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Abstract—Hand gesture serves as a crucial role during the expression of sign language. Current deep learning based methods for
sign language understanding (SLU) are prone to over-fitting due to insufficient sign data resource and suffer limited interpretability. In
this paper, we propose the first self-supervised pre-trainable SignBERT+ framework with model-aware hand prior incorporated. In our
framework, the hand pose is regarded as a visual token, which is derived from an off-the-shelf detector. Each visual token is embedded
with gesture state and spatial-temporal position encoding. To take full advantage of current sign data resource, we first perform
self-supervised learning to model its statistics. To this end, we design multi-level masked modeling strategies (joint, frame and clip) to
mimic common failure detection cases. Jointly with these masked modeling strategies, we incorporate model-aware hand prior to better
capture hierarchical context over the sequence. After the pre-training, we carefully design simple yet effective prediction heads for
downstream tasks. To validate the effectiveness of our framework, we perform extensive experiments on three main SLU tasks,
involving isolated and continuous sign language recognition (SLR), and sign language translation (SLT). Experimental results
demonstrate the effectiveness of our method, achieving new state-of-the-art performance with a notable gain.

Index Terms—Self-supervised pre-training, masked modeling strategies, model-aware hand prior, sign language understanding

F

1 INTRODUCTION

S IGN language (SL) serves as a primary communication
tool for the deaf community. It is a visual language with

its unique grammar and lexicon, which is non-trivial for
the hearing people to master. To facilitate barrier-free com-
munication between hearing and deaf people, automatic
visual sign language understanding, as a topic with broad
social influence, has been widely studied. Visual sign lan-
guage understanding contains three main tasks, including
isolated and continuous sign language recognition (SLR)
and sign language translation (SLT). Isolated SLR focuses on
word level recognition, which is essentially a fine-grained
classification task. Differently, continuous SLR targets at
recognizing the sign gloss sequence with its corresponding
occurring order, which needs to learn the sequence cor-
respondence across the visual and textual domains. SLT
intends to further generate spoken language translations,
which emphasizes natural linguistic expression. These three
tasks are all important for sign language understanding and
bring challenges from different perspectives.

Hand gesture plays a dominant role during the meaning
expression of sign language. Intrinsically, hand occupies a
relatively small spatial size, exhibiting uniform appearance
and self-occlusion among joints. During SL expression, it
usually occurs over complex backgrounds and presents
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fast motion. These characteristics lead to difficulty in hand
representation learning. Current deep-learning-based meth-
ods adaptively learn hand feature representations from the
cropped RGB sequence. Meanwhile, considering the highly-
articulated characteristic of hand, some methods propose to
utilize pose as the hand representation. Pose is a compact
and semantic representation, which is robust to appear-
ance change and brings potential computation efficiency.
However, current pose-based methods utilize the poses
extracted from off-the-shelf pose detectors, which usually
suffer failure detection due to the motion blur and complex
backgrounds, etc. Therefore, their performances usually lag
largely behind the RGB-based counterparts. Besides, the
aforementioned methods all follow a data-driven paradigm
and suffer over-fitting due to limited sign data resource and
insufficient interpretability.

Meanwhile, the effectiveness of pre-training has been
validated in computer vision (CV) and natural language
processing (NLP) tasks. Recent advances in NLP are largely
derived from self-supervised pre-training techniques on
large text corpus [1], [2], [3]. Among them, BERT [2] is
one of the most popular methods for its simplicity and
effectiveness. Its success is largely attributed to the strong
Transformer backbone [4] and well-designed pre-training
strategies to model the context inherent in the text corpus.
By adding a simple head (an MLP) on top for fine-tuning,
it achieves notable performance gains in many downstream
tasks, especially those with limited data resource. Notably,
natural language is represented by a 1D sequence of text
words which are characterised with well-defined semantic
meaning. However, sign video is a kind of 3D data with
complex spatial-temporal context, and it is non-trivial to
analogically define visual word or unit with clarified seman-
tics. Therefore, it remains a hard challenge to leverage the
success of BERT to video-based sign language understand-
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Fig. 1. The overview of our method and sign language understanding tasks (isolated SLR, continuous SLR and SLT).

ing.
To tackle the above-mentioned issues, we develop a

self-supervised pre-trainable framework with model-aware
hand prior incorporated, namely SignBERT+, as shown in
Figure 1. Considering the dominance of hand during SL
expression, we utilize the compact and expressive hand
pose as a visual token in a frame-by-frame manner. Then, we
carefully depict it with gesture state and spatial-temporal
global position information. SignBERT+ first performs self-
supervised pre-training on a large volume of hand pose
data, which is derived from an off-the-shelf detector on
sign videos. Inspired by the success of BERT [2], we pre-
train the encoder-decoder backbone via reconstructing the
masked visual tokens from the corrupted input sequence,
which enforces the framework to capture the hierarchical
context in the sign language domain. Considering the noisy
characteristic of detected hand pose data, we carefully de-
sign multi-scale masking strategies, including joint, frame
and clip levels. Meanwhile, to better mine the context in
the sign video domain, we further incorporate hand prior
in a model-aware method. After pre-training, we carefully
design simple yet effective task-specific prediction heads,
which are jointly fine-tuned with the pre-trained SignBERT+
encoder to adapt to downstream tasks.

In summary, our contributions are three-fold as follows,

• To our best knowledge, we propose the first model-
aware pre-trainable framework, namely SignBERT+.
It performs self-supervised pre-training on a large
volume of sign pose data, followed by fine-tuning to
achieve better performance on multiple downstream
tasks.

• To better model the hierarchical context underneath
the sign data during pre-training, we design multiple
masked modeling strategies ranging from joint to
clip level, in coordination with incorporated model-
aware hand prior and spatial-temporal position en-
coding. For diverse downstream tasks, we design
simple yet effective task-specific prediction heads on
top of the pre-trained SignBERT+ encoder.

• We perform extensive experiments to validate the
feasibility and effectiveness of our framework. Ex-
perimental results demonstrate that our method

achieves new state-of-the-art performance on video-
based sign language understanding tasks, including
isolated SLR, continuous SLR and SLT.

This work is an extension of the conference paper [5]
with improvement in a number of aspects. 1) Considering
the characteristics of sign language, we further introduce
spatial-temporal global position encoding into embedding,
along with the masked clip modeling for modeling temporal
dynamics. Those new techniques further bring a notable
performance gain. 2) We extend the original framework to
two more downstream tasks in video-based sign language
understanding, i.e., continuous SLR and SLT. To this end, we
design simple yet effective task-specific prediction heads.
Besides, we also provide efficient fusion strategies with the
RGB modality. Our newly designed framework achieves
state-of-the-art performance on all the downstream tasks.
3) We present more comprehensive discussion on related
works and make deep analysis on different components of
our method to highlight the important ingredients. Besides,
we add discussions on future works and broader impact.

2 RELATED WORK

In this section, we first give a literature review for video-
based sign language understanding. Then we present an
overview of pre-training strategies. Finally, we introduce
related hand modeling techniques.

2.1 Video-based Sign Language Understanding
Video-based sign language understanding has made re-
markable progress [6], [7], [8], [9]. Generally, it contains
three main tasks, including isolated SLR, continuous SLR
and SLT. These tasks emphasize different aspects, bringing
their specific challenges to resolve.
Isolated sign language recognition. Isolated SLR aims to
recognize at the word level, which is essentially a fine-
grained classification problem. This task poses a challenge
on learning discriminative visual representation [7], [10],
[11], [12], [13]. Early works utilize hand-crafted features,
e.g. HOG [14] and SIFT [10], to represent hand shape, ori-
entation and motion. Recently, researchers have resorted to
deep learning techniques, which adaptively extract features
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from the full video sequence. Based on the input modality,
these works can be divided into RGB-based and pose-based
methods. RGB-based methods usually adopt Convolutional
Neural Networks (CNNs) as the backbone. For instance,
Koller et al. [15] utilize 2D-CNNs with LSTM to sequen-
tially model the spatial and temporal representations. Some
other works utilize 3D-CNNs for modeling spatial-temporal
dependency [7], [13], [16], [17], [18].

