
1

CaCo: Both Positive and Negative Samples are
Directly Learnable via Cooperative-adversarial

Contrastive Learning
Xiao Wang, Student Member, IEEE, Yuhang Huang, Dan Zeng and Guo-Jun Qi, Fellow, IEEE

Abstract—As a representative self-supervised method, con-
trastive learning has achieved great successes in unsupervised
training of representations. It trains an encoder by distinguishing
positive samples from negative ones given query anchors. These
positive and negative samples play critical roles in defining the
objective to learn the discriminative encoder, avoiding it from
learning trivial features. While existing methods heuristically
choose these samples, we present a principled method where both
positive and negative samples are directly learnable end-to-end
with the encoder. We show that the positive and negative samples
can be cooperatively and adversarially learned by minimizing
and maximizing the contrastive loss, respectively. This yields
cooperative positives and adversarial negatives with respect to
the encoder, which are updated to continuously track the learned
representation of the query anchors over mini-batches. The
proposed method achieves 71.3% and 75.3% in top-1 accuracy
respectively over 200 and 800 epochs of pre-training ResNet-
50 backbone on ImageNet1K without tricks such as multi-crop
or stronger augmentations. With Multi-Crop, it can be further
boosted into 75.7%. The source code and pre-trained model are
released in https://github.com/maple-research-lab/caco.

Index Terms—Contrastive Learning, Cooperative-Adversarial
Learning, Self-Supervised Learning, Positive+Negative Samples

I. INTRODUCTION

Unsupervised representation learning [1]–[3] has attracted
tremendous attentions recently as model pre-training becomes
an essential step for deep neural networks [4]. Among them
are a family of instance discrimination-based methods [5]–[8],
which train the network by distinguishing positive samples
from their negative counterparts given query anchors from
mini-batches during the learning process. Contrastive learning
[1] and many variants [9], [10] are one of the most popular
directions that achieved great success in last 3 years by pulling
the embeddings of positive pairs together and pushing that of
negative pairs away. In these methods, a critical question arises
regarding how to find the most critical positives and negatives
that can provide discriminative knowledge to self-supervise
the network training.

SimCLR [6] and MoCo [7], [11] are two representative
contrastive learning methods in this category. Given a query
anchor, SimCLR uses the other samples from the same mini-

X. Wang was with Department of Computer Science, Purdue Univer-
sity,West Lafayette, 47906, USA.

Y. Huang and D. Zeng were with the School of Communication and
Information Engineering, Shanghai University, Shanghai, 200444, China.

G-J. Qi was with the Futurewei Seattle Cloud Lab, Seattle, WA, 98006,
USA. Email: guojunq@gmail.com.

Manuscript received March, 2022; revised xx,xx; accepted
xx,xx.(Corrresponding author: Guo-Jun Qi)

batch as negative examples while an augmented view of the
anchor is used as the positive sample. On the contrary, the
MoCo maintains a memory bank as in [5], and uses the
negative samples from the memory bank. The memory bank is
built by queueing the learned representations over past mini-
batches in a FIFO (First-In-First-Out) fashion, and a momen-
tum update is applied to the key network whose weights are
an exponential moving average of the query networks over
time. SimCLR [6] usually needs a very large batch size to
involve sufficient negative samples in each iteration, making
it very computationally and memory demanding. Although the
MoCo also has a very large memory bank, it can be maintained
efficiently as the negative samples in it are collected on-the-fly
from the past mini-batches.

Both methods show that successful training strongly relies
on the construction of negative samples. Usually, harder nega-
tives that are closer and mixed with the query anchors contain
more discriminative information, making it harder to learn
shallow features providing shortcut solutions to distinguish
between positives and negatives. Along this direction, recent
works [12] use heuristic sampling by concentrating on the hard
negatives around queries.

On the contrary, a recent breakthrough demonstrates that
negative samples are directly learnable by treating them as a
part of network weights through adversarial contrastive learn-
ing [8], naturally resulting in hard negatives pushed towards
query anchors. It provides a more principled way to learn
rather than heuristically construct discriminative negatives.
Specifically, by treating the negatives and the encoder as two
adversarial players, the AdCo outperforms the SimCLR and
MoCo in terms of both accuracy and efficiency. However,
a question still remains – can we learn positive samples as
well just like those negative samples? In this paper, we strive
to answer it by revealing the relation between positive and
negative samples via a cooperative-adversarial principle.

Unlike negative samples, we will show that given a query
anchor, its positive sample ought to be learned cooperatively
rather than adversarially with the encoder network. This is
based on the observation that the representation of a positive
sample that cooperatively minimizes the contrastive loss with
the encoder will be pulled towards the given anchor, instead
of being pushed away if it were adversarially learned by
maximizing the loss. The cooperative positive sample will also
be chosen from the memory bank shared with the negative
samples. This could mitigate false negative problem as mem-
ory bank samples in close proximity of a query anchor can be

ar
X

iv
:2

20
3.

14
37

0v
1

 [
cs

.C
V

]
 2

7
M

ar
 2

02
2

https://github.com/maple-research-lab/caco

2

trained as positives, instead of being blindly treated as nega-
tives. Both positive and negative samples will be end-to-end
trained together with the encoder through such a Cooperative-
adversarial Contrastive (CaCo) learning approach. Moreover,
we propose to use the most probable positive samples that
are stable to update for an end-to-end training of the CaCo
model. Experiment results demonstrate the proposed method
achieves 71.3% and 75.3% in top-1 accuracy over 200 epochs
and 800 epochs of pre-training on Imagenet1K without multi-
crop augmentations. It can achieve 75.7% in top-1 accuracy
after multi-crop augmentations with 800 epochs pre-training.

