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Single-path Bit Sharing for Automatic
Loss-aware Model Compression

Jing Liu, Bohan Zhuang, Peng Chen, Chunhua Shen, Jianfei Cai, Mingkui Tan†

Abstract—Network pruning and quantization are proven to be effective ways for deep model compression. To obtain a highly compact
model, most methods first perform network pruning and then conduct quantization based on the pruned model. However, this strategy may
ignore that the pruning and quantization would affect each other and thus performing them separately may lead to sub-optimal performance.
To address this, performing pruning and quantization jointly is essential. Nevertheless, how to make a trade-off between pruning and
quantization is non-trivial. Moreover, existing compression methods often rely on some pre-defined compression configurations (i.e.,
pruning rates or bitwidths). Some attempts have been made to search for optimal configurations, which however may take unbearable
optimization cost. To address these issues, we devise a simple yet effective method named Single-path Bit Sharing (SBS) for automatic
loss-aware model compression. To this end, we consider the network pruning as a special case of quantization and provide a unified view
for model pruning and quantization. We then introduce a single-path model to encode all candidate compression configurations, where a
high bitwidth value will be decomposed into the sum of a lowest bitwidth value and a series of re-assignment offsets. Relying on the
single-path model, we introduce learnable binary gates to encode the choice of configurations and learn the binary gates and model
parameters jointly. More importantly, the configuration search problem can be transformed into a subset selection problem, which helps to
significantly reduce the optimization difficulty and computation cost. In this way, the compression configurations of each layer and the
trade-off between pruning and quantization can be automatically determined. Extensive experiments on CIFAR-100 and ImageNet show
that SBS significantly reduces computation cost while achieving promising performance. For example, our SBS compressed MobileNetV2
achieves 22.6× Bit-Operation (BOP) reduction with only 0.1% drop in the Top-1 accuracy.

Index Terms—Network Quantization, Network Pruning, Bit Sharing, Loss-aware Model Compression.
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1 INTRODUCTION

Deep neural networks (DNNs) [42] have achieved great
success in many challenging computer vision tasks, including
image classification [19], [30], [41], object detection [47], [69],
[77], image generation [6], [21], [23], and video analysis [74],
[82], [94]. However, a deep model usually has a large
number of parameters and consumes enormous computa-
tional resources, which presents great obstacles for many
applications, especially on resource-constraint devices, such
as smartphones. To reduce the number of parameters and
computational overhead, many methods [32], [96], [100] have
been proposed to perform model compression by removing
the redundancy while maintaining the performance.

In recent years, we have witnessed the remarkable
progress of model compression methods. Specifically, net-
work pruning [32], [33] removes the uninformative modules
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and network quantization [36], [96] maps the full-precision
values to low-precision ones. To obtain a highly compact
model, most methods [27], [58], [92] first perform pruning
and then conduct quantization based on the pruned model.
However, performing pruning and quantization separately
may lead to suboptimal performance as it ignores that
the two procedures often affect each other. Therefore, it is
essential and urgent to perform pruning and quantization
jointly in practical applications, which, however, is nontrivial
and may incur some new challenges.

First, finding the optimal trade-off between pruning and
quantization is non-trivial as they would affect each other.
For example, if a model is under-pruned, we can apply
aggressive network quantization to the pruned model to
achieve a high compression ratio. In contrast, if a model is
over-pruned, the resulting model is more sensitive to the
quantization noise. In this case, the quantization bitwidth of
the pruned model has to be high to preserve the performance.

Second, to achieve better performance, one may assign
different configurations (i.e., pruning rates and bitwidths)
according to the layer’s contribution to the accuracy and
efficiency of a network. However, the search space of model
compression grows exponentially with the increasing num-
ber of compression configurations. To handle this, existing
differentiable methods [5], [87] explore the exponential
search space using gradient-based optimization. As shown in
Fig. 1(a), these methods first construct a multi-path network
where each path denotes a candidate compression config-
uration. Then, the optimal path is selected during training.
However, when the search space becomes large, the multi-
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(a) Multi-path search scheme [87].
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(b) Single-path search scheme (Ours).

