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Abstract—Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep
models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a
powerful recognition model for learning high-quality image representations and has led to remarkable breakthroughs in generic visual
recognition. However, long-tailed class imbalance, a common problem in practical visual recognition tasks, often limits the practicality of
deep network based recognition models in real-world applications, since they can be easily biased towards dominant classes and perform
poorly on tail classes. To address this problem, a large number of studies have been conducted in recent years, making promising
progress in the field of deep long-tailed learning. Considering the rapid evolution of this field, this paper aims to provide a comprehensive
survey on recent advances in deep long-tailed learning. To be specific, we group existing deep long-tailed learning studies into three main
categories (i.e., class re-balancing, information augmentation and module improvement), and review these methods following this
taxonomy in detail. Afterward, we empirically analyze several state-of-the-art methods by evaluating to what extent they address the issue

of class imbalance via a newly proposed evaluation metric, i.e., relative accuracy. We conclude the survey by highlighting important
applications of deep long-tailed learning and identifying several promising directions for future research.

Index Terms—Long-tailed Learning, Deep Learning, Imbalanced Learning
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1 INTRODUCTION

EEP learning allows computational models, composed of

multiple processing layers, to learn data representations with
multiple levels of abstraction [1], [2] and has made incredible
progress in computer vision [3], [4], [5], [6], [7], [8]. The key
enablers of deep learning are the availability of large-scale datasets,
the emergence of GPUs, and the advancement of deep network
architectures [9]. Thanks to the strong ability of learning high-
quality data representations, deep neural networks have been
applied with great success to many visual discriminative tasks,
including image classification [6], [10], object detection [7], [11]
and semantic segmentation [8], [12].

In real-world applications, training samples typically exhibit a
long-tailed class distribution, where a small portion of classes have
a massive number of sample points but the others are associated
with only a few samples [13], [14], [15], [16]. Such class imbalance
of training sample numbers, however, makes the training of deep
network based recognition models very challenging. As shown in
Fig. 1, the trained model can be easily biased towards head classes
with massive training data, leading to poor model performance
on tail classes that have limited data [17], [18], [19]. Therefore,
the deep models trained by the common practice of empirical risk
minimization [20] cannot handle real-world applications with long-
tailed class imbalance, e.g., face recognition [21], [22], species
classification [23], [24], medical image diagnosis [25], urban scene
understanding [26] and unmanned aerial vehicle detection [27].

To address long-tailed class imbalance, massive deep long-
tailed learning studies have been conducted in recent years [15],
[16], [28], [29], [30]. Despite the rapid evolution in this field, there
is still no systematic study to review and discuss existing progress.
To fill this gap, we aim to provide a comprehensive survey for
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Fig. 1. The label distribution of a long-tailed dataset (e.g., the iNaturalist
species dataset [23] with more than 8,000 classes). The head-class
feature space learned on these sampled is often larger than tail classes,
while the decision boundary is usually biased towards dominant classes.

recent long-tailed learning studies conducted before mid-2021.
As shown in Fig. 2, we group existing methods into three main
categories based on their main technical contributions, i.e., class
re-balancing, information augmentation and module improvement;
these categories can be further classified into nine sub-categories:
re-sampling, class-sensitive learning, logit adjustment, transfer
learning, data augmentation, representation learning, classifier
design, decoupled training and ensemble learning. According to this
taxonomy, we provide a comprehensive review of existing methods,
and also empirically analyze several state-of-the-art methods by
evaluating their abilities of handling class imbalance using a new
evaluation metric, namely relative accuracy. We conclude the
survey by introducing several real-world application scenarios of
deep long-tailed learning and identifying several promising research
directions that can be explored by the community in the future.
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Fig. 2. Taxonomy of existing deep long-tailed learning methods.

We summarize the key contributions of this survey as follows.

o To the best of our knowledge, this is the first comprehensive
survey of deep long-tailed learning, which will provide a
better understanding of long-tailed visual learning with
deep neural networks for researchers and the community.

e We provide an in-depth review of advanced long-tailed
learning studies, and empirically study state-of-the-art
methods by evaluating to what extent they handle long-
tailed class imbalance via a new relative accuracy metric.

o We identify four potential directions for method innovation
as well as eight new deep long-tailed learning task settings
for future research.

The rest of this survey will be organized as follows: Section 2
presents the problem definition and introduces widely-used datasets,
metrics and applications. Section 3 provides a comprehensive
review of advanced long-tailed learning methods and Section 4
empirically analyzes several state-of-the-art methods based on
a new evaluation metric. Section 5 identifies future research
directions. We conclude the survey in Section 6.

2 PROBLEM OVERVIEW
2.1 Problem Definition

Deep long-tailed learning seeks to learn a deep neural network
model from a training dataset with a long-tailed class distribution,
where a small fraction of classes have a massive number of samples,
and the rest of the classes are associated with only a few samples
(c.f. Fig. 1). Let {x;, y; }I~, be the long-tailed training set, where
each sample x; has a corresponding class label y;. The total
number of training set over K classes is n = > ;. Ny, where
ny, denotes the data number of class k; let 7 denote the vector of
label frequencies, where 7, = ny /n indicates the label frequency
of class k. Without loss of generality, a common assumption in
long-tailed learning [31], [32] is that the classes are sorted by
cardinality in decreasing order (i.e., if ¢; < 42, then n;, > n,;,,
and nq1 > ng), and then the imbalance ratio is defined as ni1/n k.

This task is challenging due to two difficulties: (1) imbalanced
data numbers across classes make deep models biased to head
classes and performs poorly on tail classes; (2) lack of tail-class
samples makes it further challenging to train models for tail-class
classification. Such a task is fundamental and may occur in various
visual recognition tasks, such as image classification [15], [32],
detection [19], [33] and segmentation [26], [34], [35].

TABLE 1
Statistics of long-tailed datasets. “Cls.” indicates image classification;
“Det.” represents object detection; “Seg.” means instance segmentation.

Task Dataset ## classes  # training data  # test data
ImageNet-LT [15] 1,000 115,846 50,000
Cls CIFAR100-LT [18] 100 50,000 10,000
. Places-LT [15] 365 62,500 36,500
iNaturalist 2018 [23] 8,142 437,513 24,426
Det/Se LVIS v0.5 [36] 1,230 57,000 20,000
/oee. LVIS v1 [36] 1,203 100,000 19,800
. VOC-LT [37] 20 1,142 4,952
Multi-label CIs. o001 [37] 80 1,909 5,000
Video Cls. VideoLT [38] 1,004 179,352 51,244

2.2 Datasets

In recent years, a variety of visual datasets have been released for
long-tailed learning, differing in tasks, class numbers and sample
numbers. In Table 1, we summarize nine visual datasets that are
widely used in the deep long-tailed learning community.

In long-tailed image classification, there are four benchmark
datasets: ImageNet-LT [15], CIFAR100-LT [18], Places-LT [15],
and iNaturalist 2018 [23]. The previous three are sampled from
ImageNet [39], CIFAR100 [40] and Places365 [41] following
Pareto distributions, respectively, while iNaturalist is a real-world
long-tailed dataset. The imbalance ratio of ImageNet-LT, Places-LT
and iNaturalist are 256, 996 and 500, respectively; CIFAR100-LT
has three variants with various imbalance ratios {10, 50, 100}.

In long-tailed object detection and instance segmentation,
LVIS [36], providing precise bounding box and mask annotations,
is the widely-used benchmark. In multi-label image classification,
the benchmarks are VOC-LT [37] and COCO-LT [37], which are
sampled from PASCAL VOC 2012 [42] and COCO [43], respec-
tively. Recently, a large-scale “untrimmed” video dataset, namely
VideoLT [38], was released for long-tailed video recognition.

2.3 Evaluation Metrics

Long-tailed learning seeks to train a well-performing model on the
data with long-tailed class imbalance. To evaluate how well class
imbalance is resolved, the model performance on all classes and
the performance on class subsets (i.e., head, middle and tail classes)
are usually reported. Note that the evaluation metrics should treat
each class equally. Following this principle, top-1 accuracy or
error rate is often used for balanced test sets, where every test
sample is equally important. When the test set is not balanced,
mean Average Precision (mAP) or macro accuracy is often adopted
since the two metrics treat each class equally. For example, in
previous studies, top-1 accuracy or error rate was widely used for
long-tailed image classification, in which the test set is usually
assumed to be near-balanced. Meanwhile, mAP was adopted for
long-tailed object detection, instance segmentation and multi-label
image classification, where the test set is usually not balanced.

2.4 Applications

The main applications of deep long-tailed learning include image
classification, detection segmentation, and visual relation learning.

Image Classification. The most common applications of
long-tailed learning are multi-class classification [15], [32], [44],
[45] and multi-label classification [37], [46]. As mentioned in
Section 2.2, there are many artificially sampled long-tailed datasets
from widely-used multi-class classification datasets (i.e., ImageNet,
CIFAR, and Places) and multi-label classification datasets (i.e.,
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VOC and COCO). Based on these datasets, various long-tailed
learning methods have been proposed, as shown in Section 3.
Besides these artificial tasks, long-tailed learning is also applied
to real-world applications, including species classification [23],
[24], [47], face recognition [21], [22], [48], [49], face attribute
classification [50], cloth attribute classification [50], age classifi-
cation [51], rail surface defect detection [52], and medical image
diagnosis [25], [53]. These real applications usually require more
fine-grained discrimination abilities, since the differences among
their classes are more subtle. Due to this new challenge, existing
deep long-tailed learning methods tend to fail in these applications,
since they only focus on addressing the class imbalance and
cannot essentially identify subtle class differences. Therefore, when
exploring new methods to handle these applications, it is worth
considering how to tackle the challenges of class imbalance and
fine-grained information identification, simultaneously.

Image Detection / Segmentation. Object detection and in-
stance segmentation has attracted increasing attention in the long-
tailed learning community [54], [55], [56], [57], [58], [59], where
most existing studies are conducted based on LVIS and COCO. In
addition to these widely-used benchmarks, many other applications
have also been explored, including urban scene understanding [26],
[60] and unmanned aerial vehicle detection [27]. Compared to
artificial tasks on LVIS and COCO, these real applications are
more challenging due to more complex environments in the
wild. For example, the images may be collected from different
weather conditions or different times in a day, which may lead
to multiple image domains with different data distributions and
inconsistent class skewness. When facing these new challenges,
existing deep long-tailed learning methods tend to fail. Hence, it is
worth exploring how to simultaneously resolve the challenges of
class imbalance and domain shifts for handling these applications.

Visual Relation Learning. Visual relation learning is impor-
tant for image understanding and is attracting rising attention in
the long-tailed learning community. Important applications include
long-tailed scene graph generation [61], [62], long-tailed visual
question answering and image captioning [63], [64]. Most existing
long-tailed studies focus on discriminative tasks, so they cannot be
applied to the aforementioned applications that require modeling
relations between objects or those between images and texts. Even
so, it is interesting to explore the high-level ideas (e.g., class
re-balancing) in existing long-tailed studies to design application-
customized approaches for visual relation learning.

2.5 Relationships with Related Tasks

We then briefly discuss several related tasks, including non-deep
long-tailed learning, class-imbalanced learning, few-shot learning,
and out-of-domain generalization.

Non-deep long-tailed learning. There are a lot of non-deep
learning approaches for long-tailed problems [65], [66], [67]. They
usually explore prior knowledge to enhance classic machine learn-
ing algorithms for handling the long-tailed problem. For example,
the prior of similarity among categories is used to regularize kernel
machine algorithm for long-tailed object recognition [65]. More-
over, the prior of a long-tailed power-law distribution produced by
the Pitman-Yor Processes (PYP) method [68] is applied to enhance
the Bayesian non-parametric framework for long-tailed active
learning [66]. An artificial distribution prior is adopted to construct
tail-class data augmentation to enhance KNN and SVM for long-
tailed scene parsing [67]. Almost all these approaches extract image
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features based on Scale Invariant Feature Transform (SIFT) [69],
Histogram of Gradient Orientation (HOG) [70], or RGB color
histogram [71]. Such representation approaches, however, cannot
extract highly informative and discriminative features for real
visual applications [1] and thus lead to limited performance in
long-tailed learning. Recently, in light of the powerful abilities of
deep networks for image representation, deep long-tailed methods
have achieved significant performance improvement for long-tailed
learning. More encouragingly, the use of deep networks also
inspires plenty of new solution paradigms for long-tailed learning,
such as transfer learning, decoupled training and ensemble learning,
which will be introduced in the next section.

Class-imbalanced learning [5], [72] also seeks to train models
from class-imbalanced samples. In this sense, long-tailed learning
can be regarded as a challenging sub-task of class-imbalanced
learning. The dominant distinction is that the classes of long-
tailed learning follow a long-tailed class distribution, which is
not necessary for class-imbalanced learning. More differences
include that in long-tailed learning the number of classes is usually
large and the tail-class samples are often very scarce, whereas the
number of minority-class samples in class-imbalanced learning is
not necessarily small in an absolute sense. These extra challenges
lead long-tailed learning to be a more challenging task than class-
imbalanced learning. Despite these differences, both seek to resolve
the class imbalance, so some high-level solution ideas (e.g., class
re-balancing) are shared between them.

Few-shot learning [73], [74], [75], [76] aims to train models
from a limited number of labeled samples (e.g., 1 or 5) per class.
In this regard, few-shot learning can be regarded as a sub-task of
long-tailed learning, in which the tail classes generally have a very
small number of samples.

Out-of-domain Generalization [77], [78] indicates a class of
tasks, in which the training distribution is inconsistent with the
unknown test distribution. Such inconsistency includes inconsistent
data marginal distributions (e.g., domain adaptation [79], [80], [81],
[82], [83], [84] and domain generalization [85], [86]), inconsistent
class distributions (e.g., long-tailed learning [15], [28], [32], open-
set learning [87], [88]), and the combination of the previous two
situations. From this perspective, long-tailed learning can be viewed
as a specific task within out-of-domain generalization.

3 CLAssIic METHODS

As shown in Fig. 2, we divide existing deep long-tailed learning
methods into three main categories according to their main
technical characteristics, including class re-balancing, information
augmentation, and module improvement. More specifically, class
re-balancing consists of three sub-categories: re-sampling, class-
sensitive learning (CSL), and logit adjustment (LA). Information
augmentation comprises transfer learning (TL) and data augmenta-
tion (Aug). Module improvement includes representation learning
(RL), classifier design (CD), decoupled training (DT) and ensemble
learning (Ensemble). According to this taxonomy, we sort out
existing methods in Table 2 and review them in detail as follows.

3.1 Class Re-balancing

Class re-balancing, a mainstream paradigm in long-tailed learning,
seeks to re-balance the negative influence brought by the class
imbalance in training sample numbers. This type of methods has
three main sub-categories: re-sampling, class-sensitive learning,
and logit adjustment. We begin with re-sampling based methods,
followed by class-sensitive learning and logit adjustment.
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TABLE 2

Summary of existing deep long-tailed learning methods published in the top-tier conferences before mid-2021. There are three main categories:

class re-balancing, information augmentation and module improvement. In this table, “CSL” indicates class-sensitive learning; “LA” indicates logit

adjustment; “TL” represents transfer learning; “Aug” indicates data augmentation; “RL” indicates representation learning; “CD” indicates classifier
design, which seeks to design new classifiers or prediction schemes for long-tailed recognition; “DT” indicates decoupled training, where the feature

extractor and the classifier are trained separately; “Ensemble” indicates ensemble learning based methods. In addition, “Target Aspect” indicates
from which aspect an approach seeks to resolve the class imbalance. We also make our codebase and our collected long-tailed learning resources

available at https://github.com/Vanint/Awesome-LongTailed-Learning.

