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Abstract—Neural fields have revolutionized the area of 3D reconstruction and novel view synthesis of rigid scenes. A key challenge in
making such methods applicable to articulated objects, such as the human body, is to model the deformation of 3D locations between
the rest pose (a canonical space) and the deformed space. We propose a new articulation module for neural fields, Fast-SNARF,
which finds accurate correspondences between canonical space and posed space via iterative root finding. Fast-SNARF is a drop-
in replacement in functionality to our previous work, SNARF, while significantly improving its computational efficiency. We contribute
several algorithmic and implementation improvements over SNARF, yielding a speed-up of 150x. These improvements include voxel-
based correspondence search, pre-computing the linear blend skinning function, and an efficient software implementation with CUDA
kernels. Fast-SNARF enables efficient and simultaneous optimization of shape and skinning weights given deformed observations
without correspondences (e.g. 3D meshes). Because learning of deformation maps is a crucial component in many 3D human avatar
methods and since Fast-SNARF provides a computationally efficient solution, we believe that this work represents a significant step
towards the practical creation of 3D virtual humans.

+

1 INTRODUCTION

3D avatars are an important building block for many
emerging applications in the metaverse, AR/VR and be-
yond. To this end, an algorithm to reconstruct and animate
non-rigid articulated objects, such as humans, accurately
and quickly is required. This challenging task requires mod-
eling the 3D shape and deformation of the human body - a
complex, articulated, non-rigid object. For such techniques
to be widely applicable, it is paramount that algorithms
do not require manually provided annotations nor that
subjects appear in a-priori known poses. Therefore, inferring
the transformation that 3D locations undergo between the
posed observation space and some canonical space is the
key challenge to attain a model that can be animated.

Static shape modeling has recently seen much progress
with the advent of neural fields [33} 36, 137, [43]. Such rep-
resentations are promising due to their ability to represent
complex geometries of arbitrary topology at arbitrary res-
olution, by leveraging multi layer perceptrons (MLPs) to
encode spatial quantities of interest (e.g. occupancy prob-
abilities) in 3D space. Recent work [37] has further achieved
fast reconstruction and real-time view synthesis of rigid
scenes with high quality. However, to enable fast non-rigid
reconstruction and realistic animation of articulated objects,
a robust and fast articulation module is needed.

Articulation of neural fields is typically modeled via
deformation of 3D space, which warps neural fields from
a rest pose (canonical space) into any target pose (posed
space), leveraging dense deformation fields. Several tech-
niques have been proposed to construct such deformation
fields. Building upon traditional mesh-based linear blend
skinning (LBS) [22], several works [23| [35 44, [51, 56|
learn dense skinning weight fields in posed space and then
derive the deformation fields via LBS. While inheriting
the smooth deformation properties of LBS, the resulting
skinning weight fields cannot generalize to unseen poses,
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Fig. 1: Fast-SNARF for Articulated Neural Fields. Fast-
SNAREF finds accurate correspondences between canonical
space and posed space while being 150x faster than our pre-
vious method SNARF [9]. Fast-SNARF enables optimizing
shape and skinning weights given deformed observations
without correspondences (e.g. 3D meshes).

because the are pose-dependent and changes in pose lead to
drastic changes to the spatial layout of the deformation field.
These changes not been observed at training time for unseen
poses. Another line of work approximates the mapping as
piece-wise rigid transformations [13}[39], which suffers from
discontinuous artifacts at joints. The mapping could also be
approximated based on a skinned base mesh [21I], which
can lead to inaccuracies due to the mismatch between the
base mesh and the actual shape and suffers from erroneous
nearest neighbor associations in regions with self-contact.

Our recent work, SNARF [9], overcomes these problems
by design in that it learns a skinning weight field in canoni-
cal space which is pose-independent. This formulation allows
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for natural deformation due to the smooth deformation
properties of LBS and generalizes to unseen poses because
of the pose-independent canonical skinning weights. Fur-
thermore, in contrast to previous methods [23] 35, 44} 51} 56],
pose-independent skinning weights can be learned unsu-
pervised, i.e. without the need for ground-truth skinning
weights or other forms of annotations.

However, a major limitation of SNARF is the algorithm'’s
computational inefficiency. While learning a canonical skin-
ning weight field enables generalization, the deformation
from posed to canonical space is defined implicitly, and
hence can only be determined numerically via iterative root
finding. The efficiency of the operations at each root finding
iteration play a critical role in the speed of the overall
articulation module. Therefore, computationally expensive
operations in SNARF, such as computing LBS and evalu-
ating the skinning weight field, parameterized by an MLP,
lead to prohibitively slow speed — learning an animatable
avatar from 3D meshes takes 8 hours on high-end GPUs.

