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CMW-Net: Learning a Class-Aware Sample
Weighting Mapping for Robust Deep Learning

Jun Shu, Xiang Yuan, Deyu Meng, and Zongben Xu

Abstract—Modern deep neural networks (DNNs) can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue. Most current methods, however, require manually
pre-specifying the weighting schemes as well as their additional hyper-parameters relying on the characteristics of the investigated
problem and training data. This makes them fairly hard to be generally applied in practical scenarios, due to their significant complexities
and inter-class variations of data bias situations. To address this issue, we propose a meta-model capable of adaptively learning an
explicit weighting scheme directly from data. Specifically, by seeing each training class as a separate learning task, our method aims to
extract an explicit weighting function with sample loss and task/class feature as input, and sample weight as output, expecting to impose
adaptively varying weighting schemes to different sample classes based on their own intrinsic bias characteristics. Synthetic and real data
experiments substantiate the capability of our method on achieving proper weighting schemes in various data bias cases, like the class
imbalance, feature-independent and dependent label noise scenarios, and more complicated bias scenarios beyond conventional cases.
Besides, the task-transferability of the learned weighting scheme is also substantiated, by readily deploying the weighting function learned
on relatively smaller-scale CIFAR-10 dataset on much larger-scale full WebVision dataset. A performance gain can be readily achieved
compared with previous state-of-the-art ones without additional hyper-parameter tuning and meta gradient descent step. The general
availability of our method for multiple robust deep learning issues, including partial-label learning, semi-supervised learning and selective
classification, has also been validated. Code for reproducing our experiments is available at https://github.com/xjtushujun/CMW-Net.

Index Terms—Meta Learning, sample re-weighting, noisy labels, class imbalance, semi-supervised learning, partial-label learning.
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1 INTRODUCTION

D EEP neural networks (DNNs), equipped with highly
parameterized structures for modeling complex input

patterns, have recently obtained impressive performance
on various applications, e.g., computer vision [1], natural
language processing [2], speech processing [3], etc. These
successes largely attribute to many large-scale paired sample-
label datasets expected to properly and sufficiently simulate
the testing/evaluating environments. However, in most real
applications, collecting such large-scale supervised datasets
is notoriously costly, and always highly dependent on a
rough crowdsourcing system or search engine. This often
makes the training datasets error-prone, with unexpected
data bias from the real testing distributions.

This distribution mismatch issue could have many differ-
ent forms. For example, the collected training sets are often
class imbalanced [4], [5]. Actually, real-world datasets are
usually depicted as skewed distributions. Specifically, the
frequency distribution of visual categories in our daily life is
generally long-tailed, with a few common classes and many
more rare ones. This often leads to a mismatch between
collected datasets with long-tailed class distributions for
training a machine learning model and our expectation on
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the model to perform well on all classes. Another popular
data bias is the noisy label case [6], [7], [8], [9]. Even the
most celebrated datasets collected from a crowdsourcing
system with expert knowledge [10], like ImageNet, have been
demonstrated to contain harmful examples with unreliable
labels [11], [12], [13]. To mitigate the high labeling cost, it
has received increasing attention to collect web images by
search engines [14]. Though cheaper and easier to obtain
training data, it often yields inevitable noisy labels due to
the error-prone automatic tagging system [15], [16].

The overparameterized DNNs tend to suffer significantly
from overfitting on these biased training data, then conduct-
ing their poor performance in generalization. This robust
deep learning issue has been theoretically illustrated in
multiple literatures [17], [18] and gradually attracted more
attention in the field. Recently, various methods have been
proposed to deal with such biased training data. Readers can
refer to [19], [20], [21], [22], [23], [24] for an overall review. In
this paper, we focus on the sample re-weighting approach,
which is a commonly used strategy against such data bias
issue and has been widely investigated started at 1950s [25].

1.1 Deficiencies of Sample Re-weighting Approach

The sample re-weighting approach [9], [26] attempts to assign
a weight to each example and minimize the corresponding
weighted training loss to learn a classifier model. The exam-
ple weights are typically calculated based on the training
loss. More specifically, the learning methodology of sample
re-weighting is to design a weighting function mapping from
training loss to sample weight, and then iterates between
calculating weights from current sample loss values and
minimizing weighted training loss for classifier updating
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Fig. 1. The architectures of (a) MW-Net and (b) CMW-Net.

(that’s why the method is called “re-weighting"). However,
there exist two entirely contrary ideas for constructing such
a loss-weight mapping. In class imbalanced problems, the
function is generally set as monotonically increasing, aiming
to enforce the learning to more emphasize samples with
larger loss values since they are more like to be the minority
class. Typical methods include Boosting and AdaBoost [27],
[28], hard negative mining [29] and focal loss [30]. But in
noisy label problems, the function is more commonly set as
monotonically decreasing, i.e., taking samples with smaller
loss values as more important ones, since they are more likely
to be high-confident ones with clean labels. Typical methods
include self-paced learning (SPL) [31], iterative reweighting
[32] and multiple variants [33], [34], [35].

Although these pre-defined weighting schemes have
substantiated to help improve the robustness of a learning
algorithm on certain data bias scenarios, they still have
evident deficiencies in practice. On the one hand, they need
to manually preset a specific form of weighting function
based on certain assumptions of training data. This, however,
tends to be infeasible when we know insufficient knowledge
underlying data or the label conditions are too complicated,
like the case that the training set is both imbalanced and
label-noisy. On the other hand, even when we properly
specify certain weighting schemes, like focal loss [30] or SPL
[31], they inevitably involve hyper-parameters, like focusing
parameter in the former and age parameter in the latter, to
be manually preset or tuned by cross-validation. This tends
to further raise their application difficulty in real problems.

1.2 Limitations and Meta-Essence Insight for MW-Net

To alleviate the above issues, our earlier work attempts to
parameterize the weighting function as an MLP (multilayer
perceptron) network with one hidden layer called MW-Net
[9], as depicted in Fig. 1(a), which is theoretically capable
of dealing with such weighting function approximation
problem [36]. Instead of assuming a pre-defined weight-
ing scheme, MW-Net can automatically learn a suitable
weighting strategy from data for the training dataset at hand.
Experiments on datasets with class imbalance or noisy labels
show that the automatically learned weighting schemes are
consistent with the properly defined ones as traditional.

Nevertheless, MW-Net uses one unique weighting func-
tion shared by all classes of training dataset to deal with data
bias, implying that different classes should possess consistent
bias. For example, we plot the empirical probability density

function (pdf) of training loss1 under the symmetric noise
assumption (i.e., biases for each class are with almostly equal
possibility), as shown in Fig. 10(b). It can be seen that each
class shares to an approximately homoscedastic training loss
distribution. However, such homoscedastic bias assumption
can not perfectly reflect the real complicated data bias
scenarios. In fact, real-world biased datasets (like WebVision
[14]) are often heterogeneous [38], i.e., biases are input-
dependent, e.g., class-dependent or instance-dependent. Fig.
10(c) shows the training loss distribution under asymmetric
(class-dependent) noise assumption. We can observe that
losses of clean and noisy samples nearly overlap, and thus it
is difficult to differentiate noisy samples from clean samples
based on loss information. For such class-dependent bias
case, MW-Net learns a monotonically increasing weighting
function as shown in Fig.3(c), which implies that MW-Net
inclines to significantly lose efficacy. This naturally leads to
significant performance degradation for MW-Net (see Table
2). Considering real-world biased datasets always possess
even more inter-class heterogenous bias configurations than
these simulated biased ones, it is thus fairly insufficient and
improper to employ only single weighting function to deal
with such complicated real-world biased datasets.

This issue can be more intrinsically analyzed under the
framework of meta-learning. From the task-distribution view,
a meta-learning approach attempts to learn a task-agnostic
learning algorithm from a family of training tasks, that is
hopeful to be generalizable across tasks and enable new tasks
to be learned better and more easily [39]. By taking every
class of training samples as a separate learning task, MW-
Net can also be seen as a meta-learning strategy, aiming to
learn how to properly impose an explicit weighting function
from a set of training classes/tasks. The properness of using
such meta-learning regime, however, is built on the premise
that all training tasks approximately follow a similar task
distribution [40], [41], [42], [43]. In complicated data bias
scenarios, however, such premise is evidently hampered
by the heterogeneous bias situations across different classes,
making MW-Net hardly fit a concise weighting rule generally
suitable for all training classes/tasks.

The issue will be more prominent for practical large-scale
datasets (e.g., WebVision [14]), especially for those containing
a large number of training classes but also possessing many
rare ones. Then the inter-class heterogeneity will be more
significant and the data bias situation more complicated. An
easy amelioration is to separately learn a weighting function
for each training class to obtain a better flexibility. This
easy learning manner, however, is not only impractical due
to its required large computation burden, but also easily
leads to overfitting and thus hardly extracts available weight
schemes from highly insufficient training task information
for each class. More importantly, such learning manner is
deviated from the original motivation of meta-learning, i.e.,
learning a general weighting function imposing methodology
generalizable and transferable to new biased datasets. The
learned weighting scheme is even infeasible to be utilized in

1. Since the loss values of all samples have been considered and
validated to be important and beneficial information for exploring
proper sample weight assignment principle, its distribution largely
delivers the underlying bias configurations underlying data [7], [8], [37].
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Fig. 2. Illustration of the limitation and meta-essence understanding for MW-Net. The success of MW-Net is built upon homoscedastic bias assumption
(e.g., in (a.1)(a.2), each class has similar loss distributions of clean and noise samples). While MW-Net fails under the heterogeneous bias (e.g., in
(b.1)(b.2), each class has their specific loss distributions). The rationality can be revealed from the perspective of meta-learning (see Sec. 1.2). The
limitation of MW-Net demonstrates that only sample-level loss information can not sufficiently characterize the heterogeneous bias. This motivates us
to introduce task-level information (i.e., scale of task) to reform MW-Net, making it able to distinguish individual bias properties of different tasks, and
accumulate tasks with approximately homoscedastic data bias as a task family (see (a.3) and (b.3)). Please see more details in Sec. 1.3 & 3.3.

new problems with different class numbers and features due
to their mismatched input information to the meta-model.

1.3 CMW-Net and Our Contributions

Against the aforementioned issues, in this study, we substan-
tially reform MW-Net to make it performable in practical
scenarios with complicated data biases. Compared to that
we use sample-level information (e.g., loss) to distinguish
individual bias properties of different samples, the core
idea is to extract certain higher task-level feature repre-
sentation from all training classes/tasks to deliver their
specific heterogeneous bias characteristics for discriminating
training classes/tasks with similar data bias. And then we
can accumulate tasks with approximately homoscedastic
data bias (e.g., using a clustering algorithm according to the
task feature) as a task family. Thus the training dataset can be
divided into several task families, where intra-task-families
own similar data bias, while inter-task-families own different
data biases. To this aim, we simply take the scale level of each
task (i.e., the number of samples for each class/task in our
implementation) as the task feature, which can be validated
to be effective and capable of assembling training classes with
approximately homoscedastic loss distributions, as shown
in Fig.10. Then it is hopeful to deal with heterogeneous
data bias by distinguishing individual bias properties of
different classes/tasks, and adaptively ameliorating their
imposed weighting function forms. Therefore, we can reform

MW-Net by taking such task feature as the supplementary
input information besides the sample loss into the weighting
function, as shown in Fig. 1(b). We call this approach the
Class-aware Meta-Weight-Net, or CMW-Net for brevity.

In a nutshell, the main contribution of this paper can be
summarized as follows.

1) We propose a CMW-Net model, as shown in Fig.1(b),
to automatically learn a proper weighting strategy for real-
world heterogeneous data bias in a meta-learning manner.

2) The proposed CMW-Net is model-agnostic, and is
substantiated to be performable in different complicated
data bias cases, and obtain competitive results with state-of-
the-art (SOTA) methods on real-world biased datasets, like
ANIMAL-10N [44], Webvision [14] and WebFG-496 [45]

3) We further make soft-label amelioration for the CMW-
Net model by integrating sample pseudo-label knowledge
estimated by model prediction, aiming to correct and reuse
the suspected noisy samples into the model training.

4) We study the transferability of CMW-Net. The learned
weighting scheme can be used in a plug-and-play manner,
and can be directly deployed on unseen datasets, without
need to specifically extra tune hyperparameters of CMW-Net.

5) We also evaluate easy generality of CMW-Net to other
robust learning tasks, including partial-label learning [46],
semi-supervised learning [47] and selective classification [48].

The paper is organized as follows. Sec. 2 discusses related
work. Sec. 3 presents the proposed CMW-Net method as well
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Fig. 3. (a-d) The weighting function extracted by MW-Net [9], and (e-h) three weighting functions extracted by CMW-Net (corresponding to three
task families with small, moderate, large data scales), alongside the histogram of all sample weights calculated by them, for four types of simulated
biased datasets. From left to right: Class imbalance (imbalanced factor 10), Symmetric noise (noise rate 40%), Asymmetric noise (noise rate 40%),
Feature-dependent noise (Type-I + 30% Asymmetric). The details of simulated biased datasets please refer to Section 4.

as its learning algorithm and convergence analysis. Simulated
and real-world experiments are demonstrated in Sec. 4 and
Sec. 5, respectively. Sec. 6 evaluates the transferability of
CMW-Net. Sec. 7 introduces the evaluation of CMW-Net to
several related applications. The conclusion is finally made.

2 RELATED WORK

Conventional Sample Weighting Methods. The idea of
re-weighting examples can be dated back to importance
sampling [25], aiming to assign weights to samples in order to
match one distribution to another. Besides, the early attempts
of dataset resampling [49], [50] or instance re-weight [51] pre-
evaluate the sample weights using certain prior knowledge
on the task or data. To make sample weights fit data more
flexibly, more recent researchers focus more on pre-designing
an explicit weighting function mapping from training loss to
sample weight, and dynamically ameliorate weights during
training process. There are mainly two manners to design
such weighting function. One is to make it monotonically
increasing, which is specifically effective in class imbalance
case. Typical methods along this line include the boosting
algorithm [27], [28], [52], hard example mining [29] and
focal loss [30], which impose larger weights to ones with
larger loss values. On the contrary, another series of methods
specify the weighting function as monotonically decreasing,
more popularly used in noisy label cases. Typical examples
include SPL [31] and its extensions [33], [53], iterative
reweighting [6], [35], paying more emphasis on easy samples
with smaller losses. The evident limitation of these methods
is that they all need to manually pre-specify the form of
weighting function as well as its hyper-parameters based on
users’ prior expert knowledge on the investigated data and
learning problem, raising their difficulty to be readily used
in real applications. Meanwhile, presetting a certain form of
weighting function suffers from the limited flexibility to make
the model adaptable to the complicated training data biases,
like those with inter-class bias-heterogenous distributions.

Meta Learning Methods for Sample Weighting. In-
spired by meta-learning developments [15], [39], [41], [43],
recently some methods have been proposed to adaptively
learn sample weights from data to make the learning more au-
tomatic and reliable. Typical methods along this line include
FWL [54], learning to teach [55], MentorNet [37], L2RW [26],
and MW-Net [9]. Especially, MW-Net [9] adopts an MLP net
to learn an explicit weighting scheme instead of conventional
pre-defined weighting scheme. It has been substantiated that
weighting function automatically extracted from data comply
with those proposed in the hand-designed studies for class-
imbalance or noisy labels [9]. As analyzed in Sec. 1, the
effectiveness of the method, however, is built on the premise
assumption that all training classes are with approximately
homogeneous biases. However, real-world biased datasets
are always inter-class heteroscedastic, and thus it tends to
lose efficacy in more practical applications.

Other Methods for Class Imbalance. Except for sample
re-weighting methods, there exist other learning paradigms
for handling class imbalance. Typically, [56], [57] try to trans-
fer the knowledge learned from major classes to minor ones.
[58] uses meta feature modulator to balance the contribution
per class during the training phase. The metric learning
based methods, e.g., triple-header loss [59] and range loss
[60], have also been developed to effectively exploit the tailed
data to improve the generalization. Furthermore, [61] applies
domain adaptation on learning tail class representation.

Other Methods for Corrupted Labels. For handling
noisy label issues, many methods have also been designed
by making endeavors to correct noisy labels to their true
ones to more sufficiently discover and reuse the beneficial
knowledge underlying these corrupted data. The typical
strategies include supplementing an extra label correction
step [7], [62], [63], [64], designing a robust loss function [6],
[65], [66], [67], [68], [69], revising the loss function via loss
correction [53], [70], [71], [72], and so on. Please refer to
references [20], [21], [22], [23], [24] for a more overall review.
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3 CLASS-AWARE META-WEIGHT-NET

3.1 Sample Re-weighting Methodology

Consider a classification problem with biased training set
Dtr = {xi, yi}Ni=1, where xi denotes the i-th training sample,
yi ∈ {0, 1}C is the one-hot encoding label corresponding
to xi, and N is the number of the entire training data.
f(x;w) denotes the classifier with w representing its model
parameters. In current applications, f(x,w) is always set
with a DNN architecture. We thus also adopt DNN as
our prediction model, and call it a classifier network for
convenience in the following. Generally, the optimal model
parameter w∗ can be extracted by minimizing the following
training loss calculated on the training set:

w∗ = arg min
w

1

N

N∑
i=1

`(f(xi;w), yi), (1)

where `(f(x;w), y) denotes the training loss on training
sample (x, y). In this study, we adopt the commonly adopted
cross-entropy (CE) loss `(f(x;w), y) = −yT log(f(x;w)),
where f(x;w) denotes the network output (especially,
f(x;w) ∈ ∆c is a simplex when using Softmax function
in the end layer of the network). For notation convenience,
we denote Ltri (w) = `(f(xi;w), yi) in the following.

In the presence of biased training data, sample re-
weighting methods aim to enhance the robustness of network
training by imposing a weight vi ∈ [0, 1] on the i-th training
sample loss. Then the optimal parameter w∗ is calculated by
minimizing the following weighted loss function:

w∗ = arg min
w

1

N

N∑
i=1

vi`(f(xi;w), yi). (2)

To make sample weights fit data more flexibly, researchers
mostly focused on pre-defining a weighting function map-
ping from training loss to sample weight, and dynamically
ameliorate weights during training process [28], [30], [31].
More details can refer to literatures provided in related work.

3.2 Meta-Weight-Net

As aforementioned, most conventional sample re-weighting
studies need to manually pre-specify the form of weighting
function as well as their hyper-parameters based on cer-
tain expert knowledge for the investigated problem. This
naturally raises their difficulty in readily using them in
real applications. Meanwhile, such weighting function pre-
setting manner suffers from the limited flexibility to adapt
complicated data bias cases, like applications simultaneously
containing class imbalance and noisy label abnormalities in
their certain classes. To address above issues, MW-Net [9]
is proposed to use an MLP to deliver a suitable weighting
function from data. The architecture of the MW-Net (see
Fig. 1(a)), denoted as V (`; θ), naturally succeededs from
the previous sample re-weighting approaches, by setting its
input as training loss and output as sample weight, with θ
as its network parameter. Just following standard MLP net,
each hidden node is with ReLU activation function, and the
output is with the Sigmoid activation function, to guarantee
the output located in the interval of [0, 1]. This weight net is
known with a strong fitting capability to represent a wide

range of weighting function forms, like those monotonically
increasing or decreasing ones as conventional manually
specified ones [36]. The MW-Net thus ideally includes many
conventional sample weighting schemes as its special cases.

The parameters contained in MW-Net can be optimized
in a meta learning manner [39], [41], [43]. Specifically,
with a small amount of unbiased meta-data set Dmeta =
{x(meta)

i , y
(meta)
i }Mi=1 (i.e., with clean labels and balanced

data class distribution), representing the meta-knowledge
of ground-truth sample-label distribution, where M is the
number of meta-samples, the optimal parameter θ∗ of MW-
Net can be obtained by minimizing the following bi-level
optimization problem:

θ∗ = arg min
θ

1

M

M∑
i=1

Lmetai (w∗(θ)),

s.t. w∗(θ) = arg min
w

N∑
i=1

V (Ltri (w); θ)Ltri (w),

(3)

where Lmetai (w∗(θ))=`
(
f(x

(meta)
i ;w∗(θ)), y

(meta)
i

)
. Experi-

mental results on datasets with inter-class homogeneous bias
situations, like all classes with similar imbalance rate for class
imbalance or similar noise rate for noisy labels case, have
shown that the learned weighting schemes are consistent
with empirical pre-defined ones as conventional methods [9].

