · ·nd log2(n(1)`)/`).

Such a bound can be acceptable if considering only the
low-rankness since it differs from the degrees of freedom
of an arbitrary order-d tensor with t-SVD rank R, i.e.,
O(Rn(1)n3 · · ·nd), by a logarithmic factor. But, for a joint L
and S prior structured tensor, its degree of freedom should
be lower than that of a pure low-rank tensor with the
same rank, which indicates that its sampling complexity for
recovery could be further improved. Below, we introduce
an important proposition on the lower bound for general
regularization norm based TC model inspired from [70].

Proposition 1. Let T0 ∈ Rn1×···×nd with multi-structural prior
simultaneously. Consider the following general TC model

min
T

f(T ) :=
∑

wi‖T ‖(i) s.t. PΩ(T ) = PΩ(T0), (21)

where ‖ · ‖(i) denotes a regularization norm (such as TNN, TV,
and t-CTV norm) modeling certain prior with Lipschitz constant
Li, wi > 0 is the wight parameter. Suppose Ω ∼ Ber(p) and
m is the number of sampling entries. Then, there exist constant
c0, c1 > 0 such that T0 is not the unique solution of (21) with
probability at least 1− exp(− c1m

n1···nd‖T̄0‖2∞
), provided that

m ≤ mlow := c0κ
2
minn1 · · ·nd, (22)

where κmin = min{κi = ‖T̄0‖(i)/Li} and T̄0 = T0/‖T0‖F.

Proposition 1 states an interesting and enlightening re-
sult that the linear combination of multi-structures pro-
moted regularization norm can do no better than using
only the best single one. It can be only determined by one
single regularizer for multi-structural tensor completion in
terms of the boundary of failure recovery. That provides a
strong evidence that to fully explore the multiple priors, we
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might necessarily need to design certain new regularizer to
character the joint structures, as also claimed in [35], [70],
[71]. This actually motivates us for designing the t-CTV term
to reprace previous L+S terms with summarization of two
elements. Now, we show that the t-CTV model (15) owns
an interpretable lower sampling bound and is superior over
those of pure L, S and joint L+S prior models.

Theorem 5. For order-d tensor T0 ∈ RN×···×N with L and S
prior structures simultaneously, denote its t-SVD rank as R and
gradient tensor Gk’s sparsity (number of nonzero entries) as Sk,
and S = mink∈Γ{Sk}. Then, the corresponding lower bounds of
the following L and/or S models satisfy:

Model f(T ) = mlow .

L ‖T ‖~,L Nd · RN
S ‖T ‖TV Nd · S

Nd

L+S ‖T ‖~,L + α‖T ‖TV Nd ·min{RN ,
S
Nd
}

t-CTV ‖T ‖t-CTV Nd · RN ·
S
Nd

As presented in Theorem 5, t-CTV’s lower bound, i.e.,

Nd · R
N
· S
Nd

, (23)

is a product interaction form of the L and S metrics in an
interpretable manner, that is rigorously less than that of the
pure L and S regularization models and the widely adopted
L+S ones if the underlying tensor is low-rank and smooth
simultaneously. This certainly explains why our method
achieves nice performance in even extremely small sam-
pling rate, as shown in Fig. 1. The lower the rank ratio R/N
is, and the lower the smooth ratio S/Nd is, the lower the
informatic bound of our t-CTV model should be. Whereas,
existing L+S modeling manner cannot so intrinsically fuse
the two priors from this theoretical perspective.

We then analyze of the t-CTV based TRPCA problem
(16), whose recoverability can be also guaranteed.

Theorem 6. Consider t-CTV based TRPCA model (16). Suppose
that T0 obeys the standard and joint gradient tensor incoherence
conditions (17)-(19) and E0’s support set, denoted as Ω0, is
uniformly distributed among all sets of cardinality m. Then,
there exist universal constants c1, c2 > 0 such that (T0, E0) is
the unique solution to model (16) when λ = 1/

√
n(1)` with

probability at least 1− c1γ(n(1)n3 · · ·nd)−c2 , provided that

rankt-SVD(T0) ≤
ρrn(2)`

µ log2(n(1)`)
and m ≤ ρsn1 · · ·nd, (24)

where ρr, ρs > 0 are some numerical constants.

Theorem 6 states that the t-CTV induced TRPCA model
(16) is able to exactly recover a joint L and S structured
tensor and a sparse noise with high probability. The corre-
sponding parameters ρr and ρs determine the rank of T0

and the sparsity of E0, respectively. Moreover, the analysis
identifies that the model (16) is parameter-free where the
trade-off parameter λ = 1/

√
n(1)` is universal, making it

easier to implement in applications.

Remark 3. The above theoretical analysis provides solid support
of the recoverability of t-CTV modeling in tensor recovery. The
proof is mainly executed by possibly finely embedding the t-CTV
model into the classic sparse modeling framework. Yet it should

Algorithm 1 ADMM for solving t-CTV-TC model (15)
Input: observation PΩ(T0), priori set Γ and transform L.
1: Initialize G0

k = ∇k(PΩ(T0)), E0 = Υ0 = Λ0
k = O.

2: while not converge do
3: Update T t+1 by (29);
4: Update Gt+1

k by (30) for each k ∈ Γ;
5: Update Kt+1 by (31);
6: Update multipliers Λt+1

k , k ∈ Γ and Υt+1 by (32);
7: Let µt+1 = ρµt; t = t+ 1.
8: end while

Output: recovered tensor T̂ = T t+1.

be indicated that such proof is not that easy since the dependent
high-order t-SVD framework differs from common matrix algebra
in many aspects. E.g., the linear conversion via tensor-tensor
product is totally different from that in matrix space, and there
exist difference operation and the low-rankness of gradient tensors
required to be proved (see Appendix A, B and C). More impor-
tantly, the key dual certification process is different from previous
works, where one needs to consider the difference transformation
(see Lemmas 5 and 13 in Appendixes D and F, respectively).

6 OPTIMIZATION ALGORITHMS

This section derives algorithms for solving the t-CTV based
TC and TRPCA problem via the Alternating Direction
Method of Multipliers (ADMM) framework [72].