For the pose-based counterpart, there exist different
backbones for feature extraction, including CNNs [13], [19]
and RNNs [20], [21], [22], etc. Recently, considering its
well-structured nature, more and more works have utilized
graph convolutional networks (GCNs), which exhibit both
efficiency and effectiveness [20], [22], [23]. As a represen-
tative work, ST-GCN [24] organizes the pose sequence as a
pre-defined graph and adopts GCNs to perform recognition.
Besides, Tunga et al. further combines Transformer without
pre-training for isolated SLR [23].
Continuous sign language recognition. It aims to map the
sign video to the gloss sequence in the same presenting
order. In this task, the transitions between sign glosses may
come with temporal variants, and the sign video usually
lacks the frame-level gloss annotation. Therefore, it raises
a new challenge on the sequence correspondence learning
between the visual sign representation to the sign glosses. To
this end, Koller et al. [25], [26] exploit the integration of 2D-
CNNs and Hidden Markov Models (HMMs) for modeling
transitions. Connectionist Temporal Classification (CTC) is
a differentiable cost function, which is able to deal with
two unsegmented sequences without precise alignment. It
usually works with Recurrent Neural Networks (RNNs),
e.g. BLSTM [27] and GRU [28], and Transformer [4] for
sequential learning. CTC-based methods make end-to-end
optimization possible and become the mainstream for its
competitive performance [8], [9], [29], [30], [31]. However,
these methods are prone to over-fitting due to limited data
resources. To tackle this issue, DNF [29] utilizes the itera-
tive optimization strategy for better feature representation.
Zhou et al. [32] boosts the visual encoder with the partially
masked videos under the supervised classification task.
CMA [30] proposes cross modality augmentation, which
leverages the pseudo video-text pairs to boost recognition
performance. VAC [8] proposes visual alignment constraint
to enhance the feature extractor.
Sign language translation. This task intends to generate
the spoken language translations. It is mainly different from
continuous SLR in the aspect of sequential learning, due to
different grammar and word order between sign language
and spoken language [33], [34]. NSLT [33] first explores this
task with an attention-based encoder-decoder and proposes
RWTH-PhoenixT dataset. This dataset provides both sign
gloss and translation annotation, and becomes the most
popular benchmark. Camgoz et al. [9] leverage the strong
modeling capability of Transformer into sequential learning.
TSPNet [34] explores the temporal semantic structures for
more discriminative features. STMC [35] fuses information
from multi-cue streams to boost performance. SignBT [36]
utilizes external text corpus for performance improvement.
In this work, we aim to leverage a large volume of sign
data via pre-training to benefit three main sign language
understanding tasks.

2.2 Pre-Training Strategy
Pre-training, as a common strategy in CV and NLP, aims
to learn generic representation from massive labeled or
unlabeled data, which benefits downstream tasks with
marginal fine-tuning cost. For fully supervised pre-training,
it is common for CV tasks to first pre-train CNNs under
labeled classification benchmarks, e.g. ImageNet [37] and
Kinetics [38], etc. However, given the labeling cost, more and
more works turn to self-supervised learning from a large
volume of unlabeled data, which is readily available from
the Web [39], [40]. Self-supervised learning aims to model
the joint probability distribution inherent in data, which is
beneficial to address the following discriminative learning
task.

Pioneering works subtly design pretext tasks to perform
self-supervised pre-training [41], [42], [43], [44], [45], [46],
[47]. These tasks include predicting colorization [41], rota-
tion [43], transformation [46] and frame / clip orders [47],
[48], etc. Recently, some works focus on contrastive learning
for pre-training [49], [50], [51]. Typically, it aims to pull
the representation of similar instances closer, while pushing
away negative instances. To obtain informative negative
instances for better optimization, some works utilize the
techniques like memory banks [49] and large batch size [52].
There also exist works further eliminating the requirement
of negative samples [51], [53].

Another interesting strand is the generative self-
supervised pre-training, which usually involves training the
encoder via the reconstruction task. In NLP, one milestone of
pre-training is BERT [2]. BERT is built on the strong Trans-
former backbone with masked language modeling (MLM)
as one of its pre-training tasks. MLM attempts to predict
the masked words by leveraging the context cues from the
remaining tokens. Similar to BERT, some works also adopt
MLM during pre-training, such as GPT [1], XLNet [3] and
RoBERTa [54], etc. These pre-training methods generalize
well and bring notable performance gains on the down-
stream tasks. Motivated by the success in NLP, some works
attempt to leverage the idea of BERT into CV tasks [55], [56],
[57], [58], [59], [60], which mainly focus on the RGB modal-
ity. BEiT [59] utilizes the discrete tokenized image patches
as pseudo labels and performs masked modeling similar
to BERT. MAE [60] directly works in the continuous space,
i.e., masking and reconstructing the pixel values. However,
BEiT and MAE only focus on image-based tasks. Actually,
it is non-trivial to leverage BERT’s success to video-based
sign language understanding tasks, which involves special
design of the pretext task and framework architecture.
Pre-training in sign language. Albanie et al. [13] propose
to perform supervised pre-training on a large-scale anno-
tated dataset. Li et al. [7] boost isolated SLR via a domain-
invariant feature descriptor, which leverages the knowledge
from external subtitled news sign video. To our best knowl-
edge, there exists no self-supervised pre-training works in
the sign language domain.

2.3 Hand Modeling Techniques
Hand modeling aims to depict the hand with more ex-
pressiveness. Current modeling techniques include sum-
of-Gaussians [61], shape primitives [62], [63] and sphere-
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Fig. 2. Illustration of our SignBERT+ framework details, which contains self-supervised pre-training and fine-tuning for the downstream tasks. We
organize the pre-extracted 2D poses of both hands as the visual token sequence. For each token, it is embedded with gesture state and spatial-
temporal position encoding. During self-supervised pre-training, multi-level masked modeling strategies work with incorporated model-aware hand
prior, in order to better capture the hierarchical context in the sign domain. Given the downstream-task diversity, we design the task-specific
prediction head and fine-tune it with the pre-trained SignBERT+ encoder.

meshes [64], etc. To better reconstruct the hand shape, Ia-
son et al. [65] define scaling terms on bone lengths. Notably,
some works [66], [67], [68] attempt to learn hand shape
variation with Linear Blend Skinning (LBS) [69]. Among
them, MANO [68] becomes the most popular one for its
wide applications [70], [71], [72], [73]. As a statistical model,
it learns from a large variety of high-quality hand scans and
represents the geometric changes in the low-dimensional
pose and shape space. With this capability, we adopt it as
a constraint in the decoder to incorporate prior.

3 OUR APPROACH

As shown in Figure 2, our framework contains two stages,
i.e., self-supervised pre-training and downstream task fine-
tuning. During sign expression, both hands are involved
to act as a dominant role. Therefore, we focus on them
to build the visual token in a frame-wise manner. For
each visual token, we embed the gesture state and global
spatial-temporal position information. During pre-training,
the whole framework works in a self-supervised paradigm
by reconstructing the masked visual tokens from the cor-
rupted input sequence. Jointly with the multi-level masking
strategies, we incorporate hand prior to better capture hi-
erarchical context in the sign domain. Then, we fine-tune
the pre-trained SignBERT+ encoder (embedding layer and
Transformer encoder) with the designed prediction heads
for downstream tasks.

In the following, we first introduce the framework archi-
tecture. After that, we elaborate our pre-training strategy.
Finally, we discuss the fine-tuning schemes for downstream
tasks.

3.1 Framework Architecture
Our framework contains four main components, i.e., input
embedding layer, Transformer encoder, hand-model-aware
decoder and prediction head.

3.1.1 Input Embedding Layer
Given the dominant role of hand during sign language, we
carefully design an embedding layer to capture cues from
both hands. It extracts gesture state and spatial-temporal
position information from the hand pose sequence in a
frame-wise manner, which are elaborated in the follow
paragraphs.

Gesture state embedding. Given its well-structured
characteristics, we first organize the input 2D hand pose
J̃t at frame t as an undirected spatial graph. This graph
is constructed with the node V and edge E set. The node
set includes all hand joints, i.e., 21 joints per hand, while the
edge set contains their physical and symmetrical connection.
Then, the hand pose sequence is processed by a spectral-
based GCN [24], [74], which hierarchically performs graph
convolution and graph pooling for gesture state embedding.
The graph convolution is formulated as follows,

fout =
∑
i

D
− 1

2
i AiD

1
2
i finWi, (1)

where fin and fout are the corresponding input and output
features, respectively. i indicates the type of neighbors for
each node. Wi denotes the convolution weight and Ai is
the dismantled matrix indicating the edge connection. For
graph pooling, we first cluster the original 21 joint nodes of
each hand into 6 subsets corresponding to 5 fingers and 1
palm. Then we perform max-pooling on the nodes in each
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subset, leading to 6 nodes. Finally, these nodes are again
max-pooled into one and both hands are involved in the
frame-level gesture state embedding fp,t.

Spatial-temporal position encoding. Besides the gesture
state, hand spatial trajectory and temporal information also
matter in video-based sign language understanding. We
depict the hand global position in the normalized 2D space
by introducing the arm joints of both sides. These joints
are also processed by GCN [24], [74] to extract the frame-
level spatial embedding fs,t. Since the Transformer layers
process the sequence in an order-agnostic way, we add
temporal information into the input embedding fe,t, which
is implemented by the position encoding technique in [4].

3.1.2 Transformer Encoder
The embedded input sequence is fed into the Transformer
encoder [4] for the latent semantic representation. Its basic
layer mainly contains two components, i.e., a multi-head
self-attention module and a feed-forward network. For each
layer, its output retains the same size with the input. The
whole encoder is formulated as follows,

F0 = {fp,t + fs,t + fe,t}Tt=1,

F̃i = L(M(Fi−1) + Fi−1),

Fi = L(C(F̃i) + F̃i),

(2)

where i denotes the i-th layer of the Transformer encoder.
The whole encoder contains totallyN layers.M(·), C(·) and
L(·) represent the multi-head self-attention, feed-forward
network and layer normalization, respectively. Fi denotes
the output feature from the i-th layer.