3.3 Class-aware Meta-Weight-Net

In this section, we first show our motivation of constructing
CMW-Net beyond MW-Net, and then we introduce the
fundamental consideration and principle of constructing
the two branches contained in the CMW-Net architecture.
Next we introduce how the two branches are practically
formulated in our algorithm, and finally we summarize the
overall formulation of CMW-Net and the bi-level optimiza-
tion objective for calculating its final result.

According to the analysis in Section 1.2, the main limi-
tation of MW-Net is built on the premise that all training
classes/tasks approximately follow a similar task distribu-
tion. Then MW-Net can use only one unique weighting
scheme to handle homogeneous data biases over all training
classes/tasks. However, real-world biased datasets are often
heterogeneous with obvious inter-class variations of bias,
especially for those with a large number of training classes.
Since the premise is evidently hampered by heteroscedastic
bias situations across different classes/tasks, MW-Net tends
to largely lose its efficacy when encountering complicated
biased datasets. This motivates us to reform MW-Net to
make it possess adaptability of specifying proper weighting
schemes to different classes/tasks based on their own
internal bias characteristics.

To this aim, we propose a new weighting model as shown
in Fig.1(b), called Class-aware Meta-Weight-Net (CMW-Net
for brevity). The architecture of CMW-Net is composed of
two branches. The below branch integrates task-level feature
knowledge into the input of the original MW-Net as a ben-
eficial compensation besides the original sample-level loss
input. The function of this branch is to distinguish individual
bias properties of different classes/tasks, and accumulate
training classes/tasks with approximately homogeneous bias
types (e.g., using a clustering algorithm according to the task
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Fig. 4. Main flowchart of the proposed CMW-Net meta-training algorithm (steps 6-8 in Algorithm 4).

feature) as a task family. Based on the identified task families,
we can extract a possible faithful sample-weighting scheme
shared by a task family, while suppressing the unexpected
interference by other task families with heterogeneous ones.
Such amelioration is expected to enable the output weight of
a sample to correlate with its included training classes/tasks,
so as to make it possibly adaptable to class bias variations.

In this study, we attempt to take the scale level (i.e., the
number of samples) of each training class/task to represent
its task feature. Albeit simple, such feature does be able to
deliver helpful class/task pattern underlying its bias types.
For instance, from Fig.10, we can validate the effect for
symmetric and asymmetric noise cases (please see more
cases in supplementary material). Denote Ni (i = 1,· · ·, N )
as the number of samples contained in the training class
to which the i-th sample xi belongs. Then below branch
of CMW-Net can be expressed as C(Ni; Ω) ∈ {0, 1}K , by
taking Ni as its input to represent the task feature, and
including a hidden layer containing K nodes, attached with
K-levels of scales Ω = {µk}Kk=1 sorted in ascending order
(i.e., µ1 < µ2 < · · · < µK ). The output of this branch is a
K-dimensional one-hot vector (i.e., task family label), whose
1-element is located at its k-th dimension corresponding to
the nearest µk to the input Ni.

The other branch can be represented as V(Ltri (w); Θ) ∈
[0, 1]K , built as an MLP architecture with the loss value of
the i-th sample as its input, containing one hidden layer
and a K-dimensional output2. Different from 1-dimensional
weight output of MW-Net, this network contains K output
weights, corresponding to its K different weighting schemes
imposed on samples located in different task families. The
sharing hidden layer among these task families extracts
the correlation among weighting principles of different task
families, which helps reduce the risk of overfitting.

Then the CMW-Net weighting function is formulated as:

V(Ltri (w), Ni; Θ,Ω) = V(Ltri (w); Θ)⊗ C(Ni; Ω), (4)

where ⊗ denotes the dot product between two vectors.
Through the modulation of the higher-level task feature
information, CMW-Net is expected to learn a class-aware
weighting function by accumulating training classes/tasks
with homogeneous bias situations, and allow different train-
ing classes/tasks possessing different weighting schemes
complying with their own internal bias characteristics.

2. In all our experiments, we just simply set the hidden layer
containing 100 nodes with ReLU activation function, and specify the
output node with Sigmoid activation function, to guarantee the output
of each task family located in the interval of [0, 1].

Algorithm 1 The CMW-Net Meta-training Algorithm
Input: Training dataset Dtr , meta-data set Dmeta, batch size

n,m, max iterations T .
Output: Classifier parameter w(∗), CMW-Net parameter Θ(∗)

1: Apply K-means on the sample numbers of all training
classes to obtain Ω = {µk}Kk=1 sorted in ascending order.

2: Initialize classifier network parameter w(0) and CMW-Net
parameter Θ(0).

3: for t = 0 to T − 1 do
4: {x, y} ← SampleMiniBatch(D̃tr, n).
5: {xmeta, ymeta} ← SampleMiniBatch(Dmeta,m).
6: Formulate the learning manner of classifier network

ŵ(t+1)(Θ) by Eq. (7).
7: Update parameter Θ(t+1) of CMW-Net by Eq. (29).
8: Update parameter w(t+1) of classifier by Eq. (9).
9: end for

Now, the objective function of CWM-Net can be written
as the following bi-level optimization problem:

{Θ∗,Ω∗} = arg min
Θ,Ω

1

M

M∑
i=1

Lmetai (w∗(Θ,Ω)), (5)

w∗(Θ,Ω) = arg min
w

N∑
i=1

V(Ltri (w), Ni; Θ,Ω)Ltri (w). (6)

Note that CMW-Net is degenerated to MW-Net if we take
K = 1, i.e., all training classes own one weighting scheme.

3.4 Learning Algorithm of CMW-Net

3.4.1 Meta-training: learning CMW-Net from training data
We firstly discuss how to train the CMW-Net from the given
training data. There are two groups of parameters, including
Θ and Ω, required to be optimized to attain the CMW-Net
model. Therein, the optimization of the scale parameters Ω
corresponds to an integer programming problem and thus
hard to design an efficient algorithm for getting its global
optimum. We thus adopt a two-stage process to first pre-
determine a rational specification of Ω∗, and then focus the
computation on optimizing other parameters in the problem.
In specific, the standard K-means algorithm [73] is employed
on the sample numbers within all training classes (including
C positive integers) to obtain cluster centers Ω = {µk}Kk=1

sorted in ascending order. Throughout all our experiments,
we simply set K = 3. The small, moderate, and large-scale
task families for different datasets can then be distinguished
based on the ascending {µk}Kk=1. All our experiments show
consistently and stably fine performance under such simple
setting. This also implies that there remains a large room for
further performance enhancement of our model by utilizing
more elegant optimization techniques and designing more
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comprehensive task-level feature representations, which will
be further investigated in our future research.

Then our aim is to solve the bi-level optimization of Eqs.
(5) and (6) to obtain optimal Θ∗ and w∗. To make notation
concise, we directly neglect Ω in Eqs. (5) and (6) in the
following. Note that exact solutions to Eqs. (5) and (6) require
solving the optimal w∗ whenever Θ gets updated. This is
both analytically infeasible and computationally expensive.
Following previous works [9], [26], we adopt one step of
stochastic gradient descent (SGD) update for w to online
approximate the optimal classifier for a given Θ, which
guarantees the efficiency of the algorithm.

Formulating learning manner of classifier network. To
optimize Eq. (6), in each iteration a mini-batch of training
samples {(xi, yi)}ni=1 is sampled, where n is the mini-batch
size. Then the classifier parameter can be updated by moving
the current w(t) along the descent direction of Eq. (6) on the
mini-batch training data as the following expression:

ŵ(t+1)(Θ) =w(t)−

α
n∑
i=1

V(Ltri (w(t)), Ni; Θ)∇wL
tr
i (w)

∣∣∣
w(t)

,
(7)

where α is the learning rate for the classifier network f .
Updating parameters of CMW-Net: Based on the classi-

fier updating formulation ŵ(t+1)(Θ) from Eq.(7), the param-
eter Θ of the CMW-Net can then be readily updated guided
by Eq.(5), i.e., moving the current parameter Θ(t) along the
objective gradient of Eq.(5). Similar to the updating step for
w, the stochastic gradient descent (SGD) is also adopted.
That is, the update is calculated on a sampled mini-batch of
meta-data {(xmetai , ymetai )}mi=1, expressed as

Θ(t+1) = Θ(t) − β 1

m

m∑
i=1

∇ΘL
meta
i (ŵ(t+1)(Θ))

∣∣∣
Θ(t)

, (8)

where β is the learning rate for CMW-Net. Notice that Θ
in ŵt+1(Θ) here is a variable instead of a quantity, which
makes the gradient in Eq. (29) able to be computed.

Updating parameters of classifier network: Then, the
updated Θ(t+1) is employed to ameliorate the parameter w
of the classifier network, i.e.,

w(t+1) =w(t)−

α
n∑
i=1

V(Ltri (w(t)), Ni; Θ(t+1))∇wL
tr
i (w)

∣∣∣
w(t)

.
(9)

Note that we derive with plain SGD here. This, however,
also holds for most variants of SGD, like Adam [74]. The
CMW-Net learning algorithm can then be summarized in
Algorithm 4, and Fig.4 illustrates its main implementation
process (steps 6-8). All computations of gradients can be effi-
ciently implemented by automatic differentiation techniques
and generalized to any deep learning architectures of the
classifier. The algorithm can be easily implemented using
popular deep learning frameworks like PyTorch [75]. It is
easy to see that both the classifier and CMW-Net gradually
ameliorate their parameters during the learning process
based on their values calculated in the last step, and the
weights thus tend to be updated in a stable manner.

Algorithm 2 The CMW-Net Meta-test Algorithm
Input: Training dataset Dq , batch size n′, max iterations T ′ and

meta-learned CMW-Net with parameter Θ∗.
Output: Classifier parameter u∗.

1: Apply K-means on sample numbers of all training classes
to obtain Ωq = {µq

k}
K
k=1 sorted in ascending order.

2: Initialize classifier network parameter u(0).
3: for t = 0 to T ′ − 1 do
4: Update classifier u(t+1) by solving Eq. (11).
5: end for

3.4.2 Analysis on intrinsic learning mechanism of CMW-Net
We then present some insightful analysis for revealing some
intrinsic learning mechanisms underlying CMW-Net. The
updating step of Eq. (29) can be equivalently rewritten as
(derivations are presented in supplementary material):

Θ(t+1) = Θ(t)+

αβ
n∑
j=1

(
1

m

m∑
i=1

Gij

)
∂V(Ltrj (w(t)), Nj ; Θ)

∂Θ

∣∣∣
Θ(t)

,
(10)

where Gij =
∂Lmeta

i (ŵ)
∂ŵ

∣∣∣T
ŵ(t+1)(Θ)

∂Ltr
j (w)

∂w

∣∣∣
w(t)

. Neglecting

the coefficient 1
m

∑m
i=1Gij , it is easy to see that each term in

the above sum orients to the ascending gradient of the weight
function V(Ltrj (w(t)), Nj ; Θ). The coefficient imposed on the
j-th gradient term, 1

m

∑m
i=1Gij , represents the similarity

between the gradient of the j-th training sample computed
on the training loss and the average gradient of the mini-
batch meta data calculated on meta loss. This means that
if the learning gradient of a training sample is similar to
that of the meta samples, then it inclines to be considered
as in-distribution and CMW-Net tends to produce a higher
sample weight for it. Conversely, samples with gradient
different from that of the meta set incline to be suppressed.
This understanding is consistent with the intrinsic working
mechanism underlying the well-known MAML [41], [76].

3.4.3 Meta-test: transferring CMW-Net to unseen tasks
After the meta-training stage, the learned CMW-Net with pa-
rameter Θ(∗) can then be transferred to readily assign proper
sample weights on unseen biased datasets. Specifically, for a
query dataset Dq = {xqi , y

q
i }N

q

i=1, we first need to implement
K-means on sample numbers of all classes to obtain its
cluster centers Ωq = {µqk}Kk=1 as new scale parameters of
CMW-Net. Then the learned CMW-Net can be directly used
to impose sample weights to the classifier learning of the
problem by solving the following objective of query task:

u∗ = arg min
u

Nq∑
i=1

V(Lqi (u), Nq
i ; Θ∗,Ωq)Lqi (u), (11)

where Lqi (u) = ` (f(xqi ;u), yqi ), and Nq
i denotes the number

of samples contained in the class to which xqi belongs. Then
we can solve Eq.(11) with the learned Θ∗ to obtain classifier
u∗. The overall algorithm is summarized in Algorithm 3.

3.5 Convergence of the CMW-Net Learning Algorithm
Next we attempt to establish a convergence result of our
method for calculating Eqs. (5) and (6) in a bi-level opti-
mization manner. In particular, we theoretically show that
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our method converges to critical points of both the meta loss
(Eq.(5)) and training loss (Eq.(6)) under some mild conditions
in Theorem 1 and 2, respectively. The proofs are presented in
the supplementary material (SM for brevity).

Theorem 1. Suppose the loss function ` is Lipschitz smooth
with constant L, and CMW-Net V(·, ·; Θ) is differential with
a δ-bounded gradient and twice differential with its Hessian
bounded by B, and the loss function ` have ρ-bounded gradi-
ents with respect to training/meta data. Let the learning rate
αt, βt, 1 ≤ t ≤ T be monotonically decreasing sequences,
and satisfy αt = min{ 1

L ,
c1√
T
}, βt = min{ 1

L ,
c2√
T
}, for some

c1, c2 > 0, such that
√
T
c1
≥ L,

√
T
c2
≥ L. Meanwhile, they satisfy∑∞

t=1 αt = ∞,
∑∞
t=1 α

2
t < ∞,

∑∞
t=1 βt = ∞,

∑∞
t=1 β

2
t < ∞.

Then CMW-Net can then achieve E[‖∇Lmeta(ŵ(t)(Θ(t)))‖22] ≤
ε in O(1/ε2) steps. More specifically,

min
0≤t≤T

E
[∥∥∥∇Lmeta(ŵ(t)(Θ(t)))

∥∥∥2

2

]
≤ O(

C√
T

),

where C is some constant independent of the convergence process.

Theorem 2. Under the conditions of Theorem 1, CMW-Net can
achieve E[‖∇Ltr(w(t); Θ(t))‖22] ≤ ε in O(1/ε2) steps, where
Ltr(w; Θ)=

∑N
i=1 V(Ltri (w), Ni; Θ)Ltri (w). More specifically,

min
0≤t≤T

E
[∥∥∥∇Ltr(w(t); Θ(t))

∥∥∥2

2

]
≤ O(

C√
T

),

where C is some constant independent of the convergence process.

3.6 Enhancing CMW-Net with Soft Label Supervision

In the typical bias case that some training samples are with
corrupted labels, the sample weighting strategy tends to
largely neglect the function of these samples by imposing
small or even zero weights on them. This manner, however,
inclines to regrettably waste the beneficial information es-
sentially contained in these samples. Some recent researches
have thus been presented to possibly correct the noisy labels
and reuse them in training. One popular option is to extract
a pseudo soft label z on a sample x through the clue of the
classifier’s estimation during the training iterations, and then
set the training loss as a convex weighting combination of
loss terms computed with the suspected noisy label y and
the pseudo-label z [7], [8], [77], [78], i.e.,

`S(f(x;w), y)=v`(f(x;w), y)+(1− v)`(f(x;w), z), (12)

where v ∈ [0, 1] denotes the sample weight. By setting the
loss as the cross-entropy, the loss (12) can be rewritten as:

`S(f(x;w), y) = − (vy + (1− v)z)
T

log(f(x;w)). (13)

It can then be understood as setting a corrected soft label
vy+(1−v)z to ameliorate the original label y to make it more
reliably reused and avoid roughly suppressing or throwing
off the sample from training as conventional.

We then shortly introduce the current research on how
to set the sample weight v in the above (12) or (13). The
early attempts often adopted a manual manner for setting
this hyper-parameter, e.g., the v is empirically set as v = 0.8
for all samples in [77]. Evidently, such a fixed and constant
weight specification could not sufficiently convey the variant
knowledge of training samples with different contents of
corruption and reliability. Afterwards, some methods try to

dynamically assign individual weights for different samples.
Typically, SELFIE [78] iteratively selects clean samples by
assigning weights v = 1 on them, and neglects doubtful
noisy samples by setting their weights as v = 0 in (13). M-
correction [7] ameliorates this hard weighting manner as soft,
by fitting a two-component Beta mixture model per epoch
to estimate the probability of a sample being clean or noisy,
and then use this probability to assign a soft weight for the
corresponding sample. Recently, DivideMix [8] improves [7]
by adopting a two-component Gaussian mixture model to
assign a soft weight v for the corresponding sample.

However, all above methods require exploiting a separate
early-learning stage [79] to heuristically pre-determine the
sample weights v, while certainly ignore the beneficial
feedback from the classifier during the learning process.
We thus can naturally introduce our CMW-Net method
to automatically explore a weighting scheme by making
it trained together with the classifier in a meta-learning
manner. Specifically, we just need to easily revise the training
objective of CMW-Net in Eq.(6) as (called CMW-Net-SL):

w∗(Θ) = arg min
w

N∑
i=1

[V(Ltri (w), Ni; Θ)Ltri (w)

+ (1− V(Ltri (w), Ni; Θ))LPsei (w)], (14)

where LPsei (w) = `(f(xi;w), zi). Taking a similar process
as Sec. 3.4.2, we have

Θ(t+1) = Θ(t) + αβ×
n∑
j=1

[
1

m

m∑
i=1

(Gij −G′ij)
]
∂V(Ltrj (w(t)), Nj ; Θ)

∂Θ

∣∣∣
Θ(t)

,
(15)

where G′ij =
∂Lmeta

i (ŵ)
∂ŵ

∣∣∣T
ŵ(t+1)(Θ)

∂LPse
j (w)

∂w

∣∣∣
w(t)

. Compared

with CMW-Net, it is seen that CMW-Net-SL produces
another term G′ij to control the learning of the meta-learner.
Specifically, if 1

m

∑m
i=1(Gij − G′ij) > 0, it means that the

similarity between learning gradient of a training sample
with original label and the meta samples is larger than that
of a training sample with pseudo-label, and then it will be
considered as a relatively clean label and CMW-Net tends to
produce a higher sample weight to it. Otherwise, it inclines
to be considered as a relatively noisy label and CMW-Net
will suppress the influence of original labeled sample while
produce more confidence on pseudo-labeled one.

In our experiments, we apply EMA [80] and temporal
ensembling [81] techniques to produce pseudo-labels in
our CMW-Net-SL algorithm, which has been verified to be
effective in tasks like semi-supervised learning [81], [81] and
robust learning [7], [79]. Note that the meta-train and meta-
test algorithms of CMW-Net-SL are similar to Algorithms 4
and 3 except that the training loss is revised from (5) to (14).
More detailed algorithm description is provided in the SM.

4 LEARNING WITH SYNTHETIC BIASED DATA
4.1 Class Imbalance Experiments
Datasets. We use long-tailed versions of CIFAR-10 and
CIFAR-100 datasets (CIFAR-10-LT and CIFAR-100-LT) as
in [4]. They contain the same categories as the original
CIFAR dataset [84], but are created by reducing the number
of training samples per class according to an exponential
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TABLE 1
Test top-1 error (%) comparison of different competing methods with ResNet-32 classifier on CIFAR-10-LT and CIFAR-100-LT under different

imbalance settings. * indicates results reported in [61].