Method Year Class Re-balancing Augmentation Module Improvement Target Aspect
Re-sampling CSL LA TL Aug RL CD DT Ensemble
LMLE [89] 2016 v feature
HFL [90] 2016 v feature
Focal loss [54] 2017 v objective
Range loss [21] 2017 4 feature
CRL [50] 2017 v feature
MetaModelNet [91] 2017 4
DSTL [92] 2018 v
DCL [93] 2019 4 sample
Meta-Weight-Net [94] 2019 v objective
LDAM [18] 2019 v objective
CB [16] 2019 v objective
UML [95] 2019 v feature
FTL [96] 2019 4 v feature
Unequal-training [48] 2019 v feature
OLTR [15] 2019 4 feature
Balanced Meta-Softmax [97] 2020 v v sample, objective
Decoupling [32] 2020 v v v v v feature, classifier
LST [98] 2020 v v sample
Domain adaptation [28] 2020 v objective
Equalization loss (ESQL) [19] 2020 v objective
DBM [22] 2020 v objective
Distribution-balanced loss [37] 2020 v objective
UNO-IC [99] 2020 v prediction
De-confound-TDE [45] 2020 v v prediction
M2m [100] 2020 v v sample
LEAP [49] 2020 v v v feature
OFA [101] 2020 v v v feature
SSP [102] 2020 v v feature
LEME [103] 2020 v v sample, model
1IEM [104] 2020 feature
Deep-RTC [105] 2020 v classifier
SimCal [34] 2020 v v sample, model
BBN [44] 2020 v sample, model
BAGS [56] 2020 v sample, model
VideoLT [38] 2021 v sample
LOCE [33 2021 v v sample, objective
DARS [26] 2021 v v v sample, objective
CReST [106] 2021 v v sample
GIST [107] 2021 v v v classifier
FASA [58] 2021 v v feature
Equalization loss v2 [108] 2021 v objective
Seesaw loss [109] 2021 v objective
ACSL [110] 2021 v objective
IB[111] 2021 v objective
PML [51] 2021 v objective
VS [112] 2021 v objective
LADE [31] 2021 v v objective, prediction
RoBal [113] 2021 v v v objective, prediction
DisAlign [29] 2021 4 v 4 objective, classifier
MiSLAS [114] 2021 v v v objective, feature, classifier
Logit adjustment [14] 2021 v prediction
Conceptual 12M [115] 2021 4
DIiVE [116] 2021 v/
MosaicOS [117] 2021 v
RSG [118] 2021 4 v feature
SSD [119] 2021 v v
RIDE [17] 2021 v v model
MetaSAug [120] 2021 4 sample
PaCo [121] 2021 v feature
DRO-LT [122] 2021 v feature
Unsupervised discovery [35] 2021 v feature
Hybrid [123] 2021 4 feature
KCL [13] 2021 4 v feature
DT2 [61] 2021 v feature, classifier
LTML [46] 2021 v sample, model
ACE [124] 2021 v sample, model
ResLT [125] 2021 v sample, model
SADE [30] 2021 v objective, model
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3.1.1 Re-sampling

Conventional training of deep networks is based on mini-batch
gradient descent with random sampling, i.e., each sample has
an equal probability of being sampled. Such a sampling manner,
however, ignores the imbalance issue in long-tailed learning, and
naturally samples more head-class samples than tail-class samples
in each sample mini-batch. This makes the resulting deep models
biased towards head classes and perform poorly on tail classes. To
address this issue, re-sampling [126], [127], [128], [129] has been
explored to re-balance classes by adjusting the number of samples
per class in each sample batch for model training.

In the non-deep learning era, the most classic re-sampling
approaches are random over-sampling (ROS) and random under-
sampling (RUS). Specifically, ROS randomly repeats the samples
from minority classes to re-balance classes before training, while
RUS randomly discards the samples from majority classes. When
applying them to deep long-tailed learning where the classes
are highly skewed, ROS with duplicated tail-class data might
lead to overfitting over tail classes, while RUS might discard
precious head-class samples and degrade model performance on
head classes [44]. Instead of using random re-sampling, recent deep
long-tailed studies have developed various class-balanced sampling
methods for mini-batch training of deep models.

We begin with Decoupling [32], in which four sampling
strategies were evaluated for representation learning of long-tailed
data, including random sampling, class-balanced sampling, square-
root sampling and progressively-balanced sampling. Specifically,
class-balanced sampling means that each class has an equal
probability of being selected. Square-root sampling [130] is a
variant of class-balanced sampling, where the sampling probability
of each class is related to the square root of the sample size in
the corresponding class. Progressively-balanced sampling [32]
interpolates progressively between random and class-balanced
sampling. Based on empirical results, Decoupling [32] found
that square-root sampling and progressively-balanced sampling
are better strategies for standard model training in long-tailed
recognition. The two strategies, however, require knowing the
training sample frequencies of different classes in advance, which
may be unavailable in real applications.

To address the above issue, recent studies proposed vari-
ous adaptive sampling strategies. Dynamic Curriculum Learning
(DCL) [93] developed a new curriculum strategy to dynamically
sample data for class re-balancing. The basic idea is that the more
instances from one class are sampled as training proceeds, the lower
probability of this class would be sampled in later stages. Following
this idea, DCL first conducts random sampling to learn general
representations, and then samples more tail-class instances based
on the curriculum strategy to handle the imbalance. In addition to
using the accumulated sampling times, Long-tailed Object Detector
with Classification Equilibrium (LOCE) [33] proposed to monitor
model training on different classes via the mean classification
prediction score (i.e., running prediction probability), and used this
score to guide the sampling rates for different classes. Furthermore,
VideoLT [38], focusing on long-tailed video recognition, introduced
a new FrameStack method that dynamically adjusts the sampling
rates of different classes based on running model performance
during training, so that it can sample more video frames from tail
classes (generally with lower running performance).

Besides using the statistics computed during model training,
some re-sampling approaches resorted to meta learning [131].
Balanced Meta-softmax [97] developed a meta-learning-based
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sampling method to estimate the optimal sampling rates of
different classes for long-tailed learning. Specifically, the developed
meta learning method seeks to learn the best sample distribution
parameter by optimizing the model classification performance on a
balanced meta validation set. Similarly, Feature Augmentation and
Sampling Adaptation (FASA) [58] explored the model classification
loss on a balanced meta validation set as a score, which is used
to adjust the sampling rate for different classes so that the under-
represented tail classes can be sampled more.

Note that some long-tailed visual tasks may have multiple levels
of imbalance. For example, long-tailed instance segmentation is
imbalanced in terms of both images and instances (i.e., the number
of instances per image is also imbalanced). To address this task,
Simple Calibration (SimCal) [34] proposed a new bi-level class-
balanced sampling strategy that combines image-level and instance-
level re-sampling for class re-balancing.

Discussions. Re-sampling methods seek to address the class
imbalance issue at the sample level. When the label frequencies
of different classes are known a priori, progressively-balanced
sampling [32] is recommended. Otherwise, using the statistics of
model training to guide re-sampling [33] is a preferred solution
for real applications. For meta-learning-based re-sampling, it may
be difficult to construct a meta validation set in real scenarios.
Note that if one re-sampling strategy has already addressed class
imbalance well, further using other re-sampling methods may
not bring extra benefits. Moreover, the high-level ideas of these
re-sampling methods can be applied to design multi-level re-
sampling strategies if there are multiple levels of imbalance in
real applications.

3.1.2 Class-sensitive Learning

Conventional training of deep networks is based on the softmax
cross-entropy loss (c.f. Table 3). This loss ignores the class
imbalance in data sizes and tends to generate uneven gradients for
different classes. That is, each positive sample of one class can be
seen as a negative sample for other classes in cross-entropy, which
leads head classes to receive more supporting gradients (as they
usually are positive samples) and causes tail classes to receive more
suppressed gradients (as they usually are negative samples) [19],
[55]. To address this, class-sensitive learning seeks to particularly
adjust the training loss values for various classes to re-balance
the uneven training effects caused by the imbalance issue [132],
[133], [134], [135], [136], [137]. There are two main types of
class-sensitive strategies, i.e., re-weighting and re-margining. We
begin with class re-weighting as follows.

Re-weighting. To address the class imbalance, re-weighting
attempts to adjust the training loss values for different classes by
multiplying them with different weights. The most intuitive method
is to directly use the label frequencies of training samples for loss
re-weighting to re-balance the uneven positive gradients among
classes. For example, weighted softmax (c.f. Table 3) directly
multiplies the loss values of different classes by the inverse of train-
ing label frequencies. However, simply multiplying by its inverse
may not be the optimal solution. Recent studies thus proposed to
tune the influence of training label frequencies based on sample-
aware influences [111]. Moreover, Class-balanced loss (CB) [16]
introduced a novel concept of effective number to approximate
the expected sample number of different classes, which is an
exponential function of their training label number. Following this,
CB loss enforces a class-balanced re-weighting term, inversely
proportional to the effective number of classes, to address the class
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TABLE 3
Summary of losses. In this table, z and p indicate the predicted logits
and the softmax probability of the sample «, where z, and p,
correspond to the class y. Moreover, n indicates the total number of
training data, where n,, is the sample number of the class y. In addition,
w denotes the vector of sample frequencies, where 7, =n, /n
represents the label frequency of the class y. The class-wise weight is
denoted by w and the class-wise margin is denoted by A, if no more
specific value is given. Loss-related parameters include ~.

Loss Formulation Type
Softmax loss Lece = —log(py) -
Focal loss [54] Lg = —(1—py)” log(py) re-weighting
Weighted Softmax loss Lyce = —% log(py) re-weighting
Class-balanced loss [16] Ly, = —li%ly log(py) re-weighting
Balanced Softmax loss [97]  Lps = — log(%) re-weighting
T (,:;p)zj)
izati 9 I __explzy) _weichti

Equalization loss [19] Leg = —log( o e)(p(zj)) re-weighting

exp(zy —Ay)

LDAM loss [18] Lidam = — Iog(m) re-margining
J J J

imbalance (c.f. Table 3). Besides the aforementioned re-weighting
at the level of log probabilities, we can also use the training label
frequencies to re-weight prediction logits. Balanced Softmax [97]
proposed to adjust prediction logits by multiplying by the label
frequencies, so that the bias of class imbalance can be alleviated by
the label prior before computing final losses. Afterwards, Vector-
scaling loss (VS) [112] intuitively analyzed the distinct effects of
additive and multiplicative logit-adjusted losses, leading to a novel
VS loss to combine the advantages of both forms of adjustment.

Instead of using training label frequencies, Focal loss [54]
explored class prediction hardness for re-weighting. This is inspired
by the observation that class imbalance usually increases the
prediction hardness of tail classes, whose prediction probabilities
would be lower than those of head classes. Following this, Focal
loss uses the prediction probabilities to inversely re-weight classes
(c.f. Table 3), so that it can assign higher weights to the harder tail
classes but lower weights to the easier head classes. Besides using
a pre-defined weighting function, the class weights can also be
learned from data. For instance, Meta-Weight-Net [94] proposed
to learn an MLP-approximated weighting function based on a
balanced validation set for class-sensitive learning.

Some recent studies [19], [37] also seek to address the negative
gradient over-suppression issue of tail classes. For example,
Equalization loss [19] directly down-weights the loss values of
tail-class samples when they serve as negative labels for head-class
samples. However, simply down-weighting negative gradients may
harm the discriminative abilities of deep models. To address this,
Adaptive Class Suppression loss (ACSL) [110] uses the output
confidence to decide whether to suppress the gradient for a negative
label. Specifically, if the prediction probability of a negative label
is larger than a pre-defined threshold, it means that the model
is confused about this class so the weight for this class is set to
1 to improve model discrimination; otherwise, the weight is set
to 0 to avoid negative over-suppression. Moreover, Equalization
loss v2 [108] extended the equalization loss [19] by introducing a
novel gradient-guided re-weighting mechanism that dynamically
up-weights the positive gradients and down-weights the negative
gradients for different classes. Similarly, Seesaw loss [109] re-
balances positive and negative gradients for each class with two re-
weighting factors, i.e., mitigation and compensation. Specifically, to
address gradient over-suppression, the mitigation factor alleviates
the penalty to tail classes based on a dynamically cumulative
sampling number of different classes. Meanwhile, if a false positive
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sample is observed, the compensation factor up-weights the penalty
to the corresponding class for improving model discrimination.

Re-margining. To handle the class imbalance, re-margining
attempts to adjust losses by subtracting different margin factors for
different classes, so that they have a different minimal margin (i.e.,
distance) between features and the classifier. Directly using existing
soft margin losses [138], [139] is unfeasible, since they ignore the
issue of class imbalance. To address this, Label-Distribution-Aware
Margin (LDAM) [18] enforces class-dependent margin factors for
different classes based on their training label frequencies, which
encourages tail classes to have larger margins.

However, the training label frequencies may be unknown in
real applications, and simply using them for re-margining also
ignores the status of model training on different classes. To address
this, recent studies explored various adaptive re-margining methods.
Uncertainty-based margin learning (UML) [95] found that the class
prediction uncertainty is inversely proportional to the training label
frequencies, i.e., tail classes are more uncertain. Inspired by this,
UML proposed to use the estimated class-level uncertainty to re-
margin losses, so that the tail classes with higher class uncertainty
incur a higher loss value and thus have a larger margin between
features and the classifier. Moreover, LOCE [33] proposed to use
the mean class prediction score to monitor the learning status of
different classes and apply it to guide class-level margin adjustment
for enhancing tail classes. Domain balancing [22] introduced a
novel frequency indicator based on the inter-class compactness
of features, and uses this indicator to re-margin the feature space
of tail domains. Despite effectiveness, the above re-margining
methods for encouraging large tail-class margins may degrade
the feature learning of head classes. To address this, RoBal [113]
further enforces a margin factor to also enlarge head-class margins.

Discussions. These class-sensitive learning methods aim to
resolve the class imbalance issue at the objective level. We
summarize some of them in Table 3. Both re-weighting and re-
margining methods have a similar effect on re-balancing classes.
If the negative influence of class imbalance can be addressed
by one class-sensitive approach well, it is unnecessary to further
apply other class-sensitive methods, which would not bring further
performance gain and even harm performance. More specifically,
if the training label frequencies are available, directly using them
for re-weighting (e.g., Balanced Softmax [97] and VS [112]) or
re-margining (e.g., LDAM [18]) provides a simple and generally
effective solution for real applications. If not, it is preferred to use
the mean class prediction score to guide class-sensitive learning
(e.g., ACSL [110] and LOCE [33]) thanks to its simplicity. One
can also consider other guidance, like intra-class compactness.
However, inter-class compactness of features [22] may be not that
informative when the feature dimensions are very high, while the
prediction uncertainty [95] may be difficult to estimate accurately
in practice. Moreover, using prediction hardness for re-weighting
in Focal loss performs well when the number of classes is not large,
but may fail when facing a large number of classes. Furthermore,
Equalization loss v2, Seesaw loss and RoBal can also be considered
if the challenges that they try to resolve appear in real applications.