Fig. 1. Multi-path v.s. single-path search scheme. For clarity, we show the illustrations of weight quantization only. (a) Multi-path search scheme [87]:
it represents each candidate configuration as a separate path and formulates the mixed-precision quantization problem as a path selection problem,
which gives rise to a huge number of trainable parameters and high computational overhead when the search space becomes large. oi and pi are
the convolutional operation and probability for the i-th configuration, respectively. xl indicates the input feature maps for layer l, wi is the weight for
the i-th configuration and wi

k is the k-bit quantized version of wi. (b) Single-path search scheme (Ours): it only maintains a single path model and
represents each candidate configuration as a subset of a super-bitwidth. Therefore, the mixed-precision quantization problem can be formulated as a
subset selection problem, which significantly reduces the number of parameters, computation cost, and optimization difficulty. The super-bitwidth is
the highest bitwidth (i.e., 32-bit) in the search space, w is the weight for the convolutional operation, wk is the k-bit quantized version of w, rk is the
re-assignment offset and gk is the corresponding binary gate to control the bitwidth decision.

path scheme will lead to a huge amount of parameters and
incur high computation cost. As a result, the optimization of
the compressed network could be very challenging due to
the parameter explosion.

In this paper, we propose to address the above challenges
by devising a simple yet effective method named Single-
path Bit Sharing (SBS) for automatic loss-aware model
compression. To this end, we provide a unified view for the
pruning and quantization, where pruning is reformulated as
a special case of quantization. We then introduce a novel
single-path model to encode all bitwidths in the search
space. As shown in Fig. 1(b), we theoretically show that
the quantized values of a high bitwidth can be shared with
those of low bitwidths under some conditions. Therefore,
we are able to decompose a quantized representation into
the sum of the lowest bitwidth representation and a series
of re-assignment offsets. In this case, the quantized values
of different bitwidths are different subsets of those of super-
bitwidth (i.e., the highest bitwidth). Compared with the multi-
path scheme [87], we only need to maintain a single path
model, which requires much fewer model parameters. More
importantly, we are able to transform the mixed-precision
quantization problem into a subset selection problem, which
significantly reduces the computation cost and alleviates the
optimization difficulty. Relying on the single-path model,
we further introduce learnable binary gates to encode the
choice of bitwidth and learn the binary gates and network
parameters jointly. In this way, the configurations of each
layer can be automatically determined and the trade-off
between pruning and quantization can be optimized.

Our main contributions are summarized as follows:
• We devise a novel single-path scheme that encapsulates

multiple configurations in a unified single-path frame-
work, which requires fewer model parameters compared
with multi-path scheme.

• We transform the model compression into a subset
selection problem and explicitly share the quantized
values among various bitwidths. As a result, SBS enables
the candidate configurations to learn jointly rather than
separately and thus significantly reduces the computa-
tion cost and alleviates the optimization difficulty.

• We formulate the quantized representation as a gated
combination of the lowest bitwidth representation and
a series of re-assignment offsets. By training the binary
gates and network parameters, the configuration of
each layer and the trade-off between pruning and
quantization can be automatically determined.

• We evaluate our SBS on CIFAR-100 and ImageNet over
various network architectures. Extensive experiments
show that the proposed method achieves the state-of-
the-art performance. For example, on ImageNet, our SBS
compressed MobileNetV2 achieves 22.6× Bit-Operation
(BOP) reduction with only 0.1% performance decline in
terms of the Top-1 accuracy.

2 RELATED WORK

Network quantization. Network quantization represents the
weights, activations and even gradients with low precision
to yield compact DNNs. With low-precision integers [96]
or power-of-two representations [44], the heavy matrix mul-
tiplications can be replaced by efficient bitwise operations,
leading to much faster test-time inference and lower resource
consumption. According to the quantization bitwidth, exist-
ing quantization methods can be roughly categorized into
two categories, namely, fixed-point quantization [17], [29],
[38], [39], [53], [73], [95], [96] and binary quantization [36],
[51], [54], [64], [65], [67], [99]. To improve the quantization
performance, extensive methods have been proposed to learn
accurate quantizers [2], [4], [11], [17], [38], [95]. Specifically,
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given a convolutional layer, let x and w be the output
activations of the previous layer and the weight parameters
of given layer, respectively. First, following [7], [11], [38], one
can normalize x and w into scale [0, 1] by Tx(·) and Tw(·),
respectively:

zx = Tx(x) = clip

(
x

vx
, 0, 1

)
, (1)

zw = Tw(w) =
1

2

(
clip

(
w

vw
,−1, 1

)
+ 1

)
, (2)

where vx and vw are trainable quantization intervals
indicating the range of weights and activations to
be quantized. Here, the function clip (v, vlow, vup) =
min(max(v, vlow), vup) clips any number v into the range
[vlow, vup]. Then, one can apply the following function to
quantize the normalized activations and parameters, namely
zx ∈ [0, 1] and zw ∈ [0, 1], to discretized ones:

D(z, s) = s · round
(z
s

)
, (3)

where s denotes the normalized step size, round(x) = dx−
0.5e returns the nearest integer of a given value x and d·e
is the ceiling function. Typically, for k-bit quantization, the
normalized step size s can be computed by

s =
1

2k − 1
. (4)

Last, the quantized activations and weights can be ob-
tained by Qx(x) = T−1x (D(zx, s)) = vx · D(zx, s) and
Qw(w) = T−1w (D(zw, s)) = vw · (2 · D(zw, s) − 1), where
T−1x (·) and T−1w (·) denote the inverse functions of Tx(·) and
Tw(·), respectively. In general, the function D(·, ·) is non-
differentiable. Following [36], [96], one can use the straight
through estimation (STE) [1] to approximate the gradient of
D(·, ·) by the identity mapping, namely, ∂D(z, s)/∂z ≈ 1.

To reduce the optimization difficulty introduced by non-
differentiable discretization, several methods have been pro-
posed to approximate the gradients of D(·, ·) [13], [57], [97].
Moreover, most previous works assign the same bitwidth
for all layers [7], [17], [37], [38], [44], [66], [88], [96], [98],
[99]. Though attractive for simplicity, setting a uniform
precision places no guarantee on optimizing network per-
formance, since different layers have different redundancy
and arithmetic intensity. Therefore, several studies proposed
mixed-precision quantization [5], [9], [15], [16], [79], [81],
[84], [87], [91] that assigns different bitwidths according
to the redundancy of each layer. In this paper, based on
the proposed single-path bit sharing model, we devise an
approach that efficiently searches for appropriate bitwidths
for different layers through gradient-based optimization.
Apart from quantization, our SBS also conducts pruning
and automatically learns the trade-off between them, which
often results in compact models with better performance.
Neural architecture search (NAS) and pruning. NAS aims
to automatically design efficient architectures. According
to the search algorithm, existing methods either based
on reinforcement learning [25], [63], [101], evolutionary
search [59], [68], [90] or gradient-based methods [3], [48], [86].
In particular, gradient-based NAS has gained increased pop-
ularity, where the search space is relaxed to be continuous,
allowing efficient architecture search using gradient descent.

Depending on whether each operation can be added via a
separate path or not, the search space can be categorized into
multi-path design [3], [48] and single-path formulation [75],
[76].

While prevailing methods optimize the network topology,
we focus on searching optimal pruning and quantization
configurations for a given network. Moreover, network
pruning can be treated as fine-grained NAS [14], [22], [49]
which removes redundant modules to reduce the model size
and accelerate the run-time inference speed, giving rise to
methods based on weight pruning [24], [27], [28], [52], filter
pruning [32], [33], [60], [100], or layer pruning [8], [35], [46],
[85], etc. Apart from filter pruning, we also perform network
quantization to obtain more compact networks.
AutoML for model compression. Recently, much effort has
been devoted to automatically determining the pruning
rate [14], [50], [78] or the bitwidth [5], [56], [87] of each
layer, either based on reinforcement learning [31], [56], [81],
evolutionary search [50], [83], gradient optimization [5],
[18], [87], etc. To increase the compression ratio, several
methods have been proposed to jointly optimize pruning
and quantization strategies. In particular, some work only
support weight quantization [34], [78], [92] or use fine-
grained pruning [34], [89]. However, the resultant models
cannot be implemented efficiently on edge devices. To handle
this, several methods [83], [87], [93] have been proposed to
consider filter pruning, weight quantization, and activation
quantization jointly. Compared with these methods, we
carefully design the compression search space by sharing
the quantized values between different candidate configura-
tions, which significantly reduces the number of parameters,
search cost, and optimization difficulty. Compared with
those methods that share the similarities of using quantized
residual errors [10], [20], [45], [80], our proposed method
recursively uses quantized residual errors to decompose a
quantized representation into a set of candidate bitwidths
and parameterize the bitwidth selection via a series of binary
gates. Compared with Bayesian Bits [80], our SBS differs
in several aspects: 1) We theoretically verify the theorem
of quantization decomposition and it can be applied to
non-power-of-two bitwidths (See Section 5.5), which is a
general case of the one in Bayesian Bits. 2) The optimization
problems are different. Specifically, we formulate model
compression as a single-path subset selection problem while
Bayesian Bits casts the optimization of the binary gates into a
variational inference problem that requires more relaxations
and hyperparameters. 3) Our compressed models with less
or comparable BOPs outperform those of Bayesian Bits by a
large margin on ImageNet (See Table 4).