The remainder of the paper is organized as follows. We
will review the related works in Section II, and revisit the
preliminary works on contrastive learning in Section III. The
proposed CaCo method is presented in Section IV, followed
by the experiments in Section V. We will conclude the paper
in Section VI.

II. RELATED WORK

In this section, we will review the related works on
contrastive learning from three perspectives - instance
discrimination-based contrastive learning, hard negative sam-
ples, and trainable memory bank.
Instance Discrimination. Most of recent works on contrastive
learning focus on instance discrimination-based methods [5].
Given a query anchor from a training minibatch, it explicitly
constructs the positive and negative samples, and self-trains
the representation network (i.e., an encoder) by distinguishing
positives from negatives. It minimizes the InfoNCE loss (a
form of the contrastive loss) that can be implemented as a
cross entropy by treating each instance as a positive or a
negative class. The positive sample of a query anchor is often
given as the augmented view of the same anchor. Depending
on different ways to form negatives, the contrastive learning
has many variants. Among them are the SimCLR [6] where
negatives come from the other samples of the same mini-batch,
as well as the MoCo [7], [11] where exists a memory bank
storing the representations over past mini-batches as negatives.
The former usually relies on a large size of mini-batches to
perform reliable training of the encoder, which is demanding
for computing and memory. MoCo addresses this problem by
reusing the obtained representation of past samples without
having to re-computing them for each mini-batches. While
some negative samples may belong to the same class as a
query anchor in instance discrimination methods (i.e, false
negatives), a nearest neighbor contrastive learning extends the
SimCLR and the MoCo by instead assigning the negative most
similar to the anchor as its positive [13], which somehow
mitigates the false negative problem.
Hard Negative Samples. It has been observed that the harder
negative samples that are difficult to distinguish from their
positive counterparts play a more critical role in contrastive
learning. They prevent the encoder from learning trivial fea-
tures to shortcut the aforementioned instance discrimination
task. There exist methods based on heuristically sampling
the samples in proximity of positive anchors. For example,
hard negative sampling methods [12], [14] apply importance

sampling to find harder negatives with a concentration pa-
rameter. Recent works [15], [16] on adversarial pre-training
also shed some light on learning representations resilient
against adversarial attacks. However, they do not directly
train negative samples end-to-end by treating memory bank
as learnable network weights as in [8]. Instead, they apply
the adversarial training to input images or augmented views
that may adversely affect positive samples that ought to be
constructed cooperatively as we find in this paper.
Trainable Memory Bank. The recent work on Adversarial
Contrastive learning (AdCo) [8] made a significant progress
to demonstrate that the hard negatives are directly learnable as
a part of network weights that are adversaries to the encoder
network in the other part. Instead of minimizing the InfoNCE
loss as the encoder, it maximizes it that pushes the learned
negatives towards their query anchors. It provides a principled
way to finding more discriminative negatives for an effective
training of the encoder. Along this line, an implicit feature
modification (IFM) [17] is proposed to iteratively update the
hard samples. The IFM also pushes the samples towards the
representation of anchors like the AdCo, but its step size is
set by a given level of budget. Instead, the iterative update
direction of these samples in the AdCo is derived from the
positive gradient of the InfoNCE loss as an adversary learner,
and its step size is proportional to the probability of being
a positive to a query anchor. In this way, the AdCo can
produce more discriminative negatives by making it harder
to distinguish them from the positive anchors.

In this paper, along the road outlined from instance discrim-
ination and trainable memory bank, we will unify the joint
training of both positive and negative samples given query
anchors. Both positives and negatives will share a memory
bank that is trained end-to-end. For this purpose, it needs to
answer two critical questions in contrastive learning:
• Can we end-to-end train positive and negative samples

jointly through a shared memory bank?
• If so, will adversarial criterion still work for training

positives?
The answer to these questions leads to the proposed
Cooperative-adversarial Contrastive (CaCo) learning presented
in this paper.

III. PRELIMINARIES AND NOTATIONS

In this section, we revisit the contrastive learning and its
adversarial training of memory bank samples. We will also
define several notations that will be used later.

A. Contrastive Learning

Consider an unlabeled example x called a query anchor in
the current training mini-batch and its representation z output
from an encoder network z , φθ(x) parameterized by θ. To
train the encoder φθ, a positive sample x+ of x is obtained by
applying an augmentation (e.g., random crop, color jitting and
Gaussian noises) to x. The resultant x+ provides an alternate
view of the original anchor x, along with its representation
z+. Usually, in a typical contrastive learning approach, the

3

anchor x is also given by applying a random augmentation to
the original image.

In instance discrimination-based contrastive learning such
as MoCo [7] and AdCo [8], together with mini-batches over
iterations, a memory bank M , {bj |j = 1, · · · ,K} of K
representations are also provided as negatives, in contrast to
the positive representation z+ for an anchor. The memory
bank is shared across all unlabeled anchors in a minibatch.
Such a bank can be constructed by queueing the obtained
representations from the past minibatches in a FIFO (First-
In-First-Out) fashion such as in MoCo [7]. Alternatively, a
more principled way is to directly learn the memory bank by
maximizing the contrastive loss (i.e., InfoNCE loss), which
has demonstrated more efficient to update the encoder [8]. In
both cases, the encoder parameters θ are trained by

θ? = argmin
θ

∑
x∈B

`(x)

over a mini-batch B with the following InfoNCE loss [1], [5]

`(x) = − log
exp(z · z+/τ)

exp(z · z+/τ) +
∑K
j=1 exp(z · bj/τ)

(1)

where · denotes the inner product between two feature vectors
and τ is the temperature controlling the sharpness of the
loss. SimCLR [11] also symmetrizes the loss by switching
z and z+ with the latter as a query anchor instead. Since
the representations are normalized to a unit norm, the inner
product gives the cosine similarity between samples.