6.1 Optimization to t-CTV TC

First, the t-CTV-TC model (15) can be reformulated as

min
T ,Gk,K

1

γ

∑
k∈Γ

‖Gk‖~,L + δK,Ω

s.t. Gk = ∇k(T ), T +K = PΩ(T0),

(25)

where the auxiliary variable Gk separates the difference
operation ∇k(·) and K compensates missing entries of T
that is restricted in Ω⊥ using the indicative function defined
as

δK,Ω =

{
0, PΩ(K) = O,
+∞, otherwise. (26)

Then the augmented Lagrangian function of (25) is

L(T , {Gk, k ∈ Γ},K, {Λk, k ∈ Γ},Υ) =∑
k∈Γ

(
1

γ
‖Gk‖~,L + 〈Λk,∇k(T )− Gk〉+

µt
2
‖∇k(T )− Gk‖2F)

+ δK,Ω + 〈Υ,PΩ(T0)− T −K〉+
µt
2
‖PΩ(T0)− T − E‖2F,

where µt is a positive scalar, and Λk and Υ are Lagrange
multipliers. It can be further expressed as

L =
∑
k∈Γ

(
1

γ
‖Gk‖~,L +

µt
2
‖∇k(T )− Gk + Λk/µt‖2F)

+ δK,Ω +
µt
2
‖PΩ(T0)− T −K + Υ/µt‖2F + C,

(27)

where C is only the multipliers dependent squared items.
Below, we show how to solve its sub-problems for each
involved variable.
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1) Updating T t+1: Taking the derivative in (27) with
respect to T , it gets the following linear system

(I +
∑
∇T
k∇k)(T )

= PΩ(T0)−Kt + Υt/µt +
∑
∇T
k (Gtk − Λtk/µt),

(28)

where ∇T
k (·) denotes the transpose operator of ∇k(·). Note

that the difference operation on tensors has been proved
to be linear via tensor-tensor product (see Appendix C, D).
Following [57], we can apply multi-dimensional FFT, which
diagonalizes ∇k(·)’s corresponding difference tensors Dk,
enabling to efficiently get the optimal solution of (28) based
on the convolution theorem of Fourier transforms, i.e.,

T t+1 = F−1

(F(PΩ(T0)−Kt + Υt/µt) +H
1 +

∑
k∈Γ F(Dk)∗ �F(Dk)

)
, (29)

where H =
∑
k∈Γ F(Dk)∗ � F(Gtk − Λtk/µt), 1 is a tensor

with all entries as 1,� is componentwise multiplication, and
the division is componentwise as well.

2) Updating Gt+1
k , k ∈ Γ: For each k ∈ Γ, extracting all

items containing Gk from (27), we can get that

Gt+1
k = arg min

Gk

1

γ
‖Gn‖~,L +

µt
2
‖∇k(T t+1)− Gk +

Λtk
µt
‖2F .

The close-form solution of this sub-problem is given as

Gt+1
k = t-SVT1/γµt(∇k(T t+1) + Λtk/µt) (30)

via the order-d t-SVT as stated in Theorem 2.
3) Updating Kt+1: The optimization of K is based on that

it obeys PΩ(K) = O. Thus, it is updated by performing

Kt+1 = PΩ(T0)− T t+1 + Υt/µt, PΩ(Kt+1) = O. (31)

4) Updating Λt+1
k and Υt+1: Based on the ADMM’s rule,

these multipliers are updated by the following equations:{
Λt+1
k = Λtk + µt(∇k(T t+1)− Gt+1

k ), ∀k ∈ Γ,
Υt+1 = Υt + µt(PΩ(T0)− T t+1 −Kt+1).

(32)

Last, the penalty parameter µt+1 is lifted by µt+1 = ρµt
with some control constant ρ > 1. The whole ADMM
optimization scheme is summarized in Algorithm 1.

6.2 Optimization to t-CTV TRPCA

The optimization to t-CTV-TRPCA is quite similar to that
to the t-CTV-TC problem. Its model reformulation and aug-
mented Lagrangian function are similar like (25) and (27),
except that auxiliary variable K are replaced by the sparse
component E in model (16) with corresponding regulariza-
tion λ‖E‖1, and the observation is M instead of PΩ(T0).
Thus, under similar analysis, the ADMM iteration system
with respect to t-CTV-TRPCA is briefly derived as follows:

T t+1 = F−1

( F(M−Et + Υt/µt) +H
1 +

∑
k∈Γ F(Dk)∗ �F(Dk)

)
, (33)

Gt+1
k = t-SVT1/γµt(∇k(T t+1) + Λtk/µt), (34)

Et+1 = S1/λµt(M−T
t+1 + Υt/µt), (35)

Λt+1
k = Λtk + µt(∇k(T t+1)− Gt+1

k ), (36)

Algorithm 2 ADMM for solving t-CTV-TRPCA model (16)

Input: observationM, priori set Γ and transform L.
1: Initialize G0

k = E0 = Υ0 = Λ0
k = O.

2: while not converge do
3: Update T t+1 by (33);
4: Update Gt+1

k by (34) for each k ∈ Γ;
5: Update Kt+1 by (35);
6: Update multipliers Λt+1

k , k ∈ Γ and Υt+1 by (36), (37);
7: Let µt+1 = ρµt; t = t+ 1.
8: end while

Output: recovered tensors T̂ = T t+1 and Ê = Et+1.

Υt+1 = Υt + µt(M−T t+1 − Et+1), (37)

where S(·) in (35) is the soft-thresholding operator. The
corresponding ADMM is described in Algorithm 2.