3.1.3 Hand-model-aware Decoder
To achieve the reconstruction target during pre-training,
the decoder transforms the latent feature back to the pose
sequence. The decoder works in a model-aware method to
incorporate prior, which aims to guide the encoder better
capturing generic representations in the sign language do-
main. Specifically, the latent feature is first processed by a
fully-connected layer, which extracts the low-dimensional
semantic embeddings depicting the hand status, i.e., hand
pose θ and shape β, and the camera parameter c aligning
the image plane, which is formulated as follows,

Fla = {θ,β, cr, co, cs}Tt=1 = D(FN ), (3)

whereD(·) denotes the fully-connected layer. θ and β ∈ R10

are the hand pose and shape embeddings for the following
MANO model, respectively. cr ∈ R3×3, co ∈ R2, and
cs ∈ R are parameters of the weak-perspective camera,
representing the rotation, translation and scale, respectively.

Then the MANO model [68] incorporates hand prior and
decodes the estimated hand embedding. Specifically, the
decoding process is fully-differentiable, which transforms
the hand embedding (θ and β) to the dense triangular hand
mesh M ∈ RNv×3 (Nv =778 vertices and Nf =1538 faces)
as follows,

M(β,θ) = W (T(β,θ), J(β),θ,W), (4)

T(β,θ) = T̄ +BS(β) +BP (θ), (5)

where BS(·) and BP (·) represent shape and pose blend
functions, respectively. W is a set of blend weights. The

hand template T̄ is first posed and skinned based on the
pose and shape corrective blend shapes, i.e., BP (θ) and
BS(β). Then the mesh M is generated by rotating each part
around joints J(β) based on the linear skinning function
W (·) [75]. Besides, the sparse joint representation J̃3D is
also derived from the mesh. To keep consistent with the
input pose format, we further add 5 extra fingertip joints by
selecting vertices with the index of 333, 443, 555, 678 and
734. Finally, J̃3D is mapped back to the same 2D plane as
the input pose based on the estimated camera parameter as
follows,

J̃2D = cs
∏

(crJ̃3D) + co, (6)

where
∏

(·) denotes the orthographic projection.

3.1.4 Prediction Head
Given the large diversities among downstream tasks, we
design simple yet effective prediction heads for each task
in Figure 3. In Section 3.3, we will introduce them in detail
along with the task-specific fine-tuning settings.

3.2 Pre-Training SignBERT+
In this section, we elaborate our pre-training paradigm. Pre-
training is performed via reconstructing the masked visual
tokens from the corrupted input sequence, which aims to
exploit hierarchical context on a large volume of sign pose
data. Different from the original BERT working on discrete
word space, we attempt to pre-train on continuous pose
space. Therefore, it raises new issues to resolve, including
the design of the masking strategies and objective functions.

3.2.1 Masking Strategy
Considering the noise of the detected input hand pose, the
masking strategy needs to be carefully redesigned. Given
the hand pose sequence, we first randomly choose a portion
R of all tokens. For the chosen token, one of the following
operations is applied with the equal probability, i.e., masked
joint modeling, masked frame modeling, masked clip mod-
eling and identity modeling.

Masked joint modeling. This strategy mimics the fail-
ure cases of pose detectors on some joints. For a chosen
token, we randomly choose m joints. Two operations are
performed on these chosen joints with the equal probability,
i.e., zero masking (masking the coordinates of joints with
zeros) or random spatial disturbance. This modeling aims
to guide the framework to infer the gesture state from the
remaining joints, thus capturing the context at the joint level.

Masked frame modeling. It aims to deal with the failure
case on the whole frame pose, which is often caused by
complex backgrounds. The chosen token is directly zero
masked. This strategy enforces the framework to reconstruct
the token by leveraging the observation from the remaining
frames and the other hand. In this way, the temporal con-
text for each hand and mutual context between hands are
captured.

Masked clip modeling. Motion blur, as a factor not to
be overlooked, usually causes pose detection failure on a
video clip. To deal with this situation, masked clip modeling
is designed. We randomly choose k temporally continuous
tokens, where k ranges from 2 to K . The chosen k tokens
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are all zero-masked. In order to reconstruct them, the frame-
work needs to capture the temporal dynamics by leveraging
the motion pattern of existing frames.

Identity modeling. Similar to BERT [2], identity mod-
eling directly feeds the unchanged tokens into the frame-
work. It is indispensable for the framework to learn identity
semantic encoding on those unmasked tokens.

3.2.2 Objective Functions

During pre-training, its objective is to maximize the likeli-
hood of the joint probability distribution to reconstruct the
hand pose sequence. To achieve the reconstruction target,
the classification objective in the original BERT is substan-
tially changed into regression. To this end, we design the
objective function as follows,

L = Lrec + λLreg, (7)

where Lrec and Lreg are reconstruction and regularization
loss terms, respectively. λ denotes the weighting factor. We
only include the corresponding output of the masked tokens
during the loss calculation.

Reconstruction loss Lrec. Since the utilized pose usu-
ally contains noise due to failure detection, we utilize the
detection confidence score as the filter to eliminate these
influences. The reconstruction loss is calculated as follows,

Lrec =
∑
t,j

1(s(t, j) >= ε)s(t, j)
∥∥∥J̃2D(t, j)− J2D(t, j)

∥∥∥
1
, (8)

where 1(·) denotes the indicator function, and s(t, j) de-
notes the detection confidence score of the J2D with joint j
at time t. The joints with the confidence lower than ε are not
included in the loss calculation.

Regularization loss Lreg . To ensure this decoder work-
ing properly, the regularization loss is added. It is imple-
mented by constraining the magnitude and derivative of
the MANO input, which is responsible for generating the
plausible mesh and keeping the signer identity unchanged.
This loss term is computed as follows,

Lreg =
∑
t

(‖θt‖22 + wβ‖βt‖22 + wδ‖βt − βt−1‖22), (9)

where wβ and wδ denote the weighting factors.

3.3 Fine-Tuning SignBERT+

After pre-training SignBERT+ for generic visual represen-
tation in sign language, it is relatively simple to fine-tune
it for various downstream tasks. During fine-tuning, the
task-specific prediction head is added on top of the pre-
trained SignBERT+ encoder, as illustrated in Figure 3. The
framework is supervised under the task-specific loss.

Since only the hand pose modality is insufficient to con-
vey the full meaning of sign language, we further provide
the task-specific fusion strategy with the method based on
the full RGB frames. For clarity, the baseline RGB method
utilized for fusion will be marked in the experiment section.
Besides, we denote our vanilla and fused framework as
Ours and Ours (+ R), respectively.
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Visual Token Sequence

…
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…
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…

Fig. 3. Illustration of the settings on three downstream tasks, i.e., iso-
lated SLR, continuous SLR and SLT. The box in purple denotes our
designed task-specific prediction head. It is fine-tuned with the pre-
trained SignBERT+ encoder.

3.3.1 Isolated Sign Language Recognition
Isolated SLR is a fine-grained classification problem, which
categorizes a sign video to the corresponding isolated word.
For this task, the designed prediction head consists of a
temporal merging module and a classifier. The former mod-
ule utilizes a simple attention mechanism to highlight the
discriminative cues in certain frames during the merging
process as follows,

o = Softmax(FW + b) · F, (10)

where F and o denote the input feature sequence and
merged feature, respectively. Then the merged feature o
is passed through a classifier (MLP and softmax layer)
to output the probability matrix. Since isolated SLR is a
classification problem, we utilize the cross-entropy loss to
supervise the fine-tuning process. We use the simple late
fusion strategy with the RGB method, which directly sums
their prediction scores and chooses the class with the highest
score as the final recognition result.

3.3.2 Continuous Sign Language Recognition
Continuous SLR aims to recognize the gloss sequence g
in the same presenting order as the sign actions in the
input sign video V with T frames. The prediction head for
this task contains a temporal pooling module and a CTC
decoder. The temporal pooling module aggregates frame-
level visual features to the clip level, which outputs the one-
quarter temporal length of the input. Then it is fed into the
connectionist temporal classification (CTC) decoder to deal
with the mapping between two unsegmented sequences
without explicit alignment.

The objective of CTC is to maximize the posterior prob-
ability over all alignments from the source to the target. It
extends the vocabulary with a blank label to cover the cases
of transition and silence. Denote each alignment path of
the input sequence as π = {πt|Tt=1} with T as temporal
duration. Under the time independence assumption, its
probability is computed as follows,

p(π|V) =
T∏
t=1

p(πt|V). (11)

Typically, there exists many-to-one mapping from multiple
input sequences to one target, which is achieved by remov-
ing all blanks and repetition. In this way, we calculate the
conditional probability of the target gloss sequence g by
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summing the probabilities of all possible mapping paths as
follows,

p(g|V) =
∑

π∈B−1(s)

p(π|V), (12)

where B(·) denotes the many-to-one mapping function.
B−1(·) is the inverse mapping of B(·). During training, the
objective is defined by the negative log probability of p(g|V)
as follows,

LCSLR = − ln p(g|V). (13)

During inference, the CTC decoder obtains a series of sen-
tences via beam search and chooses the one with the highest
decoding probability as the final prediction.