In this paper, we propose Fast-SNARF, an articulation
module that is fast yet preserves the accuracy and robust-
ness of SNARF. We achieve this by significantly reducing
the computation at each root finding iteration in the ar-
ticulation module. First, we use a compact voxel grid to
represent the skinning weight field instead of an MLP. The
voxel-based representation can replace MLPs without loss
of fidelity because the skinning weight field is naturally
smooth, and is pose-independent in our formulation. In
addition, exploiting the linearity of LBS, we factor out LBS
computations into a pre-computation stage without loss of
accuracy. As a result, the costly MLP evaluations and LBS
calculations in SNARF are replaced by a single tri-linear
interpolation step, which is lightweight and fast. Together
with a custom CUDA kernel implementation, Fast-SNARF
can deform points with a speed-up of 150x wrt. SNARF
(from 800ms to 5ms) without loss of accuracy.

In our experiments we follow the setting of SNARF and
learn an animatable avatar, including its shape and skinning
weights, from 3D scans in various poses, represented by
a pose-conditioned occupancy field parameterized by an
MLP. The overall inference and training speed, including
both articulation and evaluation of the canonical shape MLP,
is increased by 30x and 15x respectively. Note that the
speed bottleneck is shifted from articulation (in SNARF) to
evaluating the canonical shape MLP (in Fast-SNARF). Fast-
SNAREF is also faster than other articulation modules and is
significantly more accurate, as we show empirically. While
we focus on learning occupancy networks, Fast-SNARF may
be interfaced with other neural fields in the same manner
that SNARF and variants have been utilized [24, [26, 58| 64].

We hope Fast-SNARF will accelerate research on articu-
lated 3D shape representations and release the code on our
project webpage Erto facilitate future research.

Relation to SNARF [9]: This paper is an extension of
SNAREF [9], a conference paper published at ICCV "21 which
models articulation of neural fields. This paper addresses
the main limitation of SNAREF, i.e. its computational ineffi-
ciency via a series of algorithmic and implementation im-
provements described in Section [f] We provide a speed and

1. https:/ / github.com /xuchen-ethz/fast-snarf
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accuracy comparison of Fast-SNARF with SNARF and other
baseline methods, and thorough ablations in Section [}

2 RELATED WORK
2.1 Rigid Neural Fields

Neural fields have emerged as a powerful tool to model
complex rigid shapes with arbitrary topology in high fi-
delity by leveraging the expressiveness of neural networks.
These neural networks regress the distance to the sur-
face [43], occupancy probability [33], color [41] or radi-
ance [36] of 3D points. Conditioning on local information
such as 2D image features or 3D point cloud features pro-
duces more detailed reconstructions [10} [17, 46 49} 50]] than
using global features. Such representations can be trained
with direct 3D supervision, e.g. ground truth occupancy or
distance to the surface, or can be trained indirectly with raw
3D points clouds [2} 16} 51] or 2D images [36} 138} 53} [61]].

Fast Rigid Neural Fields: One major limitation of neural
field representations are their slow training and inference
speeds, mainly due to the fact that multiple evaluations
of deep neural networks are necessary to generate images
and each of these evaluations is time-consuming. Several
works have recently been proposed to improve the training
[6, 28] 137, 52} 154} 55] and inference speed [15] [19] 48] [62].
The core idea is to leverage explicit representations [46],
such as voxel grids or hash tables, to store features for a
sparse set of points in space. The dense field can then be
obtained by interpolating sparse features and by decoding
the features using neural networks. Instead of point loca-
tions, these networks take features as input, which are more
informative, enabling the network to be shallow and hence
more computationally efficient. However, the underlying
explicit representations have a fixed spatial layout which
limits these methods to rigid shapes.

Our proposed articulation module can deform rigid neu-
ral fields to enable non-rigid animation at inference time
and enable learning from deformed observations during
training. Importantly, our module runs at a comparable
speed to recent fast rigid neural field representations (e.g.
[37]) and is thus complementary to advancements made in
accelerating neural fields.

2.2 Articulation of Neural Fields

Recently, several articulation algorithms for neural fields
have been proposed. These methods serve as a foundation
for many tasks such as generative modeling of articulated
objects or humans [3, 8] [12} 20| [40| 63], and reconstructing
animatable avatars from scans [9, [13, 27, 34, 35| 51} 56],
depth [14] 42| [57], videos [7| 24, 25| 26} 29, [39] [45, |47, 58|
59,164] or a single image [18} 21} [60].