Dataset Name CIFAR-10-LT CIFAR-100-LT
Imbalance factor 200 100 50 20 10 1 200 100 50 20 10 1
ERM 34.32 29.64 25.19 17.77 13.61 7.53 65.16 61.68 56.15 48.86 44.29 29.50
Focal loss [30] 34.71 29.62 23.29 17.24 13.34 6.97 64.38 61.59 55.68 48.05 44.22 28.85
CB loss [4] 31.11 27.63 21.95 15.64 13.23 7.53 64.44 61.23 55.21 48.06 42.43 29.37
LDAM loss [82]* - 26.65 - - 13.04 - 60.40 - - - 43.09 -
L2RW [26] 33.49 25.84 21.07 16.90 14.81 10.75 66.62 59.77 55.56 48.36 46.27 35.89
MW-Net [9] 32.80 26.43 20.90 15.55 12.45 7.19 63.38 58.39 54.34 46.96 41.09 29.90
MCW [61] with CE loss* 29.34 23.59 19.49 13.54 11.15 7.21 60.69 56.65 51.47 44.38 40.42 -
CMW-Net with CE loss 27.80 21.15 17.26 12.45 10.97 8.30 60.85 55.25 49.73 43.06 39.41 30.81
MCW [61] with LDAM loss* 25.10 20.00 17.77 15.63 12.60 10.29 60.47 55.92 50.84 47.62 42.00 -
CMW-Net with LDAM loss 25.57 19.95 17.66 13.08 11.42 7.04 59.81 55.87 51.14 45.26 40.32 29.19
SADE [83] 19.37 16.78 14.81 11.78 9.88 7.72 54.78 50.20 46.12 40.06 36.40 28.08
CMW-Net with SADE 19.11 16.04 13.54 10.25 9.39 5.39 54.59 49.50 46.01 39.42 34.78 27.50

TABLE 2
Performance comparison of different competing methods in test accuracy (%) on CIFAR-10 and CIFAR-100 with symmetric and asymmetric noise.

The average accuracy and standard deviation over 3 trials are reported.

Datasets Noise Symmetric Noise Asymmetric Noise
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CIFAR-10

ERM 86.98 ± 0.12 77.52 ± 0.41 73.63 ± 0.85 53.82 ± 1.04 83.60 ± 0.24 77.85 ± 0.98 69.69 ± 0.72 55.20 ± 0.28
Forward [70] 87.99 ± 0.36 83.25 ± 0.38 74.96 ± 0.65 54.64 ± 0.44 91.34 ± 0.28 89.87 ± 0.61 87.24 ± 0.96 81.07 ± 1.92
GCE [6] 89.99 ± 0.16 87.31 ± 0.53 82.15 ± 0.47 57.36 ± 2.08 89.75 ± 1.53 87.75 ± 0.36 67.21 ± 3.64 57.46 ± 0.31
M-correction [7] 93.80 ± 0.23 92.53 ± 0.11 90.30 ± 0.34 86.80 ± 0.11 92.15 ± 0.18 91.76 ± 0.57 87.59 ± 0.33 67.78 ± 1.22
DivideMix [8] 95.70 ± 0.31 95.00 ± 0.17 94.23 ± 0.23 92.90 ± 0.31 93.96 ± 0.21 91.80 ± 0.78 80.14 ± 0.45 59.23 ± 0.38
L2RW [26] 89.45 ± 0.62 87.18 ± 0.84 81.57 ± 0.66 58.59 ± 1.84 90.46 ± 0.56 89.76 ± 0.53 88.22 ± 0.71 85.17 ± 0.31
MW-Net [9] 90.46 ± 0.52 86.53 ± 0.57 82.98 ± 0.34 64.41 ± 0.92 92.69 ± 0.24 90.17 ± 0.11 68.55 ± 0.76 58.29 ± 1.33
CMW-Net 91.09 ± 0.54 86.91 ± 0.37 83.33 ± 0.55 64.80 ± 0.72 93.02 ± 0.25 92.70 ± 0.32 91.28 ± 0.40 87.50 ± 0.26
CMW-Net-SL 96.20 ± 0.33 95.29 ± 0.14 94.51 ± 0.32 92.10 ± 0.76 95.48 ± 0.29 94.51 ± 0.52 94.18 ± 0.21 93.07 ± 0.24

CIFAR-100

ERM 60.38 ± 0.75 46.92 ± 0.51 31.82 ± 1.16 8.29 ± 3.24 61.05 ± 0.11 50.30 ± 1.11 37.34 ± 1.80 12.46 ± 0.43
Forward [70] 63.71 ± 0.49 49.34 ± 0.60 37.90 ± 0.76 9.57 ± 1.01 64.97 ± 0.47 52.37 ± 0.71 44.58 ± 0.60 15.84 ± 0.62
GCE [6] 68.02 ± 1.05 64.18 ± 0.30 54.46 ± 0.31 15.61 ± 0.97 66.15 ± 0.44 56.85 ± 0.72 40.58 ± 0.47 15.82 ± 0.63
M-correction [7] 73.90 ± 0.14 70.10 ± 0.14 59.50 ± 0.35 48.20 ± 0.23 71.85 ± 0.19 70.83 ± 0.48 60.51 ± 0.52 16.06 ± 0.33
DivideMix [8] 76.90 ± 0.21 75.20 ± 0.12 72.00 ± 0.33 59.60 ± 0.21 76.12 ± 0.44 73.47 ± 0.63 45.83 ± 0.83 16.98 ± 0.40
L2RW [26] 65.32 ± 0.42 55.75 ± 0.81 41.16 ± 0.85 16.80 ± 0.22 65.93 ± 0.17 62.48 ± 0.56 51.66 ± 0.49 12.40 ± 0.61
MW-Net [9] 69.93 ± 0.40 65.29 ± 0.43 55.59 ± 1.07 27.63 ± 0.56 69.80 ± 0.34 64.88 ± 0.63 56.89 ± 0.95 17.05 ± 0.52
CMW-Net 70.11 ± 0.19 65.84 ± 0.50 56.93 ± 0.38 28.36 ± 0.67 71.07 ± 0.56 66.15 ± 0.51 58.21 ± 0.78 17.41 ± 0.16
CMW-Net-SL 77.84 ± 0.12 76.25 ± 0.67 72.61 ± 0.92 55.21 ± 0.31 77.73 ± 0.37 75.69 ± 0.68 61.54 ± 0.72 18.34 ± 0.21

function n = niµ
i, where i denotes the class index, ni is

the original number of training images and µ ∈ (0, 1). The
imbalance factor of a dataset is defined as the number of
training samples in the largest class divided by the smallest.

Baselines. The comparison methods include: 1) Empir-
ical risk minimization (ERM): all examples have the same
weights. By default, we use standard cross-entropy loss;
2) Focal loss [30] and 3) CB loss [4]: represent SOTA pre-
defined sample re-weighting techniques; 4) LDAM loss [82]:
dynamically tune the margins between classes according to
their degrees of dominance in the training set; 5) L2RW [26]:
adaptively assign sample weights by meta-learning; 6) MW-
Net [9]: learn an explicit weighting function by meta-learning;
7) MCW [61]: also use a meta-learning framework, while
consider an elegantly designed class-wise weighting scheme,
validated to be specifically effective for class imbalance bias.
8) SADE [83]: leverage self-supervision to aggregate the
learned multiple experts for achieving SOTA performance.
More implementation details are specified in SM.

Results. Table 1 shows the test errors of all competing
methods by taking ResNet-32 as the classifier model on
CIFAR-10-LT and CIFAR-100-LT with different imbalance
factors. It can be observed that: 1) Our algorithm outperforms
other competing methods on the datasets, showing its robust-
ness in such biased data; 2) CMW-Net evidently outperforms
MW-Net in each experiment. Especially, the performance
gain tends to be more evident under larger imbalanced fac-
tors. Fig. 5 shows confusion matrices produced by the results
of MW-Net and CMW-Net on CIFAR-10-LT with imbalance
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Fig. 5. Confusion matrices obtained by (left) MW-Net and (right) CMW-
Net on CIFAR-10-LT (with imbalance factor 200).

factor 2003. Compared with MW-Net, it is seen that CMW-
Net improves the accuracies on tail classes and meanwhile
maintains good performance on head classes. 3) Although
LDAM loss already has the capacity of mitigating the long-
tailed issue by penalizing hard examples, our method can
further boost its performances. 4) Owing to its class-wise
weighting scheme, MCW also attains good performance
in these experiments. Yet CMW-Net still performs better
in most cases. Considering its adaptive weighting-scheme-
setting capability and general usability in a wider range of
biased issues, it should be rational to say that CMW-Net
is effective. 5) SADE uses multiple expertise-guided losses
to produce competitive results, and the performance can be
further boosted via introducing CMW-Net, demonstrating
the effectiveness of our general weighting strategy.

3. The confusion matrix is calculated by applying the trained classifier
to the corresponding testing set included with the CIFAR-10 dataset.
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TABLE 3
Comparison with SOTA methods on CIFAR-10 and CIFAR-100 with
symmetric and asymmetric noise. The compared results are directly

taken from original literatures. We report test accuracy at the last epoch.

Datasets Noise Symmetric Noise Asy. Noise
0.2 0.5 0.8 0.9 0.4

CIFAR-10

DivideMix [8] 95.7 94.4 92.9 75.4 92.1
ELR+ [79] 94.6 93.8 93.1 75.2 92.7
REED [85] 95.7 95.4 94.1 93.5 -
AugDesc [86] 96.2 95.1 93.6 91.8 94.3
C2D [87] 96.2 95.1 94.3 93.4 90.8
Two-step [88] 96.2 95.3 93.7 92.7 92.4
CMW-Net-SL 96.2 95.1 92.1 48.0 94.5
CMW-Net-SL+ 96.6 96.2 95.4 93.7 96.0

CIFAR-100

DivideMix [8] 77.3 74.6 60.2 31.5 72.1
ELR+ [79] 77.5 72.4 58.2 30.8 76.5
REED [85] 76.5 72.2 66.5 59.4 -
AugDesc [86] 79.2 77.0 66.1 40.9 76.8
C2D [87] 78.3 76.1 67.4 58.5 75.1
Two-step [88] 79.1 78.2 70.1 53.2 65.5
CMW-Net-SL 77.84 76.2 55.2 21.2 75.7
CMW-Net-SL+ 80.2 78.2 71.1 64.6 77.2

To understand the weighing scheme learned by CMW-
Net, we also depict the weighting functions learned by the
CMW-Net in Fig.3(e). It is seen that compared with MW-Net
shown in Fig.3(a), CMW-Net produces three weighting func-
tions corresponding to small, moderate and large-scale task
families. The overall tendency complies with conventional
empirical setting for such class-wise weight functions, like
CB loss [4] and MCW [61], i.e., assigning weights inversely
related to the class sizes. Specifically, the learned weights of
the tail classes are more prominent than those of the head
ones, implying that samples in tail classes should be more
emphasized in training to alleviate the class imbalanced bias
issue. This also explains the consistently better performance
of CMW-Net as compared with MW-Net.

4.2 Feature-independent Label Noise Experiment

Datasets. We study two types of label noise following
previous works [70], [71]: 1) Symmetric noise: randomly
replace sample labels for a percentage of the training data
with all possible labels. 2) Asymmetric noise: try to mimic
the structure of real-life label noise, where labels are only
replaced by similar classes. Two benchmark datasets are
employed: CIFAR-10 and CIFAR-100 [84].

Baselines. The comparison methods include: 1) ERM; 2)
Forward [70]: corrects the prediction by the label transition
matrix; 3) GCE [6]: behaves as a robust loss to handle
the noisy labels; 4) M-correction [7]; 5) DivideMix [8]:
represents the SOTA method for handling noisy label bias,
by dividing training data into clean and noisy ones through
a loss threshold and designing different label amelioration
strategies on them through two diverged networks to co-train
the classifier; 6) L2RW [26] and 7) MW-Net [9]: represents
the sample re-weighting methods by meta-learning. More
experimental details are listed in SM.

Establishing Meta dataset. Motivated by curriculum
learning [31], [90], [91], we select the most confident training
samples as meta data. Specifically, we explore to create the
meta dataset based on the high-quality clean samples as well
as its high-quality pseudo labels from the training set (with
lowest losses) as an unbiased estimator of the clean data-label
distribution. To make the meta dataset balanced, we selected
10 images per class in each epoch iteration. In this case, the
performance of meta dataset can be served as an indicator
to measure how much extent CMW-Net is trained to filter
noisy samples and generalized to clean test distribution.
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Fig. 6. Confusion matrices obtained by CMW-Net (Left) and CMW-Net-SL
(Right) on CIFAR-10 with Symmetry Noise 80%.

Such meta dataset may lack of diversity pattern to charac-
terize the latent clean data-label distribution. To alleviate this
issue, we further explore to utilize mixup technique [92] to
enrich the variety of the meta data distribution while possibly
maintain its unbiasedness. The hyperparameter of convex
combination in the technique is randomly sampled from
a Beta distribution Beta(1, 1). Our extensive experiments
have verified the effectiveness of using such generated meta
dataset from training data. Such property makes such meta-
learning strategy applicable to real-world biased dataset,
since it is always not easy to collect an additional clean meta
dataset in practice. We also use such meta-data-generation
strategy in the following noisy labels experiments as well
as the real-world biased dataset, where an expected clean
meta-dataset is always unavailable.

Results. Table 2 evaluates the performance of our method
on CIFAR-10 and CIFAR-100 with different levels of symmet-
ric and asymmetric label noise. We report the averaged test
accuracy over the last 10 epochs. It is seen that CMW-Net
evidently outperforms MW-Net in all cases. For symmetric
noise, the training loss distribution is usually homoscedastic,
as depicted in Fig.10(b) and thus CMW-Net learns three
similar weighting schemes as that extracted by MW-Net,
as shown in Fig.3(f). For asymmetric noise, while MW-
Net hardly adapts to the heterogeneous loss distribution
across different classes, CMW-Net finely produces weighting
schemes conditioned on different task families. Specifically,
as shown in Fig.3(g), weighting functions of small and
moderate-scale task families tend to more emphasize those
informative marginal samples since they barely contain
replaced labels from other classes. While for large-scale
task family, with many corrupted labels, CMW-Net tends
to impose smaller weights on samples with relatively large
losses to suppress the effect of these noisy labels. This shows
that learned weighting schemes by CMW-Net can adapt
to the internal bias patterns of different classes, and thus
naturally leads to its superiority over MW-Net.

By introducing soft label amelioration, CMW-Net-SL can
further enhance the performance of CMW-Net, as clearly
shown in Table 2. This is natural since CMW-Net-SL is able
to adaptively refurbish noisy labeled samples rather than
roughly trash them from training, and thus a more sufficient
exploration on beneficial knowledge from training data could
be obtained. Fig. 6 shows the confusion matrices obtained by
CMW-Net and CMW-Net-SL in 60% label noise rate case. It
is seen that CMW-Net-SL evidently improves the prediction
accuracy, especially for classes with heavily corrupted labels.

Note that by involving label amelioration through using
pseudo-prediction information as our method, the DivideMix
method also performs well in most symmetric noise experi-
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TABLE 4
Test accuracy (%) of all competing methods on CIFAR-10 and CIFAR-100 under different feature-dependent noise types and levels. The average

accuracy and standard deviation over 3 trials are reported.
Datasets Noise ERM LRT [63] GCE [6] MW-Net [9] PLC [89] CMW-Net CMW-Net-SL

CIFAR-10

Type-I (35%) 78.11 ± 0.74 80.98 ± 0.80 80.65 ± 0.39 82.20 ± 0.40 82.80 ± 0.27 82.27 ± 0.33 84.23 ± 0.17
Type-I (70%) 41.98 ± 1.96 41.52 ± 4.53 36.52 ± 1.62 38.85 ± 0.67 42.74 ± 2.14 42.23 ± 0.69 44.19 ± 0.69
Type-II (35%) 76.65 ± 0.57 80.74 ± 0.25 77.60 ± 0.88 81.28 ± 0.56 81.54 ± 0.47 81.69 ± 0.57 83.12 ± 0.40
Type-II (70%) 45.57 ± 1.12 81.08 ± 0.35 40.30 ± 1.46 42.15 ± 1.07 46.04 ± 2.20 46.30 ± 0.77 48.26 ± 0.88
Type-III (35%) 76.89 ± 0.79 76.89 ± 0.79 79.18 ± 0.61 81.57 ± 0.73 81.50 ± 0.50 81.52 ± 0.38 83.10 ± 0.34
Type-III (70%) 43.32 ± 1.00 44.47 ± 1.23 37.10 ± 0.59 42.43 ± 1.27 45.05 ± 1.13 43.76 ± 0.96 45.15 ± 0.91

CIFAR-100

Type-I (35%) 57.68 ± 0.29 56.74 ± 0.34 58.37 ± 0.18 62.10 ± 0.50 60.01 ± 0.43 62.43 ± 0.38 64.01 ± 0.11
Type-I (70%) 39.32 ± 0.43 45.29 ± 0.43 40.01 ± 0.71 44.71 ± 0.49 45.92 ± 0.61 46.68 ± 0.64 47.62 ± 0.44
Type-II (35%) 57.83 ± 0.25 57.25 ± 0.68 58.11 ± 1.05 63.78 ± 0.24 63.68 ± 0.29 64.08 ± 0.26 64.13 ± 0.19
Type-II (70%) 39.30 ± 0.32 43.71 ± 0.51 37.75 ± 0.46 44.61 ± 0.41 45.03 ± 0.50 50.01 ± 0.51 51.99 ± 0.35
Type-III (35%) 56.07 ± 0.79 56.57 ± 0.30 57.51 ± 1.16 62.53 ± 0.33 63.68 ± 0.29 63.21 ± 0.23 64.47 ± 0.15
Type-III (70%) 40.01 ± 0.18 44.41 ± 0.19 40.53 ± 0.60 45.17 ± 0.77 44.45 ± 0.62 47.38 ± 0.65 48.78 ± 0.62

TABLE 5
Test accuracy (%) of all competing methods on CIFAR-10 and CIFAR-100 under different feature dependent (35%) and independent (30%) noise

types and levels. The average accuracy and standard deviation over 3 trials are reported.
Datasets Noise ERM LRT [63] GCE [6] MW-Net [9] PLC [89] CMW-Net CMW-Net-SL

CIFAR-10

Type-I + Symmetric 75.26 ± 0.32 75.97 ± 0.27 78.08 ± 0.66 76.39 ± 0.42 79.04 ± 0.50 78.42 ± 0.47 82.00 ± 0.36
Type-I + Asymmetric 75.21 ± 0.64 76.96 ± 0.45 76.91 ± 0.56 76.54 ± 0.56 78.31 ± 0.41 77.14 ± 0.38 80.69 ± 0.47
Type-II + Symmetric 74.92 ± 0.63 75.94 ± 0.58 75.69 ± 0.21 76.57 ± 0.81 80.08 ± 0.37 76.77 ± 0.63 80.96 ± 0.23
Type-II + Asymmetric 74.28 ± 0.39 77.03 ± 0.62 75.30 ± 0.81 75.35 ± 0.40 77.63 ± 0.30 77.08 ± 0.52 80.94 ± 0.14
Type-III + Symmetric 74.00 ± 0.38 75.66 ± 0.57 77.00 ± 0.12 76.28 ± 0.82 80.06 ± 0.47 77.16 ± 0.30 81.58 ± 0.55
Type-III + Asymmetric 75.31 ± 0.34 77.19 ± 0.74 75.70 ± 0.91 75.82 ± 0.77 77.54 ± 0.70 76.49 ± 0.88 80.48 ± 0.48

CIFAR-100

Type-I + Symmetric 48.86 ± 0.56 45.66 ± 1.60 52.90 ± 0.53 57.70 ± 0.32 60.09 ± 0.15 59.17 ± 0.42 60.87 ± 0.56
Type-I + Asymmetric 45.85 ± 0.93 52.04 ± 0.15 52.69 ± 1.14 56.61 ± 0.71 56.40 ± 0.34 57.42 ± 0.81 61.35 ± 0.52
Type-II + Symmetric 49.32 ± 0.36 43.86 ± 1.31 53.61 ± 0.46 54.08 ± 0.18 60.01 ± 0.63 59.16 ± 0.18 61.00 ± 0.41
Type-II + Asymmetric 46.50 ± 0.95 52.11 ± 0.46 51.98 ± 0.37 58.53 ± 0.45 61.43 ± 0.33 58.99 ± 0.91 61.35 ± 0.57
Type-III + Symmetric 48.94 ± 0.61 42.79 ± 1.78 52.07 ± 0.35 55.29 ± 0.57 60.14 ± 0.97 58.48 ± 0.79 60.21 ± 0.48
Type-III + Asymmetric 45.70 ± 0.12 50.31 ± 0.39 50.87 ± 1.12 58.43 ± 0.60 54.56 ± 1.11 58.83 ± 0.57 60.52 ± 0.53

ments, especially, slightly better than CMW-Net-SL in 80%
noise rate. However, the superiority of our method is still
significant in all asymmetric label noise cases. Different from
prior works only reported results with a ratio of 40% for
asymmetric noise, we consider more noise ratio settings to ev-
idently show this phenomenon. It can be seen that DivideMix
has a substantial degradation for higher noise ratio. This can
be rationally explained by that DivideMix uses a consistent
loss threshold for distinguishing clean and noisy samples,
which, however, is certainly deviated from the insight of
inter-class heteroscedastic loss distributions underlying this
type of data bias. As can be observed in Fig.10(c), since clean
training classes are simultaneously tail classes, the loss values
of some training samples in these classes are possibly larger
than those of head classes, especially for their contained noisy
samples. Thus DivideMix tends to mistakenly recognize a
certain amount of clean/noisy samples, which then results in
its performance degradation. Comparatively, the class-aware
capability possessed by CMW-Net-SL enables the method
more properly treat heteroscedastic loss distributions across
different classes, and thus obtain more accurate weighting
functions specifically suitable for them, which then naturally
leads to its relatively superior performance.