For fusion, similar to [76], we first concatenate the en-
coded feature from the RGB baseline and our method. Then
we utilize a BLSTM sequential model and a CTC decoder to
map the merged feature to the gloss sequence.

3.3.3 Sign Language Translation

Given the input sign video V with T frames, SLT aims
to generate the spoken language translation s = {si}Ni=1

with N words via maximizing the conditional probability
p(s|V). For this task, our designed prediction head contains
a semantic modulator and a decoder as shown in Figure 3.

Considering the token length diversity between the
source and target (T >> N ), the semantic modulator
attempts to bridge this gap and generates suitable semantics
M = {mi}T1

i=1 for the decoder. Specifically, it first performs
average temporal pooling to reduce the source visual token
sequence from the length T to the length T1 = T/4. This
operation makes the visual representation more compact,
but its output lacks temporal dependency modeling. To
mitigate this issue, a Transformer encoder is adapted to
further modulate the pooled visual sequence and generate
suitable semantics.

After that, a decoder is adopted to perform mapping
between sign language and spoken translation while con-
sidering their different grammar. The decoder contains two
main components, i.e, a word embedding layer and an
autoregressive Transformer decoder. The word embedding
layer embeds each word in the target sequence s, along with
the added position encoding as follows,

wi = WordEmbed(si) + PE(i), (14)

where si denotes the input word, WordEmbed(·) and
PE(·) are the word embedding and position encoding
functions, respectively.

The autoregressive property means the model leverages
generated text as additional input when generating the
next. The Transformer decoder architecture is also a stack
of basic blocks. The basic block contains three compo-
nents, i.e., masked multi-head self-attention module, multi-
head cross-attention module and feed-forward network. The
mask adopted on self-attention ensures the information flow
in the rightward direction to preserve the autoregressive
property [4], [77]. This operation is necessary for the SLT
inference, since the framework is not accessible to the output
tokens which are decoded currently or in the future. Cross-
attention module leverages the contextual cues from the

modulated visual semantics M and predecessors words w.
The whole Transformer decoder is formulated as follows,

D0 = w,

Qi = L(M̃(Di−1) + Di−1),

D̃i = L(MHA(Qi,M
k,Mv) + Qi),

Di = L(C(D̃i) + D̃i),

(15)

where i denotes the i-th layer of the Transformer de-
coder. The whole encoder contains totally N layers. M̃(·),
MHA(·), C(·) and L(·) represent the masked multi-head
self-attention, multi-head cross-attention, feed-forward net-
work and layer normalization, respectively. Di denotes the
output feature from the i-th layer.

During decoding, the sentence is first prefixed with the
word “[bos]” to indicate the beginning. Then each word in
the target sequence s is embedded. The embedded sequence
is then fed into the Transformer decoder TransD(·). This
decoder additionally performs cross attention by leveraging
the contextual cues from the modulated visual semantics m
and predecessors words w. Finally, its output is fed into a
fully-connected network and a softmax layer to generate the
probability matrix of the output word.

In summary, the whole decoding process is formulated
as follows,

hi = TransD(w1:i−1,m1:T1
), (16)

oi = Softmax(Whi + b). (17)

The conditional probability p(s|V) is calculated as follows,

p(s|V) =
N∏
i=1

p(si|s1:i−1,V) =
N∏
i=1

oi,si . (18)

Finally, the objective function is formulated as follows,

LSLT = − ln p(s|V), (19)

which is equivalent to calculating the cross-entropy loss on
each word. We adopt the S2T setting [33], which directly
maps the sign embedding to spoken translation in an end-
to-end manner. During inference, the framework predicts
the word one-by-one based on the beam search [78].

For fusion, we leverage the latent visual features from
both RGB and pose modalities, i.e., Mr and Mp, to the same
decoder. Specifically, we replace the original cross attention
in the decoder with the cascaded one, which is formulated
as follows,

D̃i = MHA(MHA(Qi,M
k
p,M

v
p),M

k
r ,M

v
r), (20)

where MHA(·) denotes the multi-head cross-attention
layer, Qi denotes the feature from the previous decoder
layer, and D̃i is the output of the cascaded attention.

4 EXPERIMENT

In this section, we first introduce the experiment setup,
i.e., datasets, evaluation metrics and implementation details.
Then we perform ablation studies on the framework ef-
fectiveness from multiple perspectives. Finally, we perform
extensive experiments to make comparison with state-of-
the-art methods on multiple downstream tasks.
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4.1 Experiment Setup

4.1.1 Datasets
We first perform experiments on the dataset with hand pose
annotations available to evaluate the framework feasibility.
HANDS17 [79] is a video-level hand pose estimation dataset
with 292,820 frames from 99 video sequences. For each
video, the first 70% and remaining 30% frames are separated
for training and testing, respectively.

We evaluate our proposed method on three main video-
based sign language understanding tasks, i.e., isolated SLR,
continuous SLR and SLT. The corresponding datasets for
each task are discussed in the follow.

For isolated SLR, we make evlauation on three datasets,
i.e., MSASL [17], WLASL [18], and SLR500 [16]. MSASL [17]
is an American sign language (ASL) dataset containing a
vocabulary of 1,000, with 25,512 samples. Besides, it also re-
leases two subsets (MSASL100 and MSASL200) by choosing
the Top-K most frequent signs. WLASL [18] is another ASL
dataset with 2,000 signs and 21,083 samples. It also contains
two subsets, i.e., WLASL100 and WLASL300. MSASL and
WLASL are both collected from the Web, which are recorded
in unconstrained real-life conditions with unbalanced sam-
ples for each sign word. These factors bring new challenges
on accurate recognition. SLR500 [16] is the largest CSL
dataset, which contains 500 daily signs and 125,000 samples
recording at the resolution of 1280 × 720. These samples
are split into 90,000 and 35,000 for training and testing,
respectively.

For continuous SLR, the evaluation is conducted on two
datasets, i.e., RWTH-Phoenix [14] and RWTH-PhoenixT [33].
RWTH-Phoenix [14] is a popular German sign language
dataset collected from the weather forecast broadcast. It
contains 6,841 samples, with 5,672, 540 and 629 videos
for training, validation and testing, respectively. RWTH-
PhoenixT [33] is included for evaluation, which is intro-
duced in “SLT datasets”.

For SLT, we make evaluation on RWTH-PhoenixT [33]
dataset, which is treated as the extended version of RWTH-
Phoenix. It provides parallel sign gloss and translation an-
notations, to evaluate both continuous SLR and SLT tasks.
It contains 8,257 videos, which are divided into three sets:
7,096 for training, 519 for validation, and 642 for testing.
RWTH-Phoenix and RWTH-PhoenixT are both recorded at
the resolution of 210× 260.

4.1.2 Evaluation Metrics
To evaluate whether our framework works during pre-
training, we adopt the metrics for evaluating pose esti-
mation accuracy. Specifically, we report the Percentage of
Correct Keypoints (PCK) score and the Area Under the
Curve (AUC) on the PCK threshold ranging from 20 to
40 pixels. PCK defines the keypoint to be correct if the
Euclidean distance between this keypoint and ground truth
is lower than the threshold. The distance metric is expressed
in pixels.

For isolated SLR, We utilize the accuracy metrics, includ-
ing per-instance (P-I) and per-class (P-C) metrics. P-I and
P-C denote the average accuracy over all the instances and
classes, respectively. Following previous works [5], [13], we
report Top-1 and Top-5 P-I and P-C metrics on MSASL

and WLASL. Since each class in SLR500 contains the same
number of samples, P-I is equal to P-C and we only report
one of them.

For continuous SLR, we utilize Word Error Rate (WER) as
the evaluation metric. WER is the editing distance, which
measures the least operations (substitution, deletion and
insertion) to transform the hypothesis to the reference gloss
sentence as follows,

WER =
Ni +Nd +Ns

L
, (21)

where Ni, Nd, and Ns are the number of operations for
insertion, deletion, and substitution, respectively. L denotes
the length of the reference sentence.

For SLT, we adopt BLEU [80] and ROUGE [81] metrics
which are commonly utilized in neural machine translation.
BLEU calculates the overlap rate of n-gram between the
generated text and the reference text, and n ranges from 1 to
4. ROUGE is a metric based on the recall rate and measures
the sentence-level structure similarity. In this work, we refer
to the ROUGE-L F1-Score.

4.1.3 Implementation Details

In our experiment, all the models are implemented by
PyTorch [82] and trained on NVIDIA RTX 3090. Since sign
language datasets contain no available pose annotations,
we utilize MMPose [83] to extract 133 full 2D keypoints,
consisting of 23 body joints, 68 face joints and 42 hand
joints. The hyper-parameters ε, λ, wβ and wδ are set as
0.5, 0.01, 10.0 and 100.0, respectively. During decoding, the
beam width is set as 10 and 3 for continuous SLR and SLT,
respectively.

During the pre-training stage, the utilized data includes
the training data from all aforementioned sign datasets,
along with other collected data from [84], [85]. In total,
the pre-training data volume is 230,246 videos. The Adam
optimizer is adopted to train the framework for 60 epochs
with the weight decay set as 0.01. The learning rate warms
up over the first 10% of the training process, and then decays
linearly from the peak rate (1e-4). All the frames are fed into
the framework.