3 PROPOSED METHOD

Given a pre-trained model, we focus on automatic model
compression for pruning and quantization jointly, which
poses two new challenges. First, finding the optimal trade-
off between pruning and quantization is non-trivial since
they may affect each other. Second, to determine the optimal
configurations (e.g., pruning rates and bitwidths) for each
layer, one may consider different configurations as different
paths and reformulate the configuration search problem as a
path selection problem [87], as shown in Fig. 1(a). However,
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when the search space becomes large, it suffers from a huge
number of parameters and high computation cost. Moreover,
different candidate configurations are trained separately and
thus the optimization of the compressed model may become
more challenging.

In this paper, we first provide a unified view for model
compression so that we can perform pruning and quantiza-
tion jointly. Specifically, we consider network pruning as a
special case of quantization and formulate the joint pruning
and quantization problem as a mixed-precision quantization
problem. We then propose a Single-path Bit Sharing (SBS)
scheme to encode all candidate configurations into a single
path model, as shown in Fig. 1(b). It is worth mentioning that
our SBS has much fewer model parameters than the most
related work [87] and thus requires less computation cost.
Moreover, we are able to cast the mixed-precision problem
into a subset selection problem and alleviate the optimization
difficulties. In the following subsections, we will illustrate
each component of our method.

3.1 Single-path bit sharing decomposition
To illustrate the single-path bit sharing decomposition, we
begin with an example of 2-bit quantization for z ∈ {zx, zw}.
Specifically, we use the following equation to quantize z to
2-bit using Eqs. (3) and (4):

z2 = D(z, s2), s2 =
1

22 − 1
, (5)

where z2 and s2 are the quantized value and the step size
of 2-bit quantization, respectively. Due to the large step size,
the residual error z − z2 ∈ [−s2/2, s2/2] may be large and
results in a significant performance decline. To reduce the
residual error, an intuitive way is to use a smaller step size,
which indicates that we quantize z to a higher bitwidth.
Since the step size s4 = 1/(24 − 1) in 4-bit quantization
is a divisor of the step size s2 in 2-bit quantization, the
quantized values of 2-bit quantization are shared with those
of 4-bit quantization. Based on 2-bit quantization, the 4-
bit counterpart introduces additional unshared quantized
values. In particular, if z2 has zero residual error, then 4-
bit quantization maps z to the shared quantized values
(i.e., z2). In contrast, if z2 has non-zero residual error, 4-
bit quantization is likely to map z to the unshared quantized
values. In this case, 4-bit quantization can be regarded as
performing quantized value re-assignment based on z2. Such
a re-assignment process can be formulated as

z4 = z2 + r4, (6)

where z4 is the 4-bit quantized value and r4 is the re-
assignment offset based on z2. To ensure that the results
of re-assignment fall into the 4-bit quantized values, the re-
assignment offset r4 must be an integer multiple of the step
size s4. Formally, r4 can be computed by performing 4-bit
quantization on the residual error of z2:

r4 = D(z − z2, s4), s4 =
1

24 − 1
. (7)

According to Eq. (6), a 4-bit quantized value can be decom-
posed into the 2-bit representation and its re-assignment
offset. Similarly, an 8-bit quantized value can also be decom-
posed into the 4-bit representation and its corresponding

2 4 8 16
0

0.2

0.4

0.6

Fig. 2. The normalized quantization error change and error bound
v.s. bitwidth. The normalized quantization error change (red line) is
bounded by C/(2bK−1) (blue line).

re-assignment offset. In this way, we can generalize the idea
of decomposition to arbitrary effective bitwidths as follows.