6.3 Computational Complexity Analysis
For Algorithm 1, the computational complexity in each
iteration contains four parts, i.e., steps 3 ∼ 6. First,
the time complexity in step 3 that mainly using FFT
is O(n1 · · ·nd log(n1 · · ·nd)). Second, the time complex-
ity for order-d t-SVT in step 4 is O(n1n2(n3 · · ·nd)2 +
n(1)n

2
(2)n3 · · ·nd), corresponding to the linear transform

along mode-3 to mode-d and the matrix SVD, respec-
tively [29]. Detailed t-SVT algorithmic procedure is given
in supplementary material, appendix A. The steps 5 and 6
have the same complexity O(n1 · · ·np) with only element-
wise computation. In all, the pre-iteration computational
complexity of Algorithm 1 is O(n1 · · ·nd log(n1 · · ·nd) +
n1n2(n3 · · ·nd)2 + n(1)n

2
(2)n3 · · ·nd).

It is easy to see that the Algorithm 2 has the same per-
iteration computational complexity since the only differ-
ence is in step 5, soft-thresholding operator, which only
takes O(n1 · · ·nd) computation cost. Compared with the
baseline TNN minimization algorithm in [29], it only in-
creases O(n1 · · ·nd log(n1 · · ·nd)), i.e., the difference equa-
tion computation in the first part. Besides, such computa-
tional complexity is in the same order to that of ADMM
based TNN+TV method in [28].

6.4 Convergence Analysis
Both Algorithms 1 and 2 are in form of multi-block ADMM,
whose convergence cannot be guaranteed directly in normal
cases unlike the classic two-block ADMM [73]. Fortunately,
benefiting from that the linear constraints are separable in
our models, we can equivalently transform our algorithms
into standard two-block ADMM forms [72]. Thus the gen-
eral convergence of two-block ADMM proved in [72] can
be adopted directly. We only analyze Algorithm 1 below.
Similar result can be deduced for Algorithm 2.

Remark 4. Denote matrices Y, A, X1, B respectively as
0
...
0

L(PΩ(T0))

 ,

IL

. . .
IL

IL

 ,

L(Gk1)

...
L(Gkγ )
KL

 ,

L(Dk1)

...
L(Dkγ )
−IL

 ,
and X2 := TL. Then, t-CTV-TC model’s reformulation (25) can
be converted to a standard two-block ADMM with constraint
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Fig. 4: Convergence curves of Algorithm 1 and Algorithm 2.

condition AX1 − BX2 = Y, and the updating of (X1,X2) is
equal to the iteration system in Algorithm 1 since there exists
uniqueness between the original and transform domains. Note that
it has been proved that general two-block ADMM with closed,
proper and convex objective is convergent in residual, objective
and variables, see [72]. This directly yields the convergence of the
ADMM iterates in Algorithm 1.

7 EXPERIMENTAL RESULTS

This section conducts experiments on synthetic tensors with
joint L and S priors to verify our main theoretical results,
and applies to real visual tensors to substantiate the effec-
tiveness of the proposed methods. More results are given in
supplementary material. All experiments are implemented
on the platform of MATLAB (2021a) with Intel(R) Core(TM)
i5-10400F 2.90-GHz CPU and 16GB memory.

7.1 Simulations
We use a simple program to generate a tensor with deter-
mined t-SVD rank and equipping intrinsic smooth struc-
tures. For an order-d tensor T sized n1 × n2 × · · · × nd, for
its each frontal slice Tj ∈ Rn1×n2 , j = 1, · · · , n3 · · ·nd, we
randomly select s(s � n1n2) initial points and divide the
slice into s regions by nearest neighbor principle with each
area with the same value sampled from N(0, 1). Then T0 is
obtained by T ’s best t-SVD rank R approximation as given
in Theorem 3. Since the t-SVD is orientation dependent, this
makes T0 has well smooth property in the first two direc-
tions. Such property is similar to the spatial smoothness of
visual data.

1) Empirical convergence: We first verify the algorithms’
convergence for solving t-CTV based TC and TRPCA mod-
els. Randomly generating a 60 × 60 × 60 × 60 tensor T0

with t-SVD rank R = 10, we simulate the convergence
behavior of Algorithm 1 for TC problem when observing
50% entries randomly. For the TRPCA model solved by
Algorithm 2, we further construct a sparse tensor E0 whose
support set is chosen uniformly at random with cardinality
m = 0.05 × 604, and its nonzero value are set as ±1
randomly. The corresponding relative error (RelErr5) curves
are plotted in Fig. 4 (a), (b), respectively, which show the
errors gradually approach to zero after 50 iterations and
thus validates the convergence6.

2) Exact recovery: We then verify that the proposed t-
CTV based TC and TRPCA model can achieve exact recov-
ery for joint L+S tensors, as proved in our main theories.

5. The RelErr of T to T0 is defined by ‖T − T0‖F/‖T0‖F.
6. We choose the DFT based t-SVD in this experiment. Afterwards,

without other statements, the transform in t-SVD is set as the DFT.

TABLE 2: Performance of model (15) on synthetic tensors.

N R m
dr

p
DFT DCT ROT

R̂ RelErr R̂ RelErr R̂ RelErr
100 5 4 0.39 5 4.54e-7 5 6.01e-6 5 4.73e-7
200 20 3 0.57 20 1.83e-7 20 3.30e-6 20 1.59e-7
400 60 2 0.56 60 2.90e-6 60 4.07e-6 60 8.92e-6

TABLE 3: Performance of model (16) on synthetic tensors.

N R m
DFT DCT

R̂ RelErrT m̂ RelErrE R̂ RelErrT m̂ RelErrE
100 5 2e6 5 1.85e-7 2e6 2.46e-7 5 9.97e-6 2e6 1.14e-7
100 10 2e6 10 2.18e-6 2e6 3.96e-6 10 4.38e-7 2e6 7.27e-7
200 10 8e6 10 9.32e-7 8e6 9.84e-7 10 5.03e-7 8e6 3.64e-6
200 20 8e6 20 1.83e-6 8e6 3.03e-6 20 8.29e-6 8e6 7.10e-6

For TC problem, we test on tensors T0 sizedN×N×60×
60, with varying dimensionN = 100, 200, 400, and set the t-
SVD rank R as 0.05N, 0.1N and 0.15N . The sampling num-
ber m is chosen by 4, 3, 2 times of dr = R(2N−R)×60×60,
which can be viewed as a good quantity for reference. Table
2 reports the recovered tensors T̂ s’ t-SVD ranks R̂ and the
corresponding RelErr ‖T̂ − T0‖F/‖T0‖F. Here, we consider
three transforms: DFT, DCT, random orthogonal transform
(DOT). The results reveal that t-CTV-TC obtains correct rank
estimation and accurate recovery results,i.e., RelErr≤ 10−5.