For all the downstream tasks, the Adam optimizer is still
adopted. The learning rate for isolated SLR, continuous SLR
and SLT are 1e-4, 1e-4 and 5e-5, respectively. For continuous
SLR and SLT, we follow the setting [9]. Spatial-temporal
data augmentation is utilized during training. Spatially,
following [24], we adopt random moving augmentation to
simulate spatial disturbance induced by rotation, translation
and scaling factors. Temporally, for isolated SLR, we extract
32 frames from the origin video using random and center
sampling for training and testing, respectively. While for
continuous SLR and SLT, we randomly sample 80% frames
during training and utilize all the frames during testing.

4.2 Ablation Study

In this section, we first validate the framework feasibility.
Then we perform detailed ablation studies on different
components of our framework.
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TABLE 1
Framework feasibility validation on HANDS17. “P@20” denotes the
PCK metrics with the error threshold set as 20 pixel. “Joint”, “Frame”

and “Clip” denote the masked joint modeling, masked frame modeling
and masked clip modeling, respectively. “Input” and “Output” represent
the corrupted input pose and the reconstructed pose sequence by our

framework, respectively.

Mask Input Output
Joint Frame Clip P@20 AUC P@20 AUC
X 90.06 89.99 94.60 95.15

X 74.83 74.80 93.30 95.13
X 60.99 60.00 91.94 93.47

X X X 66.65 66.63 94.00 94.74

TABLE 2
Impact of the Transformer layers N on MSASL dataset. N denotes the

number of the Transformer encoder layers in our framework.

N
100 200 1000

P-I P-C P-I P-C P-I P-C
2 82.56 82.35 74.47 75.51 59.20 56.70
3 84.94 85.23 78.51 79.35 62.42 60.15
4 83.75 83.56 76.97 77.74 60.69 57.34
5 83.88 84.23 77.04 77.93 61.27 58.30

4.2.1 Framework Feasibility

We validate the framework feasibility via observing its
pose reconstruction capability, on HANDS17 dataset with
hand pose annotation available. In this setting, we adopt
all masked modeling strategies to train our framework
on this dataset. During validation, we perform different
masking cases on the input sequence and evaluate the
framework output quality. As shown in Table 1, the output
metrics are higher than those of the input under all masking
cases, which validates our framework feasibility. Besides,
we qualitatively visualize the hand pose reconstruction in
Figure 4. It can be observed that the reconstructed hand pose
sequence is consistent with the ground truth, even under the
severely corrupted input situation. It is largely attributed to
inherent contextual cues captured by our framework via our
designed pretext task.

4.2.2 Ablation Study

To study the impact of different hyper-parameters and set-
tings in our approach, we conduct experiments on MSASL
and its subset with per-instance and per-class Top-1 accu-
racy as the performance indicator.
Impact of the Transformer layers N . As shown in Ta-
ble 2, the accuracy gets improved when the number N of
Transformer layers increases. It reaches the peak when N is
equal to 3. There exists difference in the best N between the
original BERT and ours, which may be attributed to different
characteristics between the sign pose and text domains. In
all the experiments, we set N as 3 unless stated.
Impact of the pose θ dimension in the hand-model-aware
decoder. From Table 3, the pose θ dimension represents the
MANO characterization capability of the hand gesture. The
increase of the pose dimension brings enhanced capability
and accuracy improvement on the downstream SLR. It
reaches the top when the dimension is equal to 25. However,

TABLE 3
Impact of the pose θ dimension in the hand-model-aware decoder on

MSASL dataset.

Dimension 100 200 1000
P-I P-C P-I P-C P-I P-C

15 82.83 82.83 76.01 76.50 61.65 58.59
25 84.94 85.23 78.51 79.35 62.42 60.15
35 83.88 84.20 77.19 77.99 61.60 59.04

TABLE 4
Impact of the temporal span K in masked clip modeling on MSASL

dataset. K represents that the masked clip duration ranges from 2 to
K.

K
100 200 1000

P-I P-C P-I P-C P-I P-C
4 81.90 82.17 73.58 74.17 60.43 57.51
8 83.88 83.55 76.60 77.57 61.94 59.76
12 82.96 82.83 74.98 75.16 60.93 58.67

TABLE 5
Impact of different temporal information extraction on MSASL dataset.

Method 100 200 1000
P-I P-C P-I P-C P-I P-C

PE 84.94 85.23 78.51 79.35 62.42 60.15
GCN Tem-3 83.36 83.41 76.09 76.85 60.21 57.62
GCN Tem-5 83.62 84.36 76.09 77.12 60.55 58.13

further increasing does not bring more performance gain,
which may be caused by the optimization difficulty.
Impact of the temporal span K in masked clip modeling.
In Table 4, it can be observed that the accuracy reaches the
top when K is equal to 8. The suitable temporal mask span
enforces the framework to capture the temporal dynamics
during sign language. In the following, we set K as 8 unless
stated.
Impact of different temporal information extraction on
MSASL dataset. There are many alternative methods to
extract temporal information. Besides temporal position
encoding, directly extracting temporal information is also
a solution. To this end, we modify the current GCN into
the temporal variant following the practice in [74]. Specif-
ically, the original spatial GCN graph is replaced with
the spatial-temporal one via adding the local connections
along the temporal dimension. With this modification, the
gesture state extractor embeds the temporal receptive field
of additional k adjacent input frames and thus captures the
temporal information. Besides, since our pretext task needs
to recover the masked pose token in the corresponding
output, we utilize padding to keep the sequence length after
the gesture extractor the same as the input.

As shown in Table 5, we perform comparison on these
different temporal extraction methods. “PE” denotes utiliz-
ing the position encoding for temporal information extrac-
tion. For “GCN Tem-k”, we remove the temporal position
encoding and directly extract temporal information via our
modified GCN backbone. k represents the number of adja-
cent frames. These settings achieve comparable performance
on the downstream SLR. It can be explained that the fol-
lowing Transformer encoder contains the strong capability
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TABLE 6
Effectiveness of the spatial-temporal position encoding (“PE”) on

MSASL dataset.

PE 100 200 1000
Temporal Spatial P-I P-C P-I P-C P-I P-C

77.68 77.93 73.07 73.50 51.80 48.76
X 79.00 79.05 74.39 74.51 52.97 49.95

X 82.96 82.75 75.94 77.15 60.95 58.82
X X 84.94 85.23 78.51 79.35 62.42 60.15

TABLE 7
Effectiveness of the masking ratio R on MSASL dataset.

R 100 200 1000
P-I P-C P-I P-C P-I P-C

20% 78.47 78.46 69.09 70.62 59.52 56.15
30% 82.30 82.33 76.23 76.79 61.07 57.92
40% 84.94 85.23 78.51 79.35 62.42 60.15
50% 82.96 83.26 76.31 77.40 60.93 57.95
60% 80.18 81.06 75.64 76.21 59.80 57.25

TABLE 8
Effectiveness of the masking strategy on MSASL dataset. The first row
denotes the baseline, i.e., our framework is trained without pre-training.
“Joint”, “Frame” and “Clip” denote the masked joint modeling, masked

frame modeling and masked clip modeling, respectively.

Mask 100 200 1000
Joint Frame Clip P-I P-C P-I P-C P-I P-C

78.20 78.10 72.77 73.21 53.31 50.43
X 82.03 82.78 74.39 74.62 58.44 55.24

X 82.69 82.85 76.53 77.24 60.23 58.02
X 83.88 83.55 76.60 77.57 61.94 59.76

X X X 84.94 85.23 78.51 79.35 62.42 60.15

of capturing long-term sequential dependencies. The simple
position encoding is sufficient to indicate this encoder with
the temporal order. Unless stated, we utilize the temporal
position encoding as the temporal order indicator.
Effectiveness of the spatial-temporal position encoding.
As shown in Table 6, we validate the effectiveness of spatial-
temporal position encoding. The first row denotes the re-
sults without any position encoding. In the second row,
we incorporate the temporal inforamtion with the temporal
position encoding. In the third row, we incorporate the
global hand information in the form of hand spatial position
encoding and involve all arm joints (totally 7 joints). Com-
pared with the temporal counterpart, our designed spatial
position encoding incorporates the important hand global
position information and brings a larger performance gain.
Furthermore, these two encoding schemes exhibit comple-
mentary effects, bringing even 10.62% per-instance Top-1
accuracy improvement over the baseline on the full set.
Effectiveness of the masking ratio R. We study the in-
fluence of the masking ratio in Table 7. It is observed that
the performance reaches the top when the masking ratio is
equal to 40%, which is inconsistent with BERT [2]. It may
be attributed to the information density difference between
sign pose and predefined NLP word tokens.
Effectiveness of the masking strategy. As demonstrated in
Table 8, the first row denotes the baseline method, which

TABLE 9
Effectiveness of the model-aware decoder on MSASL dataset. We

compare ours with different pose decoders.