Part Based Models: One option is to model articulated
shapes as a composition of multiple parts [13| 34, [39].
Rigidly transforming these parts according to the input
bone transformations produces deformed shapes. While
preserving the global structure after articulation, the con-
tinuity of surface deformations is violated, causing artifacts
at the intersections of parts. Moreover, inferring the correct
part assignment from raw data is challenging and typically
requires ground-truth supervision.
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Backward Skinning: Another line of work [23] [35, 51} 56]
proposes to learn skinning weight fields in deformed space
and then derive the backward warping field using LBS
to map points in deformed space to canonical ones. Such
methods are straightforward to implement but inherently
suffer from poor generalization to unseen poses. Backward
deformation fields are defined in deformed space and,
hence, inherently deform with the pose. Thus, the network
must memorize deformation fields for different spatial con-
figurations, making it difficult to generate deformations
that have not been seen during training. Learning such
pose-dependent skinning weight fields is also challenging,
thus existing methods often rely on strong supervision
via ground-truth skinning weights. Moreover, due to the
varying spatial configuration, such pose-dependent skin-
ning weights cannot be modeled using acceleration data
structures such as explicit voxel grids.

Forward Skinning: Learning the skinning weights in canon-
ical space instead of deformed space is a natural way
to resolve the generalization issue. However, deriving the
mapping from deformed to canonical points with canonical
skinning weights is not straightforward, because the skin-
ning weights of the deformed query points are unknown.
Thus, SNAREF [9] attains this mapping using an iterative root
finding formulation, which finds the canonical points that
are forward-skinned to the deformed query location. This
formulation enables the articulation of neural fields into ar-
bitrary poses, even those unseen during training. The pose-
independent canonical skinning weights can be learned
unsupervised without the need for ground-truth skinning
weights. Moreover, multiple canonical correspondences can
be found using such methods, which is important to handle
self-contact. This forward skinning formulation has already
found widespread use in many tasks, such as generative
modeling [8], or personalized avatar reconstruction from
scans [27], depth [14], or images [24} 26} 58| [64].

However, one major limitation of this formulation is its
slow speed due to the expensive computation at each root
finding iteration. The original SNARF model relies on an
MLP to parameterize the skinning weight field. At each root
finding iteration, SNARF requires evaluating the MLP to
compute LBS weights, which is time-consuming. This lim-
itation is further amplified when combining forward skin-
ning with rendering algorithms that require many queries
along many rays (cf. [11]). To reduce computation time,
existing methods [24, 58] use an explicit mesh to tighten
the search space of root finding. However, these methods
introduce the overhead of mesh extraction and still require
days of training time to learn avatars from images.

We address this problem by using a voxel-based param-
eterization of the skinning weight field and by factoring out
the LBS computation into a pre-computation stage. Since
Fast-SNARF does not require mesh extraction in the training
loop and is therefore more versatile and much faster to train
than those that rely on meshes (e.g. [24]) (minutes vs. days).
Our method also enables learning the skinning weights.

3 DIFFERENTIABLE FORWARD SKINNING

In this section, we briefly summarize the differentiable for-
ward skinning approach proposed in SNARF [9]. We then

discuss Fast-SNAREF in Section 4

General Pipeline: Figure 2] illustrates the general pipeline
for modeling articulated neural fields. Given a query point
in posed space, an articulation module first finds its corre-
spondences in canonical space according to the input body
pose. Then the canonical shape properties are evaluated
at the correspondence locations. When multiple correspon-
dences exist, multiple values of these properties are pre-
dicted and aggregated into one value as the final output.

Canonical Neural Fields: Canonical shape properties can be
modeled using any coordinate-based representation, e.g. oc-
cupancy fields [33] or radiance fields [36]. For convenience,
we follow SNARF and use occupancy fields as an example.
The occupancy field in SNARF [9] is defined as

fo; 1 REXR™ — [0,1], 1
X,p > o. 2)

Here f,, is the occupancy field that predicts the occupancy
probability o for any canonical point x. The parameters of
the occupancy field are denoted as oy. It can be option-
ally conditioned on the articulated pose p to model pose-
dependent local deformations such as clothing wrinkles.

Neural Blend Skinning: In SNAREF, the articulation is mod-
eled using LBS. To apply LBS to continuous neural fields, a
skinning weight field in canonical space is defined as:

Wo, R3 - R™, 3)

where o, are the parameters and n; denotes the number of
bones. In SNARE, this field is parameterized as an MLP.
However, any other coordinate-based representation can
be used instead. Given the skinning weights w of a 3D
point x and the bone transformations B = {B1,...,By,}
(B; € SE(3)) that correspond to a particular body pose p,
the 6D transformation T(x) € R3*? of a canonical point is
determined by the following convex combination:

T(x) =Y wy,i(x): Bi. (4)
i=1

The deformed point corresponding to the canonical
point is then computed as

x' =d,, (x,B) =T(x) x. (5)