Theorem 1. (Quantization Decomposition) Let z ∈ [0, 1]
be a normalized full-precision input, and {bj}Kj=1 be a sequence
of candidate bitwidths. If bj is an integer multiple of bj−1, i.e.,
bj=γjbj−1(j > 1), where γj ∈ Z+\{1} is a multiplier, then the
quantized approximation zbK can be decomposed as:

zbK = zb1 +
K∑
j=2

rbj ,

where rbj = D(z − zbj−1 , sbj ),

zbj = D(z, sbj ),

sbj =
1

2bj − 1
.

(8)

From Theorem 1, the quantized representation zbK can
be decomposed into the sum of the lowest bitwidth represen-
tation zb1 and a series of recursive re-assignment offsets.
In this way, we can gradually reduce the error brought
from quantization by introducing the recursive re-assignment
offsets. To measure the quantization error, we introduce the
following corollary.

Corollary 1. (Normalized Quantization Error Bound) Given
z ∈ [0, 1]d being a normalized full-precision vector, zbK being its
quantized vector with bitwidth bK , where d is the cardinality of
z. Let εK =

‖z−zbK
‖1

‖z‖1 be the normalized quantization error, then
the following error bound w.r.t. K holds:

|εK−εK+1| ≤
C

2bK−1
, (9)

where C= d
‖z‖1 is a constant.

To empirically demonstrate Corollary 1, we perform
quantization on a random toy data z ∈ [0, 1]100 and show
the normalized quantization error change |εK−εK+1| and
error bound C

2bK−1 in Fig. 2. From the results, the normalized
quantization error change decreases quickly as the bitwidth
increases and is bounded by C/(2bK−1). We put the proof
of Corollary 1 in the supplementary material.

Note that in Theorem 1, both the smallest bitwidth b1
and the multiplier γj can be set to arbitrary appropriate
integer values (e.g., 2, 3, etc.). To obtain a hardware-friendly
compressed network1, we set b1 and γj to 2, which ensures

1. More details can be found in the supplementary material.
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that all the decomposition bitwidths are power-of-two.
Moreover, since the normalized quantization error change
is small when the bitwidth is greater than 8 as indicated in
Corollary 1 and Fig. 2, we only consider those bitwidths that
are not greater than 8-bit (i.e., bj ∈ {2, 4, 8}) in our paper. An
empirical study on the non-power-of-two bitwidths can be
found in Section 5.5.

3.2 Single-path bit sharing model compression
3.2.1 Binary gate for quantization
In a neural network, different layers have diverse redundancy
and contribute differently to the accuracy and efficiency
of the network. To determine the bitwidth for each layer,
we introduce a layer-wise binary quantization gate gbj ∈
{0, 1}(j > 1) on each of the re-assignment offsets in Eq. (8)
to encode the choice of the quantization bitwidth bj as:

gbj = H
(
||z− zbj−1

||1 − αbj
)
,

zbK = zb1 + gb2
(
rb2 + · · ·+ gbK−1

(
rbK−1

+ gbKrbK
))
,

(10)

where αbj (j > 1) is a layer-wise threshold that controls
the choice of bitwidth and H(A) is the step function which
returns 1 if A ≥ 0 and returns 0 otherwise. Here, we use
the quantization error to determine the choice of bitwidth.
Specifically, if the quantization error is greater than αbj , we
activate the corresponding quantization gate to increase the
bitwidth to reduce the residual error, and vice versa.

3.2.2 Binary gate for pruning
Note that in Eq. (10), we can also consider filter pruning as
a special case of quantization, which makes it possible to
perform network pruning and quantization jointly. To avoid
the prohibitively large filter-wise search space, we propose
to divide the filters into groups based on channel indices and
consider the group-wise sparsity instead. To be specific, we
introduce a binary gate gc,b1 for each group to encode the
choice of pruning as:

gc,b1 = H(||wc||1 − αb1),

zc,bK = gc,b1 ·
(
zc,b1 + gb2

(
rc,b2 + · · ·

+ gbK−1
(rc,bK−1

+ gbKrc,bK )
))
,

(11)

where zc,bj is an element of the c-th group filters with bj-bit
quantization and rc,bj is the corresponding re-assignment
offset obtained by quantizing the residual error zc − zc,bj−1

.
Here, αb1 is a layer-wise threshold for filter pruning. Fol-
lowing PFEC [43], we use the `1-norm criteria to evaluate
the importance of different groups of filters. Specifically, if a
group of filters is important, the corresponding pruning gate
will be activated, and vice versa.