Decoder 100 200 1000
P-I P-C P-I P-C P-I P-C

1-layer fc 82.56 83.11 74.32 75.26 59.88 57.17
2-layer fc 83.62 83.82 75.06 75.92 60.50 57.65
Ours 84.94 85.23 78.51 79.35 62.42 60.15

TABLE 10
Effectiveness of the ratio of pre-training data scale on MSASL dataset.

Ratio 100 200 1000
P-I P-C P-I P-C P-I P-C

0% 78.20 78.10 72.77 73.21 53.31 50.43
25% 81.11 81.44 74.83 75.51 58.53 56.04
50% 81.24 81.79 75.35 76.35 59.61 56.71
75% 83.09 83.36 76.01 76.60 60.43 57.63
100% 84.94 85.23 78.51 79.35 62.42 60.15

is fine-tuned on MSASL without pre-training. Our designed
three masked modeling strategies target at different levels
of context contained in the sign language domain, which
individually bring 5.13%, 6.92% and 8.63% per-instance Top-
1 accuracy improvement over the baseline on the full set,
respectively. Among them, masked clip modeling brings the
largest performance gain. When all these masking strategies
are utilized, it reaches the best performance.
Effectiveness of the model-aware decoder. We compare
the effects of different pose decoders in Table 9. The first
two rows represent that we utilize fully-connected layers
to directly regress the keypoints for pose reconstruction
during pre-training. Compared with the direct regression
method, our decoder incorporates prior via regressing the
compact gesture embedding, which eases optimization and
brings a larger performance gain on the downstream SLR.
Besides, our decoder also exhibits the additional benefit,
which inflates the input 2D sequence to the corresponding
3D mesh as the intermediate representation.
Effectiveness of the pre-training data scale. We study
the impact of the pre-training data scale in Table 10. We
randomly extract a portion of all training data, indicated in
the “Ratio” column. Then we pre-train and fine-tune our
framework based on the same setup. It is observed that
the accuracy grows monotonically when the pre-training
data volume increases, which suggests our framework may
benefit from even more pre-training data.

4.3 Qualitative Visualization

We visualize the reconstruction results under the sign data
sources after pre-training in Figure 5 and 6. In this setting,
poses are detected by an off-the-shelf extractor and fed
into the framework. For clarity, we only plot one hand and
visualize its reconstructed poses and the intermediate hand
meshes, which are produced by our framework. We start by
demonstrating some general cases in Figure 5. Under loss
of hand joints in several frames, our framework is able to
capture the context to reconstruct the pose and mesh, which
align the 2D image plane well. The hand mesh, as the inter-
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Fig. 4. Qualitative illustration of the framework feasibility on HANDS17. We exhibit 15 continuous frames of a video. Four rows represent the ground
truth pose, input pose disturbed by all kinds of masked modeling strategies (joint, frame and clip), reconstructed sequence and the middle mesh
representation, respectively. Notably, blanks in the second row represent all joints in the corresponding frames are masked.
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Fig. 5. More visualization samples under sign data sources with no hand pose annotation. For each sample, 8 continuous frames are visualized.
“In”, “Out” and “Mesh” denote the input hand pose, the reconstructed hand pose and the intermediate hand mesh, respectively. For clarity, we
visualize all the poses and meshes on their aligned RGB image planes.
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(b) Hand-to-face Interaction

Fig. 6. More visualization samples on two types of hard interaction cases during sign language expression, i.e., hand-to-hand interaction and hand-
to-face interaction. For each sample, 5 continuous frames are visualized. “In”, “Out” and “Mesh” denote the input hand pose, the reconstructed hand
pose and the intermediate hand mesh, respectively. For clarity, we only plot one hand and visualize its poses and meshes on their aligned RGB
image planes.

mediate representation, also improves the interpretability of
our method.

As illustrated in Figure 6, we further demonstrate quali-
tative results on two types of hard cases, i.e., hand-to-hand
interaction and hand-to-face interaction. Due to the similar
appearance of hand and face and complex self- and mutual
occlusion, these interactions bring inherent ambiguity and
cause failure in hand pose estimation. Even under these
hard cases, our framework can rectify the noisy inputs and
infer all the poses which well align the image plane. This
strong hallucination capability may be largely attributed to

the well-modeled statistics in the sign language domain.

4.4 Comparison with Other Pre-Training Strategies
As demonstrated in Table 11, we compare with other pre-
training strategies, including supervised and state-of-the-art
self-supervised pre-training methods. For fair comparison,
we pre-train on the same SignBERT+ encoder backbone (em-
bedding layer and Transformer encoder).

Similar to [86], supervised pre-training denotes that we
add a classifier (an MLP and softmax layer) on top of the
backbone and perform pre-training under the classification
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TABLE 11
Comparison with other pre-training strategies on downstream tasks. For fair comparison, all the pre-training methods are performed on the same
backbone, i.e., embedding layer and Transformer encoder. The first row represents the framework is directly fine-tuned on the downstream tasks

without pre-training. “Partial” and “All” denote the corresponding classification data and all pre-training data, respectively. The data volumes of
“Partial” and “All” are about 160k and 230k videos, respectively. (↑ denotes the higher the better, while ↓ represents the lower the better.)

Method Pre-Train
MSASL WLASL SLR500 RWTH-Phoenix RWTH-PhoenixT

P-I P-C P-I P-C P-I Dev Test Dev Test
Top-1 ↑ Top-5 ↑ Top-1 ↑ Top-5 ↑ Top-1 ↑ Top-5 ↑ Top-1 ↑ Top-5 ↑ Top-1 ↑ WER ↓ WER ↓ WER ↓ WER ↓

Baseline Scratch 53.31 75.98 50.43 74.12 38.33 72.59 36.40 71.23 92.1 43.6 43.4 42.2 42.6
Supervised Partial 58.82 80.42 56.27 79.54 46.00 79.95 43.63 78.32 94.7 42.5 42.6 40.8 41.7
V-MoCo [86] Partial 54.22 78.26 51.31 77.03 39.12 72.79 36.93 71.15 94.1 42.1 43.4 40.3 40.8
Ours Partial 60.13 82.12 57.19 80.72 47.46 81.62 45.03 80.31 95.1 36.7 36.2 35.0 35.2
V-MoCo [86] All 55.27 79.72 52.06 78.31 40.17 75.19 37.71 73.38 94.8 41.1 41.3 39.2 40.0
Ours All 62.42 83.49 60.15 82.44 48.85 82.48 46.37 81.33 95.4 34.0 34.1 32.9 33.6

Method Pre-Train
RWTH-PhoenixT

Dev Test
ROUGE ↑ BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE ↑ BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑

Baseline Scratch 40.23 39.09 26.40 19.63 15.50 39.83 39.27 26.98 20.10 15.90
Supervised Partial 41.63 40.87 28.06 20.84 16.49 41.58 41.60 28.82 21.68 17.29
V-MoCo [86] Partial 42.44 41.94 28.97 21.43 16.84 41.75 41.83 28.82 21.36 16.82
Ours Partial 44.15 44.03 31.18 23.71 19.00 44.33 43.51 30.92 23.59 19.10
V-MoCo [86] All 42.79 42.55 29.40 22.13 17.53 41.95 42.68 29.49 21.89 17.36
Ours All 45.53 44.45 31.88 24.59 19.86 44.89 44.35 32.09 24.92 20.41

task. Specifically, supervised pre-training is conducted on a
portion of the original pre-training data (denoted as “Par-
tial”), i.e., the corresponding classification (isolated SLR)
benchmarks. The “Partial” and “All” data volumes are
160,113 and 230,246 videos, respectively.

For fair comparison with supervised pre-training, we
define two evaluation settings for self-supervised methods,
i.e., pre-training on the “Partial” and “All” data volumes.
We adopt the state-of-the-art self-supervised pre-training
method, i.e., V-MoCo [86]. It is based on contrastive learning,
and can be treated as the extended version of MoCo [49]
into the video domain. Since it originally works on the
RGB domain, we make a few modifications by replacing
its backbone with ours, which is able to process the pose
modality. During pre-training, we randomly sample two
clips with 32 consecutive frames from the same sign pose
sequence, as the query and positive samples. The negative
samples are obtained from the clips of other videos. During
training, its objective is to maximize the similarity between
the query and positive samples, which aims to learn tempo-
rally persistent features of the same video.

We evaluate the effectiveness of these pre-training
methods on all three downstream tasks, i.e., isolated
SLR (MSASL, WLASL, SLR500), continuous SLR (RWTH-
Phoenix and RWTH-PhoenixT) and SLT (RWTH-PhoenixT).
In isolated SLR, supervised pre-training brings a larger per-
formance gain than V-MoCo. While for continuous SLR and
SLT, the supervised pre-training method brings a relatively
smaller performance gain, whose performance is worse
than that of V-MoCo. Supervised pre-training exhibits the
limited generalization capability to the downstream tasks,
whose objective is inconsistent with classification. For self-
supervised pre-training methods, i.e., V-MoCo and Ours,
they do not rely on annotated data and scale well with larger
pre-training data volume. Notably, when compared with
other pre-training strategies, our method achieves the best
performance on all downstream tasks with notable gains.