Correspondence Search: The canonical skinning weight
field and Eq. (5) define the mapping from canonical points
to deformed ones, i.e. x — x’. However, generating posed
shapes requires the inverse mapping, i.e. x’ — x, which is
defined implicitly as the root of the following equation:

d, (x,B)—x'=0. 6)

The roots of this equation cannot be analytically solved in
closed form. Instead, the solution can be attained numer-
ically via standard Newton or quasi-Netwon optimization
methods, which iteratively find a location x that satisfies

Eq. () (see Fig.3):
xF =<k — (M)~ (d,, (x*, B) — X). (7)

Here J is the Jacobian matrix of d,,, (x*, B) — x'. To avoid
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Fig. 2: General Framework for Articulated Neural Field Representations. Given a query point in deformed space x’ and
the input pose (represented as joint angles p and 6D transformations B), an articulation module first finds its canonical
correspondences x*. The canonical shape representation f,, then outputs the occupancy probabilities or densities at {x*}
which are finally aggregated to yield the occupancy probability or density of the query point x’.

computing the Jacobian at each itgration, Broyden’s method
[5] and low-rank approximation J of J~! is used.

Handling Multiple Correspondences: Multiple roots, de-
noted by the set {x}}, might exist due to self-contact where
multiple canonical correspondences of one deformed point
exist (see green and blue points in Fig. ). Multiple roots
are found by initializing the optimization-based root finding
procedure with different starting locations and exploiting
the local convergence of the optimizer. The initial states {x?}
are thereby obtained by transforming the deformed point x’
rigidly to the canonical space for each of the n, bones, and
the initial Jacobian matrices {J{} are the spatial gradients of
the skinning weight field at the corresponding initial states:

adaw (Xv B)
ox 0

szi

x;=B;"x J}= ®)
The final set of correspondences is determined by their
convergence:

X" ={x} | |dg, (xi, B) = x'[l, <€}, ©)

where ¢ is the convergence threshold.

Aggregating Multiple Correspondences: The maximum
over the occupancy probabilities of all canonical correspon-
dences gives the final occupancy prediction:

o'(x',p) = max {f,, (x",p)}. (10)

Losses: The canonical neural fields and the skinning weights
can be learned jointly from observations in the deformed
space. SNARF assumes direct 3D supervision and uses
the binary cross entropy loss Lpcg(o(x',p),04:(x")) be-
tween the predicted and ground-truth occupancy for any
deformed point. In addition, two auxiliary losses are ap-
plied during the first epoch to bootstrap training. SNARF
randomly samples points along the bones that connect
joints in canonical space and encourages their occupancy
probabilities to be one. Moreover, SNARF encourages the
skinning weights of all joints to be 1 for their parent bones.

Gradients: To learn the skinning weights w,, using a loss
applied on the predicted occupancy probability in posed
space L(o(x',p)), the gradient of £ wrt. o,, is required.

Y Iteratively ﬁnd x*, 8. t
- Oy —>wx ’LUl x* X X X :
| uuu =1 ox;,
Fig. 3: MLP-based Forward Skinning (SNARF). Given a
point in deformed space x’, SNAREF finds its canonical corre-
spondences x* that satisfy the forward skinning equation
via root finding. Multiple correspondences can be reliably

found by initializing the root finding algorithm with multi-
ple starting points derived from the bone transformations.

Applying the chain rule, the gradient % is given by

0, () oxt
ox* 0oy’

oL 9L Do
dow 00 Of,

where x* is the root as defined in Eq. (9)

The last term cannot be obtained using standard auto-
differentiation because x* is determined by the iterative cor-
respondence search using o,,. This iterative procedure is not
trivially differentiable. To overcome this problem, implicit
differentiation is used to derive the following analytical
form of the last term:

ox* _ (0d,,(x*,B)\”" 0d,,(x*,B)
dow '

ox* 00y
Substituting Eq. (12) into Eq. (1I) yields the gradient term
aaf which then allows skinning weights to be learned with

standard back-propagation.

(11)

(12)

4 FAST DIFFERENTIABLE FORWARD SKINNING

While the formulation mentioned above can articulate neu-
ral fields with good quality and generalization ability, the
original SNARF algorithm is computationally expensive,
which limits its wider application. As a reference, deter-
mining the correspondences of 200k points takes 800ms on
an NVIDIA Quadro RTX 6000 GPU. In the following, we
describe how Fast-SNARF overcomes this issue, reducing
the computation time from 800ms to 5ms (Table 22).