Compared with SOTA methods. As shown in Table 3,
our method underperforms the SOTA DivideMix method
in the extreme large label noise cases (80% and 90% noise
ratios), which possibly attributes to that DivideMix treats
most noisy label samples as unlabeled samples, and uses
strong semi-supervised MixMatch algorithms against noisy
labels. Even though, benefiting from current SOTA methods
like REED [85], C2D [87], AugDesc [86], Two-step [88],
which additionally use two general tricks of self-supervised
learning for performance improvement, i.e., adding a warm-
up self-supervised pre-training step and imposing a data

TABLE 6
Comparison of different competing methods on Animal-10N dataset.

Results for baseline methods are copied from [89]

Method Test Accuracy Method Test Accuracy
ERM 79.4 ± 0.14 ActiveBias [93] 80.5 ± 0.26

Co-teaching [94] 80.2 ± 0.13 SELFIE [78] 81.8 ± 0.09
PLC [89] 83.4 ± 0.43 MW-Net [9] 80.7 ± 0.52

CMW-Net 80.9 ± 0.48 CMW-Net-SL 84.7 ± 0.28

augmentation based consistency regularization as commonly
used in semi-supervised algorithms, we also easily borrow
these common tricks to boost our method (denoted by
CMW-Net-SL+). It can be easily seen that the ameliorated
CMW-Net-SL+ consistently outperforms the compared SOTA
methods, and beats them on CIFAR-100 with 80% and 90%
symmetric noise by an evident margin.

4.3 Feature-dependent Label Noise Experiment

We then evaluate the capability of our method against the
feature-dependent label noise, which is more approximate to
the real-world bias scenarios [89], [95].

Datasets. We follow the PMD noise generation scheme
proposed in [89]. Let ηy1(x) = P (y = y1|x) be the true
posterior label distribution for the sample x. The noise
label is generated by replacing the most confident label
ux = arg maxy ηy(x) of each training sample x to its
second confident category sx with conditional probability
τux,sx = P (ỹ = ux|y = sx, x). We use three types of τux,sx
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TABLE 7
Comparison of different competing methods on mini WebVision dataset.

Results for baseline methods are copied from [8]. * denotes results
trained with Inception-ResNet-v2.

Methods WebVision ILSVRC12
top1 top5 top1 top5

Forward* [70] 61.12 82.68 57.36 82.36
MentorNet* [37] 63.00 81.40 57.80 79.92
Co-teaching* [94] 63.58 85.20 61.48 84.70

Interative-CV* [96] 65.24 85.34 61.60 84.98
MW-Net [9] 69.34 87.44 65.80 87.52
CMW-Net 70.56 88.76 66.44 87.68

DivideMix* [8] 77.32 91.64 75.20 90.84
ELR* [79] 77.78 91.68 70.29 89.76

DivideMix [8] 76.32 90.65 74.42 91.21
CMW-Net-SL 78.08 92.96 75.72 92.52

DivideMix with C2D [87] 79.42 92.32 78.57 93.04
CMW-Net-SL+C2D 80.44 93.36 77.36 93.48

TABLE 8
performance comparison of classification accuracy (%) on WebFG-496.

Methods Web-Bird Web-Aircraft Web-Car Average
ERM 66.56 64.33 67.42 66.10

Decoupling [97] 70.56 75.97 75.00 73.84
Co-teaching [94] 73.85 72.76 73.10 73.24

Peer-learning [45] 76.48 74.38 78.52 76.46
MW-Net 75.60 72.93 77.33 75.29

CMW-Net 75.72 73.72 77.42 75.62
CMW-Net-SL 77.41 76.48 79.70 77.86

designed in [89] as follows:

Type-I : τux,sx =− 1

2
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2
+

1

2
,
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3
,
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3

[
[ηux
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3
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2

+ [ηux(x)− ηsx(x)]
]
.

Besides, we also consider the hybrid noise consisting of
both feature-dependent noise and symmetric as well as
asymmetric noise as in Sec. 4.2. We use CIFAR-10 and CIFAR-
100 benchmarks with such simulated label noise.

Baselines. Following the benchmark in [89], we compare
the following baselines: 1) ERM; 2) LRT [63]; 3) GCE [6]; 4)
MW-Net [9] and 5) PLC [89], which represents the SOTA
method specifically designed for addressing heterogeneous
feature-dependent label noise. All these methods are generic
and handle label noise without assuming the noise structures.

Results. Table 4 lists the performance of different compet-
ing methods under three types of feature-dependent noise
at noise levels 35% and 70%. It is seen that our method
achieves the best performance on all cases. Table 5 further
shows the results on datasets corrupted with a combination
of feature dependent and independent noises, where feature-
independent noise is overlayed on the feature-dependent one
and thus bias patterns are more complicated. The superiority
of the proposed method can still be easily observed.

The generation mechanism of such feature-dependent
noise results in noisy samples near the decision boundary
[89], which are harder to distinguish and more likely to be
mislabeled. From Fig.3(h), it can be seen that the proposed
method can still finely distinguish most clean and noisy
samples (some noisy samples are wrongly assigned to high
weights due to they are samples near the decision boundary).
As compared, from Fig.3(d), it can be observed that MW-
Net totally fails to distinguish clean and noisy samples, and

TABLE 9
Long-tail recognition accuracy of different competing methods by using
ResNet-10 as the classifier on ImageNet-LT [5] . Results for baselines

are copied from [5].

Methods Accuracy
Many Medium Few Overall

ERM 40.9 10.7 0.4 20.9
Lifted Loss [99] 35.8 30.4 17.9 30.8
Focal loss [30] 36.4 29.9 16 30.5

Range Loss [60] 35.8 30.3 17.6 30.7
OLTR [5] 43.2 35.1 18.5 35.6

OLTR [5] + CMW-Net 47.2 39.2 19.7 39.5

assigns high weights to all samples, naturally leading to its
performance degeneration. Note that the PLC method [89],
which is specifically designed for feature-dependent label
noise data, also achieves fine results. The main idea of this
method is to progressively correct noisy labels and refine
the model for those relatively reliable samples with high
confidence, measured by a dynamically specified threshold
gradually deceased in iterations. Considering its general
availability to a wider range of data bias cases and relatively
more concise meta-learning framework, it should be rational
to say that the proposed method is effective.

5 LEARNING WITH REAL BIASED DATA

5.1 Learning with Real-world Noisy Datasets
Datasets. We adopt two real-world datasets, ANIMAL-10N
[44] and WebVision [78]. Animal-10N contains 55,000 human-
labeled online images for 10 confusing animal classes, all
with approximately similar noisy label distributions (8%
noisy samples). Following previous works [78], 50,000 images
are exploited for training while the left for testing. For ease of
comparison to previous works [37], [96], we consider the mini
WebVision dataset which contains the top 50 classes from
the Google image subset of WebVision. The performance
evaluation is implemented on both the validation sets of
mini WebVision [14] and the corresponding class samples of
ImageNet [98]. ResNet-50 is adopted as the classifier network.
More implementation details are specified in SM.

Results. Tables 6 and 7 compare the test performance
of all competing methods trained on the Animal-10N and
mini WebVision datasets, respectively. For the Animal-10N
dataset, we compare 4 methods that have reported perfor-
mance on this dataset. Compared with sample selection
methods ActiveBias [93] and Co-teaching [94], our CMW-
Net attains better performance, showing its better screening
capability for useful samples. Under soft-label amelioration,
our method achieves a further performance gain over recent
label correction methods SELFIE [78] and PLC [89]. Figs. 7(a)
and 7(b) visualize typical noisy examples selected by CMW-
Net as well as its generated pseudo-labels. Though they are
a pair of easily confused categories (cat, lynx), our method
can still extract their wrong labels and correct them as the
true ones. Fig. 8(a) further shows the weighting functions
learned by CMW-Net, complying with the class balance and
inter-class noise homogeneity property of this dataset.

Table 7 also shows the superiority of CMW-Net compared
to other competing methods without involving soft labels. By
introducing soft labels, our CMW-Net-SL achieves superior
performance to recent SOTA methods, DivideMix and ELR.
Furthermore, by combining the self-supervised pretraining
technique proposed in the C2D method [87], we further
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lynx lynx lynx lynx lynx lynx lynx lynx
(a) Typical noisy labeled samples corrected by our method from Animal-10N [78]. The original training label is cat.

cat cat cat cat cat cat cat cat
(b) Typical noisy labeled samples corrected by our method from Animal-10N [78]. The original training label is lynx.

tree frog tree frog bullfrog tree frog bullfrog bullfrog mud turtle axolotl
(c) Typical noisy labeled samples corrected by our method from mini-WebVision [14]. The original training label is tailed frog.

Fig. 7. Examples of randomly selected samples with noisy labels corrected by our method. The original training labels and generated pseudo-labels
by model are shown in red and blue, respectively. More comprehensive examples are depicted in the SM.
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Fig. 8. Weighting schemes learned by CMW-Net on real biased datasets.

boost the performance. In Fig. 20, we show some typical
noisy examples corrected by the proposed method, showing
its capability of recovering these easily confused samples.

Fig. 8(b) plots the learned weighting functions by CMW-
Net, revealing certain helpful data bias insight. For small-
scale task family, the corresponding weighting function is
with larger weights and shows increasing tendency. It is
beneficial to more emphasize their contained rare samples
especially those marginal informative ones for alleviating
their possibly encountered class-imbalance bias issue. Yet for
moderate and larger-scale task family containing relatively
abundant training data, the weighting functions are with
monotonically decreasing shapes to suppress the negative
effect brought by their contained noisy samples. Such more
comprehensive and faithful exploration and encoding for
data bias situations naturally leads to the better performance
of CMW-Net than conventional sample weighting strategies.

5.2 Webly Supervised Fine-Grained Recognition
We further run our method on a benchmark WebFG-496
dataset proposed in [45], consisting of three sub-datasets:
Web-aircraft, Web-bird, Web-car, which contain 13,503 images
with 100 types of airplanes, 18,388 images with 200 species
of birds, and 21,448 images with 196 categories of cars,
respectively. The aim is to use web images to train a fine-
grained recognition model. The data bias of this dataset is
validated to be complicated, with both label noise and class

TABLE 10
Validation accuracy of InceptionResNet-v2 with transferable CMW-Net

and different competing methods on full WebVision and ImageNet
validation sets. Results for baselines are copied from original papers.

Methods WebVision ILSVRC12
top1 top5 top1 top5

ERM 69.7 87.0 62.9 83.6
MentorNet [37] 70.8 88.0 62.5 83.0

MentorMix [100] 74.3 90.5 67.5 87.2
HAR [101] 75.0 90.6 67.1 86.7
MILE [102] 76.5 90.9 68.7 86.4

Heteroscedastic [38] 76.6 92.1 68.6 87.1
CurriculumNet [16] 79.3 93.6 - -

ERM + CMW-Net-SL 77.9 92.6 69.6 88.5

imbalance patterns, as well as certain inter-class variance
[45]. Experimental results are shown in Table 15. It is seen
that CMW-Net-SL evidently improves other reported SOTA
performance [45]. This further validates the effectiveness of
our method for such real dataset with complex data biases.
More implementation details are given in SM.

6 TRANSFERABILITY OF CMW-NET

As aforementioned, a potential usefulness of the meta-
learned weighing scheme by CMW-Net is that it is model-
agnostic and hopefully equipped into other learning al-
gorithms in a plug-and-play manner. To validate such
transferable capability of CMW-Net, we attempt to transfer
meta-learned CMW-Net on relatively smaller dataset to
significantly larger-scale ones. In specific, we use CMW-
Net trained on CIFAR-10 with feature-dependent label noise
(i.e.,35% Type-I + 30% Asymmetric) as introduced in Sec. 4.3
since it finely simulates the real-world noise configuration.
The extracted weighting function is depicted in Fig.3(d).
We deploy it on two large-scale real-world biased datasets,
ImageNet-LT [5] and full WebVision [14].

Table 9 shows the performance on ImageNet-LT. By
readily equipping our learned CMW-Net upon the SOTA
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OLTR algorithm [5] on this dataset, it can be seen that around
4% higher overall accuracy can be readily obtained. Besides,
the performance on full WebVision is compared in Table 10.

It is interesting to see that by directly integrating the
learned CMW-Net into the simple ERM algorithm with more
training epochs, the performance can be further improved,
outperforming most of these SOTA methods, only slightly
inferior to the CurriculumNet method [16], whose results
were obtained with ensemble of six models. Even with a
relatively concise form, our method still outperforms the
second-best Heteroscedastic method by an evident margin.
This further validates the potential usefulness of CMW-
Net to practical large-scale problems with complicated data
bias situations, with an intrinsic reduction of the labor and
computation costs by readily specifying proper weighting
scheme for a learning algorithm. More experimental details
are presented in SM.

7 EXTENSIONAL APPLICATIONS

We then evaluate the generality of our proposed adaptive
sample weighting strategy in more robust learning tasks,
including partial-label learning and semi-supervised learn-
ing. The experiments on the selective classification task are
introduced in SM due to page limitation.

7.1 Partial-Label Learning

7.1.1 Problem Formulation

Partial-label learning (PLL) [46] aims to deal with the
problem where each instance is provided with a set of
candidate labels, only one of which is the correct label.
Denote X ⊂ Rd as the input space, Y := {1, · · · , C} as
the label space, where C is the number of all training classes.
Denote the partially labeled dataset asDPLL = {(xi, Yi)}Ni=1,
where Yi ∈ Y is the candidate label set of xi. The goal of PLL
is to find latent ground-truth label y for each of xis through
observing their partial label sets. The basic definition of PLL
is that true label y of an instance x must be in its candidate
label set Y . The PLL risk estimator is then defined as:

RPLL(f) = EP (x,Y )[`PLL(f(x), Y )], (16)

where `PLL(·, ·) is the loss function and f(·) is the classifier.
To estimate Eq.(16), it usually treats all the candidate la-

bels equally [46], i.e., `PLL(f(x), Y ) = 1
|Y |
∑
y∈Y `(f(x), y).

Considering that only the true label contributes to retrieving
the classifier, PRODEN [103] defines the PLL loss as the
minimal loss over the candidate label set:

`PLL(f(x), Y ) = min
y∈Y

`(f(x), y).

They further relax the min operator of the above equality by
the dynamic weights as follows:

`PLL(f(x), Y ) =
∑
y∈Y

wy`(f(x), y),

where all wys consist of a one-hot vector, expected to reflect
the confidence of the label y ∈ Y being the true label.
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Fig. 9. Accuracy comparisons on PRODEN w/o CMW-Net strategy over
(left) CIFAR-10 and (right) CIFAR100 under partial label learning setting.

7.1.2 CMW-Net Amelioration and Experiments

PRODEN [103] represents the recent SOTA method against
such PLL task, through progressively identifying the true
labels from the partial label sets, and refining them in turn
to ameliorate the classifier. Then by taking the samples with
predicted labels as training data, which still contain many
wrong annotations, the CMW-Net method (i.e., Algorithm 4
by using meta-data establishing technique introduced in Sec.
4.2) can be readily employed to further improve the classifier.

Following PRODEN [103], two sets of partial label
datasets are generated from CIFAR-10 and CIFAR-100, re-
spectively, under different flipping probabilities. As shown
in Fig. 9, it is seen that CMW-Net can significantly enhance
the performance of the baseline method in both test cases,
showing its potential usability in this PLL task. More
experimental settings and results are presented in SM.

7.2 Semi-Supervised Learning

7.2.1 Problem Formulation

To reduce the annotation cost for supervised learning, an
alternative strategy is to train the classifier with small labeled
set as well as a large amount of unlabeled samples. This
constitutes the main aim of semi-supervised learning (SSL).
Let D = {DL, DU} denote the entire dataset, including a
small labeled dataset DL = {(xi, yi)}Li=1 and a large-scale
unlabeled dataset DU = {(xi)}Ui=1, and L � U . Formally,
SSL aims to solve the following optimization problem [105]:

min
w

∑
(xl,yl)∈DL

LS(xl, yl;w) + α
∑

xu∈DU

LU (xu;w),

where LS denotes the supervised loss, e.g., cross-entropy
for classification, and LU denotes the unsupervised loss,
e.g., consistency loss [106] or a regularization term [107].
w denotes the model parameters and α > 0 denotes the
compromise parameter balancing two terms.

Generally, different specifications of the unsupervised loss
LU lead to different SSL algorithms. One commonly used
strategy is the Pseudo Labeling approach [108], which aims
to sufficiently use labelled data to predict the labels of the
unlabeled data, and take these pseudo-labeled data as labeled
ones in training (reflected in the termLU ). Recently, the SOTA
SSL methods, like VAT [107], MixMatch [109], UDA [106], and
FixMatch [47] makes good progress to enhance the pseudo
labeling capability by using sample augmentation techniques,
through encouraging consistency under different augmented
data [106]. We take the recent SOTA Fixmatch [47] as a typical
example. Denote α(xl) andA(xu) as augmentation operators
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TABLE 11
Performance comparison of Fixmatch w/o CMW-Net on CIFAR-10, CIFAR-100 and ImageNet datasets in test error over 3 trials. The baselines results

of CIFAR are copied from [47], and those of ImageNet are copied from [104].

CIFAR-10 CIFAR-100 ImageNet (10% labels)
Method 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels top-1 top5
FixMatch (RA) [47] 13.81 ± 3.37 5.07 ± 0.65 4.26 ± 0.05 48.85 ± 1.75 28.29 ± 0.11 22.60 ± 0.12 32.9 13.3
FixMatch (RA) + CMW-Net 9.60 ± 0.62 4.73 ± 0.15 4.25 ± 0.03 47.70 ± 1.14 27.43 ± 0.12 22.55 ± 0.09 30.8 11.3

imposed on labeled and unlabeled samples, respectively.
Then the FixMatch model can be written as:

min
w

∑
(xl,yl)∈DL

`(f(α(xl);w), yl)

+ α
∑

xu∈DU

1(max(zu ≥ τ)`(f(A(xu);w), yu), (17)

where yu is the pseudo label on xu, calculated by yu =
arg maxj zuj , zu = f(α(xu);w) in iteration. τ is a scalar
hyperparameter denoting the threshold above which we
retain a pseudo-label. Note that 1(max(zu ≥ τ) corresponds
to a hard weighting scheme with manually specified hyperpa-
rameter τ . Albeit attaining good performance, the above Fix-
Match model is still with limitation that its hard-thresholding
weighting scheme treats all unlabeled (augmented) samples
equally, and its involved hyper-parameter τ is often not easily
and adaptably specified against different tasks. The method
thus still has room for further performance enhancement.