B. Adversarial Contrastive Learning

Constructing the memory bank [5], [11], [18] plays a critical
role in contrastive learning. The negative samples in it gives
the important specification about how the underlying repre-
sentation network φθ ought to be learned by discriminating
between positives and negatives. Previous results show that
hard negatives could provide more useful information, since
hard negative samples can prevent the encoder from learning
trivial representations focusing on low-level features such as
local details rather than high-level semantic structures such as
object shapes and categories.

Furthermore, it has been shown that hard negative sam-
ples naturally result from an adversarial contrastive learning
(AdCo) approach [8], with a novel idea of directly learning
the negatives to form a memory bank. This is contrary to the
MoCo where the negative samples are collected by queue-
ing the representations from past minibatches heuristically.
Formally, the AdCo considers two adversary players – the
memory bank M and the representation encoder φθ. They
are trained in a mutually adversarial manner by

M?, θ? = arg max
bj∈M

min
θ

∑
x∈B

`(x) (2)

The previous results [8] show that the memory bank and
the encoder can be updated alternately, resulting in more
efficient representation learning since the negative samples can
be updated more efficiently to provide critical information to
specify the contrastive learning.

(a) MoCo

(b) AdCo

(c) CaCo

Fig. 1: This figure compares existing contrastive learning
methods – MoCo and AdCo – with the proposed CaCo. Both
MoCo and AdCo only has negative samples from the memory
bank, and MoCo queues these samples from the encoder
output over past minibatches without training them directly.
In contrast, given a query anchor z, CaCo directly learns the
cooperative positive bj+ and adversarial negatives bj , j 6= j+

from the shared memory bank through backward gradients
(grad).

Although the AdCo [8] has made a significant progress
to directly learn negative samples, the question still remains
regarding if the positive sample x+ and its representation z+

for an unlabeled anchor can also be learned directly. This will
give rise to a more elegant solution by unifying the end-to-
end training of both positives and negatives. Meanwhile, it
could also mitigate the false negative problem in contrastive
learning, since it is known that some negative samples in
the learned memory bank would be positive to an anchor
if their representations are sufficiently close. This inspires us
to develop the following Cooperative-adversarial Contrastive
(CaCo) learning method.

Figure 1 gives a glance at the differences between MoCo
[7], [11], AdCo [8] and the proposed CaCo. Both MoCo
and AdCo only has negative samples from the memory bank,

4

and MoCo queues these samples from the past mini-batches
without training them directly. In contrast, both positive and
negative samples are obtained from the shared memory bank
given a query anchor z, and they are directly trained through
backward gradients by minimizing and maximizing the loss,
respectively. The proposed CaCo will be presented in detail
below.

IV. CACO: COOPERATIVE-ADVERSARIAL CONTRASTIVE
LEARNING

In this section, we will present the proposed Cooperative-
adversarial Contrastive (CaCo) Learning. First we will explic-
itly integrate positive samples shared with negatives from the
memory bank into the contrastive learning in Section IV-A.
Then in Section IV-B we will show that positives and neg-
atives ought to play cooperative and adversarial role in the
network training, respectively, followed by the elaboration
on cooperative-adversarial training over minibatches in Sec-
tion IV-C.

A. Positives from Shared Memory Bank

Following the definition defined in the last section, consider
the representation z of an unlabeled anchor x. In the AdCo,
we assume its negative samples all come from the trainable
memory bank M. Now let us make a bold step by assuming
the corresponding positive representation also comes from
M. We denote the index of the positive sample in M by
j+ ∈ K , 1, · · · ,K. Thus, for x with embedding z, its
positive representation is given by bj+ ∈ M. Accordingly,
the contrastive InfoNCE loss becomes

`(x) , − log
exp(z · bj+/τ)

exp(z · bj+/τ) +
∑
j 6=j+ exp(z · bj/τ)

= − log
exp(z · bj+/τ)∑K
j=1 exp(z · bj/τ)

(3)

We note that since both the positive and negative samples come
from the shared memory bank, all terms in the denominator
can be written uniformly with the same set of the memory
bank representations, yielding a more elegant contrastive loss.

B. Cooperative Positives vs. Adversarial
Negatives

An unlabeled anchor x has both positive and negative
samples, which, as aforementioned, we assume are all directly
learnable. Following the gradient decent method, we can derive
the gradient of (3) over the positive sample bj+ and its
negative counterparts bj for j 6= j+ to update them.

It is not hard to obtain the following gradients

∂`(x)

∂bj+
= −1

τ

[
1− p(bj+ |z)

]
z (4)

and
∂`(x)

∂bj
=

1

τ
p(bj |z)z, j 6= j+

which are for the positive and negative samples, respectively.
Here, p(bj |z) denotes the probability of a memory bank
sample bj being positive to the input representation z,

p(bj |z) =
exp(z · bj/τ)∑K
k=1 exp(z · bk/τ)

(5)

Based on the idea behind the adversarial training, the
negative samples can thus be updated by maximizing `(x),
resulting in

bj ← bj +
η

τ
p(bj |z)z, j 6= j+,

where η is the learning rate for the gradient update. This
shows that each negative representation bj will be updated
towards the anchor representation z, which will make it harder
to distinguish the negative sample from the anchor z. The
previous results show that such harder negatives can provide
more useful information to train the encoder. In this sense,
the negative samples are adversarial players to the encoder.
For the adversarial negative example training, AdCo [8] has
carefully discussed it and utilized it for contrastive learning
successfully.