4.1 Voxel-based Correspondence Search

The core of our method is to factor out costly computations
at each root finding iteration in SNARF, including MLP
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Fig. 4: Voxel-based Forward Skinning (Fast-SNARF). In
comparison with SNARF (cf. Fig. B), Fast-SNARF uses a
voxel-based representation to speed up the iterative corre-
spondence search. The skinning weight field is represented
as a voxel grid. For each pose, we first pre-compute LBS
for each grid point, yielding a transformation field. For each
query deformed point x’, Fast-SNARF finds its canonical
correspondences x* which satisfy T(x*) - x* = x'.

evaluations and LBS calculations, into a pre-computation
stage as illustrated in Algorithm [T}

Voxel-based Skinning Field: The main speed bottleneck
of SNARF lies in computing Eq. (7) at each iteration of
Broyden’s method. Computing Eq. is time-consuming
because it involves querying skinning weights, which are
parameterized via an MLP in SNAREF, and then computing
LBS. We notice that the skinning weight field does not
contain high-frequency details as illustrated in Fig.[6] There-
fore, we re-parameterize the skinning weight field w with
a low-resolution voxel grid {w,} with skinning weights
w, defined for each grid point x,. The skinning weights
of any, non-grid aligned point in space are then obtained
via tri-linear interpolation. We found that a resolution of
64 x 64 x 16 is sufficient to describe the skinning weights
in all experiments. Note that we use lower resolution along
the z-axis due to the “flatness” of the human body along
this dimension in canonical space.

Pre-computing LBS: Computing linear blend skinning
(Eq. () at each root finding iteration also impacts speed.
To further improve computation efficiency, we note that an
explicit voxel-based skinning weights representation {w,}
allows us to compute the linearly blended skinning trans-
formations for grid points {T, } given current body poses:

b
Tv = E ww- . Bz
=1

Then, during root finding, the required transformation at
any canonical point T(x) can be determined by tri-linearly
interpolating neighbouring transformations in {T,}. Thus,
LBS only needs to be run for a small set of grid points
instead of all query points in the root finding procedure.

(13)

Custom CUDA Kernel: Broyden’s method is iterative and
involves many small operations that have to be computed
per query point, such as arithmetic operations on small
matrices and reading values from the voxel grid. We note

Algorithm 1 Correspondence Search

Inputs:

{(x/,x°,J%)} query points and initialization
B bone transformations

W, skinning weights MLP

Variant 1: MLP-based Search (SNARF)

for x’,x°,J° € {(x,x°,J°)} in parallel do

for k + 0,n do

W1, ey Wy, — Wi, (x’f)
T S w(x) - By
xF+1 JF+1 o broyden(x*, J*, T, x')

end for

costly operations

inside root finding

> Eq. (6)

end for
return: {x"}

Variant 2: Voxel-based Search (Fast-SNARF)

for each x, € {x,} in parallel do
W, ooy Wy, — Wo (Xy)
T, + > w; - B;
end for
for x',x°,J° € {(x,x°,J°)} in parallel do
for k + 0,n do
T « trilerp(x*, {T,})
xF+1 JH+1 « broyden(x*, J*, T, x')

end for

pre-computation

lightweight operation

> Eq. (6)

end for
return: {x"}

that these operations can be computed in an independent
manner. This motivates us to implement this module with
a custom CUDA kernel instead of using native functions in
standard deep learning frameworks. The handwritten ker-
nel, parallelized over query points, fuses the entire method
into a single kernel that keeps working variables in registers,
avoiding unnecessary time and memory costs from launch-
ing native kernels and synchronizing intermediate results.
The input to our CUDA kernel for iterative root finding is
the pre-computed voxel grid of transformations {T,}, the
bone transformations B as well as query points x’. The ker-
nel first computes the multiple initialization states (Eq. (8)).
Then, at each root finding iteration, the kernel tri-linearly
interpolates {T,} and transforms the points (Eq. (5)), and
applies Broyden’s update (Eq. (7). After each iteration k,
we filter diverged and converged points x* by checking
whether Hdaw (x*, B) —x’ H2 is larger than the divergence
threshold or smaller than the convergence threshold, further
reducing the number of required computations.

Remove Duplicate Correspondences: A further important
speed optimization pertains to the treatment of multiple
correspondences found by the root finding algorithm. The
set of valid correspondences contains duplicates because
different initial states can converge to the same solution. To
avoid unnecessary evaluation of the canonical neural fields
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for these duplicates, we detect duplicate solutions by their
relative distances in canonical space and discard them.

4.2 Skinning Weights Optimization

Analogous to SNARF, in theory, Fast-SNARF supports
learning skinning weights with the analytical gradients in
Eq. (12). However, there are two practical challenges.