7.2.2 CMW-Net Amelioration and Experiments
To better distinguish clean and noisy pseudo-labels, we can
easily substitute the original hard weighting scheme as CMW-
Net, to make sample weights capable of more sufficiently
reflecting noise extents and adaptable to training data/tasks.
Then the problem (17) can be ameliorated as:

min
w

∑
(xl,yl)∈DL

`(f(α(xl);w), yl)

+ α
∑

(xu)∈DU

V(Ltru (w), Ni; Θ)`(f(A(xu);w), yu).

The algorithm can also be readily designed by integrating
the updating step for the meta-parameter Θ into the original
algorithm of Fixmatch (the labeled data are naturally used as
meta data), so as to make the weighting scheme iteratively
extracted together with the classifier parameter w in an
automatic and more likely intelligent manner.

We conduct experiments on several standard SSL image
classification benchmarks, including CIFAR-10, CIFAR-100
[84] and ImageNet dataset [98]. Results are shown in Table
14. It is evident that our CMW-Net consistently helps
improve the performance of FixMatch, showing its potential
application prospects on this task. Especially, when FixMatch
is trained with smaller labeled data resources, pseudo labels
generated by FixMatch tend to be relatively unreliable,
naturally resulting in performance degradation. CMW-Net is
capable of adaptively reducing the negative effect of unreli-
able pseudo labels, and thus improves FixMatch significantly
in this case. More experimental settings and results are
presented in SM.

8 CONCLUSION AND DISCUSSION

In this study, we have proposed a novel meta-model, called
CMW-Net, for adaptively extracting an explicit sample

weighing scheme directly from training data. Compared with
current sample weighing approaches, CMW-Net is validated
to possess better flexibility against complicated data bias
situations with inter-class heterogeneity. Assisted by addi-
tional soft pseudo-label information, the proposed method
achieves competitive (mostly superior) performance under
various data bias cases, including class imbalance, feature
independent or dependent label noise, and more practical
real-world data bias scenarios, beyond those SOTA methods
specifically designed on these robust learning tasks. The
extracted weighting schemes can always help faithfully re-
veal bias insights underlying training data, making the good
effect of the method rational and interpretable. Two potential
application prospects of CMW-Net are specifically illustrated
and substantiated. One is its fine task-transferability of the
learned weighting scheme, implying a possible efficiency-
speedup methodology for handling robust learning tasks
under big data, through avoiding its time-consuming and
laborsome weighting function tuning process. The other
is its wide range of possible extensional applications for
other robust learning tasks, e.g., partial-label learning, semi-
supervised learning and selective classification.

In our future investigation, we’ll apply the proposed
adaptive sample weighting strategies to more robust learning
tasks to further validate its generality. Attributed to its rela-
tively concise modeling manner, it is also hopeful to develop
deeper and more comprehensive statistical learning under-
standing for revealing its intrinsic generalization capability
across different tasks [43]. Besides, we’ll try to build more
wider range of connections with our method to previous tech-
niques on exploring data insights, like importance weighting
[110]. More sufficient and comprehensive task-level feature
representation will also be further investigated in our future
research. Further algorithm efficiency enhancement of our
model will also be investigated in our future research.
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APPENDIX A
TECHNICAL DETAILS IN SECTION 3
A.1 Derivation of the Weighting Scheme in CMW-Net

We first derive the equivalent forms of the updating steps for CMW-Net and CMW-Net-SL parameters Θ, as expressed in
Eqs. (10) and (15), in the main text, respectively.

Recall the update equation of the CWM-Net parameters as follows:

Θ(t+1) = Θ(t) − β 1

m

m∑
i=1

∇ΘL
meta
i (ŵ(t+1)(Θ))

∣∣∣
Θ(t)

. (18)

The gradient can be calculated by the following derivation:

1

m

m∑
i=1

∇ΘL
meta
i (ŵ(t+1)(Θ))

∣∣∣
Θ(t)

=
1

m

m∑
i=1

∂Lmetai (ŵ(t+1)(Θ))

∂ŵ(t+1)(Θ)

∂ŵ(t+1)(Θ)

∂Θ

∣∣∣
Θ(t)

=
1

m

m∑
i=1

∂Lmetai (ŵ(t+1)(Θ))

∂ŵ(t+1)(Θ)

n∑
j=1

∂ŵ(t+1)(Θ)

∂V(Ltrj (w(t)), Nj ; Θ)

∂V(Ltrj (w(t)), Nj ; Θ)

∂Θ

∣∣∣
Θ(t)

.

(19)

Let

Gij =
∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t+1)(Θ)

∂Ltrj (w)

∂w

∣∣∣
w(t)

, (20)

and by substituting Eqs. (20) and (19) into Eq. (18), we can get:

Θ(t+1) = Θ(t) + αβ
n∑
j=1

(
1

m

m∑
i=1

Gij

)
∂V(Ltrj (w(t)), Nj ; Θ)

∂Θ

∣∣∣
Θ(t)

. (21)

This corresponds to Eq. (10) in the main text.
1) For the CMW-Net, since

ŵ(t+1)(Θ) = w(t) − α
n∑
i=1

V(Ltri (w(t)), Ni; Θ)∇wL
tr
i (w)

∣∣∣
w(t)

, (22)

thus we have

1

m

m∑
i=1

∇ΘL
meta
i (ŵ(t+1)(Θ))

∣∣∣
Θ(t)

=
−α
m

m∑
i=1

∂Lmetai (ŵ)

∂ŵ

∣∣∣
ŵ(t+1)(Θ)

n∑
j=1

∂Ltrj (w)

∂w

∣∣∣
w(t)

∂V(Ltrj (w(t)), Nj ; Θ)

∂Θ

∣∣∣
Θ(t)

=− α
n∑
j=1

(
1

m

m∑
i=1

∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t+1)(Θ)

∂Ltrj (w)

∂w

∣∣∣
w(t)

)
∂V(Ltrj (w(t)), Nj ; Θ)

∂Θ

∣∣∣
Θ(t)

.

2) For the CMW-Net-SL, since

ŵ(t+1)(Θ) = w(t) − α
n∑
i=1

{
V(Ltri (w(t)), Ni; Θ)∇wL

tr
i (w)

∣∣∣
w(t)

+
(

1− V(Ltri (w(t)), Ni; Θ)
)
∇wL

Pse
i (w)

∣∣∣
w(t)

}
, (23)

where Ltri (w) = `(f(xi;w), yi), L
Pse
i (w) = `(f(xi;w), zi), zi is the pseudo-label for example xi, we thus have

1

m

m∑
i=1

∇ΘL
meta
i (ŵ(t+1)(Θ))

∣∣∣
Θ(t)

(24)

=
−α
m

m∑
i=1

∂Lmetai (ŵ)

∂ŵ

∣∣∣
ŵ(t+1)(Θ)

n∑
j=1

[
∂Ltrj (w)

∂w

∣∣∣
w(t)
−
∂LPse

j (w)

∂w

∣∣∣
w(t)

]
∂V(Ltrj (w(t)), Nj ; Θ)

∂Θ

∣∣∣
Θ(t)

(25)

=− α
n∑
j=1

(
1

m

m∑
i=1

∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t+1)(Θ)

[
∂Ltrj (w)

∂w

∣∣∣
w(t)
−
∂LPse

j (w)

∂w

∣∣∣
w(t)

])
∂V(Ltrj (w(t)), Nj ; Θ)

∂Θ

∣∣∣
Θ(t)

. (26)
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Algorithm 3 Learning Algorithm for CMW-Net-SL Model
Input: Training data Dtr , meta data Dmeta, batch size n, temporal ensembling momentum α ∈ [0, 1), weight averaging momentum

β ∈ [0, 1), mixup hyperparameter γ > 0, learning rates η1, η2.
Output: Classifier parameter w∗

1: Initialize classifier network parameter w(0). Initialize averaged predictions with noisy labels z(0) = ŷ[N×C], and averaged
weights (untrainable) w(0)

WA = 0.
2: for t = 0 to T − 1 do
3: {x, y} ← SampleMiniBatch(Dtr, n).
4: {xmeta, ymeta} ← SampleMiniBatch(Dmeta,m).
5: Generate mixing coefficient λ ∼ Beta(γ, γ), λ = max(λ, 1− λ).
6: Calculate weight averaging: w(t+1)

WA = βw
(t)
WA + (1− β)w(t).

7: Calculate temporal ensembling: z(t+1) = αz
(t)
i + (1− α)f(x;w

(t+1)
WA ).

8: Generate new index sequence idx = torch.randperm(n).
9: Generate x̃ = λ′x+ (1− λ′)x[idx], and let ỹ = y[idx], z̃(t+1) = z(t+1)[idx], `i = `(f(x̃i;w), yi), ˜̀

i = `(f(x̃i;w), ỹi). Calculate
Ni and Ñi, representing the numbers of samples contained in the classes to which xi and x[idx]i belong, respectively.

10: Formulate the learning manner of classifier network:

ŵ(t+1)(Θ) = w(t) − η1

n∑
i=1

{λ
[
V(`i, Ni; Θ)∇w`(f(x̃i;w), yi)

∣∣∣
w(t)

+ (1− V(`i, Ni; Θ))∇w`(f(x̃i;w), z
(t+1)
i )

∣∣∣
w(t)

]
+ (1− λ)

[
V(˜̀

i, Ñi; Θ)∇w`(f(x̃i;w), ỹi)
∣∣∣
w(t)

+ (1− V(˜̀
i, Ñi; Θ))∇w`(f(x̃i;w), z̃

(t+1)
i )

∣∣∣
w(t)

]
}.

11: Update parameters of CMW-Net Θ(t+1) by

Θ(t+1) = Θ(t) − η2
1

m

m∑
i=1

∇Θ`
(
f(x

(meta)
i ; ŵ(t+1)(Θ)), y

(meta)
i

) ∣∣∣
Θ(t)

.

12: Update parameters of classifier w(t+1) by

w(t+1) = w(t) − η2

n∑
i=1

{λ
[
V(`i, Ni; Θ(t+1))∇w`(f(x̃i;w), yi)

∣∣∣
w(t)

+ (1− V(`i, Ni; Θ(t+1)))∇w`(f(x̃i;w), z
(t+1)
i )

∣∣∣
w(t)

]
+ (1− λ)

[
V(˜̀

i, Ñi; Θ(t+1))∇w`(f(x̃i;w), ỹi)
∣∣∣
w(t)

+ (1− V(˜̀
i, Ñi; Θ(t+1)))∇w`(f(x̃i;w), z̃

(t+1)
i )

∣∣∣
w(t)

]
}.

13: end for

Let

Gij =
∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t+1)(Θ)

∂Ltrj (w)

∂w

∣∣∣
w(t)

, G′ij =
∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t+1)(Θ)

∂LPse
j (w)

∂w

∣∣∣
w(t)

, (27)

by substituting Eqs. (24) and (27) into Eq. (18), we can get:

Θ(t+1) = Θ(t) + αβ
n∑
j=1

[
1

m

m∑
i=1

(Gij −G′ij)
]
∂V(Ltrj (w(t)), Nj ; Θ)

∂Θ

∣∣∣
Θ(t)

. (28)

This corresponds to Eq. (15) in the main text.

A.2 Complete Learning Algorithm of CMW-Net-SL
Recently, some works are presented to extract pseudo soft labels on samples through the clue of the classifier’s estimation
during the training iterations, and then use such beneficial information to improve the robustness of classifier training
especially in the presence of noisy labels. The utilized techniques include temporal ensembling [81], weight averaging,
mixup [92], and others. In our experiments, we just directly apply the strategy utilized in ELR [79] and DivideMix [8], which
has been verified to be effective in tasks like semi-supervised learning [47], [81] and robust learning [7], [79], to produce
pseudo-labels in our CMW-Net-SL algorithm. The complete algorithm is summarized in the above Algorithm 3.

A.3 Convergence Proof of Proposed CMW-Net Learning Algorithm
This section provides the proofs of Theorems 1 and 2 in the paper.

Suppose that we have a small amount of meta (validation) dataset with M samples {(x(m)
i , y

(m)
i ), 1 ≤ i ≤ M} with

clean labels, and the overall meta loss is,

Lmeta(w∗(Θ)) =
1

M

M∑
i=1

Lmetai (w∗(Θ)), (29)
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where w∗ is the parameter of the classifier network, and Θ is the parameter of the CMW-Net. Let’s suppose we have another
N training data, {(xi, yi), 1 ≤ i ≤ N}, where M � N , and the overall training loss is,

Ltr(w; Θ) =
N∑
i=1

V(Ltri (w), Ni; Θ)Ltri (w), (30)

where
∑N
i=1 V(Ltri (w), Ni; Θ) = 1.

Lemma 1. Suppose the meta loss function is Lipschitz smooth with constant L, and V(·, ·; Θ) is differential with a δ-bounded gradient
and twice differential with its Hessian bounded by B, and the loss function ` has ρ-bounded gradient with respect to training/meta data.
Then the gradient of Θ with respect to the meta loss is Lipschitz continuous.

Proof. The gradient of Θ with respect to the meta loss can be written as:

∇ΘL
meta
i (ŵ(t+1)(Θ))

∣∣∣
Θ(t)

= −α
n∑
j=1

(
∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t+1)(Θ)

∂Ltrj (w)

∂w

∣∣∣
w(t)

)
∂V(Ltrj (w(t)), Nj ; Θ)

∂Θ

∣∣∣
Θ(t)

. (31)

Let Vj(Θ) = V(Ltrainj (w(t)); Θ) and Gij be defined in Eq.(20). Taking gradient of Θ in both sides of Eq.(31), we have

∇2
Θ2Lmetai (ŵ(t+1)(Θ))

∣∣∣
Θ(t)

= −α
n∑
j=1

[
∂

∂Θ
(Gij)

∣∣∣
Θ(t)

∂Vj(Θ)

∂Θ

∣∣∣
Θ(t)

+ (Gij)
∂2Vj(Θ)

∂Θ2

∣∣∣
Θ(t)

]
.

For the first term in the right hand side, we have that∥∥∥∥ ∂

∂Θ
(Gij)

∣∣∣
Θ(t)

∂Vj(Θ)

∂Θ

∣∣∣
Θ(t)

∥∥∥∥
≤δ
∥∥∥∥ ∂

∂Θ
(Gij)

∣∣∣
Θ(t)

∥∥∥∥ = δ

∥∥∥∥∥ ∂

∂ŵ

(
∂Lmetai (ŵ)

∂Θ

∣∣∣
Θ(t)

)∣∣∣T
ŵ(t+1)(Θ)

∂Ltrj (w)

∂w

∣∣∣
w(t)

∥∥∥∥∥
=δ

∥∥∥∥∥ ∂

∂ŵ

(
∂Lmetai (ŵ)

∂ŵ

∣∣∣
ŵ(t+1)(Θ)

(−α)
n∑
k=1

∂Ltrk (w)

∂w

∣∣∣
w(t)

∂Vk(Θ)

∂Θ

∣∣∣
Θ(t)

)∣∣∣T
ŵ(t+1)(Θ)

∂Ltrj (w)

∂w

∣∣∣
w(t)

∥∥∥∥∥
=δ

∥∥∥∥∥
(
∂2Lmetai (ŵ)

∂ŵ2

∣∣∣
ŵ(t+1)(Θ)

(−α)
n∑
k=1

∂Ltrk (w)

∂w

∣∣∣
w(t)

∂Vk(Θ)

∂Θ

∣∣∣
Θ(t)

) ∣∣∣T
ŵ(t+1)(Θ)

∂Ltrj (w)

∂w

∣∣∣
w(t)

∥∥∥∥∥
≤αnLρ2δ2,

(32)

since
∥∥∥∥∂2Lmeta

i (ŵ)
∂ŵ2

∣∣∣
ŵ(t+1)(Θ)

∥∥∥∥ ≤ L, ∥∥∥∥∂Ltr
j (w)

∂w

∣∣∣
w(t)

∥∥∥∥ ≤ ρ, ∥∥∥∂Vj(Θ)
∂Θ

∣∣∣
Θ(t)

∥∥∥ ≤ δ. And for the second term we have

∥∥∥∥(Gij) ∂2Vj(Θ)

∂Θ2

∣∣∣
Θ(t)

∥∥∥∥ =

∥∥∥∥∥∂Lmetai (ŵ)

∂ŵ

∣∣∣T
ŵ(t+1)(Θ)

∂Ltrj (w)

∂w

∣∣∣
w(t)

∂2Vj(Θ)

∂Θ2

∣∣∣
Θ(t)

∥∥∥∥∥ ≤ Bρ2, (33)

since
∥∥∥∥∂Lmeta

i (ŵ)
∂ŵ

∣∣∣T
ŵ(t+1)(Θ)

∥∥∥∥≤ρ, ∥∥∥∂2Vj(Θ)
∂Θ2

∣∣∣
Θ(t)

∥∥∥≤B. Combining the above two inequalities Eqs.(32) and (33), we then have∥∥∥∇2
Θ2Lmetai (ŵ(t)(Θ))

∣∣∣
Θ(t)

∥∥∥ ≤ αρ2(nαLδ2 + B). (34)

Define LV = αρ2(nαLδ2 + B), and based on Lagrange mean value theorem, we have:

‖∇Lmeta(ŵ(t+1)(Θ1))−∇Lmeta(ŵ(t+1)(Θ2))‖ ≤ LV ‖Θ1 −Θ2‖, for all Θ1,Θ2, (35)

where ∇Lmeta(ŵ(t+1)(Θ1)) = ∇ΘL
meta
i (ŵ(t+1)(Θ))

∣∣
Θ1

.

Theorem 1. Suppose the loss function ` is Lipschitz smooth with constant L, and CMW-Net V(·, ·; Θ) is differential with a δ-bounded
gradient and twice differential with its Hessian bounded by B, and the loss function ` has ρ-bounded gradient with respect to
training/meta data. Let the learning rate αt, βt, 1 ≤ t ≤ T be monotonically descent sequences, and satisfy αt = min{ 1

L ,
c1√
T
}, βt =

min{ 1
L ,

c2√
T
}, for some c1, c2 > 0, such that

√
T
c1
≥ L,

√
T
c2
≥ L. Meanwhile, they satisfy

∑∞
t=1 αt =∞,

∑∞
t=1 α

2
t <∞,

∑∞
t=1 βt =

∞,
∑∞
t=1 β

2
t <∞. Then CMW-Net can achieve E[‖∇Lmeta(ŵ(t)(Θ(t)))‖22] ≤ ε in O(1/ε2) steps. More specifically,

min
0≤t≤T

E
[∥∥∥∇Lmeta(ŵ(t)(Θ(t)))

∥∥∥2

2

]
≤ O(

C√
T

), (36)

where C is some constant independent of the convergence process.
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Proof. The update equation of Θ in each iteration is as follows:

Θ(t+1) = Θ(t) − β 1

m

m∑
i=1

∇ΘL
meta
i (ŵ(t+1)(Θ))

∣∣∣
Θ(t)

.

Under the sampled mini-batch Ξt, the updating equation can be rewritten as:

Θ(t+1) = Θ(t) − βt∇Lmeta(ŵ(t+1)(Θ(t)))
∣∣
Ξt
.

Since the mini-batch is drawn uniformly from the entire data set, the above update equation can be written as:

Θ(t+1) = Θ(t) − βt[∇Lmeta(ŵ(t+1)(Θ(t))) + ξ(t)],

where ξ(t) = ∇Lmeta(ŵ(t+1)(Θ(t)))
∣∣
Ξt
−∇Lmeta(ŵ(t+1)(Θ(t))). Note that ξ(t) are i.i.d random variable with finite variance,

since Ξt are drawn i.i.d with a finite number of samples. Furthermore, E[ξ(t)] = 0, since samples are drawn uniformly at
random. Observe that

Lmeta(ŵ(t+1)(Θ(t+1)))− Lmeta(ŵ(t)(Θ(t)))

=
{
Lmeta(ŵ(t+1)(Θ(t+1)))− Lmeta(ŵ(t+1)(Θ(t)))

}
+
{
Lmeta(ŵ(t+1)(Θ(t)))− Lmeta(ŵ(t)(Θ(t)))

}
.