Now the question is: should we also make the positive
sample an adversary to the encoder? Let us take a look at
the gradient of the positive representation b+ in (4). If it were
assume to be an adversary, it would be updated by

bj+ ← bj+−
η

τ

[
1− p(bj+ |z)

]
z

In this case, the positive bj+ would be pushed away from
the anchor z, instead of being pushed towards it. This causes
a dilemma – what we chose as a positive sample would
eventually end up being pushed away from the anchor, making
it more likely to be a negative rather than a positive sample.
Obviously, this is not our intention to learn a positive sample.

This shows that the positive sample should be a cooperative
player rather than an adversary to the encoder by minimizing
the contrastive loss. This results in the following update to the
positive sample

bj+ ← bj++
η

τ

[
1− p(bj+ |z)

]
z

which in turn pushes the positive representation towards the
anchor, in line with our intuition to learn the positive sample
close to the anchor.

C. Cooperative-Adversarial Training

The above analysis yields the following Cooperative-
Adversarial Contrastive (CaCo) objective∑

z∈B
min
bj+ ,θ

max
bj ,j 6=j+

− log
exp(z · bj+/τ)∑K
j=1 exp(z · bj/τ)

(6)

where both the positive sample bj+ and the encoder with
the parameters θ minimizes the loss, thus being cooperative
players, while the negative samples bj , j 6= j+ are adversary
instead to maximize it.

The above CaCo objective is defined over a mini-batch B.
One can assign a distinct positive sample from the memory
bank to each anchor z in B. In other words, the positive index

5

Fig. 2: The diagram of CaCo. CaCo trains a visual representa-
tion encoder and a cooperative-adversarial memory bank at the
same time. For a encoded query q, we used its counterpart key
k by the key encoder to identify its most probable positive out
of memory bank as its positive pair, while all other embeddings
in the memory bank are its negative pairs. Then the network
is optimized by minimizing the contrastive loss, the memory
bank is coopertive-adversarial optimized as discussed in the
paper.

j+ is a function of z in (6). Thus, for a memory bank sample
bj , we use P+

j (N−j resp.) ⊆ B to denote all anchors z’s, for
which bj is a positive (negative resp.) sample. For each bj ,
we have P+

j

⋂
N+
j = ∅ and P+

j

⋃
N+
j = B. Then, according

to (6), all memory bank samples can be updated by

bj ← bj−
∑
z∈P+

j

η
∂`(x)

∂b+j
+
∑

z∈N−
j

η
∂`(x)

∂bj
(7)

with a positive learning rate η, where the minus “−” and the
plus “+” in front of the last two terms reflect the cooperative
and the adversarial updates to bj .
Effect of l2-normalization on memory bank updates. It is
worth noting that the gradient in (4) was derived by assuming
both z and all memory bank samples bj’s have already been
normalized to a unit length. Even though they are normalized,
the gradient update will result in new vectors not normalized
to a unit length anymore. Thus, an l2-normalization is often
required after the gradient update. Such a normalization can
be built into (3) by replacing z and bj with z/‖z‖2 and

Method batch size top-1

InstDisc [5] 256 58.5
SimCLR [6] 256 61.9
CPC v2 [9] 512 63.8
PCL v2 [19] 256 67.6
MoCo v2 [11] 256 67.5
PIC [20] 512 67.6
InfoMin Aug [21] 256 70.1
SimSiam [22] 256 70.0
SwAV [23] 4096 69.1
NNCLR [13] 4096 70.7
BYOL [24] 4096 70.6
AdCo [8] 256 68.2

CaCo 256 70.9
CaCo 1024 71.3
CaCo 4096 72.0

TABLE I: Top-1 accuracy under the linear evaluation on Ima-
genet1K dataset with the ResNet-50 backbone. All compared methods
use single-crop augmentations pre-trained over 200 epochs.

bj/‖bj‖2, respectively. This results in the following gradient

∂`(x)

∂bj+
= −1

τ

[
1− p(bj+ |z)

] ‖bj+‖22z− z · bj+bj+
‖z‖2‖bj+‖32

This shows how to update the positive sample end-to-end
by viewing its representation bj+ as free network weights.
For simplicity, one can assume every time after a mini-batch
update, bj+ and z are normalized back to a unit length such
that we always keep the current samples ‖bj+‖2 = 1 and
‖z‖2 = 1. In this case, the above gradient can be simplified
to

∂`(x)

∂bj+
= −1

τ

[
1− p(bj+ |z)

]
(z− z · bj+bj+)

= −1

τ

[
1− p(bj+ |z)

]
(I− bj+b

T
j+)z

(8)

Similarly, we can derive the gradient over negative samples
by assuming all bj’s are normalized to a unit norm after each
gradient update

∂`(x)

∂bj
=

1

τ
p(bj |z)(I− bjb

T
j)z, j 6= j+ (9)

From (8) and (9), we can see that both positive and negative
samples will be updated towards the transformed direction
Tjz with Tj = I− bjb

T
j . It is easy to verify that

• The gradient Tjz is orthogonal to bj , i.e., bTj Tjz =
0. It suggests that the gradient is tangent to the unit-
hypersphere such that it tends to keep the unit norm of
bj unchanged as expected.

• Along the gradient, the sample bj also tends to be pushed
closer towards z since their cosine similarity zTTjz =
1− (z · bj)2 ≥ 0 is nonnegative.

6

Fig. 3: The surrogate images of the Most Probable Positive (MPP) and random negatives from the learned memory bank for
some query examples.