For the latter, consider N × N × 60 × 60 synthetic joint
L+S tensor T0 varying N = 100 and 200 with R = 0.05N ,
0.1N , and random sparse tensor E0 with sparsity m =
2×106, 8×106 (corresponding sparsity ratio equals 5.56%).
The tolerance to determine Ê ’s sparsity is set as 0.001. The
recovered results are listed in Table 3, showing that the
recovery is correct with accurate rank/sparsity estimation,
and tiny errors. This verifies the exact recovery guarantees.

3) Phase transition and comparison to baselines: To
further explore the ability of t-CTV based tensor recov-
ery methods, we examine the recovery performance with
varying t-SVD ranks of T0 from different sampling rates
p for the TC problem, and that with varying t-SVD ranks
of T0 from different sparsity of E0 for the TRPCA task,
respectively. Moreover, two baselines are considered for
comparison, including the pure L prior model (order-d TNN
minimization [16] [29]), and the L+S prior model (order-d
TNN plus anisotropic TV norm [25] [28]). We omit those
only considering the pure S priors since such models can
hardly get comparable recovery results in such cases. The
objective function of these baselines are listed in Table 5.

For the TC task, we consider T0 sized 60× 60× 60× 60
and set t-SVD rank R = [1 : 1 : 60] and random sampling
rate p = [0.01 : 0.01 : 1]. For each (R/N, p)-pair,N = 60, we
simulate 30 test instances and declare a trail to be a success
if the average RelErr of T̂ is less than 0.05. Fig. 5 plots
the phase transition diagrams (yellow=100%, green=0%),
which evidently shows that t-CTV based TC model recovers
more cases than TNN and TNN+TV models. Specially, com-
pared with TNN+TV model, requiring to carefully tune the
tradeoff parameter between L and S regularizers, t-CTV-TC
entirely avoids this parameter setting issue.

For the TRPCA task, we conduct tensor T0 in the same
size with varying rank R = [1 : 1 : 30]. As for the sparse
tensor E0, we vary its sparsity ratio ρs = m/604 from
0.01 to 0.50 with interval 0.01. Similarly, we simulate 30



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Succeed(24.95%)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Succeed(28.35%)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Succeed(31.13%)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(a) TNN (b) TNN+TV (c) t-CTV
Fig. 5: Phase transitions of t-CTV-TC model (15) with vary-
ing t-SVD ranks of T0 and sampling rates.
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Fig. 6: Phase transitions of t-CTV-TRPCA model (16) with
varying t-SVD ranks of T0 and sparsity of E0.

times against each (R/N, ρs)-pair for statistical stability.
The corresponding fraction of correct recovery for TNN,
TNN+TV and t-CTV-TRPCA are plotted in Fig. 6. It shows
that t-CTV-TRPCA attains the best recovery ability with the
correct area ratio 32.87%, evidently much higher than those
obtained by TNN and TNN+TV baselines. Note that the
TNN+TV model’s performance appears worse than the pure
low-rank model. This can be rationally explained by that the
TNN based TRPCA model has a solid recovery guarantee
with determined parameter λ [16], while the TNN+TV is
not guaranteed in theory. Note that TNN+TV need to preset
two model parameters, α and λ. In this phase transition
experiment, we take λ the same as that in the TNN model
and carefully tune α from an appropriate range related
to the smooth construction manner as aforementioned. By
contrast, our t-CTV-TRPCA is parameter-free, and simulta-
neously with theoretical guarantees, making it easier and
more reliable to be used in practice.

7.2 Applications to Visual Data Inpainting

In this subsection, we apply the proposed t-CTV-TC method
to the inpainting tasks for various visual tensor data and
make comparison with SOTA tensor based methods consid-
ering L or L+S prior models, as listed in Table 4. Unless
otherwise stated, all parameters involved in these compet-
ing methods are optimally assigned or selected as suggested
in the reference papers. The peak signal-to-noise ratio (PSNR),
structural similarity (SSIM [74]) and feature similarity (FSIM
[75]) are employed to evaluate the recovery performance,
all of which tends better performance with larger value.

1) Results on color images: We randomly select 50 RGB
images from the USC-SIPI7 and BSD8 databases, of sizes
256× 256× 3 and 321× 481× 3, respectively. First, we test
on the random element-wise sampling with sampling rate
(SR) varying from 3% to 80%. Table 6 reports the inpainting

7. https://sipi.usc.edu/database/
8. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/

bsds/

TABLE 4: Categories of related tensor completion methods.

Types Methods
L SNN [6], BCPF [38], KBR [30], IRTNN [51], TNN [29]

L&S MF-TV [20],SNN-TV [21],SPC-TV [23], TNN-TV [28]

TABLE 5: Objectives of baseline TNN and TNN+TV models.

Types TC TRPCA
TNN ‖T ‖~,L ‖T ‖~,L + λ‖E‖1

TNN+TV ‖T ‖~,L + α‖T ‖TV ‖T ‖~,L + α‖T ‖TV + λ‖E‖1

results in terms of quantitative metrics on average. It is seen
that our t-CTV method achieves the best performance in all
evaluate criteria under all sampling cases. It can be seen that
its advantage is more significant when SR is extremely low.
As to the computational time, it can be seen that the average
running time of proposed t-CTV is in the same order of
magnitude as most of other methods (like SNN, KBR, TNN,
SNN-TV, SPC-TV) and faster than several ones (like BCPF,
IRTNN, MF-TV and TNN-TV). Fig. 7 shows the recovered
images under SR=10%, 20%, 40% and 60%, revealing the
recoveries obtained by our method are the closest to the
ground truths. Considering its good recovery performance,
it should be rational to say that the proposed method is
efficient.