(37)

For the first term, by Lipschitz continuity of ∇ΘLmeta(ŵ(t+1)(Θ)) according to Lemma 1, we can deduce that:

Lmeta(ŵ(t+1)(Θ(t+1)))− Lmeta(ŵ(t+1)(Θ(t)))

≤
〈
∇ΘLmeta(ŵ(t+1)(Θ(t))),Θ(t+1) −Θ(t)

〉
+
L

2

∥∥∥Θ(t+1) −Θ(t)
∥∥∥2

2

=
〈
∇ΘLmeta(ŵ(t+1)(Θ(t))),−βt[∇ΘLmeta(ŵ(t+1)(Θ(t))) + ξ(t)]

〉
+
Lβ2

t

2

∥∥∥∇ΘLmeta(ŵ(t+1)(Θ(t))) + ξ(t)
∥∥∥2

2

=− (βt −
Lβ2

t

2
)
∥∥∥∇ΘLmeta(ŵ(t+1)(Θ(t)))

∥∥∥2

2
+
Lβ2

t

2
‖ξ(t)‖22 − (βt − Lβ2

t )〈∇ΘLmeta(ŵ(t)(Θ(t))), ξ(t)〉.

For the second term, by Lipschitz smoothness of the meta loss function Lmeta(ŵ(t+1)(Θ(t+1))), we have

Lmeta(ŵ(t+1)(Θ(t)))− Lmeta(ŵ(t)(Θ(t)))

≤
〈
∇wLmeta(ŵ(t)(Θ(t))), ŵ(t+1)(Θ(t))− ŵ(t)(Θ(t))

〉
+
L

2
‖ŵ(t+1)(Θ(t))− ŵ(t)(Θ(t))‖22.

Since

ŵ(t+1)(Θ(t))− ŵ(t)(Θ(t)) = −αt∇Ltr(w(t); Θ(t))|Ψt
,

where Ψt denotes the mini-batch drawn randomly from the training dataset in the t-th iteration, ∇Ltrain(w(t); Θ(t)) =∑n
i=1 V(Ltri (w(t)), Ni; Θ(t))∇w(t)Ltri (w)

∣∣∣
w(t)

, and
∑n
i=1 V(Ltri (w(t)), Ni; Θ(t+1)) = 1. Since the mini-batch Ψt is drawn

uniformly at random, we can rewrite the update equation as:

ŵ(t+1)(Θ(t)) = ŵ(t)(Θ(t))− αt[∇Ltr(w(t); Θ(t)) + ψ(t)],

where ψ(t) = ∇Ltr(w(t); Θ(t))|Ψt −∇Ltr(w(t); Θ(t)). Note that ψ(t) are i.i.d. random variables with finite variance, since
Ψt are drawn i.i.d. with a finite number of samples, and thus E[ψ(t)] = 0, E[‖ψ(t)‖22] ≤ σ2. Thus we have

Lmeta(ŵ(t+1)(Θ(t)))− Lmeta(ŵ(t)(Θ(t)))

≤
〈
∇wLmeta(ŵ(t)(Θ(t))),−αt[∇Ltr(w(t); Θ(t)) + ψ(t)]

〉
+
L

2

∥∥∥αt[∇Ltr(w(t); Θ(t)) + ψ(t)]
∥∥∥2

2

=
Lα2

t

2

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥2

2
− αt

〈
∇wLmeta(ŵ(t)(Θ(t))),∇Ltr(w(t); Θ(t))

〉
+
Lα2

t

2

∥∥∥ψ(t)
∥∥∥2

2

+ Lα2
t

〈
∇Ltr(w(t); Θ(t)), ψ(t)

〉
− αt

〈
∇wLmeta(ŵ(t)(Θ(t))), ψ(t)

〉
≤Lα

2
tρ

2

2
+ αtρ

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥

2
+
Lσ2α2

t

2
+ Lα2

t

〈
∇Ltr(w(t); Θ(t)), ψ(t)

〉
− αt

〈
∇wLmeta(ŵ(t)(Θ(t))), ψ(t)

〉
.

The last inequality holds since
〈
∇wLmeta(ŵ(t)(Θ(t))),∇Ltr(w(t); Θ(t))

〉
≤
∥∥∥∇Lmeta(ŵ(t)(Θ(t)))

∥∥∥
2

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥

2
.

Thus Eq.(37) satifies

Lmeta(ŵ(t+1)(Θ(t+1)))− Lmeta(ŵ(t)(Θ(t)))

≤Lα
2
tρ

2

2
+ αtρ

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥

2
+
Lσ2α2

t

2
+ Lα2

t

〈
∇Ltr(w(t); Θ(t)), ψ(t)

〉
− αt

〈
∇wLmeta(ŵ(t)(Θ(t))), ψ(t)

〉
− (βt −

Lβ2
t

2
)
∥∥∥∇ΘLmeta(ŵ(t+1)(Θ(t)))

∥∥∥2

2
+
Lβ2

t

2
‖ξ(t)‖22 − (βt − Lβ2

t )〈∇ΘLmeta(ŵ(t)(Θ(t))), ξ(t)〉.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 21

Rearranging the terms, and taking expectations with respect to ξ(t) and ψ(t) on both sides, we can obtain

(βt −
Lβ2

t

2
)
∥∥∥∇ΘLmeta(ŵ(t+1)(Θ(t)))

∥∥∥2

2

≤Lα
2
tρ

2

2
+ αtρ

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥

2
+
Lσ2α2

t

2
+ Lmeta(ŵ(t)(Θ(t)))− Lmeta(ŵ(t+1)(Θ(t+1))) +

Lβ2
t

2
σ2,

since E[ξ(t)] = 0,E[ψ(t)] = 0 and E[‖ξ(t)‖22] ≤ σ2. Summing up the above inequalities, we can obtain∑T

t=1
(βt −

Lβ2
t

2
)
∥∥∥∇ΘLmeta(ŵ(t+1)(Θ(t)))

∥∥∥2

2

≤Lmeta(ŵ(1))(Θ(1))− Lmeta(ŵ(T+1))(Θ(T+1)) +
L(σ2 + ρ2)

2

T∑
t=1

α2
t + ρ

T∑
t=1

αt

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥2

2
+
L

2

T∑
t=1

β2
t σ

2

≤Lmeta(ŵ(1))(Θ(1)) +
L(σ2 + ρ2)

2

T∑
t=1

α2
t + ρ

T∑
t=1

αt

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥2

2
+
L

2

T∑
t=1

β2
t σ

2.

Furthermore, we can deduce that

min
t

E
[∥∥∥∇ΘLmeta(ŵ(t+1)(Θ(t)))

∥∥∥2

2

]

≤

∑T
t=1(βt − Lβ2

t

2 )E
∥∥∥∇ΘLmeta(ŵ(t+1)(Θ(t)))

∥∥∥2

2∑T
t=1

(
βt − Lβ2

t

2

)
≤ 1∑T

t=1(2βt − Lβ2
t )

[
Lmeta(ŵ(1))(Θ(1)) +

L(σ2 + ρ2)

2

T∑
t=1

α2
t + ρ

T∑
t=1

αt

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥2

2
+
L

2

T∑
t=1

β2
t σ

2

]

≤ 1∑T
t=1 βt

[
2Lmeta(ŵ(1))(Θ(1)) + L(σ2 + ρ2)

T∑
t=1

α2
t + ρ

T∑
t=1

αt

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥2

2
+
L

2
σ2

T∑
t=1

β2
t

]

≤ 1

TβT

[
2Lmeta(ŵ(1))(Θ(1)) + L(σ2 + ρ2)

T∑
t=1

α2
t + ρ

T∑
t=1

αt

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥2

2
+
L

2
σ2

T∑
t=1

β2
t

]

=
2Lmeta(ŵ(1))(Θ(1)) + L(σ2 + ρ2)

∑T
t=1 α

2
t + ρ

∑T
t=1 αt

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥2

2
+ L

2 σ
2
∑T
t=1 β

2
t

T
max{L,

√
T

c
}

=O(
C√
T

).

The third inequality holds since
∑T
t=1(2βt − Lβ2

t ) =
∑T
t=1 βt(2 − Lβt) ≥

∑T
t=1 βt, and the final equality holds since

limT→∞
∑T
t=1 α

2
t < ∞, limT→∞

∑T
t=1 β

2
t < ∞, limT→∞

∑T
t=1 αt

∥∥∥∇Ltr(w(t); Θ(t))
∥∥∥2

2
< ∞. Thus we can conclude that

our algorithm can always achieve min0≤t≤T E[‖∇Lmeta(Θ(t))‖22] ≤ O( C√
T

) in T steps, and this finishes our proof of
Theorem 1.

Theorem 2. Suppose that the loss function ` is Lipschitz smooth with constant L, and CMW-Net V(·, ·; Θ) is differential with
a δ-bounded gradient and twice differential with its Hessian bounded by B, and the loss function ` has ρ-bounded gradient
with respect to training/meta data. Let the learning rate αt, βt, 1 ≤ t ≤ T be monotonically descent sequences, and satisfy
αt = min{ 1

L ,
c1√
T
}, βt = min{ 1

L ,
c2√
T
}, for some c1, c2 > 0, such that

√
T
c1
≥ L,

√
T
c2
≥ L. Meanwhile, they satisfy

∑∞
t=1 αt =

∞,
∑∞
t=1 α

2
t < ∞,

∑∞
t=1 βt = ∞,

∑∞
t=1 β

2
t < ∞. Then CMW-Net can achieve E[‖∇Ltr(w(t); Θ(t))‖22] ≤ ε in O(1/ε2) steps.

More specifically,

min
0≤t≤T

E
[∥∥∥∇Ltr(w(t); Θ(t))

∥∥∥2

2

]
≤ O(

C√
T

) (38)

where C is some constant independent of the convergence process.

Proof. It is easy to conclude that αt satisfy
∑∞
t=0 αt =∞,

∑∞
t=0 α

2
t <∞. Recall the update equation of w in each iteration

as follows:

w(t+1) = w(t) − α
n∑
i=1

V(Ltri (w), Syi ; Θ(t+1))∇wL
tr
i (w)

∣∣∣
w(t)

.

Under the sampled mini-batch Ψt from the training dataset, the updating equation can be rewritten as:

w(t+1) = w(t) − αt∇Ltr(w(t); Θ(t+1))|Ψt ,
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where ∇Ltrain(w(t); Θ(t+1)) =
∑n
i=1 V(Ltri (w(t)), Ni; Θ(t+1))∇w(t)Ltri (w)

∣∣∣
w(t)

, and
∑n
i=1 V(Ltri (w(t)), Ni; Θ(t+1)) = 1.

Since the mini-batch Ψt is drawn uniformly at random, we can rewrite the update equation as:

w(t+1) = w(t) − αt[∇Ltr(w(t); Θ(t+1)) + ψ(t)],

where ψ(t) = ∇Ltr(w(t); Θ(t+1))|Ψt −∇Ltr(w(t); Θ(t+1)). Note that ψ(t) are i.i.d. random variables with finite variance,
since Ψt are drawn i.i.d. with a finite number of samples, and thus E[ψ(t)] = 0, E[‖ψ(t)‖22] ≤ σ2.

The objective function Ltr(w; Θ) defined in Eq. (30) can be easily proved to be Lipschitz-smooth with constant L, and
have ρ-bounded gradient with respect to training data. Observe that

Ltr(w(t+1); Θ(t+1))− Ltr(w(t); Θ(t))

=
{
Ltr(w(t+1); Θ(t+1))− Ltr(w(t+1); Θ(t))

}
+
{
Ltr(w(t+1); Θ(t))− Ltr(w(t); Θ(t))

}
.

(39)

For the first term, by Lipschitz smoothness of the training loss function Ltr(ŵ(t+1)(Θ(t+1))), we have

Ltr(w(t+1); Θ(t))− Ltr(w(t); Θ(t))

≤
〈
∇Ltr(w(t); Θ(t)),w(t+1) −w(t)

〉
+
L

2

∥∥∥w(t+1) −w(t)
∥∥∥2

2

=
〈
∇Ltr(w(t); Θ(t)),−αt[∇Ltr(w(t); Θ(t)) + ψ(t)]

〉
+
Lα2

t

2

∥∥∥∇Ltr(w(t); Θ(t)) + ψ(t)
∥∥∥2

2

=− (αt −
Lα2

t

2
)
∥∥∥∇Ltr(w(t); Θ(t))

∥∥∥2

2
+
Lα2

t

2

∥∥∥ψ(t)
∥∥∥2

2
− (αt − Lα2

t )
〈
∇Ltr(w(t); Θ(t)), ψ(t)

〉
.

For the second term, we have

Ltr(w(t+1); Θ(t+1))− Ltr(w(t+1); Θ(t))

=
1

n

n∑
i=1

{
V(Ltr

i (w(t+1)), Ni; Θ(t+1))− V(Ltr
i (w(t+1)), Ni; Θ(t))

}
Ltrain

i (w(t+1))

≤ 1

n

n∑
i=1

{〈
∂V(Ltr

i (w(t+1)), Ni; Θ)

∂Θ

∣∣∣
Θ(t)

,Θ(t+1) −Θ(t)

〉
+
δ

2

∥∥∥Θ(t+1) −Θ(t)
∥∥∥2

2

}
Ltr

i (w(t+1))

=
1

n

n∑
i=1

{〈
∂V(Ltr

i (w(t+1)), Ni; Θ)

∂Θ

∣∣∣
Θ(t)

,−βt[∇ΘLmeta(ŵ(t+1)(Θ(t))) + ξ(t)]

〉
+
δβ2

t

2

∥∥∥∇Lmeta(ŵ(t+1)(Θ(t))) + ξ(t)
∥∥∥2

2

}
Ltr

i (w(t+1))
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Therefore, for Eq.(39), we have:
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Taking expectation of the both sides of the above inequality and based on E[ξ(t)] = 0,E[ψ(t)] = 0, we have
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Summing up the above inequalities over t = 1, ..., T in both sides and rearranging the terms, we obtain
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The last inequality holds since
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The third inequality holds since
∑T
t=1(2αt −Lα2

t )=
∑T
t=1 αt(2−Lαt)≥

∑T
t=1 αt. Thus we can conclude that our algorithm

can always achieve min0≤t≤T E
[∥∥∥∇Ltr(w(t); Θ(t))

∥∥∥2

2

]
≤ O( C√

T
) in T steps, and this completes our proof of Theorem 2.

A.4 Pytorch codes of our algorithm
The following is the Pytorch codes of our algorithm, which is essily completed based on the code of MW-Net. The main
difference from MW-Net is to re-define the structure of meta-model (CMW-Net) and generate the task family labels in
advance. The completed training code is avriable at https://github.com/xjtushujun/CMW-Net.

def norm_func(v_lambda):
norm_c = torch.sum(v_lambda)
if norm_c != 0:
v_lambda_norm = v_lambda / norm_c
else:
v_lambda_norm = v_lambda
return v_lambda_norm

class share(MetaModule):
def __init__(self, input, hidden1, hidden2):
super(share, self).__init__()
self.layer = nn.Sequential( MetaLinear(input, hidden1), nn.ReLU(inplace=True) )

def forward(self, x):
output = self.layer(x)
return output

class task(MetaModule):

https://github.com/xjtushujun/CMW-Net
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def __init__(self, hidden2, output, num_classes):
super(task, self).__init__()
self.layers = nn.ModuleList()
for i in range(num_classes):
self.layers.append(nn.Sequential( MetaLinear(hidden2, output), nn.Sigmoid() ))

def forward(self, x, num, c):
si = x.shape[0]
output = torch.tensor([]).cuda()
for i in range(si):
output = torch.cat(( output, self.layers[c[num[i]]]( x[i].unsqueeze(0) ) ),0)

return output

# The structure of CMW-Net
class VNet(MetaModule):
def __init__(self, input, hidden1, hidden2, output, num_classes):
super(VNet, self).__init__()
self.feature = share(input, hidden1, hidden2)
self.classfier = task(hidden2, output, num_classes)

def forward(self, x, num, c):
num = torch.argmax(num, -1)
output = self.classfier( self.feature(x), num, c )
return output

optimizer_a = torch.optim.SGD(model.params(), args.lr, momentum=args.momentum, nesterov=args.nesterov,
weight_decay=args.weight_decay)

optimizer_c = torch.optim.Adam(vnet.params(), 1e-3, weight_decay=1e-4)

# Generating task family labels
es = Kmeans(3)
es.fit(train_loader.dataset.targets)
c = es.labels_

for iters in range(num_iters):
adjust_learning_rate(optimizer_a, iters + 1)
model.train()
data, target = next(iter(train_loader))
data, target = data.to(device), target.to(device)
meta_model.load_state_dict(model.state_dict())
y_f_hat = meta_model(data)
cost = F.cross_entropy(y_f_hat, target, reduce=False)
cost_v = torch.reshape(cost, (len(cost), 1))
v_lambda = vnet(cost_v.data, target.data, c)
v_lambda_norm = norm_func(v_lambda)
l_f_meta = torch.sum(cost_v * v_lambda_norm)
meta_model.zero_grad()
grads = torch.autograd.grad(l_f_meta,(meta_model.params()),create_graph=True)
meta_model.update_params(lr_inner=meta_lr,source_params=grads)

data_meta,target_meta = next(iter(train_meta_loader))
data_meta,target_meta = data_meta.to(device),target_meta.to(device)
y_g_hat = meta_model(data_meta)
l_g_meta = F.cross_entropy(y_g_hat, target_meta)
optimizer_c.zero_grad()
l_g_meta.backward()
optimizer_c.step()

y_f = model(data)
cost_w = F.cross_entropy(y_f, target, reduce=False)
cost_v = torch.reshape(cost_w, (len(cost_w), 1))
with torch.no_grad():
w_new = vnet(cost_v,target, c)
w_v = norm_func(w_new)
l_f = torch.sum(cost_v * w_v)
optimizer_a.zero_grad()
l_f.backward()
optimizer_a.step()
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Fig. 10. Illustration of the limitation and meta-essence understanding for MW-Net. The success of MW-Net is built upon homoscedastic bias
assumption (e.g., in Fig.(b)(1,2), each class has similar loss distributions of clean and noise samples). While MW-Net fails under the heterogeneous
bias (e.g., in Fig.(a,c,d)(1,2), each class has their specific loss distributions). The rationality can be revealed from the perspective of meta-learning
(see Section 1.2 of main paper). The limitation of MW-Net demostrates that only sample-level loss information can not completely character the
heterogeneous bias. This motivates us to introduce task-level information (i.e., scale of task) to reform MW-Net, making it able to distinguish individual
bias properties of different tasks, and accumulate tasks with approximately homoscedastic data bias as a task family (e.g., Fig.(a,b,c,d)(3), and
details see Section 1.3 & 3.3 of main paper).
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Algorithm 4 The Efficient CMW-Net Meta-training Algorithm
Input: Training dataset Dtr , meta-data set Dmeta, batch size n,m, max iterations T , meta updating period TMeta.
Output: Classifier parameter w(∗), CMW-Net parameter Θ(∗)

1: Apply K-means on the sample numbers of all training classes to obtain Ω = {µk}Kk=1 sorted in an ascending order.
2: Initialize classifier network parameter w(0) and CMW-Net parameter Θ(0).
3: for t = 0 to T − 1 do
4: {x, y} ← SampleMiniBatch(D̃tr, n).
5: if t % TMeta = 0 then
6: {xmeta, ymeta} ← SampleMiniBatch(Dmeta,m).
7: Formulate the learning manner of classifier network ŵ(t+1)(Θ) by Eq. (7).
8: Update parameter Θ(t+1) of CMW-Net by Eq. (8).
9: end if

10: Update parameter w(t+1) of classifier by Eq. (9).
11: end for
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Fig. 11. Comparison of (a) computation cost and (b) performance between Efficient CMW-Net and CMW-Net.