Now, we can rewrite the gradient update (7) to all samples
j = 1, · · · ,K in the memory bank as

bj ← bj +
∑
z∈P+

j

η

τ
[1− p(bj |z)]Tjz

︸ ︷︷ ︸
cooperative positives

+
∑

z∈N−
j

η

τ
p(bj |z)Tjz

︸ ︷︷ ︸
adversarial negatives

.
(10)

From this update, we observe that

• For cooperative positives, the more probable bj is posi-
tive to z with a higher p(bj |z), the less it will be pushed
towards z. This is intuitive as a positive sample already
closer to its anchor z does not need to be updated too
much;

• For adversarial negatives, we have an opposite observa-
tion – the more probable bj is positive to z, the more
it should be pushed towards the anchor. In this way,
it will become a harder negative to be distinguished

from the positive counterparts, thereby providing more
discriminative information to update the encoder.

The Most Probable Positive. The last question we need to
answer is how we choose the positive sample given an anchor.
Here, we propose to use the Most Probable Positive (MPP)
sample resulting in the minimum change that favors a stable
update for the training purpose.

Specifically, once a positive sample bj+ is chosen for
an anchor z, its representation will be updated along the
(negative) gradient based on (8). Ideally, we expect that the
updated sample will still be positive to the anchor. This ensures
the positive assignments in P+

j (and thus N−j as well) be as
stable as possible so that they can be updated stably based on
(10).

For this reason, we note that [1− p(bj |z)] is the step size
(up to a constant coefficient 1

τ) to update the positive sample
bj+ in (8). To minimize the change to the positive sample, we
choose the positive sample that minimizes this step size,

j+ = argmin
j

1− p(bj |z) = argmax
j
p(bj |z), (11)

which results in the Most Probable Positive (MPP) sample

7

Method epochs batch size top-1

SeLa [25] 400 256 61.5
PIRL [26] 800 1024 63.6
CMC [10] 240 128 66.2
SimCLR [6] 800 4096 69.3
PIC [20] 1600 512 70.8
MoCo v2 [11] 800 256 71.1
InfoMin Aug [21] 800 256 73.0
SimSiam [22] 800 256 71.3
SwAV [23] 800 4096 71.8
NNCLR [13] 800 1024 72.9
BYOL [24] 1000 4096 74.3
AdCo [8] 800 256 72.8
MoCo v3 [27] 1000 4096 74.6
NNCLR [13] 800 4096 74.9

CaCo 800 1024 74.1
CaCo 800 4096 75.3

TABLE II: Top-1 accuracy under the linear evaluation on Im-
agenet1K with the ResNet-50 backbone. The table compares the
methods using a single crop augmentation pre-trained with more
epochs.

to the anchor z. Intuitively, the chosen positive bj+ will be
the one that minimizes the error in assigning a false positive
sample to z based on p(bj |z) in (5).

To address the most probable positive clearly, the diagram of
the training process is illustrated in Fig. 2. For a fair compari-
son with the SOTA methods such as MoCo [7] and AdCo [8],
the CaCo also has two streams composed of a momentum
encoder and a query encoder, where the momentum encoder
is used to identify the positives in the memory bank, and the
contrastive loss will be propagated to query encoder and mem-
ory bank to train them. All positive and negative samples are
treated as free parameters like the network weights, and they
are directly learned through gradient descent/ascent by back-
propagating the contrastive loss in the proposed cooperative-
adversarialfashion, as shown in Eqn. (10).
Avoidance of collapse. To explain the avoidance of collapse,
it is worth noting that both positive and negative samples share
the memory bank across query anchors in a mini-batch, and
they are dynamically updated over iterations in the proposed
cooperative-adversarial training. In other words, a memory
bank sample b can be positive for one query anchor, while
being negative for another one, which keeps the memory bank
from collapsing to a single trivial point. Memory bank samples
will also be updated over iterations, and different positives will
be assigned to the feature representation z of a sample, keeping
the latter from collapsing to a prefixed point b+.

V. EXPERIMENTS

In this section, we evaluate the proposed CaCo and compare
the results with the other unsupervised models including the
state-of-the-art contrastive learning methods.

A. Implementation Details

For a fair comparison with the existing models [6], [7],
we adopt the ResNet-50 as the backbone for unsupervised

Method epochs batch size top-1

SwAV [23] 800 4096 75.3
DINO [28] 800 4096 75.3
NNCLR [13] 800 4096 75.6

CaCo 800 2048 75.7

TABLE III: Top-1 accuracy under the linear evaluation on Im-
agenet1K with the ResNet-50 backbone. The table compares the
methods using same multi-crop augmentation in SwAV [23] pre-
trained with more epochs.

Method Epoch Time(h) GPU GPU Time
/epoch

MoCo v2 [11] 200 53.0 8×V100 2.12
BYOL [24] 1000 8.0 512×TPU 4.10
SWAV* [23] 800 50 64×V100 4.06
AdCo [8] 200 56.5 8×V100 2.26

CaCo 200 56 8×V100 2.24

TABLE IV: Running time comparison of different methods.
GPU time/Epoch means sum of time cost of all GPUs to train
an epoch. Here the time are measured under the asymmetrical
settings to have fair comparison with early methods

pre-training on ImageNet. The output feature map from the
top ResNet-50 block is average-pooled and projects to a 256-
D feature vector through three MLP layers with two 2048-D
hidden layers and the ReLU [6]. The resultant vector is `2 nor-
malized to calculate the cosine similarity. We adopt the single-
crop protocol used in [6], [7], [11] to augment data in single-
crop experiments and we used multi-crop augmentations used
in literature [23] to apply multi-crop in final experiments that
can further boost performances.

We adopt up to 4, 096 images in a mini-batch for pre-
training across up to four 8-Nvidia Tesla V100 GPU servers
for single-crop. For the multi-crop setting, based on the same
number of four 8-Nvidia Tesla V100 GPU servers, we adopt a
batch size of 2, 048 images for pre-training. We will show that
the proposed CaCo could also achieve competitive results with
smaller batch sizes. By convention, the number of negative
adversaries is set to 65, 536 to make a fair comparison with
the other methods [7], [8].