3.1.3 Logit Adjustment

Logit adjustment [14], [140] seeks to resolve the class imbalance
by adjusting the prediction logits of a class-biased deep model.
One recent study [14] comprehensively analyzed logit adjustment
via training label frequencies of different classes in long-tailed
recognition, and theoretically showed that logit adjustment is Fisher
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consistent to minimize the average per-class error. Following this
idea, RoBal [113] applied a post-processing strategy to adjust the
cosine classifier based on training label frequencies.

However, the above methods tent to fail when the training label
frequencies are unavailable. To address this this, UNO-IC [99]
proposed to learn the logit offset based on a balanced meta
validation set and use it to calibrate the biased model predictions.
Instead of using a meta validation set, DisAlign [29] applied
an adaptive calibration function for logit adjustment, where the
calibration function is learned by matching the calibrated prediction
distribution to a pre-defined relatively balanced class distribution.

The idea of logit adjustment naturally suits agnostic test class
distributions. If the test label frequencies are available, LADE [31]
proposed to use them to post-adjust model outputs so that the
trained model can be calibrated for arbitrary test class distributions.
However, the test label frequencies are usually unavailable, which
makes LADE less practical in real scenarios.

Discussions. To summarize, these logit adjustment methods
address the class imbalance at the prediction level. If the training
label frequencies are known, directly using them to post-adjust the
predictions of biased deep models is recommended [14], [113]. If
such information is unknown, it is preferred to exploit the idea
of DisAlign [29] to learn an adaptive calibration function. These
logit adjustment methods are exclusive to each other, so using a
well-performing one is enough for real applications.

3.1.4 Summary

Class re-balancing is relatively simple among the three main
method types of long-tailed learning, but it can achieve comparable
or even better performance. Some methods, especially class-
sensitive learning, are theoretically inspired or guaranteed to handle
long-tailed problems [16], [18], [31]. These advantages enable class
re-balancing to be a good candidate for real-world applications.

The ultimate goal of its three sub-categories (i.e., re-sampling,
class-sensitive learning and logit adjustment) are the same, i.e., re-
balancing classes. Hence, when the class imbalance is not addressed
well, combining them may achieve better performance. However,
these subtypes are sometimes exclusive to each other. For example,
if we have trained a class-balanced deep model via class-sensitive
learning, then further using logit adjustment methods to post-adjust
model inference will instead lead to biased predictions and suffer
poor performance. Therefore, if one wants to combine them, the
pipeline should be designed carefully.

One drawback of class re-balancing is that most methods
improve tail-class performance at the cost of lower head-class
performance, which is like playing on a performance seesaw.
Although the overall performance is improved, it cannot essentially
handle the issue of lacking information, particularly on tail classes
due to limited data sizes. To address this limitation, one feasible
solution is to conduct information augmentation as follows.

3.2

Information augmentation seeks to introduce additional information
into model training, so that the model performance can be improved
for long-tailed learning. There are two kinds of methods in this
method type: transfer learning and data augmentation.

Information Augmentation

3.2.1 Transfer Learning

Transfer learning [91], [101], [118], [141], [142] seeks to transfer
the knowledge from a source domain (e.g., datasets) to enhance
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model training on a target domain. In long-tailed learning, there
are four main transfer schemes, i.e., model pre-training, knowledge
distillation, head-to-tail model transfer, and self-training.

Model pre-training is a popular scheme for deep model
training [143], [144], [145], [146], [147] and has also been explored
in long-tailed learning. For example, Domain-Specific Transfer
Learning (DSTL) [92] first pre-trains the model with all long-
tailed samples for representation learning, and then fine-tunes the
model on a more class-balanced training subset. In this way, DSTL
slowly transfers the learned features to tail classes, obtaining more
balanced performance among all classes. Rather than supervised
pre-training, Self-supervised Pre-training (SSP) [102] proposed to
first use self-supervised learning (e.g., contrastive learning [148]
or rotation prediction [149]) for model pre-training, followed by
standard training on long-tailed data. Empirical results show self-
supervised learning helps to learn a balanced feature space for
long-tailed learning [13]. Such a scheme has also been explored to
handle long-tailed data with noisy labels [150].

Knowledge distillation seeks to train a student model based
on the outputs of a well-trained teacher model [151], [152]. Recent
studies have explored knowledge distillation for long-tailed learn-
ing. For example, Learning from Multiple Experts (LFME) [103]
first trains multiple experts on several less imbalanced sample
subsets (e.g., head, middle and tail sets), and then distills these
experts into a unified student model. Similarly, Routing Diverse
Experts (RIDE) [17] introduced a knowledge distillation method
to reduce the parameters of the multi-expert model by learning
a student network with fewer experts. Instead of multi-expert
teachers, Distill the Virtual Examples (DiVE) [116] showed that
learning a class-balanced model as the teacher is also beneficial
for long-tailed learning. Following DiVE, Self-Supervision to
Distillation (SSD) [119] developed a new self-distillation scheme
to enhance decoupled training (c.f. Section 3.3.3). Specifically,
SSD first trains a calibrated model based on supervised and self-
supervised information via the decoupled training scheme, and then
uses the calibrated model to generate soft labels for all samples.
Following that, both the generated soft labels and original long-
tailed hard labels are used to distill a new student model, followed
by a new classifier fine-tuning stage.

Head-to-tail model transfer seeks to transfer the model
knowledge from head classes to enhance model performance on tail
classes. For example, MetaModelNet [91] proposed to learn a meta-
network that can map few-shot model parameters to many-shot
model parameters. To this end, MetaModelNet first trains a many-
shot model on the head-class training set, and trains a fake few-shot
model on a sampled subset from these classes with a very limited
number of data to mimic tail classes. Then, the meta-network is
learned by mapping the learned fake few-shot model to the many-
shot model. Following that, the learned meta-network on head
classes is applied to map the true few-shot model trained on tail
classes for obtaining better tail-class performance. Instead of model
mapping, Geometric Structure Transfer (GIST) [107] proposed
to conduct head-to-tail transfer at the classifier level. Specifically,
GIST uses the relatively large classifier geometry information of
head classes to enhance the tail-class classifier weights, so that the
performance of tail classes can be improved.

Self-training aims to learn well-performing models from a
small number of labeled samples and massive unlabeled sam-
ples [153], [154], [155]. To be specific, it firstly uses labeled
samples to train a supervised model, which is then applied to
generate pseudo labels for unlabeled data. Following that, both the
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labeled and pseudo-labeled samples are used to re-train models.
In this way, self-training can exploit the knowledge from massive
unlabeled samples to enhance long-tailed learning performance.
Such a paradigm, however, cannot be directly used to handle long-
tailed problems, because both labeled and unlabeled datasets may
follow long-tailed class distributions with different degrees. In such
cases, the trained model on labeled samples may be biased to head
classes and tends to generate more head-class pseudo labels for
unlabeled samples, leading to a more skewed degree of imbalance.

To address this issue, Distribution Alignment and Random
Sampling (DARS) [26] proposed to regard the label frequencies
of labeled data as a reference and enforce the label frequencies of
the generated pseudo labels to be consistent with the labeled ones.
Instead of using training label frequencies, Class-rebalancing Self-
training (CReST) [106] found that the precision of the supervised
model on tail classes is surprisingly high, and thus proposed to
select more tail-class samples for online pseudo labeling in each
iteration, so that the re-trained model can obtain better performance
on tail classes. Beyond classification tasks, MosaicOS [117]
resorted to other object-centric images to boost long-tailed object
detection. Specifically, it first pre-trains the model with labeled
scene-centric images from the original detection dataset, and then
uses the pre-trained model to generate pseudo bounding boxes
for object-centric images, e.g., ImageNet-1K [39]. After that,
MosaicOS fine-tunes the pre-trained model in two stages, i.e.,
first fine-tuning with the pseudo-labeled object-centric images and
then fine-tuning with the original labeled scene-centric images.
In this way, MosaicOS alleviates the negative influence of data
discrepancies and effectively improves long-tailed performance.

Discussions. These transfer learning methods are complemen-
tary to each other, which brings additional information from
different perspectives to long-tailed learning. Most of them can
be used together for real applications if the resources permit and
the combination pipeline is designed well. More concretely, when
using model pre-training, the trade-off between supervised discrim-
ination learning and self-supervised class-balanced learning should
be tuned [13], which contributes to better long-tailed learning
performance. In addition, knowledge distillation with multi-experts
can usually achieve better performance than distillation with a
single teacher. In head-to-tail model transfer, GIST is a better
candidate than MetaModelNet due to its simplicity. Lastly, the use
of self-training methods depends on task requirements and what
unlabeled samples are available at hand.

3.2.2 Data Augmentation

Data Augmentation aims to enhance the size and quality of datasets
by applying pre-defined transformations to each data/feature for
model training [156], [157]. In long-tailed learning, there are
two types of augmentation methods that have been explored, i.e.,
transfer-based augmentation and non-transfer augmentation.
Head-to-tail transfer augmentation seeks to transfer the
knowledge from head classes to augment tail-class samples. For
example, Major-to-Minor translation (M2m) [100] proposed to
augment tail classes by translating head-class samples to tail-
class ones via perturbation-based optimization, which is essentially
similar to adversarial attack. The translated tail-class samples are
used to construct a more balanced training set for model training.
Besides the data-level transfer in M2m, most studies explore
feature-level transfer. For instance, Feature Transfer Learning
(FTL) [96] found that tail-class samples have much smaller
intra-class variance than head-class samples, leading to biased
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feature spaces and decision boundaries. To address this, FTL
exploits the knowledge of intra-class variance from head classes
to guide feature augmentation for tail-class samples, so that
the tail-class features have higher intra-class variance. Similarly,
LEAP [49] constructs “feature cloud” for each class, and transfers
the distribution knowledge of head-class feature clouds to enhance
the intra-class variation of tail-class feature clouds. As a result,
the distortion of the intra-class feature variance among classes is
alleviated, leading to better tail-class performance.

Instead of using the intra-class variation information, Rare-
class Sample Generator (RSG) [118] proposed to dynamically
estimate a set of feature centers for each class, and use the
feature displacement between head-class sample features and their
nearest intra-class feature center to augment each tail sample
feature for enlarging the tail-class feature space. Moreover, Online
Feature Augmentation (OFA) [101] proposed to use class activation
maps [158] to decouple sample features into class-specific and
class-agnostic ones. Following that, OFA augments tail classes by
combining the class-specific features of tail-class samples with
class-agnostic features from head-class samples.

Non-transfer augmentation seeks to improve or design
conventional data augmentation methods to address long-tailed
problems. SMOTE [159], a classic over-sampling method for
non-deep class imbalance, can be applied to deep long-tailed
problems to generate tail-class samples by mixing several intra-
class neighbouring samples. Recently, MiSLAS [114] further
investigated data mixup in deep long-tailed learning, and found that
(1) data mixup helps to remedy model over-confidence; (2) mixup
has a positive effect on representation learning but a negative or
negligible effect on classifier learning in the decoupled training
scheme [32]. Following these observations, MiSLAS proposed to
use data mixup to enhance representation learning in the decoupled
scheme. In addition, Remix [160] also resorted to data mixup for
long-tailed learning and introduced a re-balanced mixup method to
particularly enhance tail classes.

Instead of using data mixup, FASA [58] proposed to generate
new data features for each class, based on class-wise Gaussian
priors with their mean and variance estimated from previously
observed samples. Here, FASA exploits the model classification
loss on a balanced validation set to adjust feature sampling rates
for different classes, so that the under-represented tail classes can
be augmented more than head classes. With a similar idea, Meta
Semantic Augmentation (MetaSAug) [120] proposed to augment
tail classes with a variant of implicit semantic data augmentation
(ISDA) [161]. Specifically, ISDA estimates the class-conditional
statistics (i.e., covariance matrices from sample features) to obtain
semantic directions, and generates diversified augmented samples
by translating sample features along with diverse semantically
meaningful directions. To better estimate the covariance matrices
for tail classes, MetaSAug explored meta learning to guide the
learning of covariance matrices for each class with the class-
balanced loss [16], leading to more informative synthetic features.

Discussions. Data augmentation based methods attempt to
address the class imbalance at the sample or feature levels. The
goals of these methods are consistent, so they can be used
simultaneously if the combination pipeline is constructed well.
Among its two subtypes, head-to-tail transfer augmentation is more
intuitive than non-transfer augmentation. More specifically, head-
to-tail transfer at the feature level (e.g., RSG) seems to perform
better than transfer at the sample level (e.g., M2m). In the feature-
level transfer augmentation, RSG is preferred thanks to its easy-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

to-use source code, whereas the intra-class variation in FTL and
LEAP may be less informative for augmentation when the feature
dimension is very high. In non-transfer augmentation, mixup-
based strategies are usually used thanks to their simplicity, where
MiSLAS has demonstrated promising performance. In contrast, the
class-wise Gaussian priors in FASA and the covariance matrices in
MetaSAug may be difficult to estimate in various real scenarios.

3.2.3 Summary

Information augmentation addresses the long-tailed problems by
introducing additional knowledge, and thus is compatible with and
complementary to other two method types, i.e., class re-balancing
and module improvement. For the same reason, its two method
subtypes, i.e., transfer learning and data augmentation, are also
complementary to each other. More concretely, both the subtypes
are able to improve tail-class performance without sacrificing
head-class performance if designed carefully. Considering that
all classes are important in long-tailed learning, this type of
method is worth further exploring. Moreover, data augmentation
is a very fundamental technique and can be used for a variety
of long-tailed problems, which makes it more practical than
other paradigms in real-world applications. However, simply using
existing class-agnostic augmentation techniques for improving
long-tailed learning is unfavorable, since they ignore the class
imbalance and inevitably augment more head-class samples than
tail-class samples. How to better conduct data augmentation for
long-tailed learning is still an open question.

3.3 Module Improvement

Besides re-balancing and information augmentation, researchers
also explored methods to improve network modules in long-tailed
learning. These methods can be divided into four categories: (1)
representation learning improves the feature extractor; (2) classifier
design enhances the model classifier; (3) decoupled training aims
to boost the learning of both the feature extractor and the classifier;
(4) ensemble learning improves the whole architecture.

3.3.1 Representation Learning

Existing long-tailed learning methods improve representation
learning based on three main paradigms, i.e., metric learning,
prototype learning, and sequential training.

Metric learning aims at designing task-specific distance
metrics for establishing similarity or dissimilarity between data.
In deep long-tailed learning, metric learning based methods seek
to explore various distance-based losses to learn a discriminative
feature space for long-tailed data. One example is Large Margin
Local Embedding (LMLE) [89], which introduced a quintuplet
loss to learn representations that maintain both inter-cluster and
inter-class margins. Unlike the triplet loss [162] that samples two
contrastive pairs, LMLE presented a quintuplet sampler to sample
four contrastive pairs, including a positive pair and three negative
pairs. The positive pair is the most distant intra-cluster sample,
while the negative pairs include two inter-clusters samples from the
same class (one is the nearest and one is the most distant within
the same cluster) and the nearest inter-class sample. Following
that, LMLE introduced a quintuplet loss to encourage the sampled
quintuplet to follow a specific distance order. In this way, the
learned representations preserve not only locality across intra-class
clusters but also discrimination between classes. Moreover, each
data batch contains the same number of samples from different
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classes for class re-balancing. However, LMLE does not consider
the sample differences among head and tail classes. To address this,
Class Rectification Loss (CRL) [50] explored hard pair mining
and proposed to construct more hard-pair triplets for tail classes,
so that tail-class features can have a larger degree of intra-class
compactness and inter-class distances.