APPENDIX B
MORE EXPERIMENTAL RESULTS AND EXPERIMENTAL SETTINGS IN SECTION 4
B.1 Additional Illustrations of the Limitation and Meta-Essence Understanding for MW-Net
Fig. 10 illustrates the limitation and meta-essence understanding for MW-Net. Compared with the Fig.2 in the main paper,
we further show the class imbalance and feature-dependent bias cases, demonstrating the validity of our claim.

B.2 Efficient CMW-Net Algorithm
To reduce the cost of step-wise optimization for CMW-Net, we attempt to update CMW-Net once after updating classifier
model several steps (TMeta steps), and the revised algorithm is shown in Algorithm 4, where the revised steps are
highlighted in red. We set TMeta = 10, and denote this method as Efficient CMW-Net. Fig.11 shows the computation cost
and performance of Efficient CMW-Net compared with CMW-Net. We can see that Efficient CMW-Net substantially reduces
the computation cost of CMW-Net, while can still reserve the performance. This also implies that there remains a large room
for further algorithm efficiency enhancement of our model by reducing the cost of meta-gradient optimization process,
which will be further investigated in our future research.

B.3 Class Imbalance Experiments
In this series of experiments, we use ResNet-32 [1] as the classifier network with softmax cross-entropy loss by SGD with
a momentum 0.9, a weight decay 5 × 10−4, an initial learning rate 0.1. The learning rate of ResNet-32 is divided by 100
after 160 and 180 epoch (for a total 200 epochs). The learning rate of CMW-Net is fixed as 10−4, and the weight decay of
CMW-Net is fixed as 10−5. The batch size is set as 100 for all experiments. We randomly selected fixed images per class in
every epoch from the training set as the meta-data set and the number of selected images for each class is the same as the
number of the least class.

Fig. 12 shows the weighting schemes learned by CMW-Net on CIFAR-10-LT and CIFAR-100-LT, under different imbalance
settings. It can be seen that our CMW-Net can adaptively learn proper weighting schemes according to different degrees
of class imbalance. For example, when the dataset is balanced, CMW-Net tends to learn approximately similar weighting
functions for all three task families. When the degree of class imbalance becomes more significant, the weighting schemes
extracted from different task families tend to be more largely varied, showing their different internal bias characteristics.

In Fig. 13, we further plot the confusion matrices produced by the MW-Net and CMW-Net methods, respectively. As
can be easily seen, CMW-Net consistently outperforms MW-Net, and CMW-Net more evidently improves the accuracies of
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Fig. 12. Weighting schemes learned by CMW-Net on CIFAR-10-LT and CIFAR-100-LT with imbalance factors ranging from 1 to 200.

MW-Net under larger class imbalance rate. Specifically, CMW-Net gets more prominent performance gain on tail classes,
and meanwhile maintains the performance on head classes.

B.4 Feature-independent Label Noise Experiment

In this series of experiments, we adopted an 18-layer PreAct Resnet [111] as our classifier network, with softmax cross-entropy
loss by SGD with a momentum 0.9, a weight decay 5× 10−4. For CMW-Net, we set the initial learning rate as 0.1 and the
learning rate of classification network is divided by 10 after 80 and 100 epoch (for a total 120 epochs). For the CMW-Net-SL,
we set the initial learning rate as 0.01 and the learning rate of classification network is divided by 10 after 150 epoch (for
a total 300 epochs) following by Dividemix [8]. The batch size is specified as 128 for all experiments. We adopt Adam
optimizer to optimize CMW-Net and the learning rate of CMW-Net is fixed as 10−3, and the weight decay of CMW-Net is
fixed as 10−4. We repeat the experiments with 3 random trials and report the mean value and standard deviation.

Motivated by M-correction [7] and Dividemix [8], we selected the meta data at each epoch according to the training loss.
Specifically, we explore to create the meta dataset dynamically along iteration, based on the high-quality clean samples
as well as its high-quality pseudo labels from the training set (with lowest losses) as an unbiased estimator of the clean
data-label distribution in each iteration of our algorithm. To make the meta dataset balanced, we selected 10 images per
class. In this case, the performance of meta dataset can be served as an indicator of whether CMW-Net is trained to filter
noisy samples and generalize to clean test distribution.

Such meta dataset generation strategy may lack of diversity patterns to characterize the latent clean data-label distribution.
To overcome this, we explore to utilize mixup technique [92] to enrich the variety of our proposed meta dataset distribution
while maintaining the unbiasedness in terms of clean test distribution. The hyperparameter of convex combination is
randomly sampled from a Beta distribution Beta(1, 1). Extensive experiments have verified the effectiveness of such created
meta dataset from training dataset. Such property makes our meta-learning algorithm feasible to be applied to real-world
biased datasets, where it is generally hard to collect an ideal high-quality extra clean meta dataset. We also use such meta
dataset generation strategy in all our noisy labels experiments as well as all real-world biased datasets.

Figs. 14 and 16 show the empirical pdfs of cross-entropy loss for each class on CIFAR-10 dataset under symmetric and
asymmetric noises with varying noise rates, respectively. The corresponding weighting functions and weight distributions
over the training examples learned by MW-Net [9] and the proposed CMW-Net are also depicted. It can be easily observed
that compared with MW-Net, CMW-Net has better flexibility to deal with both training data bias cases, even for inter-class
heterogenous data biases. Specifically, the proposed CMW-Net can adaptively adjust its weighting schemes to adapt
variations of noise rates, and behaves consistently with the underlying data biased patterns, naturally leading to its better
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(a) 1 for CIFAR-10
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(b) 10 for CIFAR-10
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(c) 20 for CIFAR-10
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(d) 50 for CIFAR-10
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(e) 100 for CIFAR-10
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(f) 200 for CIFAR-10

Fig. 13. Confusion matrices obtained by (left) MW-Net and (right) CMW-Net on CIFAR-10-LT with imbalance factors ranging from 1 to 200.

performance on distinguishing clean and noisy images. Note that even for high noise rate (e.g., 80%) scenarios, our method
still shows fine capability of distinguishing clean and noisy images.

To further improve the learning effect of CMW-Net, we introduce additional soft label supervision to build the CMW-Net-
SL strategy. Figs. 15 and 17 show the confusion matrices learned by two methods, respectively. Specifically, the confusion
matrices obtained by CMW-Net almost correspond to the noise transition matrices, and those calculated by CMW-Net-SL
contain the refurbished labels by soft labels. Although the noise rate was in relatively high levels (e.g., 60% and 80%), most
of the diagonal entries had probability larger than 0.95, implying the effectiveness of CMW-Net-SL on its fine label correction
ability. This side information is thus validated to be able to compensate beneficially to the sample reweighting learning, and
ameliorate both weighting scheme extracting and robust classifier learning in a stable way.

B.5 Feature-dependent Label Noise Experiment
In this series of experiments, we use ResNet-34 [1] as the classifier network, with softmax cross-entropy loss by SGD
with a momentum 0.9, a weight decay 5 × 10−4 and an initial learning rate 0.1. The learning rate of ResNet-34 is set as
CosineAnnealingWarmRestarts [112]. The learning rate of CWN-Net is fixed as 10−3, and the weight decay of CMW-Net is
fixed as 10−4. The batch size is 128 for all experiments. We repeat the experiments with 3 random trials and report the mean
value and standard deviation.

B.6 Additional Open-set Label Noise Experiment
Open-set noise experiments use training samples that do not belong to any of the original classes in the dataset considered
in the classification task. Following [113], we yield CIFAR-10 with open-set noise by randomly replacing 40% of its
training images with images from CIFAR-100. We used wide ResNet-28-2 [114] as the base classifier network with softmax
cross-entropy loss by SGD with a momentum 0.9, a weight decay 5× 10−4. We set the initial learning rate of classification
network as 0.1 and the learning rate is divided by 10 after 80 and 100 epoch (for a total 120 epochs). The batch size is 128 for
all experiments. We adopt Adam optimizer to learn CMW-Net, with a learning rate 10−3, and a weight decay 10−4. We
repeat the experiments with 3 random trials and report the mean value and standard deviation. We adopt the meta-data
generation strategy as introduced in Sec. 4.2 of the main text, by randomly selecting 10 images per class at every epoch from
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(a) Empirical pdf of cross-entropy loss for each class on CIFAR-10 dataset with varying noise rates under symmetric noise.
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(b) Weighting functions and histograms of all sample weights over all training examples learned by MW-Net under symmetric noise.
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(c) Weighting functions and histograms of all sample weights over all training examples learned by CMW-Net under symmetric noise.

Fig. 14. (a) Empirical pdf of the cross-entropy loss calculated on all samples of each class on CIFAR-10 with varying noise rates (from left to right, the
noise rates are 20%, 40%, 60%, 80%) under symmetric noise; (b)(c) The weighting functions and histograms of all sample weights over all training
examples learned by MW-Net and CMW-Net.
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(a) Symmetry Noise (20%)
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(b) Symmetry Noise (40%)
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(c) Symmetry Noise (60%)
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(d) Symmetry Noise (80%)
Fig. 15. Confusion matrices obtained by CMW-Net without (left) or with (right) soft label amelioration on CIFAR-10 with symmetry noise with varying
noise rates ranging from 20% to 80%.
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(a) Empirical pdf of cross-entropy loss for each class on CIFAR-10 dataset with varying noise rates under asymmetric noise.
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(b) Weighting functions and histograms of all sample weights over all training examples learned by CMW-Net under asymmetric noise.
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(c) Weighting functions and weight distributions over the training examples learned by our CMW-Net under asymmetric noise.

Fig. 16. (a) Empirical pdf of the cross-entropy loss calculated on all samples of each class on CIFAR-10 with varying noise rates (from left to right, the
noise rates are 20%, 40%, 60%, 80%) under asymmetric noise; (b)(c) The weighting functions and histograms of all sample weights over all training
examples learned by MW-Net and CMW-Net.
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(a) Asymmetry Noise (20%)
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(b) Asymmetry Noise (40%)
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(c) Asymmetry Noise (60%)
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(d) Asymmetry Noise (80%)
Fig. 17. Confusion matrices obtained by CMW-Net without (left) or with (right) soft label amelioration on CIFAR-10 with asymmetry noise with varying
noise rates ranging from 20% to 80%.
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TABLE 12
Test accuracy (%) of all comparison methods under open-set noise on CIFAR-10.

Methods ERM Forward [70] GCE [6] M-correction [7] DivideMix [8] L2RW [26] MW-Net [9] CMW-Net CMW-Net-SL
Accuracy 84.17±0.80 84.63±0.80 85.96 ± 0.72 89.71 ± 0.53 90.16±0.40 83.60±0.24 84.78 ± 0.51 84.81 ± 0.51 92.12 ± 0.18
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Fig. 18. Some ablation studies for parameter setting issues of our proposed method.

the training set as the meta-data set. We train the network 20 epochs with cross-entropy loss for a warm-up to get the meta
dataset stably.

The compared methods include: 1) ERM: use standard cross-entropy loss to train DNNs; 2) Forward [70]: correct the
prediction by the label transition matrix; 3) GCE [6]: behave as a robust loss to handle the noisy labels; 4) M-correction [7]
and 5) DivideMix [8]: use different label correction methods; 6) L2RW [26] and 7) MW-Net [9]: represent the typical sample
reweighting methods by meta-learning.

The classification accuracy on CIFAR-10 noisy datasets with 40% open-set noise is reported in Table 12. As can be seen,
our method evidently outperforms all other competing methods, verifying that our model is capable of learning more
accurate representation directly from datasets with open-set noisy labels. Such capability supports that our method can be
applied to learning from web-search data possibly containing such type of open-set noisy labels, e.g., WebVision [14].

B.7 Ablation Study

We perform ablation study to verify the effectiveness of two important components involved in our method: 1) the number of
task families; 2) whether to use an extra clean meta-data or using the automatic meta-data-generation strategy as proposed in
Sec. 4.2 of the main text. As shown in Fig. 18(a), by setting the number of task families as three, our method can consistently
adapt to inter-class heterogenous data bias. Actually, by setting K = 3, where the training classes/tasks are separated as
small, moderate, large-scales, correspondingly, all our experiments can achieve a stably fine performance. Furthermore, by
observing Fig. 18(b), we can see that the utilized meta-data-generation strategy is practicable for dealing with real-world
noisy datasets, in which an extra ideal clean meta data is always hard to be collected.

APPENDIX C
MORE EXPERIMENTAL RESULTS AND EXPERIMENTAL SETTINGS IN SECTION 5

C.1 Learning with Real-world Noisy Datasets

Animal-10N. ANIMAL-10N [78] contains 55,000 human-labeled online images for 10 animals with confusable appearances.
The estimated label noise rate is 8%. Following previous works [78], [89], 50,000 images are exploited as the training set and
the left for testing. Following SELFIE [78], we use VGG-19 [115] with batch normalization as the classifier network. The SGD
optimizer is employed to train the network with a momentum 0.9, a weight decay 1× 10−3 for 100 epochs. We use an initial
learning rate of 0.1, which is divided by 5 at 50% and 75% of the total number of epochs. The batch size is 128. We repeat the
experiments with 3 random trials and report the mean value and standard deviation.

Mini-WebVision. As the full dataset of WebVision is very large, we follow [37] to use a mini version, which contains
the first 50 classes of the Google subset of the data for a total of about 61,000 images. Following the standard protocol
[37], we test the trained model on the WebVision validation set and the ImageNet validation set. Following C2D [?], we
used ResNet-50 architecture as the classifier network for training. For self-supervised pre-training, we directly use the
pretrained self-supervised models released at https://github.com/ContrastToDivide/C2D, which is based on the SimCLR
implementation. We trained the network with softmax cross-entropy loss by SGD with a momentum 0.9, a weight decay
5× 10−4. We set the initial learning rate as 0.01 and the learning rate of classification network is divided by 10 after 50 epoch
(for a total 90 epochs). The learning rate of CMW-Net is fixed as 10−4, and the weight decay of CMW-Net is fixed as 10−5.
The batch size is 64. We adopt the meta-data-generation strategy as introduced in Sec. 4.2 of the main text, to randomly select
10 images per class at every epoch from the training set as the meta-data set for the above two real-world biased datasets.

More typical noisy examples corrected by the proposed method on Animal-10N and Mini-WebVision are shown in Figs.
19 and 20, respectively. This further demonstrates our method’s capability of recovering these easily confusable samples.

https://github.com/ContrastToDivide/C2D


32 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

lynx lynx lynx lynx lynx lynx lynx lynx
(a) Samples selected from Animal-10N [78]. The original training label is cat.

cat cat cat cat cat cat cat cat
(b) Samples selected from Animal-10N [78]. The original training label is lynx.

coyote coyote coyote coyote coyote coyote coyote coyote
(c) Samples selected from Animal-10N [78]. The original training label is wolf.

wolf wolf wolf wolf wolf wolf wolf wolf
(d) Samples selected from Animal-10N [78]. The original training label is coyote.

cachimpanzeet cachimpanzeet cachimpanzeet cachimpanzeet cachimpanzeet cachimpanzeet cachimpanzeet cachimpanzeet

(e) Samples selected from Animal-10N [78]. The original training label is chimpanzee.

chimpanzee chimpanzee chimpanzee chimpanzee chimpanzee chimpanzee chimpanzee chimpanzee

(f) Samples selected from Animal-10N [78]. The original training label is cachimpanzeet.

guinea pig guinea pig guinea pig guinea pig guinea pig guinea pig guinea pig guinea pig
(g) Samples selected from Animal-10N [78]. The original training label is hamster.

hamster hamster hamster hamster hamster hamster hamster hamster
(h) Samples selected from Animal-10N [78]. The original training label is guinea pig.

Fig. 19. Examples of randomly selected samples with noisy labels corrected by our method on Animal-10N dataset [78]. The original training labels
and generated pseudo-labels by our model are shown in red and blue, respectively.
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great white shark carassius auratus tiger shark stingray indigo bunting African crocodile Tinca tinca tiger shark

(a) Samples selected from mini-WebVision [14]. The original training labels are electric ray, crampfish, numbfish, torpedo.

goldfinch indigo bunting goldfinch indigo bunting goldfinch goldfinch goldfinch goldfinch
(b) Samples selected from mini-WebVision [14]. The original training labels are house finch, linnet, Carpodacus mexicanus.

indigo bunting indigo bunting chickadee magpie goldfinch snowbird indigo bunting magpie
(c) Samples selected from mini-WebVision [14]. The original training labels are robin, American robin, Turdus migratorius.

loggerhead turtle box turtle loggerhead turtle box turtle loggerhead turtle box turtle mud turtle mud turtle
(d) Samples selected from mini-WebVision [14]. The original training labels are leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea.

American chameleon Komodo dragon Anolis carolinensis agama Anolis carolinensis whiptail lizard whiptail lizard mud turtle

(e) Samples selected from mini-WebVision [14]. The original training labels are common iguana, iguana, Iguana iguana.

African chameleon African chameleon common iguana agama African crocodile African chameleon bullfrog common iguana

(f) Samples selected from mini-WebVision [14]. The original training labels are American chameleon, anole, Anolis carolinensis.

Gila monster common iguana Gila monster Gila monster common iguana Gila monster frilled lizard African crocodile
(g) Samples selected from mini-WebVision [14]. The original training labels are Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus
komodoensis.

tree frog tree frog bullfrog tree frog bullfrog bullfrog mud turtle axolotl
(h) Samples selected from mini-WebVision [14]. The original training label is tailed frog.

Fig. 20. Examples of randomly selected samples with noisy labels corrected by our method on mini-WebVision [14]. The original training labels and
generated pseudo-labels by model are shown in red and blue, respectively.
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C.2 Webly Supervised Fine-Grained Recognition
WebFG-496. This dataset consists of three sub-datasets: Web-aircraft, Web-bird, and Web-car. WebFG-496 reuses the category
labels of three famous manually labeled fine-grained datasets, FGVC-Aircraft, CUB200-2011, and Stanford Cars, which
contain 100 types of airplanes, 200 species of birds, and 196 categories of cars, respectively, by collecting images from
the Internet. It contains 53,339 training images with total 496 classes. The testing data take the testing sets in the original
FGVC-Aircraft, CUB200-2011, and Stanford Cars. We used Bilinear-CNN [116] as the classifier network. The network is
pre-trained on ImageNet, and then fine-tuned on three sub-datasets of WebFG496. Following [116], we adopt a two-stage
training strategy. We firstly freeze the convolutional layer parameters and only optimize the last fully connected layers with
the learning rate and batch size being 10−3 and 64 for total 200 epoch. Then we optimize the parameters of all layers in the
fine-tuned model with learning rate and batch size being set as 10−4 and 32, respectively, for total 200 epoch. The learning
rate of CMW-Net is fixed as 10−3, and the weight decay of CMW-Net is fixed as 10−4. We adopt the meta-data-generation
strategy, as introduced in Sec. 4.2 of the main test, to randomly select 10 images per class at every epoch from the training
set as the meta-data set.

APPENDIX D
MORE EXPERIMENTAL RESULTS AND EXPERIMENTAL SETTINGS IN SECTION 6
ImageNet-LT. The dataset is constructed as a long-tailed version of the original ImageNet-2012 [98] by sampling a subset
following the Pareto distribution with the power value 6. It totally has 115.8K images from 1000 categories with maximally
1280 images per class and minimally 5 images per class. Following OLTR [5], besides the overall top-1 classification accuracy
over all classes, we also calculate the accuracy of three disjoint subsets: many-shot classes (each with over training 100
samples), medium-shot classes (each with 20-100 training samples) and few-shot classes (each under 20 training samples).
We adopt the two-stage training protocol following [5]. We use a Resnet-10 model initialized from scratch (i.e., random
initialization) as the classifier model. We train the model with softmax cross-entropy loss by SGD with a momentum 0.9, a
weight decay 5× 10−4, an initial learning rate 0.1 and a batch size of 128 for 30 epochs, and divide learning rate by 10 at 10
epoch. The transferred CMW-Net is used at the first stage to produce proper sample weights for robust training. And it
follows training protocol in [5] at the second stage.