3.2.3 Normalization for binary gate
Note that the binary gates for quantization are layer-wise
while those for pruning are group-wise, which may lead
to different scales of thresholds. To mitigate the effect of
different scaling, we perform normalization before applying
the step function H(·). Specifically, given an evaluation
metric A (||z − zbj−1

||1 for quantization and the `1-norm
of the c-th group of filters ||wc||1 for pruning), we obtain
the normalized metric Â by Â = A/NA, where NA is the
number of elements in A. We then feed Â− α into the step
function to obtain the output of the binary gate, where α is
the corresponding pruning or quantization threshold.

3.3 Learning for loss-aware compression
3.3.1 Gradient approximation for the step function
Instead of manually determining the thresholds of pruning
and quantization, we propose to learn them via a gradient
descent method. Unfortunately, the step function in Eqs. (10)
and (11) is non-differentiable. To address this, we propose to
use straight-through estimator (STE) [1], [96] to approximate
the gradient of H(·) by the gradient of the sigmoid function
S(·), which can be formulated as

∂g

∂α
=
∂H

(
Â− α

)
∂α

≈
∂S
(
Â− α

)
∂α

= −S
(
Â− α

)(
1− S(Â− α)

)
,

(12)

where g is the output of a binary gate.

3.3.2 Objective function for SBS
Let W be the model parameters and α be the compression
configuration that are composed of pruning and quanti-
zation thresholds. To design a hardware-efficient model,
the objective function should reflect both the accuracy and
computation cost of a compressed model. Following [3], we
incorporate the computation cost into the objective function
and formulate the joint objective as:

L(W,α) = Lce(W,α) + λ logR(α), (13)

where Lce(·, ·) is the cross-entropy loss, R(·) is the compu-
tation cost of the network and λ is a hyperparameter that
adjusts the importance of the computation cost term logR(α)
in the loss function. In fact, a larger λ indicates that we put
more penalty on computation cost term and thus results
in a compressed model with lower resource consumption.
Following single-path NAS [75], we use a similar formulation
of computation cost to preserve the differentiability of the
objective function.

For simplicity, we consider performing weight quantiza-
tion only. Let Gl be the number of filters groups for layer l
and Rlc,bj be the computation cost of the c-th group of filters
with bj-bit quantization for layer l. The computation cost
R(·) is formulated as follows:

R(α) =
L∑
l=1

Gl∑
c=1

glc,b1
(
Rlc,b1 + glb2

(
Rlc,b2 −R

l
c,b1

+ · · ·+ glbK (Rlc,bK −R
l
c,bK−1

)
))
,

(14)

where glbj and glc,b1 are the binary gates for bj-bit quantiza-
tion and the pruning decision for the c-th group of filters,
respectively. Similarly, the computation cost for activation
quantization can be easily derived by replacing the binary
gates of weights with those of activations.

Note that in Eq. (12), we approximate the gradient of the
step function H(·) by the gradient of the sigmoid function
S(·). Therefore, the objective function in Eq. (13) remains
differentiable. By minimizing the objective using gradient
descent, the configurations of each layer are automatically
determined. Moreover, we are able to make a trade-off
between pruning and quantization. However, the gradient
approximation of the binary gate may inevitably introduce
noisy signals, which is more severe when we quantize both
weights and activations.
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Algorithm 1 Training method for SBS

Input: A pre-trained model M0, the number of candidate
bitwidths K , a sequence of candidate bitwidths {bj}Kj=1, the
number of training epochs T , the number of training iteration
I , and hyperparameters λ.
Output: A compressed modelM .

1: Initialize M using M0.
2: Initialize the weights quantization thresholds αw and

activations quantization thresholds αx to 0.
3: for epoch t ∈ {1, . . . , T} do
4: for iteration i ∈ {1, . . . , I} do
5: Calculate the binary gates for quantization and

pruning using Eqs. (10) and (11).
6: if i = 2n, n ∈ N+ then
7: Update W and αw by minimizing Eq. (13).
8: else
9: Update W and αx by minimizing Eq. (13).

10: end if
11: end for
12: end for

0 100 200 300 400 500
Iteration

0

5
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15

L
os

s
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Fig. 3. Loss comparison between the single-path (Ours) and multi-
path [87] schemes on a toy dataset with details discussed in Section 3.4.