Approximated Gradient: A first problem lies in that Eq.
involves computing derivatives and the matrix inversion
8d,, (x*,B)\ ! . . . )
=z =—=—) , which is time-consuming, impeding our
goal of fast training. To address this, we note that this term is
identical to the inverse of the Jacobian J in the last iteration

of root finding (Eq. (7)):

* -1 * AN
<8daw(x ,B)> _ <8daw(x ,B) x) (14)
ox* ox*

J

because the deformed point x’ is a given input and is inde-
pendent of the canonical correspondence x*. The inverse of
the Jacobian J is approximated in Broyden’s method as J.
Thus, we use J directly:

ox*

0oy

= j. %nxB) (15)

0oy

Distilling Smooth Skinning Fields: A second problem is
that the voxel-based parameterization does not have the
global smoothness bias of MLPs, thus optimizing voxels
directly would result in a noisy skinning weight field. To
obtain smooth skinning weights while using voxel-based
correspondence search, a common approach is to apply a
total variational regularizer. However, we experimentally
found that this regularization does not lead to the desired
smoothness of the skinning weights and negatively affects
the accuracy of the generated shapes. We thus propose a
new approach by using an MLP to parameterize the skin-
ning weight field during training but continuously distill
the MLP to a voxel-based skinning weight field at each
training iteration. The skinning weight field is thus smooth
by design due to the intermediate use of an MLP. At each
training iteration, we compute the skinning weights voxel
grid on the fly by evaluating the MLP at grid points {x,},
and then use our fast voxel-based correspondence search.
In this scheme the parameters of the MLP are optimized
during training, not the voxels directly which are only used
to store the weights. The conversion from MLP to voxels
does introduce additional computation during training, but
the overhead is minor since the voxel grid is low resolution.
The inference speed is not influenced at all because the MLP
is used during training only. This yields on-par accuracy
with SNARF as we inherit the inductive smoothness bias of
the MLP-based skinning weight model.

4.3 Learning Avatars from 3D Scans

We can use our articulation module to learn animatable
human avatars with realistic cloth deformations from 3D
scans. Given a set of 3D meshes in various body poses,
our method learns the human shape in canonical space as
an occupancy field alongside the canonical skinning weight

6

field which is needed for animation. We model the canonical
shape using an occupancy field and use the same training
losses as SNARF [9] (see Section 3).

5 EXPERIMENTS
5.1 Minimally Clothed Humans

We first evaluate the speed and accuracy of our method and
baselines on minimally clothed humans.

5.1.1 Dataset

We follow the same evaluation protocol as NASA [13] and
SNAREF [9]. More specifically, we use the DFaust [4] subset
of AMASS [32] for training and evaluating our model on
SMPL meshes of people in minimal clothing. This dataset
covers 10 subjects of varying body shapes. For each subject,
we use 10 sequences, from which we randomly select one
sequence for validation, using the rest for training. For
each frame in a sequence, 20K points are sampled, among
which, half are sampled uniformly in space and half are
sampled in near-surface regions by first applying Poisson
disk sampling on the mesh surface, followed by adding
isotropic Gaussian noise with ¢ = 0.01 to the sampled point
locations. In addition to the “within distribution” evaluation
on DFaust, we test “out of distribution” performance on
another subset of AMASS, namely PosePrior [1]]. This subset
contains challenging, extreme poses, not present in DFaust.

5.1.2 Baselines

We consider SNARF as our main baseline. In addition,
we consider the following baselines. For SNARF, “Back-
LBS” and “Pose-ONet” we use the same training losses and
hyperparameters as in Fast-SNARF.

Pose-Conditioned Occupancy Networks (Pose-ONet): This
baseline extends Occupancy Networks [33] by directly con-
catenating the pose input to the occupancy network.

Backward Skinning (Back-LBS): This baseline implements
the concept of backward skinning similar to [23]. A network
takes a deformed point and pose condition as input and
outputs the skinning weights of the deformed point. The
deformed point is then warped back to canonical space
via LBS and the canonical correspondence is fed into the
canonical shape network to query occupancy.

NASA: NASA [13] models articulated human bodies as a
composition of multiple parts, each of which transforms
rigidly and deforms according to the pose. Note that in con-
trast to us, NASA requires ground-truth skinning weights
for surface points as supervision. We use the official NASA
implementation provided by the authors.

5.1.3 Results and Discussion

Within Distribution Accuracy: Overall, all methods per-
form well in this relatively simple setting, as shown in
Table I} Our method achieves on-par or better accuracy
compared to SNARF and provides an improvement over
other baselines. Our method produces bodies with smooth
surfaces and correct poses as shown in Fig. f} In contrast,
NASA suffers from discontinuous artifacts near joints. Back-
LBS and Pose-ONet suffer from missing body parts.
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Within Distribution ‘ Out of Distribution ‘ Inference Speed ‘ Training Time
| ToU bbox | ToU surf | ToU bbox | ToU surf | Articulation  Shape Total |
Pose-ONet* 79.34% 58.61% 49.21% 28.69% Oms 28.95ms  29.88ms 16min
Backward-LBS*  81.68% 87.44% 66.93% 68.93% 12.39ms 27.67ms  40.60ms 31min
NASA 96.14% 86.98% 83.16% 60.21% - - 582ms 4h
SNARF 97.31% 90.38% 93.97% 80.65% 806.67ms 186.82ms  994.01ms 8h
Fast-SNARF 97.41% 90.52% 94.20% 81.25% 5.27ms 27.78ms 34.70ms 25min