For the network pre-training, we adopt an initial learning
rate of 0.03 ∗ batch size/256 and 0.3 ∗ batch size/256 in
the SGD [29] and LARS optimizer [30] for updating the
backbone network for smaller (< 1024) and larger (≥ 1024)
batch sizes, respectively, along with a weight decay of 10−4

and a momentum of 0.9. The memory bank is always directly
optimized by SGD optimizer with learning rate 3.0 without
weight decay and a momentum of 0.9. The cosine scheduler
[31] is used to gradually decay the learning rates. We set the
same temperate τ to 0.08 when updating the memory bank and
network backbone. After the backbone network is initialized,
its output feature vectors over randomly drawn training images
are used to initialize the memory bank. After that, the encoder
and the shared memory bank with both positives and negatives
are alternately updated.

8

Method SUN397 Cars Food101 Aircraft VOC2007 DTD Pets Caltech-101 Flowers CIFAR10 CIFAR100

SimCLR [6] 60.6 49.3 72.8 49.8 81.4 75.7 84.6 89.3 92.6 90.5 74.4
MoCo v2 † [11] 61.1 67.0 71.5 50.9 87.1 74.5 87.6 91.4 90.0 90.9 74.8
AdCo ‡ [8] 62.2 66.8 73.8 63.6 92.4 75.5 86.8 91.8 93.7 91.2 74.3
BYOL [24] 62.2 67.8 75.3 60.6 82.5 75.5 90.4 94.2 96.1 91.3 78.4
NNCLR [13] 62.5 67.1 76.7 64.1 83.0 75.5 91.8 91.3 95.1 93.7 79.0

CaCo 64.6 73.8 75.4 66.0 92.6 76.8 91.9 94.4 96.1 92.6 76.0

TABLE V: Transfer learning results on various datasets with ResNet-50 pretrained with Imagenet1K over 800 epochs. The
results are obtained with † https://github.com/facebookresearch/moco under the CC-BY-NC 4.0 license and ‡ https://github.
com/maple-research-lab/AdCo/ under MIT license. Other results were reported directly in the other papers.

Method Symmetric Loss Batch Size #Negative Samples #Params. Top-1 (GPU · Time)
/epoch

SimCLR [6] X 8192 - - 67.0 1.92
MoCo v2 [11] X 256 65536 8M 70.2 3.34

BYOL [24] X 4096 - 1M 70.6 4.10
SimSiam [22] X 256 - 2M 70.0 -

AdCo [8] X 256 65536 8M 70.5 3.50
AdCo [8] X 256 16384 2M 70.0 3.46
AdCo [8] X 256 8192 1M 70.2 3.45

CaCo X 4096 37268 4M 71.7 3.83
CaCo X 4096 65536 8M 72.0 3.84
CaCo X 4096 98304 12M 72.1 3.86

TABLE VI: Top-1 accuracy under the linear evaluation on ImageNet with the ResNet-50 backbone. The table compares the
methods over 200 epochs of pretraining. # Parameters: the parameter counts of negative samples, as to BYOL and SimSiam,
it means the parameter counts of the predictor.

Fig. 4: Plot of Mean Maximum Positive Probability and NN
accuracy (based on 20% training set) over 200 epochs of
pretraining on Imagenet1K.

B. Results on Imagenet1K

First, we perform a linear evaluation by fine-tuning a fully
connected classifier for 100 epochs on top of the frozen
2048-D feature vector from the ResNet-50 backbone. Table I
reports the results on Imagenet1K after 200 epochs of pre-
training. With different batch sizes of 256, 1024 and 4, 096
for network pre-training, CaCo even outperforms the state-
of-the-art SWAV, BYOL and NNCLR with a much larger

batch size of 4096 when we used small batch-size. It is well
known that the performances of these SOTA models improve
with larger batch sizes [13], [23], [24]. However, larger batch
sizes require multiple GPU servers with at least 32 Nvidia
V100 GPU cards to accommodate 4096 images. This makes
the network pre-training unaffordable and inconvenient to set
up across multiple servers for most of research teams. The
proposed CaCo not only outperforms SOTA methods with
much smaller batch sizes, but also allows affordable network
pre-training on a single GPU server. Our training time is on
par with AdCo [8], MoCo [18] as shown in Table IV

For single-crop settings, we also report the results with more
than 200 pre-training epochs in Table II. Here we run the CaCo
with a batch size of 1, 024 and 4, 096 images to compare with
the other methods. Here 1, 024 is the largest size that can fit the
GPU memory of a single 8×V 100 server. It still outperforms
the SOTA models with various batch sizes and epochs. This
makes the CaCo affordable and competitive for network pre-
training. It is worth noting that here we do not apply any
tricks such as multi-crop augmentations [23], [32] and stronger
augmentations [33] that have shown effective in improving
the accuracy in unsupervised learning literature. This shows
the CaCo is an elegant method easier to implement without
relying on those tricks.

To compare with the methods using multi-crop augmenta-
tions [23], we have conducted the experiments following the
same protocol used in SwAV [23]. The results are shown in
Table. III. We outperformed the other methods in this setting
even with a smaller batch size of 2, 048 based on the same
number of four 8-Nvidia Tesla V100 GPU servers. We believe

https://github.com/facebookresearch/moco
https://github.com/maple-research-lab/AdCo/
https://github.com/maple-research-lab/AdCo/

9

the performance 75.7% can be further boosted if we can
increase the batch size to 4, 096 as used in other methods.
However, this requires doubling computing resources, which
makes it unaffordable for many research groups.

C. Transfer Learning Results

We also perform transfer learning tasks on various datasets1.
The ResNet50 backbone was pretrained on Imagenet1K over
800 epochs with a batch size of 4096. By following the linear
evaluation protocol in [24], a fully connected layer of classifier
is trained upon the frozen backbone.