4.5 Comparison with State-of-the-art Methods
In this section, we compare our method with previous state-
of-the-art methods on three main downstream tasks, includ-
ing isolated SLR, continuous SLR and SLT. For comparison,
we group them into pose-based and RGB-based methods.

4.5.1 Isolated Sign Language Recognition
Evaluation on MSASL [17]. MSASL introduces new chal-
lenges given its unconstrained recording conditions. As
illustrated in Table 12, the accuracy of previous pose-based
methods lags largely behind the RGB-based counterpart. It
is mainly attributed to the pose detection failure caused by
partially occluded upper body, motion blur and complex
background, etc. TCK [7] and BSL [13] propose different
pre-training techniques on the I3D backbone by leverag-
ing external sign data. Our method achieves new state-
of-the-art performance under both pose-based and RGB-
based comparison settings with a notable gain. Notably,
when compared with previous SignBERT [5], our frame-
work outperforms it by 12.88% per-instance Top-1 accuracy
improvement on the full set.
Evaluation on WLASL [18]. WLASL is also the uncon-
strained recording setting. Compared with MSASL, it is
more challenging with fewer samples and doubled vocab-
ulary size. As shown in Table 13, it is worth mentioning
that our single pose-based method even outperforms the
most challenging RGB-based method [7], [13], with over 2%
Top-1 per-instance accuracy improvement on all sets. When
fused with the RGB baseline, the performance of our method
further gets improved.
Evaluation on SLR500 [16]. As demonstrated in Table 14,
STIP [87] and GMM-HMM [88] are the traditional meth-
ods based on hand-crafted features. Since this dataset is
recorded under the controlled setting, the performance is
quite saturated with only Top-1 accuracy reported. GLE-
Net [84] is a challenging method, which performs feature
enhancement from the global and local views. Our method
achieves 97.8% Top-1 accuracy, which is new state-of-the-art
performance.
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TABLE 12
Evaluation of isolated SLR on MSASL dataset (the higher the better). [17] denotes the RGB baseline for fusion.

Method
MSASL100 MSASL200 MSASL

Per-instance Per-class Per-instance Per-class Per-instance Per-class
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Pose-based
ST-GCN [24] 59.84 82.03 60.79 82.96 52.91 76.67 54.20 77.62 36.03 59.92 32.32 57.15
SignBERT [5] 76.09 92.87 76.65 93.06 70.64 89.55 70.92 90.00 49.54 74.11 46.39 72.65
Ours 84.94 95.77 85.23 95.76 78.51 92.49 79.35 93.03 62.42 83.49 60.15 82.44
RGB-based
I3D [17] - - 81.76 95.16 - - 81.97 93.79 - - 57.69 81.05
HMA [72] 73.45 89.70 74.59 89.70 66.30 84.03 67.47 84.03 49.16 69.75 46.27 68.60
TCK [7] 83.04 93.46 83.91 93.52 80.31 91.82 81.14 92.24 - - - -
BSL [13] - - - - - - - - 64.71 85.59 61.55 84.43
SignBERT (+ R) [5] 89.56 97.36 89.96 97.51 86.98 96.39 87.62 96.43 71.24 89.12 67.96 88.40
Ours (+ R) [5] 90.75 97.75 91.52 97.73 88.08 96.47 88.62 96.47 73.71 90.12 70.77 89.30

TABLE 13
Evaluation of isolated SLR on WLASL dataset (the higher the better). I3D [18] denotes the RGB baseline for fusion.

Method
WLASL100 WLASL300 WLASL

Per-instance Per-class Per-instance Per-class Per-instance Per-class
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Pose-based
ST-GCN [24] 50.78 79.07 51.62 79.47 44.46 73.05 45.29 73.16 34.40 66.57 32.53 65.45
Pose-TGCN [18] 55.43 78.68 - - 38.32 67.51 - - 23.65 51.75 - -
PSLR [23] 60.15 83.98 - - 42.18 71.71 - - - - - -
SignBERT [5] 76.36 91.09 77.68 91.67 62.72 85.18 63.43 85.71 39.40 73.35 36.74 72.38
Ours 79.84 92.64 80.72 93.08 73.20 90.42 73.77 90.58 48.85 82.48 46.37 81.33
RGB-based
I3D [18] 65.89 84.11 67.01 84.58 56.14 79.94 56.24 78.38 32.48 57.31 - -
HMA [72] - - - - - - - - 37.91 71.26 35.90 70.00
TCK [7] 77.52 91.08 77.55 91.42 68.56 89.52 68.75 89.41 - - - -
BSL [13] - - - - - - - - 46.82 79.36 44.72 78.47
SignBERT (+ R) [5] 82.56 94.96 83.30 95.00 74.40 91.32 75.27 91.72 54.69 87.49 52.08 86.93
Ours (+ R) 84.11 96.51 85.05 96.83 78.44 94.31 79.12 94.43 55.59 89.37 53.33 88.82

TABLE 14
Evaluation of isolated SLR on SLR500 dataset (the higher the better).

[84] denotes the RGB baseline for fusion.

Method Accuracy
Pose-based
ST-GCN [24] 90.0
SignBERT [5] 94.5
Ours 95.4
RGB-based
STIP [87] 61.8
GMM-HMM [88] 56.3
3D-R50 [89] 95.1
HMA [72] 95.9
GLE-Net [84] 96.8
SignBERT (+ R) [5] 97.7
Ours (+ R) 97.8

In summary, our method greatly shrinks the perfor-
mance gap between pose-based and RGB-based methods on
isolated SLR. Under the challenging in-the-wild conditions,
our method even outperforms the challenging RGB-based
methods. It can be attributed to our designed masking mod-
eling strategies and incorporated prior during pre-training.

4.5.2 Continuous Sign Language Recognition

Evaluation on RWTH-Phoenix [14]. As demonstrated in
Table 16, we exhibit experiment results on RWTH-Phoenix
dataset. Due to the lack of pose-based methods, we adopt
two representative RGB-based methods [9], [29] by only
changing its visual encoder with the GCN to process pose
modality, denoted as “P-BLSTM” and “P-Trans”. Pose-based
methods lag largely behind RGB-based methods, which is
largely caused by pose failure caused by the low-quality
data and motion blur. Among pose-based methods, our
method largely outperforms the most challenging competi-
tor P-BLSTM with 5.6% and 5.2% WER improvement on
the dev and test set, respectively. When fused with the
RGB baseline, our method achieves new state-of-the-art
performance, i.e., 19.9% and 20.0% WER on the dev and test
set, respectively.
Evaluation on RWTH-PhoenixT [33]. We make comparison
on RWTH-PhoenixT in Table 17. This dataset additionally
provides spoken German translation corresponding to the
sign gloss annotation. [15] utilizes the spoken translation to
infer the mouth shape label, which provides auxiliary cues
to recognition. Besides, it releases multi-stream versions for
further performance improvement. STMC [35] also lever-
ages the multi-cue information from the full frame, hand,
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TABLE 15
Evaluation of SLT on RWTH-PhoenixT dataset (the higher the better). [36] denotes the RGB baseline method for fusion.

Method Dev Test
ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

Pose-based
Skeletor [90] 32.66 31.97 19.53 14.01 10.91 31.80 31.86 19.11 13.49 10.35
Ours 45.53 44.45 31.88 24.59 19.86 44.89 44.35 32.09 24.92 20.41
RGB-based
Sign2Text [33] 31.80 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58
TSPNet [34] - - - - - 34.96 36.10 23.12 16.88 13.41
MCT [91] 45.90 - - - 19.51 43.57 - - - 18.51
SL-Trans [9] - 47.26 34.40 27.05 22.38 - 46.61 33.73 26.19 21.32
BN-TIN-Trans [36] 46.87 46.90 33.98 26.49 21.78 46.98 47.57 34.64 26.78 21.68
SimulSLT [92] 36.04 36.01 22.60 16.05 12.39 35.13 35.92 22.70 16.03 12.27
PiSLTRc-T [92] 47.89 46.51 33.78 26.78 21.48 48.13 46.22 33.56 26.04 21.29
STMC [35] 48.24 47.60 36.43 29.18 24.08 46.65 46.98 36.09 28.70 23.65
SignBT [36] 50.29 51.11 37.90 29.80 24.45 49.54 50.80 37.75 29.72 24.32
Ours (+ R) 51.12 51.46 38.28 30.30 24.95 50.63 52.01 39.19 31.06 25.70

TABLE 16
Evaluation of continuous SLR on RWTH-Phoenix dataset (the lower the

better). [29] denotes the RGB baseline for fusion.