Rather than sampling triplets or quintuplets, range loss [21]
innovated representation learning by using the overall distances
among all sample pairs within one mini-batch. In other words, the
range loss uses statistics over the whole batch and thus alleviates
the bias of data number imbalance over classes. Specifically, range
loss enlarges the inter-class distance by maximizing the distances
of any two class centers within the mini-batch, and reduces the
intra-class variation by minimizing the largest distances between
intra-class samples. In this way, the range loss obtains features with
better discriminative abilities and less imbalanced bias.

Recent studies also explored contrastive learning for long-
tailed problems. KCL [13] proposed a k-positive contrastive loss
to learn a balanced feature space, which helps to alleviate the
class imbalance and improve model generalization. Parametric
contrastive learning (PaCo) [121] further innovated supervised
contrastive learning by adding a set of parametric learnable class
centers, which plays the same role as a classifier if regarding the
class centers as the classifier weights. Following that, Hybrid [123]
introduced a prototypical contrastive learning strategy to enhance
long-tailed learning. DRO-LT [122] extended the prototypical
contrastive learning with distribution robust optimization [163],
which makes the learned model more robust to distribution shift.

Prototype learning based methods seek to learn class-specific
feature prototypes to enhance long-tailed learning performance.
Open Long-Tailed Recognition (OLTR) [15] innovatively explored
the idea of feature prototypes to handle long-tailed recognition in
an open world, where the test set also includes open classes that do
not appear in training data. To address this task, OLTR maintains a
visual meta memory containing discriminative feature prototypes,
and uses the features sampled from the visual memory to augment
the original features for better discrimination. Meanwhile, the
sample features from novel classes are enforced to be far away from
the memory and closer to the origin point. In this way, the learned
feature space enables OLTR to classify all seen classes and detect
novel classes. However, OLTR only maintains a static prototype
memory and each class has only one prototype. Such a single
prototype per class may fail to represent the real data distribution.
To address this issue, Inflated Episodic Memory (IEM) [104] further
innovated the meta-embedding memory by a dynamical update
scheme, in which each class has independent and differentiable
memory blocks. Each memory block is updated to record the most
discriminative feature prototypes of the corresponding categories,
thus leading to better performance than OLTR.

Sequential training based methods learn data representation
in a continual way. For example, Hierarchical Feature Learning
(HFL) [90] took inspiration from that each class has its individuality
in discriminative visual representation. Therefore, HFL hierarchi-
cally clusters objects into visually similar class groups, forming
a hierarchical cluster tree. In this cluster tree, the model in the
original node is pre-trained on ImageNet-1K; the model in each
child node inherits the model parameters from its parent node
and is then fine-tuned based on samples in the cluster node. In
this way, the knowledge from the groups with massive classes
is gradually transferred to their sub-groups with fewer classes.
Similarly, Unequal-training [48] proposed to divide the dataset into



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

head-class and tail-class subsets, and treat them differently in the
training process. First, unequal-training uses the head-class samples
to train relatively discriminative and noise-resistant features with
a new noise-resistant loss. After that, it uses tail-class samples to
enhance the inter-class discrimination of representations via hard
identity mining and a novel center-dispersed loss.

Discussions. These representation learning methods seek to
address the class imbalance at the feature level. The methods
within each subtype are competing with each other (e.g., KCL [13]
vs PaCo [121] and OLTR [15] vs IEM [104]), while the methods
from different subtypes may be complementary to each other (e.g.,
KCL [13] and Unequal-training [48]). Therefore, the pipeline must
be carefully designed, if one wants to combine them together.
Moreover, when handling real long-tailed applications, PaCo [121]
is recommended to use thanks to its promising performance and
open-source code. If there are open classes in test data, IEM [104]
is preferred. Other methods, like Unequal-training [48], can also
be considered if they suit real scenarios.

3.3.2 Classifier Design

In addition to representation learning, researchers also explored
different types of classifiers to address long-tailed problems. In
generic visual problems [10], [148], the common practice of
deep learning is to use linear classifier p = ¢(w ' f+b), where
¢ denotes the softmax function and the bias term b can be
discarded. However, long-tailed class imbalance often results in
larger classifier weight norms for head classes than tail classes [96],
which makes the linear classifier easily biased to dominant classes.

To address this, recent studies [49], [113] proposed to use the
scale-invariant cosine classifier p = (/)((WHJ}H)/T + b), where
both the classifier weights and sample features are normalized.
Here, the temperature 7 should be chosen reasonably [164],
or the classifier performance would be negatively influenced.
However, normalizing the feature space may harm its representation
abilities. Therefore, the 7-normalized classifier [32] rectifies the
imbalance by only adjusting the classifier weight norms through
a T-normalization procedure. Formally, let @ = ﬁ, where T
is the temperature factor for normalization. When 7 = 1, the 7-
normalization reduces to L normalization, while when 7 = 0, no
scaling is imposed. Note that, the hyper-parameter 7 can also be
trained with class-balanced sampling, and the resulting classifier
is named the learnable weight scaling classifier [32]. Another
approach to address classifier weight imbalance is to use the nearest
class mean classifier [32], which first computes the mean features
for each class on the training set as the classifier, and then conducts
prediction based on the nearest neighbor algorithm [165].

There are also some more complicated classifier designs
based on hierarchical classification, causal inference or classifier
knowledge transfer. For example, Realistic Taxonomic Classifier
(RTC) [105] proposed to address class imbalance with hierarchical
classification by mapping images into a class taxonomic tree
structure, where the hierarchy is defined by a set of classification
nodes and node relations. Different samples are adaptively classified
at different hierarchical levels, where the level at which the
prediction is made depends on the sample classification difficulty
and the classifier confidence. Such a design favors correct decisions
at intermediate levels rather than incorrect decisions at the leaves.

Causal classifier [45] resorted to causal inference for keeping
the good and removing the bad momentum causal effects in long-
tailed learning. The good causal effect indicates the beneficial
factor that stabilizes gradients and accelerates training, while the
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bad causal effect indicates the accumulated long-tailed bias that
leads to poor tail-class performance. To better approximate the
bias information, the causal classifier applies a multi-head strategy
to divide the channel (or dimensions) of model weights and data

features equally into K groups. Formally, the causal classifier
kENT rk

calculates the original logits by p = ¢( % Zszl (Huf’iﬂ\|+77)\|f’“|\)
where 7 is the temperature factor and  is a hyper-parameter.
This classifier is essentially the cosine classifier when v = 0.
In inference, the causal classifier removes the bad causal ef-
fect by subtracting the prediction when the input is null, i.e,

_ K (w*) " f* cos(z®,d*) (w) T d* 7
P = 0% L=t AT 7] @ urley ) Whered

is the unit vector of the exponential moving average features, and
« is a trade-off parameter to control the direct and indirect effects.
More intuitively, the classifier records the bias by computing
the exponential moving average features during training, and
then removes the bad causal effect by subtracting the bias from
prediction logits during inference.

GIST classifier [107] seeks to transfer the classifier geometric
structure of head classes to tail classes. Specifically, the GIST
classifier consists of a class-specific weight center (for encoding
the class location) and a set of displacements (for encoding the
class geometry). By exploiting the relatively large displacements
from head classes to enhance tail-class weight centers, the GIST
classifier is able to obtain better performance on tail classes.

Discussions. These methods address the imbalance at the
classifier level. Note that these classifiers are exclusive to each
other, and the choice of classifiers also influences other long-tailed
methods. For example, the effects of data mixup are different for
the linear classifier and the cosine classifier. Hence, when exploring
new long-tailed approaches, it is better to first determine which
classifier is used. Generally, the cosine classifier or the learnable
weight-scaling classifier are recommended, as they are empirically
robust to the imbalance and also easy to use. Moreover, when
designing feature prototype-based methods, the nearest class mean
classifier is a good choice. More complicated classifier designs (e.g.,
RTC, Causal and GIST) can also be considered if real applications
are complex and hard to handle.

3.3.3 Decoupled Training
Decoupled training decouples the learning procedure into repre-
sentation learning and classifier training. Here, decoupled training
represents a general paradigm for long-tailed learning instead of
a specific approach. Decoupling [32] was the pioneering work
to introduce such a two-stage decoupled training scheme. It
empirically evaluated different sampling strategies (mentioned
in Section 3.1.1) for representation learning in the first stage,
and then evaluated different classifier training schemes by fixing
the trained feature extractor in the second stage. In the classifier
learning stage, there are also four methods, including classifier
re-training with class-balanced sampling, the nearest class mean
classifier, the 7-normalized classifier, and the learnable weight-
scaling classifier. The main observations are twofold: (1) random
sampling is surprisingly the best strategy for representation
learning in decoupled training; (2) re-adjusting the classifier leads
to significant performance improvement in long-tailed recognition.
Following this scheme, KCL [13] empirically observed that
a balanced feature space is beneficial to long-tailed learning.
Therefore, it innovated the decoupled training scheme by devel-
oping a k-positive contrastive loss to learn a more class-balanced
and class-discriminative feature space, which leads to better long-
tailed learning performance. Moreover, MiSLAS [114] empirically
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Fig. 3. lllustrations of existing ensemble-based long-tailed methods. Compared to standard training (a), the trained experts by ensemble-based
methods (b-f) may have different expertise, e.g., being skilled in different class distributions or different class subsets (indicated by different colors).
For example, BBN and SimCAL train two experts for simulating the original long-tailed and uniform distributions so that they can address the two
distributions well. BAGS, LFME, ACE, and ResLT train multiple experts by sampling class subsets, so that different experts can particularly handle
different sets of classes. SADE directly trains multiple experts to separately simulate long-tailed, uniform and inverse long-tailed class distributions
from a stationary long-tailed distribution, which enables it to handle test sets with agnostic class distributions based on self-supervised aggregation.

observed that data mixup is beneficial to features learning but has
a negative/negligible effect on classifier training under the two-
stage decoupled training scheme. Therefore, MiSLAS proposed
to enhance the representation learning with data mixup in the first
stage, while applying a label-aware smoothing strategy for better
classifier generalization in the second stage.

Several recent studies particularly enhanced the classifier
training stage. For example, OFA [101] innovated the classifier
re-training through tail-class feature augmentation. SimCal [34] en-
hanced the classifier training stage by calibrating the classification
head with a novel bi-level class-balanced sampling strategy for long-
tailed instance segmentation. DisAlign [29] innovated the classifier
training with a new adaptive logit adjustment strategy. Very recently,
DT2 [61] applied the scheme of decoupled training to the scene
graph generation task, which demonstrates the effectiveness of
decoupled training in handling long-tailed visual relation learning.

Discussions. Decoupled training methods resolve the class
imbalance issue at both the feature and classifier levels. Under ideal
conditions, combining different methods can lead to better long-
tailed performance, e.g., using self-supervised pre-training [13]
and mixup augmentation [114] together for better representation
learning, and applying label-aware smoothing [114] and tail-class
feature augmentation [101] together for better classifier tuning.
Therefore, it is recommended to use MiSLAS [114] as a base
method and use different tricks on it. Note that some representation
methods are also competing to each other, e.g., different sampling
methods for representation learning [32].

The classifier learning stage does not introduce too many
computation costs but can lead to significant performance gains.
This makes decoupled training attract increasing attention. One
critique is that the accumulated training stages make decoupled
training less practical to be integrated with existing well-formulated

methods for other long-tailed problems like object detection and
instance segmentation. Despite this, the idea of decoupled training
is conceptually simple and thus can be easily used to design new
methods for resolving various long-tailed problems, like DT2 [61].

3.3.4 Ensemble Learning

Ensemble learning based methods strategically generate and
combine multiple network modules (namely, multiple experts)
to solve long-tailed visual learning problems. We summarize the
main schemes of existing ensemble-based methods in Fig. 3, which
will be detailed as follows.

BBN [44] proposed to use two network branches, i.e., a conven-
tional learning branch and a re-balancing branch (cf. Table 3(b)),
to handle long-tailed recognition. To be specific, the conventional
learning branch applies uniform sampling to simulate the original
long-tailed training distribution, while the re-balancing branch
applies a reversed sampler to sample more tail-class samples in each
mini-batch for improving tail-class performance. The predictions of
two branches are dynamically combined during training, so that the
learning focus of BBN gradually changes from head classes to tail
classes. Following BBN, LTML [46] applied the bilateral-branch
network scheme to solve long-tailed multi-label classification. To
be specific, LTML trains each branch using the sigmoid cross-
entropy loss for multi-label classification and enforces a logit
consistency loss to improve the consistency of the two branches.
Similarly, SimCal [34] explored a dual classification head scheme,
a conventional classification head and a calibrated classification
head, to address long-tail instance segmentation. Based on a new
bi-level sampling strategy, the calibrated classification head is able
to improve the performance on tail classes, while the original head
aims to maintain the performance on head classes.

Instead of bilateral branches, BAGS [56] explored a multi-
head scheme to address long-tailed object detection. Specifically,
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BAGS took inspiration from an observation that learning a more
uniform distribution with fewer samples is sometimes easier than
learning a long-tailed distribution with more samples. Therefore,
BAGS divides classes into several groups, where the classes in each
group have a similar number of training data. Then, BAGS applies
multiple classification heads for prediction, where different heads
are trained on different class groups (cf. Table 3(c)). In this way,
each classification head performs the softmax operation on classes
with a similar number of training data, thus avoiding the negative
influence of class imbalance. Moreover, BAGS also introduces a
label of “other classes” into each group to alleviate the contradiction
among different heads. Similar to BAGS, LFME [103] divides the
long-tailed dataset into several subsets with smaller class imbalance
degrees, and trains multiple experts with different sample subsets.
Based on these experts, LFME then learns a unified student model
using adaptive knowledge distillation from multiple teachers.

Instead of division into several balanced sub-groups, ACE [124]
divides classes into several skill-diverse subsets: one subset contains
all classes; one contains middle and tail classes; another one has
only tail classes (cf. Table 3(d)). ACE then trains multiple experts
with various class subsets, so that different experts have specific and
complementary skills. Moreover, considering that various subsets
have different sample numbers, ACE also applies a distributed-
adaptive optimizer to adjust the learning rate for different experts.
A similar idea of ACE was also explored in ResLT [125].

Instead of dividing the dataset, RIDE [17] uses all training
samples to train multiple experts with softmax loss respectively
(cf. Table 3(e)), and enforces a KL-divergence based loss to improve
the diversity among various experts. Following that, RIDE applies
an expert assignment module to improve computing efficiency.
Note that training each expert with the softmax loss independently
boosts the ensemble performance on long-tailed learning a lot.
However, the learned experts by RIDE are not diverse enough.

Self-supervised Aggregation of Diverse Experts (SADE) [30]
explored a new multi-expert scheme to handle test-agnostic
long-tailed recognition, where the test class distribution can be
either uniform, long-tailed or even inversely long-tailed. To be
specific, SADE developed a novel spectrum-spanned multi-expert
framework (cf. Table 3(f)), and innovated the expert training
scheme by introducing diversity-promoting expertise-guided losses
that train different experts to handle different class distributions,
respectively. In this way, the learned experts are more diverse than
RIDE, leading to better ensemble performance, and integratedly
span a wide spectrum of possible class distributions. In light of this,
SADE further introduced a self-supervised learning method, namely
prediction stability maximization, to adaptively aggregate experts
at test time for better handling unknown test class distribution.