We further test the performance of all competing meth-
ods in extreme small sampling cases, when SR is set as 5%,
2%, 1% and even 0.5%, meaning that 95%, 98%, 99% and
99.5% pixels are missing. Two typical cases are shown in
Figs. 1 and 8, and our method evidently makes a relatively
finer recovery while all other competing methods fail to a
large extent. This verifies the result in Theorem 5 that t-CTV
has a smaller lower sampling bound than conventional L
and L+S models. As far as we know, there are no other meth-
ods capable of achieving similarly workable performance in
such extreme cases for single image inpainting.

Last, we consider more challenging situations when the
missing pixels are in structured masks including dead lines,
wave lines, star patterns and text patterns. Some inpainting
examples are depicted in Fig. 9. One can see that our method
can still perform evidently superior beyond other compet-
ing peers. Especially, it’s known that the pure L prior models
cannot estimate the missing entries when missing regions
are some whole rows or columns [31]. As seen in Fig. 9, the
SNN, BCPF, KBR, IRTNN and TNN methods are all invalid
completely. In comparison, our t-CTV also uses the low-rank
metric TNN in form, just instead defined on the gradient
tensors. Yet it can finely process such extremely ill-possed
cases. It also achieves better visualization results than those
obtained by L+S prior models, showing its capability of
delivering the two priors in its unique regularizer.

2) Results on color videos: In this experiment, we test
all competing methods on 10 color video sequences from the
YUV9 database. All videos are of size 176 × 144 × 3 × 200.
Note that the MF-TV and IRTNN methods cannot be di-
rectly used for order-4 tensors. One can reshape a video
as 176 × 144 × 600 or processing it frame-by-frame as an
order-3 tensor. Since the former is very time-consuming and
the performance of most methods on it is poor, we choose
the latter in experiments. Fig. 10(a) plots the average PSNR

9. http://trace.eas.asu.edu/yuv/

https://sipi.usc.edu/database/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://trace.eas.asu.edu/yuv/
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TABLE 6: Color image inpainting performances of all competing methods under different sampling rates. Each result is
averaged over all data. The best and second best result are highlighted in bold and underline, respectively. (/s: second).

SR 3% 5% 10% 20% 40% 60% 80%
Time/s

Method PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SNN 15.99 0.292 0.654 17.21 0.365 0.690 19.62 0.498 0.752 22.71 0.674 27.28 0.859 31.48 0.944 36.59 0.983 10.49
BCPF 15.98 0.258 0.640 17.50 0.328 0.677 20.10 0.452 0.744 23.45 0.637 27.53 0.815 30.27 0.889 32.17 0.924 84.69
KBR 15.20 0.219 0.614 16.21 0.272 0.643 18.67 0.386 0.708 23.36 0.631 28.96 0.859 33.77 0.948 40.16 0.989 27.15
IRTNN 11.82 0.123 0.563 14.63 0.210 0.614 18.46 0.375 0.710 22.43 0.597 27.80 0.829 32.50 0.932 38.32 0.979 45.95
TNN 15.33 0.254 0.640 16.67 0.321 0.675 19.16 0.454 0.740 22.49 0.642 27.40 0.845 32.02 0.940 37.87 0.983 5.96
MF-TV 6.46 0.048 0.520 7.21 0.064 0.509 9.06 0.108 0.504 15.13 0.327 26.37 0.809 31.84 0.939 36.17 0.981 200.3
SNN-TV 16.73 0.432 0.600 18.31 0.498 0.658 21.79 0.657 0.753 24.48 0.789 28.47 0.909 32.08 0.960 36.59 0.987 14.28
SPC-TV 15.66 0.322 0.661 17.20 0.377 0.690 19.76 0.504 0.753 22.87 0.672 26.71 0.841 29.67 0.923 33.14 0.970 17.96
TNN-TV 17.66 0.460 0.613 19.32 0.532 0.668 21.16 0634 0.717 24.71 0.792 28.39 0.908 31.80 0.959 36.52 0.987 40.14
t-CTV 21.32 0.622 0.782 22.67 0.682 0.820 24.59 0.763 0.868 27.18 0.849 31.31 0.931 35.26 0.970 40.55 0.993 17.13

6.21/0.026 24.84/0.790 25.39/0.792 24.05/0.752 24.63/0.777 24.77/0.792 11.04/0.175 21.58/0.539 24.47/0.775 20.64/0.479 27.16/0.853 PSNR/SSIM

5.27/0.036 24.28/0.745 25.31/0.704 25.69/0.726 25.11/0.674 24.33/0.697 20.75/0.505 26.25/0.858 24.01/0.735 27.77/0.868 29.71/0.888 PSNR/SSIM

8.44/0.125 27.52/0.869 28.00/0.835 29.82/0.881 29.12/0.868 28.05/0.868 25.67/0.826 29.03/0.912 27.54/0.858 29.05/0.914 32.54/0.941 PSNR/SSIM

Observed SNN BCPF KBR IRTNN TNN MF-TV SNN-TV SPC-TV TNN-TV t-CTV Ground truth

Fig. 7: Color image inpainting results by all competing methods. From top to bottom: SR equals 10%, 20%, and 40%,
respectively. For better viewing, we display the magnified map of a patch and corresponding error map (difference from
the ground truth) under each image. Error maps with less color information indicate better restoration performance.

Observed SNN KBR TNN SNN-TV SPC-TV TNN-TV t-CTV

Fig. 8: Color image inpainting results obtained by
all competing methods. From top to bottom: SR =
0.5%, 1%, 2%, 5%.

values of different methods under different levels of SR, and
Fig. 10(b) plots the detailed PSNR values of each recovered
video using different methods when SR = 10%. Both bar
graphs evidently show that our t-CTV method obtains the
leading performance over other competing methods dis-
tinctly.

3) Results on hyperspectral images (HSIs): We choose
five widely used HSIs, including Cuprite, DCMall, KSC,
Pavia and Pavia university (PaviaU), in this experiment. All

TABLE 7: ERGAS comparison of all competing methods on
HSIs inpainting under SR = 5%.