TABLE 1: Quantitative Results on Minimally Clothed Humans. The mean IoU of uniformly sampled points in space
(IoU bbox) and points near the surface (IoU surface), as well as the inference and training time are reported. Our method
achieves similar accuracy as SNARF (previous state-of-the-art) while being much faster. Our method outperforms all other
baselines in terms of accuracy. Improvements are more pronounced for points near the surface, and for poses outside the
training distribution. Also our method is faster than all baselines except Pose-ONet. Note that Pose-ONet and Backward-
LBS (above the separation line, marked with *) produce distorted shapes, as shown in Fig. El

w " /! & %

r WY A

T e o

@‘/ir,ﬁ}
'}

: |

n T

Within Distribution Out of Distribution

Fig. 5: Qualitative Results on Minimally Clothed Humans. Our method and SNARF produce results similar to the ground-
truth with correct pose and plausible local details, both for poses within the training distribution and more extreme (OOD)
poses. In contrast, the baseline methods suffer from various artifacts including incorrect poses (Pose-ONet), degenerate
shapes (Pose-ONet and Backward), and discontinuities near joints (NASA), which become more severe for unseen poses.
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Out of Distribution (OOD) Accuracy: In this setting, we
test the trained models on a different dataset, PosePrior [1]],
to assess the performance in more realistic settings, where
poses can be far from those in the training set. Unseen
poses cause drastic performance degradation to the base-
line methods as shown in Table (Il In contrast, similar to
SNARE, our method degrades gracefully despite test poses
being drastically different from training poses and very
challenging. As can be seen in Fig.|5| our method generates
natural shapes for the given poses while NASA fails to
generate correctives at bone intersections for unseen poses,
leading to noticeable artifacts. Pose-ONet fails to generate
meaningful shapes and Back-LBS produces distorted bodies
due to incorrect skinning weights.

Speed Comparison: We report the training and inference
speed of all methods on a single NVIDIA Quadro RTX 6000
GPU. In this setting, with MLP-based canonical shape, Fast-
SNARF can be trained within 25 minutes and produces
accurate shapes in any pose. Baseline methods that reach
similar speed, i.e. Pose-ONet, and Back-LBS, do not produce
satisfactory results (see Fig. 5). Compared to the original
SNARE, our improvements, detailed in Section E} lead to a
speed-up of 150x for the articulation module without loss of
accuracy, as shown in Table|[l} Fast-SNARF also dramatically
boosts the training speed (25 minutes vs. 8 hours). Com-
pared to NASA, Fast-SNARF evaluates the canonical shape
MLP only for true correspondences, while NASA always
generates many candidate correspondences, one for each
bone, and needs to evaluate the canonical shape MLP for
all candidates, leading to slow inference (582ms vs. 35ms)
and training (4 hours vs. 25 minutes).

Ablation - MLP Distillation: SNARF optimizes an MLP-
based skinning field, resulting in smooth skinning weights
but slow training and inference. In Fast-SNARF, we adopt
an MLP distillation strategy: we optimizes a MLP-based
skinning weight field for smoothness, but convert it on the
fly to a low resolution voxel grid at each training iteration, to
enable voxel-based correspondence search. In this way, Fast-
SNAREF learns a similarly smooth skinning field as shown in
Fig.[6] yet is much faster than SNARF (see Table ]2).

We also compare this MLP distillation strategy with a
naive strategy in which we directly optimize the skinning
weights at each grid point with an additional total variation
loss on the skinning weights voxel grid. As shown in Table[2}
directly optimizing skinning weights voxel (w /o MLP distil-
lation) leads to inferior results. This accuracy degradation is
due to noisy skinning weights as shown in Fig.[6} In contrast,
our strategy distills smooth skinning weights voxels from
the MLP while introducing only a slight overhead during
training (25 minutes vs. 23 minutes).