WebVision. WebVision [14] contains 2.4 million images crawled from Google and Flickr using 1,000 labels shared with
the ImageNet dataset. Its training set is both heteroskedastic label noise and class imbalanced (more detailed statistics can be
found in [14]), and it is considered as a popular benchmark for robust learning in the presence of heavy label noises. We
trained Inception-ResNet v2 [117] with softmax cross-entropy loss by SGD with a momentum 0.9, a weight decay 5× 10−5,
an initial learning rate 0.2 and a batch size of 256. The learning rate is divided by 10 after 30 and 60 epoch (for a total 90
epochs). The transferred CMW-Net is used at every iteration to produce proper sample weights for robust training.
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APPENDIX E
MORE EXPERIMENTAL RESULTS AND EXPERIMENTAL SETTINGS IN SECTION 7
E.1 Partial-Label Learning

We adopted two training stages to solve the problem. At the first stage, we train the network using the recent SOTA method,
PRODEN [103], for 100 epochs and then we can get the training data with single noisy labels by one-hot encoding of the
model predictions. Now the partial-label learning problem becomes a conventional learning problem with all samples
attached with single noisy labels. It is naturally to use the proposed method to further deal with such a problem. Thus at the
second stage, we trained the network with obtained single noisy labeled data using the proposed CMW-Net method. We use
a SGD optimizer with a momentum 0.9, a weight decay 5× 10−4, an initial learning rate 0.1, a batch size 128. The learning
rate is divided by 10 after 80 and 100 epoch (for a total 120 epochs). We adopt Adam optimizer to learn CMW-Net. The
learning rate of CMW-Net is fixed as 10−3, and the weight decay of CMW-Net is fixed as 10−4. We repeat the experiments
with 3 random trials and report the mean value and standard deviation. We adopt the meta-data-generation strategy as
introduced in Sec. 4.2 of the main text, by randomly selecting 10 images per class at every epoch from the training set as the
meta-data set.

Following PRODEN [103], we manually corrupt these datasets into partially labeled versions by a flipping probability q,
where q = P (ỹ = 1|y = 0) gives the probability that a false positive label ỹ is flipped from a negative label y. We adopt
a binomial flipping strategy: c − 1 independent experiments are conducted on all training examples, each determining
whether a negative label is flipped with probability q. Then for the examples that none of the negative labels are flipped,
we additionally flip a random negative label to the candidate label set for ensuring all the training examples are partially
labeled. We use five widely used benchmark datasets, including MNIST [118], Fashion-MNIST [119], Kuzushiji-MNIST
[120], CIFAR-10 and CIFAR-100 [84]. For MNIST, Fashion-MNIST, and Kuzushiji-MNIST datasets, we use 5-layer perceptron
(MLP), and for CIFAR-10 and CIFAR-100 dataset, we use ResNet-32 [1] as the classifier network.

Table 13 reports the mean test accuracies with standard deviation on five benchmark datasets. It can be seen that our
method can consistently outperform the baseline PRODEN method under both less-partial circumstances q = 0.1 and
stronger-partial circumstances q = 0.7. Observing that PRODEN method behaves under strong-partial circumstances
similarly as that under less-partial circumstances, which implies it tends to easily overfit to pseudo-labels estimated by
model prediction. Considering that the obtained results are calculated on the basis of PRODEN method as single noisy
labels dataset, our method can alleviate such pseudo-label issue and bring further performance improvement for such a
partial label learning problem. Through introducing our method as a post-processing learning, we can obtain a more robust
model based on the over-confident information. Particularly, our method can improve PRODEN method about 4-8 points
on CIFAR-10 and 8-13 points on CIFAR-100 in classification accuracy. Applying our method to more partial-label learning
method to obtain more robust results is thus potentially expected, and we leave this research for our future study.

E.2 Semi-Supervised Learning

Following Fixmatch [47], we consider the settings by giving 4/25/400 labeled images for each class on CIFAR-10 and
4/25/100 labeled images for each class on CIFAR-100. We used WRN-28-2/WRN-28-8 for CIFAR-10/CIFAR-100 as the
classifier network with an initial learning rate 0.03, a batch size 64 for label data and 448 for unlabeled data. For ImageNet
experiment, we use 10 % of the training data for each class as labeled and treat the rest as unlabeled examples. We used
ResNet-50 as the classifier and the batch size for labeled (unlabeled) images is 64 (320) with initial learning rate 0.03. We
adopt RandAugment [121] as the strong augmentation for this experiment. We adopt Adam optimizer to learn CMW-Net.
The learning rate of CMW-Net is fixed as 10−3, and the weight decay of CMW-Net is fixed as 10−4.

Table 14 shows the classification error rates on CIFAR-10/100 and ImageNet. From the table, one can observe that our
method improves Fixmatch method and achieves the best performance under all label conditions on all datasets. Specifically,
our method achieves around 2 points improvement on ImageNet as compared with Fixmatch, showing that our method is
capable of finely handling such large-scale sample weight learning issue.

It should be noted that we have not used any extra meta-dataset in addition to the labeled images. Thus all comparison
experiments on semi-supervised learning (SSL) have been implemented in a sufficiently fair manner for all comparison
methods.

Specifically, in our meta-learning method, we directly take the provided labeled images in the implemented SSL task as
meta-data, since they are relatively more delicately collected and with high label quality. Besides, we use the pseudo-labeled
images automatically annotated in the training process from the unsupervised data as training data since they are with
relatively lower label quality and inevitably contain label noises. This means that we have not used any extra labeled data to
train CMW-Net, and the employed data source of our method is entirely similar to that used in the comparison FixMatch
method.

To intrinsically explain why the proposed method can get such a performance gain as compared with other methods, we
want to present the following explanations. We take the SOTA method FixMatch as example. The FixMatch is a self-training
SSL method, which generates pseudo-labels of unlabeled images with the model’s predictions and then iteratively train
the model with some selected reliable pseudo labeled samples, together with those pre-given labeled ones. In the method
iteration, FixMatch uses a fixed confidence threshold to filter out unreliable pseudo labels (i.e., smaller than the pre-set
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TABLE 13
Performance comparison of classification accuracy (%) on partially labeled benchmark datasets.

Dataset Methods Classifier q = 0.1 q = 0.3 q = 0.5 q = 0.7

MNIST PRODEN MLP 98.59 ± 0.01 98.07 ± 0.03 98.42 ± 0.03 98.09 ± 0.05
PRODEN+ Ours MLP 98.99 ± 0.01 98.83 ± 0.02 98.57 ± 0.04 98.33 ± 0.02

Fashion-MNIST PRODEN MLP 89.51 ± 0.07 88.79 ± 0.06 88.32 ± 0.07 87.21 ± 0.13
PRODEN+ Ours MLP 90.47 ± 0.02 90.07 ± 0.05 89.38 ± 0.12 87.84 ± 0.13

Kuzushiji-MNIST PRODEN MLP 91.07 ± 0.07 90.24 ± 0.12 88.31 ± 0.14 85.55 ± 0.58
PRODEN+ Ours MLP 93.07 ± 0.04 91.65 ± 0.03 88.86 ± 0.07 86.11 ± 0.17

CIFAR-10 PRODEN ResNet-32 82.09 ± 0.05 81.70 ± 0.58 80.72 ± 1.08 76.24 ± 1.35
PRODEN+ Ours ResNet-32 89.77 ± 0.36 88.01 ± 0.27 86.04 ± 0.32 80.57 ± 1.33

– – – q = 0.03 q = 0.05 q = 0.07 q = 0.10

CIFAR-100 PRODEN ResNet-32 48.06 ± 0.95 47.07 ± 1.32 46.49 ± 1.73 46.30 ± 1.98
PRODEN+ Ours ResNet-32 61.22 ± 0.03 60.25 ± 0.17 59.17 ± 0.17 54.64 ± 0.15

TABLE 14
Performance comparison of our method with SOTA methods trained on CIFAR-10, CIFAR-100 and ImageNet datasets in terms of test error over 3

trials. Results for all baselines are directly copied from [47].

CIFAR-10 CIFAR-100 ImageNet
Method 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 10% labels
Π-Model [122] - 54.26 ± 3.97 14.01 ± 0.38 - 57.25 ± 0.48 37.88 ± 0.11 -
Pseudo-Labeling [108] - 49.78 ± 0.43 16.09 ± 0.28 - 57.38 ± 0.46 36.21 ± 0.19 -
Mean Teacher [80] - 32.32 ± 2.30 9.19 ± 0.19 - 53.91 ± 0.57 35.83 ± 0.24 -
MixMatch [109] 47.54 ± 11.50 11.05 ± 0.86 6.42 ±0.10 67.61 ± 1.32 39.94 ± 0.37 28.31 ± 0.33 -
UDA [106] 29.05 ± 5.93 8.82 ± 1.08 4.88 ± 0.18 59.28 ± 0.88 33.13 ± 0.22 24.50 ± 0.25 -
FixMatch [47] 13.81 ± 3.37 5.07 ± 0.65 4.26 ± 0.05 48.85 ± 1.75 28.29 ± 0.11 22.60 ± 0.12 32.9 (top1), 13.3 (top5)
FixMatch + CMW-Net 9.6 ± 0.62 4.73 ± 0.15 4.25 ± 0.03 47.7 ± 1.14 27.43 ± 0.12 22.55 ± 0.09 30.8 (top1), 11.3 (top5)

hyper-parameter τ ). Albeit achieving good performance in some applications, the method mainly has two limitations. Firstly,
it uses an essential hard-thresholding weighting manner by treating all selected pseudo-labeled samples equally (can be seen
as imposing 1-weight on these samples) and play similar role with those pre-given labeled images. The former, however,
should evidently less reliable than the latter, and should more rationally be less weighted in a more elaborate soft-weight
manner. Secondly, its involved hyper-parameter τ is pre-specified as a fixed constant. This is obviously not very appropriate,
since this important parameter should be adaptably specified against different tasks, and even should be properly varied
during iterations in handling one task to dynamically fit the reliability requirement in different training stages (e.g., less
high-quality samples should be selected in the beginning but more in the end since the model is trained to be more mature
in iteration).

Comparatively, our CMW-Net improves FixMatch by automatically learning a suitable weighting strategy from data
substituting the original hard weighting scheme, to make sample weights capable of more sufficiently reflecting noise extents
and adaptable to training data/task. Two aforementioned limitations of FixMatch can thus be alleviated simultaneously.
This explains why our method can get evident superior performance than FixMatch.

E.3 Selective Classification

E.3.1 Problem Formulation

We consider the selective classification problem in DNNs (supervised learning with a rejection option), which allows the
learned classifier to abstain whenever they are not sufficiently confident in their prediction, so as to finely detect and control
statistical uncertainties of training cases [123]. Specifically, let P (X,Y ) be the underlying joint distribution over X × Y ,
where X ,Y denote the sample and label spaces, respectively, and f : X → Y be the prediction function (DNNs here). The
expected risk is:

R(f) = EP (X,Y )[`(f(x), y)],

where ` : Y × Y → R+ is the loss function. Given a dataset Dtr = {(xi, yi)}Ni=1 where all (xi, yi)s are i.i.d. drawn from
X × Y , the empirical risk is then specified as

R̂Dtr (f) =
1

N

N∑
i=1

`(f(xi), yi).
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TABLE 15
Selective classification error (%) on CIFAR-10, CIFAR-100 datasets for various coverage rates (%) for SelectiveNet (left in each panel) and

SelectiveNet+CMW-Net (right in each panel). The better result in each case is highlighted in bold.

Dataset Coverage 200 100 50 20 10 0
SelectiveNet Ours SelectiveNet Ours SelectiveNet Ours SelectiveNet Ours SelectiveNet Ours SelectiveNet Ours

CIFAR-10

100 55.50 ± 0.44 55.44 ± 0.08 34.94 ± 0.94 33.31 ± 0.23 25.23 ± 0.48 22.49 ± 0.23 18.16 ± 0.02 15.15 ± 0.43 14.62 ± 0.57 12.23 ± 0.12 6.79 ± 0.03 6.02 ± 0.07
95 52.63 ± 1.48 52.10 ± 0.08 32.60 ± 0.98 30.95 ± 0.20 22.72 ± 0.49 21.50 ± 0.34 15.57 ± 0.04 13.21 ± 0.41 12.07 ± 0.53 9.94 ± 0.06 4.16 ± 0.09 4.00 ± 0.11
90 50.83 ± 1.34 50.63 ± 0.07 30.62 ± 0.11 29.49 ± 0.10 20.65 ± 0.49 19.65 ± 1.00 13.37 ± 0.13 11.41 ± 0.40 10.04 ± 0.41 8.01 ± 0.16 2.43 ± 0.08 2.29 ± 0.15
85 48.95 ± 0.99 47.91 ± 0.12 28.85 ± 0.33 28.21 ± 0.13 18.84 ± 0.43 17.89 ± 0.84 11.61 ± 0.03 9.62 ± 0.35 8.32 ± 0.21 6.34 ± 0.15 1.43 ± 0.08 1.17 ± 0.02
80 46.99 ± 0.76 45.11 ± 0.11 27.27 ± 0.46 26.32 ± 0.30 17.33 ± 0.32 16.31 ± 0.65 10.07 ± 0.01 8.03 ± 0.30 6.91 ± 0.12 4.80 ± 0.15 0.86 ± 0.06 0.80 ± 0.01
75 45.09 ± 0.62 42.19 ± 0.01 25.85 ± 0.65 24.33 ± 0.26 16.02 ± 0.30 14.64 ± 0.35 8.88 ± 0.12 6.52 ± 0.30 5.69 ± 0.11 3.59 ± 0.09 0.48 ± 0.02 0.55 ± 0.03
70 43.10 ± 0.47 39.21 ± 0.30 24.36 ± 0.76 22.36 ± 0.19 14.79 ± 0.29 13.13 ± 0.23 7.81 ± 0.22 5.29 ± 0.27 4.75 ± 0.16 2.57 ± 0.11 0.32 ± 0.01 0.35 ± 0.04

CIFAR-100

100 68.74 ± 0.42 65.62 ± 0.25 65.85 ± 0.15 60.77 ± 0.09 61.21 ± 0.19 55.70 ± 0.22 55.04 ± 0.39 46.68 ± 0.14 49.12 ± 0.38 40.46 ± 0.31 27.72 ± 0.35 25.75 ± 0.23
95 67.41 ± 0.43 64.13 ± 0.33 64.41 ± 0.16 59.08 ± 0.06 59.55 ± 0.22 53.81 ± 0.20 53.07 ± 0.39 44.46 ± 0.13 46.99 ± 0.34 37.97 ± 0.33 24.99 ± 0.38 23.03 ± 0.24
90 66.09 ± 0.48 62.48 ± 0.28 63.01 ± 0.17 57.36 ± 0.04 57.81 ± 0.20 51.84 ± 0.20 51.12 ± 0.39 42.24 ± 0.18 44.89 ± 0.33 35.59 ± 0.27 22.59 ± 0.31 20.43 ± 0.18
85 64.65 ± 0.54 60.79 ± 0.22 61.51 ± 0.16 55.53 ±0.04 56.21 ± 0.27 49.76 ± 0.21 49.24 ± 0.32 40.05 ± 0.13 42.81 ± 0.20 33.24 ± 0.27 20.31 ± 0.33 17.98 ± 0.21
80 63.09 ± 0.54 59.00 ± 0.26 59,85 ± 0.11 53.57 ± 0.09 54.25 ± 0.20 47.62 ± 0.15 47.15 ± 0.34 37.54 ± 0.26 40.67 ± 0.23 30.95 ± 0.21 18.17 ± 0.28 15.45 ± 0.01
75 61.50 ± 0.57 57.10 ± 0.13 58.11 ± 0.06 51.42 ± 0.18 52.19 ± 0.20 45.24 ± 0.19 45.03 ± 0.38 35.14 ± 0.28 38.65 ± 0.36 28.41 ± 0.11 16.32 ± 0.42 12.97 ± 0.03
70 59.72 ± 0.66 54.93 ± 0.11 56.21 ± 0.06 49.10 ± 0.16 50.04 ± 0.32 42.56 ± 0.29 42.77 ± 0.34 32.55 ± 0.33 36.42 ± 0.40 25.89 ± 0.20 14.63 ± 0.59 10.69 ± 0.05
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Fig. 21. Risk coverage curves of SelectiveNet w/o CMW-Net strategy on (left) CIFAR-10 and (right) CIFAR100 under imbalance factor 20.

The selective classifier is then defined as a pair of functions (f, g), where g : X → R is a selection function that reveals the
underlying uncertainty of inputs. Specifically, given input x, (f, g) outputs:

(f, g)(x) =

{
f(x), if g(x) ≥ τ
Abstain otherwise

,

i.e., the model abstains from making a prediction when selection function g(x) falls bellow a predetermined threshold τ . We
call g(x) the uncertainty score of x, and different methods tend to use different g. The coverage is defined as the probability
mass of the non-rejected region in X , expressed as:

φ(g) = EP (X)[g(x)],

and its empirical coverage is

φ̂Dtr (g) =
1

m

N∑
i=1

g(xi).

The selective risk of (f, g) is defined as

R(f, g) =
EP (X,Y )[`(f(x), y)g(x)]

φ(g)
,

and empirical version is

R̂Dtr (f, g) =
1
N

∑N
i=1 `(f(xi), yi)g(xi)

φ̂Dtr (g)
.

The SelectiveNet [123] tries to optimize the objective

L = αLDtr (f, g) + (1− α)R̂Dtr (h),

where

LDtr (f, g) = R̂Dtr (f, g) + λmax(0, c− φ̂Dtr (g))2,

c is the given coverage, and α, λ control the relative importance of each term. As stated in [123], the auxiliary cross-entropy
loss R̂Dtr (h) exposes the main body block to all training samples throughout the training process to avoid SelectiveNet
overfitting to the wrong subset of the training set.
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It can be seen that the rationality of the auxiliary cross-entropy loss R̂Dtr (h) still inclines to be negatively affected by the
data biased issues, like commonly existed class imbalance and noisy label cases in practical datasets. It is thus natural to
employ the proposed CMW-Net on the term for making the learned SelectiveNet with better robustness to training samples.

E.3.2 CMW-Net Amelioration and Experiments
We can then readily ameliorate the selective classification by embedding CMW-Net weighting schemes into its optimization
problem. Specifically, provided a meta dataset as Dmeta = {xmetai , ymetai }Mi=1, the objective of the problem is then
reformulated as the following bi-level problem:

Θ∗ = arg min
Θ

LDmeta(f∗Θ, g
∗
Θ)

{f∗Θ, g∗Θ} = arg min
f,g

αLDtr (f, g) + (1− α)
N∑
i=1

V(`i, Ni; Θ)`(h(xi), yi).

Through properly assigning sample weights to the loss terms for all training samples, it is expected to better eliminate the
negative influence brought by complicated data biases.

We use long-tailed versions of CIFAR-10 and CIFAR-100 datasets under different imbalance factors for performance
evaluation. The generation strategy is similar to that introduced in Sec. 4.1 of the main text. The baseline method is the
recent SOTA method for this task: SelectiveNet [123]. We use the VGG-16 network [115] with batch normalization [124] and
dropout [125] as the classifier network in experiments. The network is optimized using SGD with initial learning rate of 0.1,
momentum of 0.9, weight decay of 5× 10−4, batch size of 128, and total training epoch of 300. The learning rate is decayed
by 0.5 in every 25 epochs. As the meta-data-generation strategy as introduced in Sec. 4.2 of the main text, we randomly
select 10 images per class at every epoch from the training set as the meta-data set.

The obtained experimental results are summarized in Table 15 and Fig. 21. Specifically, the figure compares the risk-
coverage curves of SelectiveNet equipped with and without CMW-Net for weighting its sample loss. It is easy to see
the performance gain brought to the method by CMW-Net. From the figure, one can more comprehensively observe that
selective classification errors of SelectiveNet consistently grow as we increase the degree of class imbalance. Comparatively,
under the assistance of CMW-Net, the errors can be consistently reduced in all cases. These results validate the usefulness of
CMW-Net for this specific learning task under biased data.
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