Discussions. These ensemble-based methods address the class
imbalance at the model level. As they require particular manners
for multi-model design and training (cf. Fig. 3), they are exclusive
to each other and usually cannot be used together. More specifically,
the methods with bilateral branches like BBN and TLML only have
two experts, whose empirical performance has been shown worse
than the approaches with more experts. Moreover, the methods with
experts trained on class subsets like BAGS and ACE may suffer
from expert inconsistency in terms of different label spaces, which
makes the aggregation of experts difficult and may lead to poor
performance in real applications. Instead, RIDE trains multiple
experts with all samples but the resulting multiple experts are not
diverse enough. In contrast, SADE is able to train skill-diverse
experts with the same label space, and thus is recommended for
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real applications. One concern of these ensemble-based methods is
that they generally lead to higher computational costs due to the
use of multiple experts. Such a concern, however, can be alleviated
by using a shared feature extractor. Moreover, efficiency-oriented
expert assignment and knowledge distillation strategies [17], [103]
can also reduce computational complexity.

3.3.5 Summary

Module improvement based methods seek to address long-tailed
problems by improving network modules. Specifically, represen-
tation learning and classifier design are fundamental problems
of deep learning, being worth further exploring for long-tailed
problems. Both representation learning and classifier design are
complementary to decoupled training. The scheme of decoupled
training is conceptually simple and can be easily used to design
new methods for resolving real long-tailed applications. In addition,
ensemble-based methods, thanks to the aggregation of multiple
experts, are able to achieve better long-tailed performance without
sacrificing the performance on any class subsets, e.g., head classes.
Since all classes are important, such a superiority enables ensemble-
based methods to be a better choice for real applications compared
to existing class re-balancing methods that usually improve tail-
class performance at the cost of lower head-class performance.
Here, both ensemble-based methods and decoupled training require
specific model training and design manners, so it is not easy to use
them together unless very careful design.

Note that most module improvement methods are developed
based on fundamental class re-balancing methods. Moreover,
module improvement methods are complementary to information
augmentation methods. Using them together can usually achieve
better performance for real-world long-tailed applications.

4 EMPIRICAL STUDIES

This section empirically analyzes existing long-tailed learning
methods. To begin with, we introduce a new evaluation metric.

4.1

The key goal of long-tailed learning is to handle the class imbalance
for better model performance. Therefore, the common evaluation
protocol [13], [22] is directly using the top-1 test accuracy (denoted
by A¢) to judge how well long-tailed methods perform and which
method handles class imbalance better. Such a metric, however,
cannot accurately reflect the relative superiority among different
methods when handling class imbalance, as the top-1 accuracy
is also influenced by other factors apart from class imbalance.
For example, long-tailed methods like ensemble learning (or data
augmentation) also improve the performance of models, trained
on a balanced training set. In such cases, it is hard to tell if the
performance gain is from the alleviation of class imbalance or from
better network architectures (or more data information).

To better evaluate the method effectiveness in handling class
imbalance, we explore a new metric, namely relative accuracy
A,, to alleviate the influence of unnecessary factors in long-
tailed learning. To this end, we first compute an empirically upper
reference accuracy A, = max(A,, Ap), which is the maximal
value between the vanilla accuracy A, of the backbone trained
on a balanced training set with cross-entropy and the balanced
accuracy Ay of the model trained on a balanced training set with
the corresponding long-tailed method. Here, the balanced training
set is a variant of the long-tailed training set, where the total data

Novel Evaluation Metric
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number is similar but each class has the same number of data. This
upper reference accuracy, obtained from the balanced training set, is
used to alleviate the influence apart from class imbalance, and then
the relative accuracy is defined by A, = ﬁ—;. Note that this metric
is mainly designed for empirical understanding, i.e., to evaluate to
what extent existing methods resolve the class imbalance. We
conduct this analysis based on the ImageNet-LT dataset [15],
where a corresponding balanced training set variant can be built by
sampling from the original ImageNet following [13].

4.2 Experimental Settings

We then introduce the experimental settings.

Datasets. We adopt the widely-used ImageNet-LT [15] and
iNaturalist 2018 [23] as the benchmark long-tailed dataset for
empirical studies. Their dataset statistics can be found in Table 1.
Besides the performance regarding all classes, we also report
performance on three class subsets: Head (more than 100 images),
Middle (20~100 images) and Tail (less than 20 images).

Baselines. We select long-tailed methods via two criteria: (1)
the source codes are publicly available or easy to re-implement; (2)
the methods are evaluated on ImageNet-LT in the corresponding
papers. As a result, more than 20 methods are empirically eval-
uated in this paper, including baseline (Softmax), class-sensitive
learning (Weighted Softmax, Focal loss [54], LDAM [18],
ESQL [19], Balanced Softmax [97], LADE [31]), logit ad-
justment (UNO-IC [99]), transfer learning (SSP [102]), data
augmentation (RSG [118]) representation learning (OLTR [15],
PaCo [121]). classifier design (De-confound [45]), decoupled
training (Decouple-IB-CRT [32], CB-CRT [32], SR-CRT [32],
PB-CRT [32], MiSLAS [114]), ensemble learning (BBN [44],
LFME [103], RIDE [17], ResLT [125], SADE [30]).

Implementation details. We implement all experiments in
PyTorch. Following [17], [31], [32], we use ResNeXt-50 for
ImageNet-LT and and ResNet-50 for iNaturalist 2018 as the
network backbones for all methods. We conduct model training
with the SGD optimizer based on batch size 256, momentum 0.9
and weight decay factor 0.0005, and learning rate 0.1 (linear LR
decay). For method-related hyper-parameters, we set the values by
either directly following the original papers or manual tuning if the
default values perform poorly. Moreover, we use the same basic
data augmentation (i.e., random resize and crop to 224, random
horizontal flip, color jitter, and normalization) for all methods.

4.3 Results on ImageNet-LT

Observations on all classes. Table 4 and Fig. 4 report the average
performance of ImageNet-LT over all classes. From these results,
we have several observations on the overall method progress and
different method types. As shown in Table 4, almost all long-
tailed methods perform better than the Softmax baseline in terms
of accuracy, which demonstrates the effectiveness of long-tailed
learning. Even so, there are two methods performing slightly worse
than Softmax, i.e., Decouple-CB-CRT [32] and BBN [44]. We
speculate that the poor performance of Decouple-CB-CRT results
from poor representation learning by class-balanced sampling in the
first stage of decoupled training (refer to [32] for more empirical
observations). The poor results of BBN (based on the official codes)
may come from the cumulative learning strategy, which gradually
adjusts the learning focus from head classes to tail classes; at the
end of the training, however, it may put too much focus on the
tail ones. As a result, despite the better tail-class performance, the
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Fig. 4. Performance trends of long-tailed learning methods in terms
of accuracy and relative accuracy under 200 epochs. Here, the shape
of o indicates the softmax baseline; O indicates class re-balancing; A
and <) are information augmentation and module improvement methods,
respectively. Different colors represent different methods.

model accuracy on head classes drops significantly (c.f. Table 5),
leading to worse average performance.

In addition to accuracy, we also evaluate long-tailed methods
based on upper reference accuracy (UA) and relative accuracy
(RA). Table 4 shows that most methods have the same UA as the
baseline model, but there are still some methods having higher
UA, e.g., SSP, MiSLAS, and SADE. For these methods, the
performance improvement comes not only from the alleviation of
class imbalance, but also from other factors, like data augmentation
or better network architectures. Therefore, simply using accuracy
for evaluation is not comprehensive enough, while the proposed RA
metric provides a good complement as it alleviates the influences of
factors apart from class imbalance. For example, MiSLAS, based
on data mixup, has higher accuracy than Balanced Softmax under
90 training epochs, but it also has higher UA. As a result, the
relative accuracy of MiSLAS is lower than Balanced Softmax,
which means that Balanced Softmax alleviates class imbalance
better than MiSLAS under 90 training epochs.

Although some recent high-accuracy methods have lower RA,
the overall development trend of long-tailed learning is still positive,
as shown in Fig. 4. Such a performance trend demonstrates that
recent studies of long-tailed learning make real progress. Moreover,
the RA of the state-of-the-art SADE is 93.0, which implies that
there is still room for improvement in the future.

We also evaluate the influence of different training epochs (i.e.,
90 and 200) in Table 4. Overall, training with 200 epochs leads to
better performance for most long-tailed methods, because sufficient
training enables deep models to fit data better and learn better
visual representations. However, there are also some methods that
perform better when only training 90 epochs, e.g., De-confound
and Decouple-CB-CRT. We speculate that, for these methods,
90 epochs are enough to train models well, while training more
epochs does not bring additional benefits but increases the training
difficulties since it also influences the learning rate decay scheme.

Observations on different method types. We next analyze
different method types in Table 4. To begin with, almost all class
re-balancing (CR) methods all beneficial to long-tailed learning
performance, compared to the baseline model. Among them, LADE,
Balanced Softmax and LDAM achieve state-of-the-art. Moreover,
Focal loss was initially proposed to handle object detection [54].
However, when handling a highly large number of classes (e.g.,
1,000 in ImageNet-LT), Focal loss cannot perform well and only
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TABLE 4
Results on ImageNet-LT in terms of accuracy (Acc), upper reference
accuracy (UA), relative accuracy (RA) under 90 or 200 training epochs. In
this table, CR, IA and Ml indicate class re-balancing, information
augmentation and module improvement, respectively.
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TABLE 5
Accuracy results on ImageNet-LT regarding head, middle and tail
classes under 90 or 200 training epochs. In this table, WS indicates
weighed softmax and BS indicates balanced softmax. The types of
methods are the same to Table 4.

Type Method 90 epochs 200 epochs Method 90 epochs 200 epochs
Acc UA RA Acc UA RA Head Middle Tail Head Middle Tail
Baseline  Softmax 455 573 794 468 578 810 Softmax 66.5 39.0 8.6 66.9 40.4 12.6
Weighted Softmax 479 573 836 49.1 578 849 WS 66.3 422 15.6 57.9 46.2 34.0
Focal loss [54] 458 573 79.9 472 578 817 Focal loss [54] 66.9 39.2 9.2 67.0 41.0 13.1
LDAM [18] 51.1 573 892 51.1 578 884 LDAM [18§] 62.3 474 325 60.0 492 319
CR ESQL [19] 473 573 825 480 578 830 ESQL [19] 62.5 44.0 15.7 63.1 44.6 17.2
UNO-IC [99] 457 573 814 468 586 799 UNO-IC [99] 66.3 38.7 9.3 67.0 40.3 12.7
Balanced Softmax [97]  50.8 573  88.7 512 578 88.6 BS [97] 61.7 48.0 29.9 62.4 417 32.1
LADE [31] 51,5 57.8  89.1 51.6 578 893 LADE [31] 62.2 48.6 31.8 63.1 417 32.7
A SSP [102] 53.1  59.6 89.1 533 599 89.0 SSP[102] 65.6 49.6 30.3 67.3 49.1 28.3
RSG [118] 496 573 867 529 578 915 RSG [113] 68.7 43.7 16.2 65.0 49.4 31.1
OLTR [15] 467 573 815 480 584 822 OLTR [15] 58.2 45.5 19.5 62.9 44.6 18.8
PaCo [121] 52.7 587 89.9 544 596 913 PaCo [121] 59.7 51.7 36.6 63.2 51.6 39.2
De-confound [45] 51.8 577 89.8 513 578 88.8 De-confound [45] 63.0 48.5 314 64.9 46.9 28.1
Decouple-IB-CRT [32]  49.9 573 87.1 503 58.1 86.6 IB-CRT [32] 62.6 46.2 267 64.2 46.1 26.0
Decouple-CB-CRT [32] 449 573 784 43.0 578 744 CB-CRT [32] 62.4 39.3 14.9 60.9 36.9 13.5
MI Decouple-SR-CRT [32] 493 573  86.0 485 578 839 SR-CRT [32] 64.1 43.9 19.5 66.0 42.3 18.0
Decouple-PB-CRT [32] 484 573 845 48.1 578 832 PB-CRT [32] 63.9 450 232 64.9 43.1 20.6
MiSLAS [114] 514 583 882 534 597 89.4 MiSLAS [114] 62.1 489 326 65.3 506 33.0
BBN [44] 412 573 719 4.7 578 713 BBN [44] 40.0 433 408 433 459 437
LFME [103] 47.0 573 820 480 578 83.0 LFME [103] 60.6 435 220 64.1 423 228
ResLT [125] 51.6 57.3  90.1 532 581 916 ResLT [125] 57.8 504 400 61.6 514 388
RIDE [17] 555 602 922 56.1 609 921 RIDE [17] 66.9 52.3 345 67.9 52.3 36.0
SADE [30] 573 619 92.6 588 632 93.0 SADE [30] 65.3 552 420 67.2 553 400

leads to marginal improvement. In LDAM, there is a deferred TABLE 6

re-balancing optimization schedule in addition to the LDAM loss.
Simply learning with the LDAM loss without the deferred scheme
cannot achieve promising results. In addition, as shown in Table 4,
the upper reference accuracy of most class-sensitive methods is
the same, so their relative accuracy is positively correlated to
accuracy. Hence, the accuracy improvement in this method type
can accurately reflect the alleviation of class imbalance.

In information augmentation (IA), both SSP (transfer learning)
and RSG (data augmentation) help to handle long-tailed imbalance.
Although SSP also improves upper reference accuracy, its relative
accuracy is increased more significantly, implying that the perfor-
mance gain mostly comes from handling the class imbalance. In
module improvement (MI), all methods contribute to addressing
the imbalance. By now, the state of the art is ensemble-based long-
tailed methods, i.e., SADE and RIDE, in terms of both accuracy
and relative accuracy. Although ensemble learning also improves
upper reference accuracy, the performance gain from handling
imbalance is more significant, leading to higher relative accuracy.

Results on different class subsets. We then report the
performance in terms of different class subsets. As shown in
Table 5, almost all methods improve tail-class and middle-class
performance at the cost of lower head-class performance. The
head classes, however, are also important in long-tailed learning,
so it is necessary to improve long-tailed performance without
sacrificing the performance of the head. Potential solutions include
information augmentation and ensemble learning, e.g., SSP and
SADE. By comparing both Tables 4 and 5, one can find that the
overall performance gain largely depends on the improvement of
middle and tail classes; hence, how to improve their performance
is still the most important goal of long-tailed learning in the future.

By now, SADE [30] achieves the best overall performance
in terms of accuracy and RA (c.f. Table 4), but SADE does not
perform state-of-the-art on all class subsets (c.f. Table 5). For

Results on iNaturalist 2018 in terms of accuracy under 200 training
epochs. In this table, CR, IA and Ml indicate class re-balancing,
information augmentation and module improvement, respectively.

Type Method Head Middle  Tail All
Baseline  Softmax 75.3 66.4 604 649
Weighted Softmax 66.5 68.0 69.2 683
Focal loss [54] 58.8 66.5 66.8  66.6
CR LDAM [18] 57.4 62.7 63.8 62.8
Balanced Softmax [97] 70.9 70.7 704 70.6
LADE [31] 70.1 69.5 69.9  69.7
IA SSP [102] 72.0 68.9 663 682
RSG [118] 70.7 69.9 69.3  70.0
PaCo [121] 68.5 72.0 71.8 71.6
Decouple-IB-CRT [32] 73.2 68.8 65.1 67.8
Decouple-IB-LWS [32]  71.3 69.2 68.1  69.0
MI MiSLAS [114] 71.7 71.5 69.7  70.7
ResLT [125] 67.5 69.2 70.1 694
RIDE [17] 71.5 70.0 716 718
SADE [30] 74.4 72.5 73.1 729

example, when training 200 epochs, the head-class performance of
SADE is worse than RIDE and its tail-class performance is worse
than BBN. To summarize, the higher average performance of SADE
implies that the key to obtaining better long-tailed performance is
a better trade-off among all classes. In summary, the current best
practice for deep long-tailed learning is using ensemble learning
and class re-balancing, simultaneously.