To alleviate the noisy signals in the gradient approxi-
mation of the binary gate, we propose to train the binary
gates of weights and activations in an alternating manner.
Let αw and αx be the thresholds for weights and activations
quantization, respectively. The training algorithm of the
proposed SBS is shown in Algorithm 1. Starting from a
pre-trained model M0, we first initialize αw and αx to
0. Then, we train the compressed model M for T epochs.
For each epoch, we train the model parameters W with
alternating updates of αw and αx. An empirical study
over the effect of alternating training scheme is put in
Section 5.3. Once the training is finished, we are able to obtain
a compressed model by removing unactivated re-assignment
offsets and filters. Following the common practice in model
compression [14], [16], [50], [81], [87], we then fine-tune
the resulting compressed model to compensate for the
accuracy loss of model compression. During fine-tuning,
we use the quantization method mentioned in Section 2
with the searched bitwidths rather than the quantization
decomposition. Therefore, the inference cost of our SBS is the
same as the traditional quantization methods.

3.4 More discussions on SBS
Our single-path scheme is different from the multi-path
scheme in DNAS [87]. To study the difference, for simplicity,

we consider a linear regression scenario and compare the
quantization errors incurred by the two schemes over the
regression weights. Formally, we have the following results
on the quantization errors incurred by the two schemes.

Proposition 1. Consider a linear regression problem
min
w∈Rd

E
(x,y)∼D

[(y−wx)2] with data pairs {(x, y)}, where x ∈ Rd

is sampled from N (0, σ2I) and y ∈ R is its response. Consider
using SBS and DNAS to quantize the linear regression weights.
Let wt

L and wt
D be the quantized regression weights of SBS and

DNAS at the iteration t of the optimization, respectively. Then the
following equivalence holds during the optimization process:

lim
t→∞

E(x,y)∼D[(y−wt
L x)2]= lim

t→∞
E(x,y)∼D[(y−wt

D x)2],

where wt
L=wt

L,b1+g
t
b2

(
rtb2+· · ·+g

t
bK−1

(
rtbK−1

+gtbKr
t
bK

))
,

rtbj = D(wt
L −wt

L,bj−1
, sbj ), j = 2, · · · ,K,

wt
D =

K∑
i=1

ptiw
t
bi ,

K∑
i=1

pti = 1.

(15)

From Proposition 1, the multi-path scheme (DNAS)
converges to our single-path scheme during the optimization.
However, our single-path scheme contains fewer parameters
and consumes less computational overhead. For example, the
multi-path scheme maintains K paths while our proposed
single path scheme maintains only single-path. Thus, the
parameters and computation cost reduction is (K − 1)/K.

To further study the difference between our single-
path scheme and multi-path scheme, we consider a linear
regression scenario min

w∈Rd
E

(x,y)∼D
[(y−wx)2] and compare the

quantization errors incurred by the two quantization schemes
over the regression weights. Specifically, we construct a toy
linear regression dataset {(xi, yi)}Ni=1 where we randomly
sample N=10, 000 data x ∈ R10 from Gaussian distribution
N (0, I) and obtain corresponding responses y = w∗x + ∆.
Here, w∗ ∈ R10 is a fixed weight randomly sampled from
[0, 1]10 and ∆ ∈ R is a noise sampled from N (0, 1). We then
apply SBS and DNAS to quantize the regression weights. As
shown in Fig. 3, our method converges faster and smoother
than the multi-path scheme.

4 EXPERIMENTS

4.1 Datasets and evaluation metrics
We evaluate the proposed SBS on two image classifica-
tion datasets, including CIFAR-100 [40] and ImageNet [12].
CIFAR-100 consists of 50k training samples and 10k testing
images with 100 classes. ImageNet contains 1.28 million
training samples and 50k testing images for 1,000 classes.

We measure the performance of different methods using
the Top-1 and Top-5 accuracy. Experiments on CIFAR-100
are repeated 5 times and we report the mean and standard
deviation. For fair comparisons, we measure the computation
cost by the Bit-Operation (BOP) count for all the compared
methods following [26], [93]. The BOP compression ratio
is defined as the ratio between the total BOPs of the
uncompressed and compressed model. We can also measure
the computation cost by the total weights and activations
memory footprints following DQ [79]. Similarly, the memory
footprints compression ratio is defined as the ratio between
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TABLE 1
Comparisons of different methods w.r.t. Bit-Operation (BOP) count on CIFAR-100. “BOP comp. ratio” denotes the BOP compression ratio.