Table V reports the results under the linear evaluation
compared with the other models. The results show the CaCo
performs the best on 8 out of these 11 datasets among
the compared self-supervised methods. This demonstrates the
CaCo representation pre-trained on the Imagenet1K dataset
can well generalize to downstream tasks on a variety of
datasets.

D. Ablation Studies

In this section, we present a thorough analysis of CaCo.
Here we focused on two most important factors of CaCo:
the size of the memory bank (the sum of the positives and
negatives) and the contribution of positives and negatives to
the performance.

Size of the memory banks. We set up the experiments with
batch-size 4096 with 200 epoch pre-training, which indicates
the number of positive is always 4096. We only change the
memory bank size across different experiments. As shown in
Table VI, we changed the memory size from 4M to 12M and
observed the clear improvement of performance from 71.7%
to 72.1%. That’s to say, CaCo can be benefited by the size
increase of memory bank. This is reasonable since bigger
memory bank size has two benefits: 1) more accurate positives
by checking the most probable positive from a bigger memory
bank; 2) the task become more challenge since encoder needs
to select the correct positive out of a bigger pool including
more negative pairs.

Contribution of positives and negatives. We conducted
an ablation study to compare the contribution of positives
and negatives. Here all experiments are based on a batch
size of 1024 with 200 epoch pre-training. Here None setting
is without memory bank, while both positive and negatives
directly coming from the concurrent mini-batch. Here Positive
setting is similar to that NNCLR [13], where we keep a queue
to save the embeddings of previous batches and we select the
nearest neighbor of query in memory bank as positive while
negatives are from the concurrent mini-batch. Here Negative
setting is similar to AdCo [8], where the memory bank is
adversarially trained and serves as the negatives, and the
positives are from the current mini-batch. Here P+N setting
is our CaCo setting, where both positives and negatives are
from the memory bank and memory bank is collaboratively
and adversarially trained by the contrastive loss in an end-to-
end fashion. We keep all other settings to the same to have

1The link to Birdsnap dataset is broken or refers to a dataset with missing
data, making it difficult to make a direct comparison.

a fair comparison. The results are shown in Table VII. It’s
clear that CaCo clearly improved compared to using positive
or negative alone.

E. Result Analysis

1) Quality of Learned Positives and Negatives: The learned
positives and negatives in memory bank are “virtual” samples
that do not necessarily correspond to the features of some
known images. To understand a virtual sample, one can find
its most similar image from Imagenet in the feature space and
use it as the surrogate.

We randomly choose some images as queries, and show the
surrogates of the most probable positive samples (cf. Eq. (11))
as well as the negative samples from the memory bank in
Figure 3. We can see that the positives (negatives) belong to
the same (different) class of query images. This demonstrates
that the queries successfully learn the true positives and true
negatives from the memory bank.

Moreover, given a query, the maximum probability corre-
sponding to the most probable positive in (11) measures the
likelihood of obtaining a true positive by the model. We plot
the curve of the mean maximum positive probability over
epochs in Figure 4, along with the nearest neighbor (NN)
accuracy based on 20% Imagenet1K training set. We plot the
NN accuracy to measure the performance of the pre-trained
representation as it can be computed in a few seconds.

We can see that at the beginning, the probability is close to
zero as randomly choosing a positive sample from the memory
bank of 65, 536 samples is as low as 1.5 × 10−5. After 200
epochs of pretraining, the probability increase significantly
by 103 times to above 1.2 × 10−2. The increase in the
mean maximum positive probability is consistent with the
increase in the NN accuracy. It suggests that high-quality
positives and negatives are eventually learned, leading to better
representations learned over epochs, and this partly explains
the success of the CaCo method.

2) Visualization of Representations: In Figure 5, we also
use t-SNE to visualize the feature embeddings on CIFAR10,
PETS and VOC2017 datasets. The encoder is learned by CaCo
over 800 epochs on Imagenet1k dataset without labels. It
shows that the feature embeddings obtained via t-SNE exhibit
distributional patterns well aligned with the classes of various
colors on these datasets. This suggests the learned unsuper-
vised features on one dataset well generalize to downstream
datasets without access to their labels.

VI. CONCLUSIONS

This paper presents Cooperative-adversarial Contrastive
(CaCo) learning for network pre-training. It directly learns
both positives and negatives over a shared memory bank as
cooperators and adversaries to an encoder by minimizing and
maximizing the underlying contrastive loss, respectively. This
results in an end-to-end training of positives and negatives
iteratively updated towards query anchors along the directions
tangent to the unit hypersphere. Jointly trained with the
encoder, unsupervised features are learned to distinguish the

10

(a) CIFAR10 (b) PETS (c) VOC2017

Fig. 5: t-SNE visualization of learned representations on CIFAR10, PETS and VOC2017 datasets, where different colors
represent different classes on these datasets. The encoder is pre-trained by CaCo over 800 epochs on Imagenet1K.

Setting Batch Size #Positive Pool #Negative Pool Top-1

None 1024 1024 1024 70.2
Positive 1024 65536 1024 70.7
Negative 1024 1024 65536 70.6

Positive+Negative 1024 65536 65536 71.3

TABLE VII: Top-1 accuracy under the linear evaluation on ImageNet with the ResNet-50 backbone. The table compares
different settings over 200 epochs of pretraining. Here None setting denotes both positive and negative are from current mini-
batch; Positive setting denotes the positive embedding is from memory bank and the negative embedding is from the current
mini-batch; Negative setting suggests the positive embedding is from current mini-batch and the negative embedding is from
the memory bank; P+N is our CaCo setting, where both positive and negative are from the memory bank. Here the #Positive
Pool and #Negative Pool suggests the total number of embeddings that we selected from to serve as positive and negatives,
respectively.

learned adversarial negatives from the most probable cooper-
ative positive given each query anchor. Experiments demon-
strate that the CaCo outperforms the SOTA self-supervised
methods on multiple downstream tasks without relying on
multi-crop augmentations.