4.4 Results on iNaturalist 2018

iNaturalist 2018 is not a synthetic dataset sampled from a larger
data pool, so we cannot build a corresponding balanced training
set with a similar data size for it through sampling. As a result, it
is infeasible to compute relative accuracy for it, so we only report
the performance in terms of accuracy. As shown in Table 6, most
observations are similar to those on ImageNet-LT. For example,
most long-tailed methods outperform Softmax. Although LDAM
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TABLE 7
Analysis of class re-balancing on ImageNet-LT based on ResNeXt-50.
LA indicates logit post-adjustment, while re-sampling indicates
class-balance re-sampling [32]. BS indicates Balanced Softmax [97].

Loss LA  Re-sampling Head Middle Tail All
Softmax X X 66.9 404 126 468
X X 62.4 477 321 512
v X 472 455 485 466

BS [97 : - : -
7] X v 57.6 475 306 49.1
v v 426 466  43.6 446

TABLE 8

Analysis of whether transfer-based methods (e.g., SSP
pre-training [102]) are beneficial to other types of long-tailed learning.
Here, we use ResNet-50 as the backbone since SSP provides an
open-source self-supervised pre-trained ResNet-50.

Method SSP pre-training [102]  Head  Middle  Tail All
Softmax X 647 359 71 431
s X 51.7 482 324 474
Re-sampling [32] v 635 453 205 490
~ X 61.7 478 285 505

0 . 50.
BS 7] v 62.9 500 304 523
Decouple [32] X 642 461 260 503
ple (52 v 673 491 283 533
. X 66.0 56.1 410 578
SADE [30) v 663 569 424 586

(based on the official codes) performs slightly worse, its tail-class
performance is better than the baseline, which demonstrates that
LDAM can alleviate the class imbalance. However, its head-class
performance drops significantly due to the head-tail trade-off, thus
leading to poor overall performance. In addition, the current state-
of-the-art method is SADE [30] in terms of accuracy, which further
demonstrates the superiority of ensemble-based methods over other
types of methods. All these baselines, except data augmentation
based methods, adopt only basic augmentation operations. If we
adopt stronger data augmentation and longer training, their model
performance can be further improved.

4.5 Analysis

We next analyze the relationship between various types of methods.

Discussions on class re-balancing. Class re-balancing has
three subtypes of methods, i.e., re-sampling, class-sensitive learning
and logit adjustment. Although they have the same goal for re-
balancing classes, they are exclusive to each other to some degree.
As shown in Table 7, Balanced Softmax (class-sensitive learning)
alone greatly outperforms Softmax. However, when further using
logit adjustment, it performs only comparably to Softmax. The
reason is that the trained model by class-sensitive learning is
already relatively class-balanced, so further using logit adjustment
to post-adjust model inference will cause the predictions to become
biased again and result in inferior performance. The performance
is even worse when further combining class-balanced re-sampling.
Therefore, simply combining existing class re-balancing without a
careful design cannot lead to better performance.

Discussions on the relationship between pre-training and
other long-tailed methods. As mentioned in Section 3.2, model
pre-training is a transfer-based scheme for long-tailed learning.
In this experiment, we analyze whether it is beneficial to other
long-tailed paradigms. As shown in Table 8, SSP pre-training
brings consistent performance gains to class re-balancing (class-
balanced sampling [32] and BS [97]) and module improvement
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TABLE 9
Analysis of whether augmentation methods (e.g., RandAugment) are
beneficial to other types of long-tailed learning, based on ResNeXt-50.

Method RandAugment [166] Head Middle Tail All
Softmax X 66.9 404 126 468
X 62.4 477 321 512

BS [97 ’ ‘ P
SO7 v 64.1 504 323 532
X 63.2 516 392 544

P: 121 : : s
aCo [121] v 637 566 392 570
. - X 64.9 469 281 513
De-confound [45] v 66.1 505 322 540
X 67.2 553 400 588

SADE [30 : o : :
301 v 67.3 60.4 464 612

TABLE 10

The decoupled training performance of various class-sensitive losses
under 200 training epochs on ImageNet-LT. Here, “Joint” indicates
one-stage end-to-end joint training; “NCM” is the nearest class mean
classifier [32]; “CRT” represents class-balanced classifier re-training [32];
“LWS” means learnable weight scaling [32]. Moreover, BS indicates the
balanced softmax method [97].

Accuracy on all classes Accuracy on head classes

Test Dist. Jointt NCM CRT LWS Joint. NCM CRT LWS
Softmax 46.8 50.2 502 50.8 66.9 63.5 65.0 646
Focal loss [54]  47.2 50.7 507 515 67.0 62.6 645 643
ESQL [19] 480 498 50.6 505 63.1 60.2 640 633
BS [97] 51.2 504 506 511 62.4 624 649 643
Accuracy on middle classes Accuracy on tail classes
Test Dist. Jointt NCM CRT LWS Joint. NCM CRT LWS
Softmax 404 458 453 46.1 12.6 28.1 255 282
Focal loss [54]  41.0 470 464 473 13.1 30.1 269 302
ESQL [19] 44.6 46.6 46.5  46.1 17.2 31.1 27.1 295
BS [97] 47.7 46.8 46.1 467 32.1 29.1 262 294

(Decouple [32] and SADE [30]). We thus conclude that transfer-
based methods are complementary to other long-tailed paradigms.

Discussions on the relationship between data augmentation
and other long-tailed methods. We then analyze whether data
augmentation methods are beneficial to other long-tailed paradigms.
As shown in Table 9, RandAugment [166] brings consistent
performance improvement to BS (a class re-balancing method),
PaCo (representation learning), De-confound (classifier design)
and SADE (ensemble learning). Such a result demonstrates
that augmentation-based methods are complementary to other
paradigms of long-tailed learning.

Discussions on class-sensitive losses in the decoupled train-
ing scheme. We further evaluate the performance of different class-
sensitive learning losses on the decoupled training scheme [32].
In the first stage, we use different class-sensitive learning losses
to train the model backbone for learning representations, while
in the second stage, we use four different strategies for classifier
training [32], i.e., joint training without re-training, the nearest
class mean classifier (NCM), class-balanced classifier re-training
(CRT), and learnable weight scaling (LWS). As shown in Table 10,
decoupled training can further improve the overall performance of
most class-sensitive methods with joint training, except BS. Among
these methods, BS performs the best under joint training, but the
others perform comparably to BS under decoupled training. Such
results are particularly interesting, as they imply that although these
class-sensitive losses perform differently under joint training, they
essentially learn the similar quality of feature representations. The
worse overall performance of BS under decoupled training than
joint training may imply that BS has conducted class re-balancing
very well; further using classifier re-training for re-balancing does
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not bring additional benefits but even degenerates the consistency
of network parameters by end-to-end joint training.

4.6 Summary of Empirical Observations

We then summarize main take-home messages from our empirical
studies. First, we analyze to what extent existing long-tailed
methods resolve the class imbalance in terms of relative accuracy,
and confirm that existing research is making positive progress in
resolving class imbalance instead of just chasing state-of-the-art
performance through tricks. Second, we determine the relative
performance of existing long-tailed methods in a unified setup,
and find that ensemble-based methods are the current state-of-
the-art. Third, we analyze method performance on various class
subsets, and find that most methods improve tail-class performance
at the cost of lower head-class performance. Considering that
all classes are important in long-tailed learning, it is worth
exploring how to improve all classes at the same time in the
future. Fourth, we empirically show that the three subtypes of class
re-balancing are exclusive to each other to some degree. Moreover,
information augmentation methods are complementary to other
long-tailed paradigms. Lastly, by evaluating class-sensitive learning
on the decoupled training scheme, we find class re-balancing and
decoupled training play an interchangeable role in resolving class
imbalance. Moreover, the representations learned by different class-
sensitive losses perform similarly under decoupled training.

5 FUTURE DIRECTIONS

In this section, we identify several future research directions for
deep long-tailed learning.

Test-agnostic long-tailed learning. Existing long-tailed learn-
ing methods generally hypothesize a balanced test class distribution.
The practical test distribution, however, often violates this hypoth-
esis (e.g., being long-tailed or even inversely long-tailed), which
may lead existing methods to fail in real-world applications. To
overcome this limitation, LADE [31] relaxes this hypothesis by
assuming that the test class distribution can be skewed arbitrarily
but the prior of test distribution is available. Afterward, SADE [30]
further innovates the task, in which the test class distribution is not
only arbitrarily skewed but also unknown. Besides class imbalance,
this task poses another challenge, i.e., unidentified class distribution
shift between the training and test samples.

Open-set long-tailed learning. Real-world samples often have
a long-tailed and open-ended class distribution. Open-set long-
tailed learning [15], [104] seeks to learn from long-tailed data and
optimize the classification accuracy over a balanced test set that
includes head, tail and open classes. There are two main challenges:
(1) how to share visual knowledge between head and tail classes;
(2) how to reduce confusion between tail and open classes.

Federated long-tailed learning. Existing long-tailed studies
generally assume that all training samples are accessible during
model training. However, in real applications, long-tailed training
data may be distributed on numerous mobile devices or the Internet
of Things [167], which requires decentralized training of deep
models. Such a task is called federated long-tailed learning, which
has two key challenges: (1) long-tail class imbalance; (2) unknown
class distribution shift among the local data of different clients.

Class-incremental long-tailed learning. In real-world appli-
cations, long-tailed data may come in a continual and class-
incremental manner [98], [168], [169]. To deal with this scenario,
class-incremental long-tailed learning aims to learn deep models
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from class-incremental long-tailed data, suffering two key chal-
lenges: (1) how to handle long-tailed class imbalance when different
classes come sequentially, and the model has no information about
the future input regarding classes as well as label frequencies;
(2) how to overcome catastrophic forgetting of previous class
knowledge when learning new classes. Such a task setting can also
be named continual long-tailed learning.

Multi-domain long-tailed learning. Current long-tailed meth-
ods generally assume that all long-tailed samples come from the
same data marginal distribution. However, in practice, long-tailed
data may also get from different domains with distinct data distribu-
tions [28], [170], e.g., the DomainNet dataset [171]. Motivated by
this, multi-domain long-tailed learning seeks to handle both class
imbalance and domain distribution shift, simultaneously. One more
challenging issue may be the inconsistency of class imbalance
among different domains. In other words, various domains may
have different class distributions, which further enlarges the domain
shift in multi-domain long-tailed learning.

Robust long-tailed learning. Real-world long-tailed samples
may also suffer image noise [113], [172] or label noise [150], [155].
Most long-tailed methods, however, assume all images and labels
are clean, leading to poor model robustness in practical applications.
This issue would be particularly severe for tail classes, as they have
very limited training samples. Inspired by this, robust long-tailed
learning seeks to handle the class imbalance and improve model
robustness, simultaneously.

Long-tailed regression. Most existing studies of long-tailed
visual learning focus on classification, detection and segmentation,
which have discrete labels with class indices. However, many tasks
involve continuous labels, where hard classification boundaries
among classes do not exist. Motivated by this, long-tailed regres-
sion [173] aims to deal with long-tailed learning with continuous
label space. In such a task, how to simultaneously resolve long-
tailed class imbalance and handle potential missing data for certain
labels remains an open question.

Long-tailed video learning. Most existing deep long-tailed
learning studies focus on the image level, but ignore that the video
domain also suffers from the issue of long-tail class imbalance.
Considering the additional temporal dimension in video data, long-
tailed video learning should be more difficult than long-tailed image
learning. Thanks to the recent release of a VideoLT dataset [38],
long-tailed video learning can be explored in the near future.

6 CONCLUSION

In this survey, we have extensively reviewed classic deep long-
tailed learning methods proposed before mid-2021, according to
the taxonomy of class re-balancing, information augmentation
and module improvement. We have empirically analyzed several
state-of-the-art long-tailed methods by evaluating to what extent
they address the issue of class imbalance, based on a newly
proposed relative accuracy metric. Following that, we discussed the
main application scenarios of long-tailed learning, and identified
potential innovation directions for methods and task settings.
We expect that this timely survey not only provides a better
understanding of long-tailed learning for researchers and the
community, but also facilitates future research.

ACKNOWLEDGEMENTS

This work was partially supported by NUS ODPRT Grant A-
0008067-00-00.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

REFERENCES

(1]
(2]
(3]

(4]

(5]

(6]

(71

(8]

(91
[10]
(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” Computational
Intelligence and Neuroscience, 2018.

C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, pp. 295-307, 2015.

Z. Wang, J. Chen, and S. C. Hoi, “Deep learning for image super-
resolution: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in Neural
Information Processing Systems, vol. 25, pp. 1097-1105, 2012.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149,
2016.

E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 4, pp. 640-651, 2016.

Y. Bengio, Y. LeCun, and G. Hinton, “Deep learning for ai,” Communi-
cations of the ACM, vol. 64, no. 7, pp. 58-65, 2021.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Computer Vision and Pattern Recognition, 2016.

C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object
detection,” 2013.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” in
Computer Vision and Pattern Recognition, 2014, pp. 580-587.

B. Kang, Y. Li, S. Xie, Z. Yuan, and J. Feng, “Exploring balanced
feature spaces for representation learning,” in International Conference
on Learning Representations, 2021.

A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and S. Kumar,
“Long-tail learning via logit adjustment,” in International Conference on
Learning Representations, 2021.

Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-
scale long-tailed recognition in an open world,” in Computer Vision and
Pattern Recognition, 2019, pp. 2537-2546.

Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced loss
based on effective number of samples,” in Computer Vision and Pattern
Recognition, 2019, pp. 9268-9277.

X. Wang, L. Lian, Z. Miao, Z. Liu, and S. X. Yu, “Long-tailed recog-
nition by routing diverse distribution-aware experts,” in International
Conference on Learning Representations, 2021.

K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning
imbalanced datasets with label-distribution-aware margin loss,” in
Advances in Neural Information Processing Systems, 2019.

J. Tan, C. Wang, B. Li, Q. Li, W. Ouyang, C. Yin, and J. Yan,
“Equalization loss for long-tailed object recognition,” in Computer Vision
and Pattern Recognition, 2020, pp. 11662-11671.

V. Vapnik, “Principles of risk minimization for learning theory,” in
Advances in Neural Information Processing Systems, 1992, pp. 831-838.
X.Zhang, Z. Fang, Y. Wen, Z. Li, and Y. Qiao, “Range loss for deep face
recognition with long-tailed training data,” in International Conference
on Computer Vision, 2017, pp. 5409-5418.

D. Cao, X. Zhu, X. Huang, J. Guo, and Z. Lei, “Domain balancing: Face
recognition on long-tailed domains,” in Computer Vision and Pattern
Recognition, 2020, pp. 5671-5679.

G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard,
H. Adam, P. Perona, and S. Belongie, “The inaturalist species classifica-
tion and detection dataset,” in Computer Vision and Pattern Recognition,
2018, pp. 8769-8778.

Z. Miao, Z. Liu, K. M. Gaynor, M. S. Palmer, S. X. Yu, and W. M.
Getz, “Iterative human and automated identification of wildlife images,”
arXiv:2105.02320, 2021.