Ablation - Voxel Grid Resolution: We study the effect of
different resolutions of the skinning weight voxel grid. The
results are shown in Table 2} In general, higher resolutions
lead to higher accuracy but longer training and inference
time. A resolution of 32 x 32 x 8 or 64 x 64 x 16 yields a
good balance between accuracy and speed. A grid of lower
resolution 16 x 16 x 4 cannot fully represent the skinning
weight field and leads to a noticeable accuracy degradation
(by 2.8%). On the other hand, further increasing the resolu-

8
Configurations Accuracy Inference Training
Baseline SNARF 80.7% 807ms + 187ms 8h
+ Voxel-based search - 61ms + 187ms -
+ Pre-compute LBS - 40ms + 187ms -
+ CUDA kernel - 5.3ms + 187ms -

+ Filter corres. - 5.3ms + 28ms -
Fast-SNARF 81.2% 5.3ms + 28ms 25 min
w /o MLP distillation 78.2% 5.3ms + 28ms 23 min
16 x 16 x 4 78.3% 3.6ms + 28ms 23min
32x32x%x8 81.1% 4.6ms + 28ms 24min
64 x 64 x 16 81.2% 5.3ms + 28ms 25min
128 x 128 x 32 81.5% 16ms + 28ms 52min

TABLE 2: Quantitative Ablation Study. We report accuracy
(the mean IoU of points near the surface in out of distri-
bution setting), inference speed (articulation speed + shape
query speed) and training time of several ablative baselines.

SNARF Fast-SNARF w/o MLP distillation
8h 25 min 23 min

— -

’e e

Fig. 6: Skinning Weight Learning Strategies. We show
skinning weights learned with three different strategies as
well as the corresponding training times. See text.

tion to 128 x 128 x 32 produces diminishing returns, i.e. only
0.3% IoU improvement, because the skinning weight field
is naturally smooth and does not contain high-frequency
details. Also, higher resolution significantly slows down the
training and inference speed by more than 2 times because
1) more points need to be evaluated when converting the
MLP to voxels during training and 2) the high-resolution
voxel grid does no longer fit into the GPU’s shared memory
and impacts read speeds significantly.

5.2 Clothed Avatar from Scans

Dataset: We use the registered meshes from CAPE [31] and
their registered SMPL parameters to train our model. We
use 8 subjects with different clothing types for evaluation.
We train a model for each subject and clothing condition.

Baselines: Clothed humans are more challenging to model
than minimally clothed humans due to the clothing details
and non-linear deformations. Since most baselines from
Section already suffer from implausible shapes and
artifacts, we exclude them in this evaluation. Instead, we
keep SNAREF as our major baseline, and also include a new
baseline denoted as “SMPL NN”. This baseline assumes
that a skinned base mesh is given, such as SMPL [30].
Given a pose, such a method first deforms the SMPL model
to the target pose using mesh-based LBS. Then for each
query point in deformed space, its corresponding skinning
weights are defined as the skinning weights of its nearest



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

SMPL NN
1h32min

SNARF
20h

Fast-SNARF
1h20min

Fig. 7: Qualitative Results on Clothed Humans [31]. Our method and SNARF both learn realistic clothing shape and
deformations. In contrast, the baseline method using a skinned base mesh produces less details due to the inaccurate
deformation when the base mesh mismatches the actual shape (highlighted in red circle).

vertex on the deformed SMPL mesh. Finally, with the skin-
ning weights, the query point can be transformed back to
the canonical space base on inverse LBS.

Results: The results are shown in Fig. [/} Our method can
generate realistic clothed humans in various poses including
details on the face and clothing (e.g. the collar on the
left sample). The clothing also deforms naturally with the
body poses (e.g. the collar on the left sample and the lapel
on the right sample). While SNARF produces results of
similar quality, training our method only requires a frac-
tion of SNARF’s training time (80 minutes vs. 20 hours).
Compared with the SMPL NN baseline, our results contain
much more detail because our method derives accurate
correspondences between the deformed space and canonical
space. SMPL NN suffers from overly smooth shapes due to
inaccurate correspondences when the actual shape and the
skinned base mesh do not match well, e.g. around the lapel.

6 CONCLUSION

We propose Fast-SNAREF, a fast, robust, and universal artic-
ulation module for neural field representations. Fast-SNARF
is built upon the idea of differentiable forward skinning
from SNARF [9], but is orders of magnitude faster than
SNARF thanks to a series of algorithmic and implementa-
tion improvements. These include voxel-based correspon-
dence search, LBS pre-computation, a custom CUDA kernel
implementation for root finding, duplicate correspondences
removal, approximated implicit gradients, and online MLP-
to-voxel conversion. The resulting algorithm can find cor-
respondences as accurately as SNARF while being 150x
faster. This leads to significant speed-up in various real-
world applications of forward skinning algorithms. Using
Fast-SNARF we are able to learn animatable human avatars
from scans 15x faster than SNARF, and in contrast to
SNARF, the speed bottleneck is now the canonical shape
query instead of the articulation module. We believe Fast-
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SNARF’s speed and accuracy will open new applications
and accelerate research on non-rigid 3D reconstruction.
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