Method
HSIs Data

Average
Cuprite DCMall KSC Pavia PaviaU

SNN 153.6 451.4 240.0 411.0 374.9 326.2
BCPF 77.62 208.9 132.9 148.4 128.2 139.2
KBR 44.19 168.6 94.78 120.3 101.8 105.9
IRTNN 928.1 841.8 535.2 361.1 404.2 614.1
TNN 53.64 245.9 176.0 128.4 124.5 145.7
MF-TV 40.25 564.5 433.3 444.2 413.0 379.0
SNN-TV 135.7 453.0 211.0 361.6 321.8 296.6
SPC-TV 84.33 262.5 156.3 206.0 182.6 178.3
TNN-TV 127.4 422.9 205.0 305.8 286.6 269.6
t-CTV 25.16 119.9 75.73 70.01 59.91 70.15

HSIs are preprocessed with size 200×200×50. Similarly, we
test the inpainting task under different levels of SR. Table 7
lists the detailed recovery in terms of erreur relative globale
adimensionnelle de synthese (ERGAS [76]) when SR = 5%.
The smaller value of ERGAS indicates better restoration
performance. Fig. 11 shows the pseudo-color image of the
recovered HSIs via different methods. It is seen that our
method performs better than all other competitors from the
enlarged local area.

4) Results on more visual data in high-order tensor for-
mat: We then implement experiments on more visual data
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12.08/0.336 12.14/0.332 12.11/0.336 12.08/0.336 12.14/0.338 14.59/0.383 15.63/0.408 35.52/0.937 12.57/0.345 35.61/0.940 37.51/0.956 PSNR/SSIM

16.90/0.794 24.55/0.856 21.48/0.778 23.30/0.836 22.55/0.842 24.48/0.854 19.10/0.821 26.01/0.884 26.24/0.886 25.71/0.866 27.36/0.896 PSNR/SSIM

14.49/0.469 22.85/0.742 21.75/0.657 22.17/0.680 22.58/0.697 22.70/0.725 23.09/0.695 24.67/0.855 23.20/0.754 24.93/0.813 26.18/0.867 PSNR/SSIM

Observed SNN BCPF KBR IRTNN TNN MF-TV SNN-TV SPC-TV TNN-TV t-CTV Ground truth

Fig. 9: Color image inpainting results by all competing methods on three types of structured masked images.

(a) All SR cases (b) SR = 10%

Fig. 10: Performance comparison in terms of PSNR of recov-
ered color videos obtained by all competing methods.

9.47/0.017/1014 16.85/0.332/451.4 23.59/0.759/208.9 25.56/0.841/168.6

Observed SNN BCPF KBR
11.45/0.095/841.8 22.49/0.717/245.9 18.18/0.491/564.5 16.85/0.244/453.0

IRTNN TNN MF-TV SNN-TV
21.64/0.675/262.5 17.44/0.291/422.9 29.04/0.929/119.9 PSNR/SSIM/ERGAS

SPC-TV TNN-TV t-CTV Ground truth

Fig. 11: HSI inpainting results under SR = 5%. The dis-
played pseudo-color image uses bands 49-27-7 as R-G-B.

in tensor format, including order-3 CT and MRI medical
images sized 256×256×12710, order-4 hyperspectral videos
sized 188 × 120 × 33 × 3111 and order-5 light field images
sized 216× 324× 3× 17× 1712. Table 8 lists the mean PSNR
(MPSNR), mean SSIM (MSSIM) along with the third or
more dimensions, and ERGAS values of the recovered data

10. https://www.cancerimagingarchive.net/
11. http://openremotesensing.net/knowledgebase/

hyperspectral-video
12. http://lightfield.stanford.edu/lfs.html

under SR = 10%, 30% and 50%. These results consistently
substantiate the advantages and potentials of our method
for various high-order visual tensor data recovery. Results
on some typical examples are shown in Fig. 12, Fig. 13 and
Fig. 14 for better visualization. It should be indicated that all
current competing methods take a relatively long running
time in these tasks. Thus, exploring faster algorithms in
handling high-order high-dimensional tensor should be a
very meaningful topic in future research, e.g., parallelizing
design [77], accelerating algorithm [78], and so on.

Observed KBR TNN SNN-TV TNN-TV t-CTV Original

Fig. 12: MRI and CT image inpainting results. From top to
bottom: SR = 5%, 10% and 20%.

25.47/0.746/148.5 33.34/0.936/60.01 41.13/0.977/24.56 28.90/0.816/100.1

SNN KBR TNN SNN-TV
35.69/0.943/45.86 28.26/0.825/107.6 44.70/0.988/16.23 PSNR/SSIM/ERGAS

SPC-TV TNN-TV t-CTV Ground truth

Fig. 13: Hyperspectral video inpainting results under SR =
10%. The displayed pseudo-color image is the 7-th frame of
the recovered video with band 7-21-28 as R-G-B.

7.3 Applications to Visual Data Denoising

We then apply the proposed t-CTV-TRPCA method to the
denoising task. Similarly, we compare our results with re-
lated L and L+S modeling methods, summarized in Table 9.
Note that there exist multiple parameters in these competing
methods. We choose the suggested parameter setting in

https://www.cancerimagingarchive.net/
http://openremotesensing.net/knowledgebase/hyperspectral-video
http://openremotesensing.net/knowledgebase/hyperspectral-video
http://lightfield.stanford.edu/lfs.html
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5.22/0.037/0.051 15.44/0.329/0.626 14.82/0.323/0.627 26.11/0.743/0.845 17.76/0.558/0.707 19.68/0.519/0.710 16.99/0.571/0.708 27.82/0.824/0.875 PSNR/SSIM/FSIM

6.93/0.128/0.134 22.81/0.785/0.838 24.27/0.755/0.844 34.70/0.935/0.957 25.41/0.910/0.925 25.37/0.755/0.837 24.83/0.904/0.923 36.23/0.960/0.971 PSNR/SSIM/FSIM

Observed SNN KBR TNN SNN-TV SPC-TV TNN-TV t-CTV Ground truth

Fig. 14: Light field image inpainting results. From top to bottom: SR = 10% and 30%. The displayed images are the 7-th
band and the 20-th frame of the recovered LFIs.