L. Ju, X. Wang, L. Wang, T. Liu, X. Zhao, T. Drummond, D. Mahapatra,
and Z. Ge, “Relational subsets knowledge distillation for long-tailed
retinal diseases recognition,” arXiv:2104.11057, 2021.

R. He, J. Yang, and X. Qi, “Re-distributing biased pseudo labels for
semi-supervised semantic segmentation: A baseline investigation,” in
International Conference on Computer Vision, 2021.

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

(36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

17

W. Yu, T. Yang, and C. Chen, “Towards resolving the challenge of
long-tail distribution in uav images for object detection,” in I[EEE Winter
Conference on Applications of Computer Vision, 2021, pp. 3258-3267.
M. A. Jamal, M. Brown, M.-H. Yang, L. Wang, and B. Gong, “Rethinking
class-balanced methods for long-tailed visual recognition from a domain
adaptation perspective,” in Computer Vision and Pattern Recognition,
2020, pp. 7610-7619.

S. Zhang, Z. Li, S. Yan, X. He, and J. Sun, “Distribution alignment: A
unified framework for long-tail visual recognition,” in Computer Vision
and Pattern Recognition, 2021, pp. 2361-2370.

Y. Zhang, B. Hooi, L. Hong, and J. Feng, “Self-supervised aggregation
of diverse experts for test-agnostic long-tailed recognition,” in Advances
in Neural Information Processing Systems, 2022.

Y. Hong, S. Han, K. Choi, S. Seo, B. Kim, and B. Chang, “Disentangling
label distribution for long-tailed visual recognition,” in Computer Vision
and Pattern Recognition, 2021.

B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and
Y. Kalantidis, “Decoupling representation and classifier for long-tailed
recognition,” in International Conference on Learning Representations,
2020.

C. Feng, Y. Zhong, and W. Huang, “Exploring classification equilibrium
in long-tailed object detection,” in International Conference on Computer
Vision, 2021.

T. Wang, Y. Li, B. Kang, J. Li, J. Liew, S. Tang, S. Hoi, and J. Feng,
“The devil is in classification: A simple framework for long-tail instance
segmentation,” in European Conference on Computer Vision, 2020.

Z. Weng, M. G. Ogut, S. Limonchik, and S. Yeung, “Unsupervised
discovery of the long-tail in instance segmentation using hierarchical
self-supervision,” in Computer Vision and Pattern Recognition, 2021.
A. Gupta, P. Dollar, and R. Girshick, “Lvis: A dataset for large vocabulary
instance segmentation,” in Computer Vision and Pattern Recognition,
2019, pp. 5356-5364.

T. Wu, Q. Huang, Z. Liu, Y. Wang, and D. Lin, “Distribution-balanced
loss for multi-label classification in long-tailed datasets,” in European
Conference on Computer Vision, 2020, pp. 162—178.

X. Zhang, Z. Wu, Z. Weng, H. Fu, J. Chen, Y.-G. Jiang, and L. Davis,
“Videolt: Large-scale long-tailed video recognition,” in International
Conference on Computer Vision, 2021.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009, pp. 248-255.

A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
deep features for scene recognition using places database,” Advances in
Neural Information Processing Systems, vol. 27, pp. 487-495, 2014.
M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes challenge: A
retrospective,” International Journal of Computer Vision, vol. 111, no. 1,
pp. 98-136, 2015.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European Conference on Computer Vision, 2014.

B. Zhou, Q. Cui, X.-S. Wei, and Z.-M. Chen, “Bbn: Bilateral-branch
network with cumulative learning for long-tailed visual recognition,” in
Computer Vision and Pattern Recognition, 2020, pp. 9719-9728.

K. Tang, J. Huang, and H. Zhang, “Long-tailed classification by keeping
the good and removing the bad momentum causal effect,” in Advances
in Neural Information Processing Systems, vol. 33, 2020.

H. Guo and S. Wang, “Long-tailed multi-label visual recognition
by collaborative training on uniform and re-balanced samplings,” in
Computer Vision and Pattern Recognition, 2021, pp. 15089-15 098.

M. R. Keaton, R. J. Zaveri, M. Kovur, C. Henderson, D. A. Adjeroh, and
G. Doretto, “Fine-grained visual classification of plant species in the wild:
Object detection as a reinforced means of attention,” arXiv:2106.02141,
2021.

Y. Zhong, W. Deng, M. Wang, J. Hu, J. Peng, X. Tao, and Y. Huang,
“Unequal-training for deep face recognition with long-tailed noisy data,”
in Computer Vision and Pattern Recognition, 2019, pp. 7812-7821.

J. Liu, Y. Sun, C. Han, Z. Dou, and W. Li, “Deep representation learning
on long-tailed data: A learnable embedding augmentation perspective,”
in Computer Vision and Pattern Recognition, 2020.

Q. Dong, S. Gong, and X. Zhu, “Class rectification hard mining for
imbalanced deep learning,” in International Conference on Computer
Vision, 2017, pp. 1851-1860.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

(741

(751

[76]

Z.Deng, H. Liu, Y. Wang, C. Wang, Z. Yu, and X. Sun, “Pml: Progressive
margin loss for long-tailed age classification,” in Computer Vision and
Pattern Recognition, 2021, pp. 10503-10512.

Z. Zhang, S. Yu, S. Yang, Y. Zhou, and B. Zhao, “Rail-5k: a real-world
dataset for rail surface defects detection,” arXiv:2106.14366, 2021.

A. Galdran, G. Carneiro, and M. A. G. Ballester, “Balanced-mixup
for highly imbalanced medical image classification,” in International
Conference on Medical Image Computing and Computer-Assisted
Intervention, 2021.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” in International Conference on Computer Vision,
2017, pp. 2980-2988.

T.-I. Hsieh, E. Robb, H.-T. Chen, and J.-B. Huang, “Droploss for long-
tail instance segmentation,” in AAAI Conference on Artificial Intelligence,
vol. 35, no. 2, 2021, pp. 1549-1557.

Y. Li, T. Wang, B. Kang, S. Tang, C. Wang, J. Li, and J. Feng,
“Overcoming classifier imbalance for long-tail object detection with
balanced group softmax,” in Computer Vision and Pattern Recognition,
2020, pp. 10991-11 000.

T. Weyand, A. Araujo, B. Cao, and J. Sim, “Google landmarks dataset
v2-a large-scale benchmark for instance-level recognition and retrieval,”
in Computer Vision and Pattern Recognition, 2020, pp. 2575-2584.

Y. Zang, C. Huang, and C. C. Loy, “Fasa: Feature augmentation
and sampling adaptation for long-tailed instance segmentation,” in
International Conference on Computer Vision, 2021.

J. Wu, L. Song, T. Wang, Q. Zhang, and J. Yuan, “Forest r-cnn: Large-
vocabulary long-tailed object detection and instance segmentation,” in
ACM International Conference on Multimedia, 2020, pp. 1570-1578.
J. Mao, M. Niu, C. Jiang, H. Liang, X. Liang, Y. Li, C. Ye, W. Zhang,
Z.Li, J. Yu et al., “One million scenes for autonomous driving: Once
dataset,” in NeurIPS 2021 Datasets and Benchmarks Track, 2021.

A. Desai, T.-Y. Wu, S. Tripathi, and N. Vasconcelos, “Learning of
visual relations: The devil is in the tails,” in International Conference on
Computer Vision, 2021.

N. Dhingra, F. Ritter, and A. Kunz, “Bgt-net: Bidirectional gru trans-
former network for scene graph generation,” in Computer Vision and
Pattern Recognition, 2021, pp. 2150-2159.

J. Chen, A. Agarwal, S. Abdelkarim, D. Zhu, and M. Elhoseiny,
“Reltransformer: Balancing the visual relationship detection from local
context, scene and memory,” arXiv:2104.11934, 2021.

Z. Li, E. Stengel-Eskin, Y. Zhang, C. Xie, Q. Tran, B. Van Durme,
and A. Yuille, “Calibrating concepts and operations: Towards symbolic
reasoning on real images,” in International Conference on Computer
Vision, 2021.

G. Wang, D. Forsyth, and D. Hoiem, “Comparative object similarity for
improved recognition with few or no examples,” in Computer Vision and
Pattern Recognition, 2010, pp. 3525-3532.

C. C. Loy, T. M. Hospedales, T. Xiang, and S. Gong, “Stream-based
joint exploration-exploitation active learning,” in Computer Vision and
Pattern Recognition, 2012, pp. 1560-1567.

J. Yang, B. Price, S. Cohen, and M.-H. Yang, “Context driven scene
parsing with attention to rare classes,” in Computer Vision and Pattern
Recognition, 2014, pp. 3294-3301.

J. Pitman and M. Yor, “The two-parameter poisson-dirichlet distribution
derived from a stable subordinator,” The Annals of Probability, pp.
855-900, 1997.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110,
2004.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, vol. 1, 2005,
pp. 886-893.

M. J. Swain and D. H. Ballard, “Color indexing,” International Journal
of Computer Vision, vol. 7, no. 1, pp. 11-32, 1991.

H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263-1284, 2009.

J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” Advances in Neural Information Processing Systems, 2017.
F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in
Computer Vision and Pattern Recognition, 2018, pp. 1199-1208.

Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning for
few-shot learning,” in Computer Vision and Pattern Recognition, 2019.
Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Computing Surveys,
vol. 53, no. 3, pp. 1-34, 2020.

(771

(78]

[79]

(80]

[81]

[82]

[83]

[84]

(85]

[86]

[87]

[88]

[89]

[90]

(911

[92]

[93]

[94]

[95]

[96]

[97]

[98]

(991

[100]
[101]

[102]

18

D. Krueger, E. Caballero et al., “Out-of-distribution generalization via
risk extrapolation,” in International Conference on Machine Learning,
2021, pp. 5815-5826.

Z. Shen, J. Liu, Y. He, X. Zhang, R. Xu, H. Yu, and P. Cui, “Towards
out-of-distribution generalization: A survey,” arXiv:2108.13624, 2021.
S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Transactions on Neural Networks,
vol. 22, no. 2, pp. 199-210, 2010.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrimi-
native domain adaptation,” in Computer Vision and Pattern Recognition,
2017, pp. 7167-7176.

Y. Zhang, H. Chen, Y. Wei, P. Zhao, J. Cao, X. Fan, X. Lou, H. Liu,
J. Hou, X. Han et al., “From whole slide imaging to microscopy:
Deep microscopy adaptation network for histopathology cancer image
classification,” in International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2019, pp. 360-368.

Y. Zhang, Y. Wei et al., “Collaborative unsupervised domain adaptation
for medical image diagnosis,” IEEE Transactions on Image Processing,
2020.

Z. Qiu, Y. Zhang, H. Lin, S. Niu, Y. Liu, Q. Du, and M. Tan, “Source-free
domain adaptation via avatar prototype generation and adaptation,” in
International Joint Conference on Artificial Intelligence, 2021.

H. Wu, H. Zhu, Y. Yan, J. Wu, Y. Zhang, and M. K. Ng, “Heterogeneous
domain adaptation by information capturing and distribution matching,”
IEEE Transactions on Image Processing, vol. 30, pp. 6364-6376, 2021.
D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Deeper, broader and
artier domain generalization,” in International Conference on Computer
Vision, 2017, pp. 5542-5550.

H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization
with adversarial feature learning,” in Computer Vision and Pattern
Recognition, 2018, pp. 5400-5409.

L. Neal, M. Olson, X. Fern, W.-K. Wong, and F. Li, “Open set learning
with counterfactual images,” in European Conference on Computer
Vision, 2018, pp. 613-628.

Y. Fu, X. Wang, H. Dong, Y.-G. Jiang, M. Wang, X. Xue, and
L. Sigal, “Vocabulary-informed zero-shot and open-set learning,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 42,
no. 12, pp. 3136-3152, 2019.

C. Huang, Y. Li, C. C. Loy, and X. Tang, “Learning deep represen-
tation for imbalanced classification,” in Computer Vision and Pattern
Recognition, 2016.

W. Ouyang, X. Wang, C. Zhang, and X. Yang, “Factors in finetuning
deep model for object detection with long-tail distribution,” in Computer
Vision and Pattern Recognition, 2016, pp. 864—873.

Y.-X. Wang, D. Ramanan, and M. Hebert, “Learning to model the tail,”
in Advances in Neural Information Processing Systems, 2017.

Y. Cui, Y. Song, C. Sun, A. Howard, and S. Belongie, “Large scale
fine-grained categorization and domain-specific transfer learning,” in
Computer Vision and Pattern Recognition, 2018, pp. 4109-4118.

Y. Wang, W. Gan, J. Yang, W. Wu, and J. Yan, “Dynamic curriculum
learning for imbalanced data classification,” in International Conference
on Computer Vision, 2019, pp. 5017-5026.

J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng,
“Meta-weight-net: Learning an explicit mapping for sample weighting,”
Advances in Neural Information Processing Systems, 2019.

S. Khan, M. Hayat, S. W. Zamir, J. Shen, and L. Shao, “Striking the right
balance with uncertainty,” in Computer Vision and Pattern Recognition,
2019, pp. 103-112.

X. Yin, X. Yu, K. Sohn, X. Liu, and M. Chandraker, ‘“Feature transfer
learning for face recognition with under-represented data,” in Computer
Vision and Pattern Recognition, 2019, pp. 5704-5713.

R. Jiawei, C. Yu, X. Ma, H. Zhao, S. Yi er al., “Balanced meta-softmax
for long-tailed visual recognition,” in Advances in Neural Information
Processing Systems, 2020.

X. Hu, Y. Jiang, K. Tang, J. Chen, C. Miao, and H. Zhang, “Learning to
segment the tail,” in Computer Vision and Pattern Recognition, 2020.

J. Tian, Y.-C. Liu, N. Glaser, Y.-C. Hsu, and Z. Kira, “Posterior re-
calibration for imbalanced datasets,” in Advances in Neural Information
Processing Systems, 2020.

J. Kim, J. Jeong, and J. Shin, “M2m: Imbalanced classification via major-
to-minor translation,” in Computer Vision and Pattern Recognition, 2020.
P. Chu, X. Bian, S. Liu, and H. Ling, “Feature space augmentation for
long-tailed data,” in European Conference on Computer Vision, 2020.
Y. Yang and Z. Xu, “Rethinking the value of labels for improving class-
imbalanced learning,” in Advances in Neural Information Processing
Systems, 2020.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]
[122]

[123]

[124]

[125]

[126]

[127]

[128]

L. Xiang, G. Ding, and J. Han, “Learning from multiple experts: Self-
paced knowledge distillation for long-tailed classification,” in European
Conference on Computer Vision, 2020, pp. 247-263.

L. Zhu and Y. Yang, “Inflated episodic memory with region self-attention
for long-tailed visual recognition,” in Computer Vision and Pattern
Recognition, 2020, pp. 4344-4353.

T.-Y. Wu, P. Morgado, P. Wang, C.-H. Ho, and N. Vasconcelos, “Solving
long-tailed recognition with deep realistic taxonomic classifier,” in
European Conference on Computer Vision, 2020, pp. 171-189.

C. Wei, K. Sohn, C. Mellina, A. Yuille, and F. Yang, “Crest: A class-
rebalancing self-training framework for imbalanced semi-supervised
learning,” in Computer Vision and Pattern Recognition, 2021.