ACKNOWLEDGMENT

REFERENCES

[1] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[2] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bach-
man, A. Trischler, and Y. Bengio, “Learning deep representations
by mutual information estimation and maximization,” arXiv preprint
arXiv:1808.06670, 2018.

[3] L. Zhang, G.-J. Qi, L. Wang, and J. Luo, “Aet vs. aed: Unsupervised
representation learning by auto-encoding transformations rather than
data,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 2547–2555.

[4] G.-J. Qi and J. Luo, “Small data challenges in big data era: A survey of
recent progress on unsupervised and semi-supervised methods,” arXiv
preprint arXiv:1903.11260, 2019.

[5] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning
via non-parametric instance discrimination,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
3733–3742.

[6] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” arXiv preprint
arXiv:2002.05709, 2020.

[7] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum con-
trast for unsupervised visual representation learning,” arXiv preprint
arXiv:1911.05722, 2019.

[8] Q. Hu, X. Wang, W. Hu, and G.-J. Qi, “Adco: Adversarial contrast
for efficient learning of unsupervised representations from self-trained
negative adversaries,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 1074–1083.

[9] O. J. Hénaff, A. Srinivas, J. De Fauw, A. Razavi, C. Doersch, S. Eslami,
and A. v. d. Oord, “Data-efficient image recognition with contrastive
predictive coding,” arXiv preprint arXiv:1905.09272, 2019.

[10] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,” arXiv
preprint arXiv:1906.05849, 2019.

[11] X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with mo-
mentum contrastive learning,” arXiv preprint arXiv:2003.04297, 2020.

[12] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and D. Lar-
lus, “Hard negative mixing for contrastive learning,” arXiv preprint
arXiv:2010.01028, 2020.

[13] D. Dwibedi, Y. Aytar, J. Tompson, P. Sermanet, and A. Zisserman, “With
a little help from my friends: Nearest-neighbor contrastive learning of
visual representations,” arXiv preprint arXiv:2104.14548, 2021.

[14] J. Robinson, C.-Y. Chuang, S. Sra, and S. Jegelka, “Contrastive learning
with hard negative samples,” arXiv preprint arXiv:2010.04592, 2020.

[15] C.-H. Ho and N. Vasconcelos, “Contrastive learning with adversarial
examples,” arXiv preprint arXiv:2010.12050, 2020.

[16] M. Kim, J. Tack, and S. J. Hwang, “Adversarial self-supervised con-
trastive learning,” arXiv preprint arXiv:2006.07589, 2020.

[17] J. Robinson, L. Sun, K. Yu, K. Batmanghelich, S. Jegelka, and S. Sra,
“Can contrastive learning avoid shortcut solutions?” arXiv preprint
arXiv:2106.11230, 2021.

[18] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9729–9738.

[19] J. Li, P. Zhou, C. Xiong, R. Socher, and S. C. Hoi, “Prototypical
contrastive learning of unsupervised representations,” arXiv preprint
arXiv:2005.04966, 2020.

11

[20] Y. Cao, Z. Xie, B. Liu, Y. Lin, Z. Zhang, and H. Hu, “Parametric instance
classification for unsupervised visual feature learning,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

[21] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola,
“What makes for good views for contrastive learning,” arXiv preprint
arXiv:2005.10243, 2020.

[22] X. Chen and K. He, “Exploring simple siamese representation learning,”
arXiv preprint arXiv:2011.10566, 2020.

[23] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments,” arXiv preprint arXiv:2006.09882, 2020.

[24] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar et al.,
“Bootstrap your own latent: A new approach to self-supervised learning,”
arXiv preprint arXiv:2006.07733, 2020.

[25] Y. M. Asano, C. Rupprecht, and A. Vedaldi, “Self-labelling via
simultaneous clustering and representation learning,” arXiv preprint
arXiv:1911.05371, 2019.

[26] I. Misra and L. v. d. Maaten, “Self-supervised learning of pretext-
invariant representations,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 6707–6717.

[27] X. Chen, S. Xie, and K. He, “An empirical study of training self-
supervised vision transformers,” arXiv preprint arXiv:2104.02057, 2021.

[28] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin, “Emerging properties in self-supervised vision transformers,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 9650–9660.

[29] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[30] Y. You, I. Gitman, and B. Ginsburg, “Large batch training of convolu-
tional networks,” arXiv preprint arXiv:1708.03888, 2017.

[31] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[32] H. Xu, H. Xiong, and G.-J. Qi, “K-shot contrastive learning of visual
features with multiple instance augmentations,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021.

[33] X. Wang and G.-J. Qi, “Contrastive learning with stronger augmenta-
tions,” arXiv preprint arXiv:2104.07713, 2021.

	I Introduction
	II Related Work
	III Preliminaries and Notations
	III-A Contrastive Learning
	III-B Adversarial Contrastive Learning

	IV CaCo: Cooperative-adversarial Contrastive Learning
	IV-A Positives from Shared Memory Bank
	IV-B Cooperative Positives vs. Adversarial Negatives
	IV-C Cooperative-Adversarial Training

	V Experiments
	V-A Implementation Details
	V-B Results on Imagenet1K
	V-C Transfer Learning Results
	V-D Ablation Studies
	V-E Result Analysis
	V-E1 Quality of Learned Positives and Negatives
	V-E2 Visualization of Representations

	VI Conclusions
	References