TABLE 8: More data inpainting performances of all compet-
ing methods under different sampling rates. (/m: minute).

SR Metric SNN KBR TNN SNN-TVSPC-TVTNN-TVt-CTV
Order-3 CT&MRI Medical Images

10%

MPSNR 19.90 25.86 22.44 23.23 21.79 22.89 26.48
MSSIM 0.533 0.710 0.458 0.716 0.478 0.675 0.839
ERGAS 339.8 184.9 266.8 236.1 277.5 252.5 169.4

30%

MPSNR 25.63 32.23 27.07 28.66 25.83 28.60 30.70
MSSIM 0.766 0.896 0.699 0.870 0.632 0.875 0.879
ERGAS 180.2 89.80 160.2 128.7 177.9 132.4 106.4

50%

MPSNR 30.18 36.07 30.94 32.38 28.09 32.59 34.14
MSSIM 0.892 0.952 0.839 0.934 0.726 0.937 0.940
ERGAS 108.9 58.09 104.4 84.68 138.2 84.37 72.84

Time/m 7.41 17.08 4.11 11.25 53.29 17.24 17.96

Order-4 Hyperspectral Videos

10%

MPSNR 25.47 33.34 41.13 28.90 35.69 28.26 44.70
MSSIM 0.746 0.936 0.977 0.816 0.943 0.825 0.988
ERGAS 148.5 60.01 24.56 100.1 45.86 107.6 16.23

30%

MPSNR 33.79 49.07 48.41 35.96 37.62 36.87 50.89
MSSIM 0.927 0.995 0.994 0.953 0.956 0.960 0.996
ERGAS 56.97 9.824 10.59 44.41 36.71 39.98 7.956

50%

MPSNR 38.99 54.44 52.89 41.15 39.31 42.10 54.18
MSSIM 0.973 0.998 0.998 0.982 0.967 0.985 0.998
ERGAS 31.33 5.293 6.369 24.44 30.25 21.92 5.448

Time/m 26.31 63.91 9.24 45.92 84.75 39.21 56.75

Order-5 Light Field Images

10%

MPSNR 18.06 16.50 28.58 20.64 21.40 20.00 30.32
MSSIM 0.554 0.379 0.800 0.748 0.627 0.742 0.871
ERGAS 450.2 544.4 137.4 335.5 308.9 361.9 111.9

30%

MPSNR 23.60 24.82 36.53 26.13 26.06 25.63 38.19
MSSIM 0.761 0.780 0.945 0.892 0.747 0.890 0.965
ERGAS 238.9 210.8 55.93 179.3 179.9 191.5 45.83

50%

MPSNR 27.86 39.40 42.44 30.43 28.02 30.07 43.73
MSSIM 0.884 0.982 0.981 0.948 0.803 0.947 0.987
ERGAS 146.4 39.94 28.25 109.4 143.2 115.7 24.38

Time/m 77.21 202.8 27.70 640.24 417.5 99.61 128.5

corresponding release codes. In comparison, our t-CTV-
RPCA method doesn’t need to tune parameters where the
sole parameter λ is set as 1/

√
n(1)` given by Theorem 6.

We use the aforementioned databases of color images,
HSIs and color videos for test. In Table 10, we list the
denoising results on sparse salt and pepper noise (S) with
different percentages, and their mixed noise with a bit
Gaussian noise (G) with zero-mean and standard deviation
0.05. From this table, we can find easily that our t-CTV

TABLE 9: Categories of related tensor RPCA methods.

Types Methods
L SNN [7], TNN [16], KBR [30]

L&S LRTV [22], LRTDTV [24], TLR-HTV/TLR-SSTV [25]

based method achieves the best performance in all sparse
noise cases. Especially, when the percentage of sparse noise
is getting increased, our leading advantages are clearer. For
example, our method is almost 5dB in PSNR higher than
the second-best method when 40% percentage pixels are
corrupted by sparse noise.

As for mixed noise cases, our method also shows com-
petitive performance. It should be indicated that our t-CTV-
TRPCA model is only a generic model imposing L1 norm
on noise elements succeeding from conventional RPCA
models, specifically suitable for sparse noises in nature. The
purpose of considering some Gaussian noise is to test our
model’s stability. For these related methods including LRTV,
LRTDTV and TLR-HTV/SSTV, their models include extra
L2-norm element, and thus is formulated appropriate for
mixed Gaussian noises. From the results of Table 10, it can be
observed that our method can overmatch other competitors
even without such explicit Gaussian noise item, revealing
the powerfulness of such regularization term on expressing
natural visual tensors with L+S priors.

We further display several typical recovered examples
for visualization comparison in Fig. 15, Fig. 16 and Fig. 17.
From these figures, it can be easily seen that our t-CTV based
method achieves better noise removal performance. Specif-
ically, the denoising results by our method maintain clearer
outlines and more faithful local details compared with other
competitors, validating its fine capability in extracting the
natural images with intrinsic L+S structures.

8 CONCLUSION

In this study, we have proposed a new regularization term,
called t-CTV, to encode both L+S priors, commonly pos-
sessed by natural visual tensor data, into a unique concise
form. By formulating the regularization in two typical tensor
recovery tasks, including TC and TRPCA, we can prove
their exact recovery guarantee theoretically for both models.
This should be the first theoretical exact recovery result
along this L+S prior modeling research, revealing its general
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TABLE 10: Visual data denoising performances of all competing methods under different levels of noise.