Methods Dev Test
del / ins WER del / ins WER

Pose-based
P-BLSTM [29] 13.4 / 3.5 39.6 12.3 / 3.4 39.3
P-Trans [9] 16.0 / 3.2 40.9 14.9 / 3.4 40.4
Ours 9.0 / 6.3 34.0 7.9 / 6.0 34.1
RGB-based
CMLLR [14] 21.8 / 3.9 55.0 20.3 / 4.5 53.0
1-Million-Hand [93] 16.3 / 4.6 47.1 15.2 / 4.6 45.1
CNN-Hybrid [94] 12.6 / 5.1 38.3 11.1 / 5.7 38.8
SubUNets [76] 14.6 / 4.0 40.8 14.3 / 4.0 40.7
RCNN [95] 13.7 / 7.3 39.4 12.2 / 7.5 38.7
Re-Sign [25] - 27.1 - 26.8
Hybrid CNN-HMM [26] - 31.6 - 32.5
CNN-LSTM-HMM [15] - 26.0 - 26.0
CTF [96] 12.8 / 5.2 37.9 11.9 / 5.6 37.8
Dilated [97] 8.3 / 4.8 38.0 7.6 / 4.8 37.3
IAN [98] 12.9 / 2.6 37.1 13.0 / 2.5 36.7
DNF [29] 7.8 / 3.5 23.8 7.8 / 3.4 24.4
FCN [99] - 23.7 - 23.9
CMA [30] 7.3 / 2.7 21.3 7.3 / 2.4 21.9
PiSLTRc-R [100] 8.1 / 3.4 23.4 7.6 / 3.3 23.2
STMC [35] 7.7 / 2.4 21.7 7.4 / 2.6 20.7
VAC [8] 7.9 / 2.5 21.2 8.4 / 2.6 22.3
Ours (+ R) 4.8 / 3.7 19.9 4.2 / 3.8 20.0

face and pose and becomes the most challenging competitor.
Our method (Ours (+ R)) outperforms it while only utilizing
the full video and pose information.

4.5.3 Sign Language Translation
Evaluation on RWTH-PhoenixT [33]. As shown in Table 15,
we perform comparison on RWTH-PhoenixT dataset, which
is the current most popular benchmark for evaluating SLT.
Contemporaneous with ours, Skeletor [90] is an influential
work that conducts BERT style pre-training but in another
field of pose estimation. Specifically, it inflates the detected
poses to 3D ones and conducts BERT-style pre-training
with the aim of refining 3D poses. Then it validates its
effectiveness on downstream SLT with the refined poses as
input. Compared with this challenging pose-based method,

TABLE 17
Evaluation of continuous SLR on RWTH-PhoenixT dataset (the lower

the better). [29] denotes the RGB baseline for fusion.

Methods Dev Test
del / ins WER del / ins WER

Pose-based
P-BLSTM [29] 13.8 / 3.3 40.2 12.9 / 3.1 40.2
P-Trans [9] 12.9 / 3.7 39.4 11.4 / 3.8 39.8
Ours 9.2 / 4.9 32.9 8.4 / 5.3 33.6
RGB-based
1-stream [15] - 24.5 - 26.5
3-stream [15] - 22.1 - 24.1
DNF [29] 10.5 / 1.9 22.7 9.8 / 2.4 23.5
SL-Trans [9] 11.7 / 6.5 24.9 11.2 / 6.1 24.6
FCN [99] - 23.3 - 25.1
PiSLTRc-R [100] 4.9 / 4.2 21.8 5.1 / 4.4 22.9
STMC [35] - 19.6 - 21.0
Ours (+ R) 4.8 / 3.3 18.8 4.3 / 3.9 19.9

our framework directly models the SL statics in the latent
semantics space and surpasses it with a larger performance
gain, i.e., 8.95% and 10.06% BLEU-4 improvement on the
dev and test set, respectively. When compared with RGB-
based methods, Ours (+ R) also achieves new state-of-the-
art performance, achieving 24.95% and 25.70% BLEU-4 on
the dev and test set, respectively.

4.6 Evaluation with Deaf Community

The end goal of automatic sign language understanding is to
make the daily life of the deaf community more convenient.
Xu et al. [101] make the first attempt of user study to
evaluate the built sign gloss dictionary for sign language
learners. Evaluation participation of the deaf community
is also crucial to better analyze our method and outline
future work. In our work, the effectiveness of pre-training is
evaluated on the downstream tasks and it is also desirable
to perform more direct evaluation on pre-training.

To this end, we conduct a user study with the Institu-
tional Review Board (IRB) approval from our college with
granted number No.202200603. This user study aims to ana-
lyze the robustness of our framework under different input
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TABLE 18
User study with deaf community on robustness of our pre-training
model under different input noise levels. The rate represents the

average correct rate which means the deaf volunteer is able to correctly
identify the semantic meaning via observing the output pose of our

framework.

Noise Intensity Correct Rate
Input Output

0.1 23% 92%
0.2 16% 85%
0.3 10% 79%
0.4 4% 75%

noise levels via evaluating the semantic preservation of the
pre-training framework output (pose sequence). Different
noise levels are achieved via choosing different portions of
the input tokens to add noise. There are 10 deaf volunteers
participating in this study. In the study, each volunteer is
asked to judge whether the corresponding sign gloss can be
identified via observing the framework output. We report
the correct rate to indicate semantic preservation. Totally,
100 real-world sign videos are collected and involved in
this study. For each video, there are 8 samples, i.e., 4 (noise
levels) × 2 (input and output) needed to be evaluated.

As shown in Table 18, it can be observed that the se-
mantics of the output are well-preserved when the input
noise intensity increases, which validates the robustness of
our framework. Meanwhile, the correct rate of the output
is consistently better than that of the input under all noise
levels. It reveals that the modeled statistics via our pre-
training can bring positive gains on the semantics. Besides,
these deaf participants also give us feedback on the reasons
of failed recognition from their perspectives, e.g. pose jit-
tering, nonstandard gesture, etc. These results can give us
some hints on further improving the pre-training design,
e.g. inserting the basic gesture types of sign language as the
constraint.

4.7 Analysis & Future Work
The core of our work is modeling the statistics in the sign
language domain via maximizing the likelihood of the joint
probability distribution, which benefits the downstream
sign language understanding tasks. Despite the success of
BERT in NLP, it is non-trivial to leverage its masked mod-
eling pretext task into sign language understanding due to
different characteristics between these two domains. Among
them, the major one is information density [60]. Originally,
the languages are highly semantic and well represented
with 1D sequences of text words, which are defined with
clarified semantics. In contrast, sign pose, expressed in 3D
continuous coordinates, is a kind of well-structured data
with both spatial and temporal redundancy. Besides, this
kind of signal usually contains noise due to failure estima-
tion. This fundamental difference raises the following issues
to resolve, which outlines potential future work.

• Token embedding & Position encoding. These em-
beddings are needed to be carefully designed con-
sidering the hand pose characteristics in the sign
language domain, e.g. how to effectively represent
spatial-temporal positions of hands.

• Masking strategy. It aims to capture the hierarchical
context in the sign data, which needs to consider the
characteristic of sign pose data.

• Decoder design & Pre-training objective. The de-
coder in the pre-training stage performs mapping
from the latent feature back to the input. In NLP,
the decoder predicts the masked discrete words with
the cross-entropy objective. While for this task, the
goal is to reconstruct the continuous sign hand pose
sequence. The involved pre-training objective and
decoder are needed to design.

More discussion. In this work, we provide our solution
to the above issues and validate the effectiveness of our
framework. Pre-training on pose has its pros and cons. Pose
data is a semantic and compact representation, which is
robust to appearance or background changes and brings
potential computation efficiency. On the other hand, our
adopted pose input is estimated by the off-the-shelf pose
detector. Although our framework embeds the capability to
capture the cues from the corrupted input pose sequence,
its bottleneck is somewhat limited by the quality of the
detected pose. Jointly optimizing the pose detector with
our framework may be a possible solution. It is also desir-
able to extend masked-modeling-based self-supervised pre-
training to RGB data. Besides, pre-training can go beyond
self-supervised learning, e.g. multilingual information may
be merged as an auxiliary indicator for better performance
on downstream tasks.

5 CONCLUSION

In this paper, we propose the first self-supervised pre-
trainable framework with hand prior incorporated, namely
SignBERT+. Given the dominant role of hand during sign
language, we take both hands as visual tokens and care-
fully embed each visual tokens with gesture state and
spatial-temporal position information. Our framework first
performs pre-training on a large volume of sign data via
reconstructing the masked tokens from the corrupted input
sequence. Specifically, we subtly design hierarchical masked
modeling strategies (joint, frame and clip). These strate-
gies explicitly consider hand pose characteristics to cap-
ture multi-level contextual information. Furthermore, we
design the hand-model-aware decoder to incorporate prior
for better optimization and context modeling. Then, the
pre-trained SignBERT+ is fine-tuned for downstream tasks.
Given the task diversities, we design simple yet effective
prediction heads on top of the SignBERT+ encoder during
fine-tuning. Extensive experiments are conducted among
three main video-based sign language understanding tasks,
i.e, isolated SLR, continuous SLR and SLT. Our experiment
results demonstrate the effectiveness of our method, achiev-
ing new state-of-the-art performance with a notable gain.
Broader Impact. It is estimated by World Health Organiza-
tion (WHO) that by 2050 over 700 million people will have
disabling hearing loss, which accounts for 10% of global
population [102]. The community with hearing loss may
feel isolated, lonely and other mental issues when they face
the communication barrier in daily life. One way to assist
them is to bridge this gap via the automatic sign language
understanding technique. Our framework is able to promote
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its development. However, our technique is not intended
for the potential privacy issue, such as surveillance on sign
language communication.
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