B. Liu, H. Li, H. Kang, G. Hua, and N. Vasconcelos, “Gistnet: a
geometric structure transfer network for long-tailed recognition,” in
International Conference on Computer Vision, 2021.

J. Tan, X. Lu, G. Zhang, C. Yin, and Q. Li, “Equalization loss v2: A new
gradient balance approach for long-tailed object detection,” in Computer
Vision and Pattern Recognition, 2021, pp. 1685-1694.

J. Wang, W. Zhang, Y. Zang, Y. Cao, J. Pang, T. Gong, K. Chen,
Z. Liu, C. C. Loy, and D. Lin, “Seesaw loss for long-tailed instance
segmentation,” in Computer Vision and Pattern Recognition, 2021.

T. Wang, Y. Zhu, C. Zhao, W. Zeng, J. Wang, and M. Tang, “Adaptive
class suppression loss for long-tail object detection,” in Computer Vision
and Pattern Recognition, 2021, pp. 3103-3112.

S. Park, J. Lim, Y. Jeon, and J. Y. Choi, “Influence-balanced loss
for imbalanced visual classification,” in International Conference on
Computer Vision, 2021.

G. R. Kini, O. Paraskevas, S. Oymak, and C. Thrampoulidis, “Label-
imbalanced and group-sensitive classification under overparameteriza-
tion,” in Advances in Neural Information Processing Systems, vol. 34,
2021, pp. 18970-18 983.

T. Wu, Z. Liu, Q. Huang, Y. Wang, and D. Lin, “Adversarial robust-
ness under long-tailed distribution,” in Computer Vision and Pattern
Recognition, 2021, pp. 8659-8668.

Z.Zhong, J. Cui, S. Liu, and J. Jia, “Improving calibration for long-tailed
recognition,” in Computer Vision and Pattern Recognition, 2021.

S. Changpinyo, P. Sharma, N. Ding, and R. Soricut, “Conceptual 12m:
Pushing web-scale image-text pre-training to recognize long-tail visual
concepts,” in Computer Vision and Pattern Recognition, 2021.

Y.-Y. He, J. Wu, and X.-S. Wei, “Distilling virtual examples for long-
tailed recognition,” in International Conference on Computer Vision,
2021.

C. Zhang, T.-Y. Pan, Y. Li, H. Hu, D. Xuan, S. Changpinyo, B. Gong,
and W.-L. Chao, “Mosaicos: A simple and effective use of object-centric
images for long-tailed object detection,” in International Conference on
Computer Vision, 2021.

J. Wang, T. Lukasiewicz, X. Hu, J. Cai, and Z. Xu, “Rsg: A simple but
effective module for learning imbalanced datasets,” in Computer Vision
and Pattern Recognition, 2021, pp. 3784-3793.

T. Li, L. Wang, and G. Wu, “Self supervision to distillation for long-
tailed visual recognition,” in International Conference on Computer
Vision, 2021.

S. Li, K. Gong, C. H. Liu, Y. Wang, F. Qiao, and X. Cheng, “Metasaug:
Meta semantic augmentation for long-tailed visual recognition,” in
Computer Vision and Pattern Recognition, 2021, pp. 5212-5221.

J. Cui, Z. Zhong, S. Liu, B. Yu, and J. Jia, “Parametric contrastive
learning,” in International Conference on Computer Vision, 2021.

D. Samuel and G. Chechik, “Distributional robustness loss for long-tail
learning,” in International Conference on Computer Vision, 2021.

P. Wang, K. Han, X.-S. Wei, L. Zhang, and L. Wang, “Contrastive
learning based hybrid networks for long-tailed image classification,” in
Computer Vision and Pattern Recognition, 2021, pp. 943-952.

J. Cai, Y. Wang, and J.-N. Hwang, “Ace: Ally complementary experts for
solving long-tailed recognition in one-shot,” in International Conference
on Computer Vision, 2021.

J. Cui, S. Liu, Z. Tian, Z. Zhong, and J. Jia, “Reslt: Residual learning
for long-tailed recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of artificial
intelligence research, vol. 16, pp. 321-357, 2002.

A. Estabrooks, T. Jo, and N. Japkowicz, “A multiple resampling method
for learning from imbalanced data sets,” Computational Intelligence,
vol. 20, no. 1, pp. 18-36, 2004.

X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 39, no. 2, pp. 539-550, 2008.

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]
[151]
[152]
[153]
[154]
[155]

[156]

19

Z. Zhang and T. Pfister, “Learning fast sample re-weighting without
reward data,” in International Conference on Computer Vision, 2021.
D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li,
A. Bharambe, and L. Van Der Maaten, “Exploring the limits of weakly
supervised pretraining,” in European conference on computer vision,
2018, pp. 181-196.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning
in neural networks: A survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, no. 9, pp. 5149-5169, 2021.

C. Elkan, “The foundations of cost-sensitive learning,” in International
Joint Conference on Artificial Intelligence, 2001.

Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with
methods addressing the class imbalance problem,” IEEE Transactions
on Knowledge and Data Engineering, vol. 18, no. 1, pp. 6377, 2005.
P. Zhao, Y. Zhang, M. Wu, S. C. Hoi, M. Tan, and J. Huang, “Adaptive
cost-sensitive online classification,” IEEE Transactions on Knowledge
and Data Engineering, vol. 31, no. 2, pp. 214-228, 2018.

Y. Zhang, P. Zhao, J. Cao, W. Ma, J. Huang, Q. Wu, and M. Tan, “Online
adaptive asymmetric active learning for budgeted imbalanced data,” in
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2018, pp. 2768-27717.

Y. Zhang, P. Zhao, S. Niu, Q. Wu, J. Cao, J. Huang, and M. Tan,
“Online adaptive asymmetric active learning with limited budgets,” IEEE
Transactions on Knowledge and Data Engineering, 2019.

Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting
for classification of imbalanced data,” Pattern Recognition, vol. 40,
no. 12, pp. 3358-3378, 2007.

F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax for
face verification,” IEEE Signal Processing Letters, vol. 25, no. 7, pp.
926-930, 2018.

V. Koltchinskii and D. Panchenko, “Empirical margin distributions and
bounding the generalization error of combined classifiers,” The Annals
of Statistics, vol. 30, no. 1, pp. 1-50, 2002.

F. Provost, “Machine learning from imbalanced data sets 101,” in AAAI
Workshop on Imbalanced Data Sets, vol. 68, no. 2000, 2000, pp. 1-3.
S.J.Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359,
2009.

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in International Conference on Artificial Neural
Networks, 2018, pp. 270-279.

D. Erhan, A. Courville, Y. Bengio, and P. Vincent, “Why does unsuper-
vised pre-training help deep learning?” in International Conference on
Artificial Intelligence and Statistics, 2010, pp. 201-208.

K. He, R. Girshick, and P. Dolldr, “Rethinking imagenet pre-training,” in
International Conference on Computer Vision, 2019, pp. 4918-4927.
D. Hendrycks, K. Lee, and M. Mazeika, “Using pre-training can improve
model robustness and uncertainty,” in International Conference on
Machine Learning, 2019, pp. 2712-2721.

B. Zoph, G. Ghiasi, T.-Y. Lin, Y. Cui, H. Liu, E. D. Cubuk, and
Q. Le, “Rethinking pre-training and self-training,” Advances in Neural
Information Processing Systems.

Y. Zhang, B. Hooi, D. Hu, J. Liang, and J. Feng, “Unleashing the power
of contrastive self-supervised visual models via contrast-regularized
fine-tuning,” in Advances in Neural Information Processing Systems,
2021.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in Computer Vision and
Pattern Recognition, 2020.

S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation
learning by predicting image rotations,” in International Conference on
Learning Representations, 2018.

S. Karthik, J. Revaud, and C. Boris, “Learning from long-tailed data
with noisy labels,” arXiv:2108.11096, 2021.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv:1503.02531, 2015.

J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, vol. 129, no. 6, pp.
1789-1819, 2021.

X. J. Zhu, “Semi-supervised learning literature survey,” 2005.

C. Rosenberg, M. Hebert, and H. Schneiderman, “Semi-supervised self-
training of object detection models,” 2005.

T. Wei, J.-X. Shi, W.-W. Tu, and Y.-F. Li, “Robust long-tailed learning
under label noise,” arXiv:2108.11569, 2021.

L. Perez and J. Wang, “The effectiveness of data augmentation in image
classification using deep learning,” arXiv:1712.04621, 2017.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

[157] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1-48,
2019.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Computer Vision and
Pattern Recognition, 2016, pp. 2921-2929.

H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-
sampling method in imbalanced data sets learning,” in International
Conference on Intelligent Computing, 2005, pp. 878—887.

H.-P. Chou, S.-C. Chang, J.-Y. Pan, W. Wei, and D.-C. Juan, “Remix:
Rebalanced mixup,” in European Conference on Computer Vision
Workshop, 2020, pp. 95-110.

Y. Wang, X. Pan, S. Song, H. Zhang, G. Huang, and C. Wu, “Implicit
semantic data augmentation for deep networks,” in Advances in Neural
Information Processing Systems, vol. 32, 2019, pp. 12 635-12 644.

A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for
person re-identification,” arXiv:1703.07737, 2017.

J. Goh and M. Sim, “Distributionally robust optimization and its tractable
approximations,” Operations Research, vol. 58, no. 4-part-1, pp. 902—
917, 2010.

H.-J. Ye, H.-Y. Chen, D.-C. Zhan, and W.-L. Chao, “Identifying
and compensating for feature deviation in imbalanced deep learning,”
arXiv:2001.01385, 2020.

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
transactions on information theory, vol. 13, no. 1, pp. 21-27, 1967.

E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le, “Randaugment: Practical
automated data augmentation with a reduced search space,” in Advances
in Neural Information Processing Systems, vol. 33, 2020.

M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No fear of
heterogeneity: Classifier calibration for federated learning with non-iid
data,” in Advances in Neural Information Processing Systems, 2021.

C. D. Kim, J. Jeong, and G. Kim, “Imbalanced continual learning with
partitioning reservoir sampling,” in European Conference on Computer
Vision, 2020, pp. 411-428.

S. Niu, J. Wu, G. Xu, Y. Zhang, Y. Guo, P. Zhao, P. Wang, and
M. Tan, “Adaxpert: Adapting neural architecture for growing data,”
in International Conference on Machine Learning, 2021, pp. 8184-8194.
Y. Zhang, S. Niu, Z. Qiu, Y. Wei, P. Zhao, J. Yao, J. Huang, Q. Wu, and
M. Tan, “Covid-da: Deep domain adaptation from typical pneumonia to
covid-19,” arXiv:2005.01577, 2020.

X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang,
“Moment matching for multi-source domain adaptation,” in International
Conference on Computer Vision, 2019, pp. 1406-1415.

K. Cao, Y. Chen, J. Lu, N. Arechiga, A. Gaidon, and T. Ma, “Het-
eroskedastic and imbalanced deep learning with adaptive regularization,”
in International Conference on Learning Representations, 2021.

Y. Yang, K. Zha, Y.-C. Chen, H. Wang, and D. Katabi, “Delving into
deep imbalanced regression,” in International Conference on Machine
Learning, 2021.

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

Yifan Zhang is working toward the Ph.D. degree
in computer science at National University of
Singapore. His research interests are broadly in
machine learning, now with high self-motivation
to solve domain shifts problems for deep learning.
He has published papers in top venues, including
NeurlPS, ICML, ICLR, SIGKDD, ECCV, IJCAI,
TPAMI, TIP, and TKDE. He has been invited as
a reviewer for top-tier conferences and journals,
including NeurIPS, ICML, ICLR, CVPR, ECCV,
AAAI, IJCAI, TPAMI, TIP, IJCV, and JMLR.

20

Bingyi Kang is currently a research scientist at
TikTok. Before joining TikTok, got his Ph.D degree
in Electronic and Computer Engineering from
National University of Singapore. He received
his B.E. degree in automation from Zhejiang
University, Hangzhou, Zhejiang in 2016. His cur-
rent research interest focuses on sample-efficient
learning and reinforcement learning.

Bryan Hooi is an assistant professor in the
School of Computing and the Institute of Data
Science in National University of Singapore. He
received his PhD degree in Machine Learning
from Carnegie Mellon University, USA in 2019.
His research interests include methods for learn-
ing from graphs and other complex or multimodal
datasets, with the goal of developing efficient
and practical approaches for applications such as
the detection of anomalies or malicious behavior,
and automatic monitoring of medical, traffic, and
environmental sensor data.

Shuicheng Yan is currently the director of Sea
Al Lab and group chief scientist of Sea. He is an
IEEE Fellow, ACM Fellow, IAPR Fellow, and Fel-
low of Academy of Engineering, Singapore. His
research areas include computer vision, machine
learning and multimedia analysis. Till now, he has
published over 1,000 papers in top international
journals and conferences, with Google Scholar
Citation over 93,000 times and H-index 137. He
had been among “Thomson Reuters Highly Cited
Researchers” in 2014, 2015, 2016, 2018, 2019.
His team has received winner or honorable-mention prizes for 10 times
of two core competitions, Pascal VOC and ImageNet (ILSVRC), which
are deemed as “World Cup” in the computer vision community. Also, his
team won over 10 best paper or best student paper prizes and especially,
a grand slam in ACM MM, the top conference in multimedia, including
Best Paper Award, Best Student Paper Award and Best Demo Award.

dJiashi Feng is currently a research manager at
TikTok and is leading a fundamental research
team. Before TikTok, he was an assistant profes-
sor with Department of Electrical and Computer
Engineering at National University of Singapore
and a postdoc researcher in the EECS depart-
ment and ICSI at the University of California,
Berkeley. He received his Ph.D. degree from NUS
in 2014. His research areas include deep learning
and their applications in computer vision. He has
authored/co-authored more than 300 technical
papers on deep learning, image classification, object detection, machine
learning theory. His recent research interest focuses on foundation
models, transfer learning, 3D vision and deep neural networks. He
received the best technical demo award from ACM MM 2012, best paper
award from TASK-CV ICCV 2015, best student paper award from ACM
MM 2018. He is also the recipient of Innovators Under 35 Asia, MIT
Technology Review 2018. He served as the area chairs for NeurlPS,
ICML, CVPR, ICLR, WACV, ACM MM and program chair for ICMR 2017.

il



	1 Introduction
	2 Problem Overview
	2.1 Problem Definition
	2.2 Datasets
	2.3 Evaluation Metrics
	2.4 Applications
	2.5 Relationships with Related Tasks

	3 Classic Methods
	3.1 Class Re-balancing
	3.1.1 Re-sampling
	3.1.2 Class-sensitive Learning
	3.1.3 Logit Adjustment
	3.1.4 Summary

	3.2 Information Augmentation
	3.2.1 Transfer Learning
	3.2.2 Data Augmentation
	3.2.3 Summary

	3.3 Module Improvement
	3.3.1 Representation Learning
	3.3.2 Classifier Design
	3.3.3 Decoupled Training
	3.3.4 Ensemble Learning
	3.3.5 Summary


	4 Empirical Studies
	4.1 Novel Evaluation Metric
	4.2 Experimental Settings
	4.3 Results on ImageNet-LT
	4.4 Results on iNaturalist 2018
	4.5 Analysis
	4.6 Summary of Empirical Observations

	5 Future Directions
	6 Conclusion
	References
	Biographies
	Yifan Zhang
	Bingyi Kang
	Bryan Hooi
	Shuicheng Yan
	Jiashi Feng