Noise S = 0.1 S = 0.2 S = 0.3 S = 0.4 S = 0.1, G = 0.05 S = 0.2, G = 0.05
Time/s

Method PSNR SSIM FSIMPSNR SSIM FSIMPSNR SSIM FSIMPSNR SSIM FSIMPSNR SSIM FSIMPSNR SSIM FSIM
Order-3 Color Images

SNN 25.65 0.826 0.878 24.68 0.789 0.858 23.69 0.746 0.837 22.64 0.691 0.813 24.39 0.708 0.840 23.60 0.669 0.823 16.60
TNN 29.85 0.923 0.944 28.16 0.871 0.922 25.92 0.748 0.877 21.97 0.479 0.767 25.92 0.672 0.857 24.30 0.588 0.820 9.18
KBR 25.57 0.819 0.883 24.31 0.763 0.856 22.86 0.677 0.822 21.28 0.548 0.770 24.13 0.690 0.841 23.00 0.634 0.816 29.81
LRTV 28.35 0.807 0.927 24.33 0.624 0.849 21.25 0.467 0.762 18.77 0.346 0.677 26.07 0.681 0.863 23.15 0.545 0.796 11.24
LRTDTV 29.49 0.845 0.929 25.47 0.698 0.859 22.30 0.539 0.775 19.65 0.398 0.692 26.78 0.729 0.875 23.97 0.607 0.814 11.21
TLR-HTV 31.64 0.893 0.949 25.79 0.660 0.861 17.82 0.309 0.659 11.70 0.111 0.469 26.14 0.659 0.854 21.85 0.472 0.758 12.62
t-CTV 31.65 0.933 0.960 30.56 0.913 0.949 29.36 0.884 0.935 27.97 0.836 0.914 28.20 0.774 0.891 27.25 0.733 0.872 18.20

Order-3 Hyperspectral Images

SNN 42.78 0.976 0.978 40.60 0.974 0.985 37.86 0.970 0.974 34.49 0.948 0.964 31.36 0.920 0.952 30.26 0.907 0.946 80.80
TNN 44.57 0.991 0.993 42.73 0.988 0.992 40.29 0.982 0.988 36.30 0.955 0.976 29.55 0.747 0.904 28.19 0.690 0.881 77.87
KBR 36.39 0.971 0.979 35.38 0.966 0.975 33.94 0.957 0.968 32.32 0.924 0.949 32.90 0.925 0.956 32.01 0.913 0.950 161.7
LRTV 38.01 0.978 0.988 36.06 0.962 0.979 34.10 0.933 0.964 32.15 0.890 0.941 32.22 0.898 0.940 32.20 0.879 0.929 12.89
LRTDTV 39.63 0.978 0.990 38.75 0.975 0.988 37.45 0.968 0.984 35.66 0.953 0.975 35.20 0.930 0.963 34.30 0.918 0.956 53.22
TLR-SSTV 37.68 0.973 0.983 36.09 0.962 0.976 34.42 0.946 0.966 32.75 0.923 0.951 31.72 0.855 0.928 31.04 0.841 0.917 23.94
t-CTV 46.32 0.993 0.996 44.93 0.992 0.995 43.27 0.989 0.993 41.37 0.985 0.991 33.01 0.871 0.940 32.28 0.843 0.927 118.0

Order-4 Color Videos

SNN 21.50 0.696 0.797 20.70 0.666 0.779 19.82 0.634 0.762 18.82 0.600 0.744 20.60 0.642 0.772 19.91 0.618 0.759 278.3
TNN 37.31 0.982 0.986 35.49 0.971 0.980 33.29 0.939 0.965 28.94 0.789 0.907 28.00 0.694 0.868 26.35 0.624 0.834 188.2
KBR 29.52 0.906 0.938 28.72 0.896 0.931 27.71 0.878 0.920 25.99 0.836 0.894 28.35 0.844 0.914 27.45 0.825 0.904 267.5
LRTV 31.03 0.851 0.943 23.64 0.543 0.804 19.69 0.362 0.681 16.94 0.252 0.582 26.48 0.649 0.835 22.23 0.462 0.735 64.30
LRTDTV 32.91 0.905 0.958 28.80 0.806 0.909 25.32 0.673 0.839 22.24 0.510 0.742 29.37 0.806 0.908 26.55 0.702 0.857 174.1
TLR-SSTV 36.23 0.969 0.981 34.25 0.949 0.971 31.45 0.894 0.948 27.54 0.758 0.889 29.27 0.772 0.900 27.75 0.715 0.873 177.3
t-CTV 39.73 0.987 0.990 38.17 0.982 0.987 36.62 0.974 0.983 34.85 0.959 0.974 30.90 0.817 0.910 29.79 0.779 0.891 260.4

12.13/0.144/0.583 24.51/0.844/0.855/ 27.54/0.891/0.926 24.73/0.844/0.873 25.57/0.773/0.870 27.25/0.785/0.902 28.14/0.813/0.923 29.38/0.944/0.951 PSNR/SSIM/FSIM

8.57/0.087/0.434 21.10/0.601/0.792 18.23/0.348/0.687 18.99/0.457/0.714 20.62/0.554/0.761 23.90/0.734/0.844 21.20/0.512/0.776 26.92/0.878/0.922 PSNR/SSIM/FSIM

11.56/0.171/0.555 22.97/0.615/0.819 22.89/0.582/0.814 21.38/0.642/0.823 24.10/0.697/0.854 23.39/0.721/0.858 23.27/0.604/0.823 26.02/0.739/0.870 PSNR/SSIM/FSIM

Noisy SNN KBR TNN LRTV LRTDTV TLR-HTV t-CTV Ground truth

Fig. 15: Color image denoising results by all competing methods. From top to bottom: cases containing sparse noise of
noise percentages 0.2 and 0.4, images containing mixed noise with sparse noise with noise percentage 0.2 and Gaussian
noise with zero-mean and standard deviation 0.05.

reliability and potential usefulness of the proposed regular-
izer. We also prove that such L+S modeling manner is with
a lower sampling complexity bound beyond conventional
L and/or S prior models, which has been comprehensively
validated by our experiments in different types of practical
visual tensor data. Especially, even under the extremely low
sampling rage 0.5%, our method can still get an acceptable
recovery effect, when all other competing methods totally
fail in such cases. We’ll try to testify more tensor recovery
tasks, like outlier detection and background extraction, by
combining this regularizer into their corresponding models
to further validate its effect, and attempt to explore more

targeted theory for further revealing its working insights in
our future investigations. Furthermore, it is also meaningful
to extend the theoretical and algorithmic explorations of this
work to other ones with low-rank regularizers under differ-
ent matrix/tensor transformations in our future research.
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