Network Method BOPs (M) BOP comp. ratio
Search Cost
(GPU hours)

Top-1 Acc. (%) Top-5 Acc. (%)

ResNet-20

Full-precision 41798.6 1.0 – 67.5 90.8
4-bit precision 674.6 62.0 – 67.8±0.3 90.4±0.2

DQ [79] 1180.0 35.4 2.2 67.7±0.6 90.4±0.5
HAQ [81] 653.4 64.0 5.8 67.7±0.1 90.4±0.3

DNAS [87] 660.0 62.9 2.8 67.8±0.3 90.4±0.2
SBS-P (Ours) 28586.5 1.5 0.2 67.9±0.1 90.7±0.2
SBS-Q (Ours) 649.5 64.4 0.8 68.1±0.1 90.5±0.0

SBS (Ours) 630.6 66.3 1.0 68.1±0.3 90.6±0.2

ResNet-56

Full-precision 128771.7 1.0 – 71.7 92.2
4-bit precision 2033.6 63.3 – 70.9±0.3 91.2±0.4

DQ [79] 2222.9 57.9 7.0 70.7±0.2 91.4±0.4
HAQ [81] 2014.9 63.9 12.9 71.2±0.1 91.1±0.2

DNAS [87] 2016.8 63.8 7.6 71.2±0.1 91.3±0.2
SBS-P (Ours) 87021.6 1.5 0.4 71.5±0.1 91.8±0.2
SBS-Q (Ours) 1970.7 65.3 1.3 71.5±0.2 91.5±0.2

SBS (Ours) 1918.8 67.1 1.5 71.6±0.1 91.8±0.4

TABLE 2
Comparisons of different methods w.r.t. memory footprints on CIFAR-100. “M.f. comp. ratio” denotes the memory footprints compression ratio.

Network Method Memory footprints (KB) M.f. comp. ratio Top-1 Acc. (%) Top-5 Acc. (%)

ResNet-56

Full-precision 5653.4 1.0 71.7 92.2
4-bit precision 711.7 7.9 70.9±0.3 91.2±0.4

DQ [79] 723.2 7.8 70.9±0.4 91.7±0.3
HAQ [81] 700.0 8.1 71.3±0.1 91.1±0.1

DNAS [87] 708.9 8.0 71.5±0.2 91.3±0.1
SBS-P (Ours) 4778.0 1.2 71.5±0.1 91.8±0.2
SBS-Q (Ours) 674.5 8.4 71.5±0.2 91.6±0.2

SBS (Ours) 657.3 8.6 71.6±0.1 91.8±0.4

the total memory footprints of the uncompressed and
compressed model. Moreover, following [48], [75], we use
the search cost on a GPU device (NVIDIA TITAN Xp) to
measure the time of finding an optimal compressed model.

4.2 Implementation details

To demonstrate the effectiveness of the proposed method,
we apply SBS to various architectures, such as ResNet [30]
and MobileNetV2 [71]. All implementations are based on
PyTorch [62]. Following HAQ [81], we quantize all the layers,
in which the first and the last layers are quantized to 8-
bit. Following ThiNet [60], we only perform filter pruning
for the first layer in the residual block. For ResNet-20 and
ResNet-56 on CIFAR-100 [40], we set B to 4. For ResNet-18
and MobileNetV2 on ImageNet [70], B is set to 16 and 8,
respectively. We tune λ to obtain compressed models under
different resource constraints. We first train the full-precision
models and then use the pre-trained weights to initialize
the compressed models following [16], [81]. For CIFAR-100,
we use the same data augmentation as in [30], including
randomly cropping and horizontal flipping. For ImageNet,
images are resized to 256× 256, and then a 224× 224 patch
is randomly cropped from an image or its horizontal flip for
training. For testing, a 224× 224 center cropped is chosen.

Following [44], we introduce weight normalization dur-
ing training. We use SGD with nesterov [61] for optimization.
The momentum term is set to 0.9. We first search config-
urations for 30 epochs on CIFAR-100 and 10 epochs on

ImageNet. The learning rate is set to 0.001. We then fine-tune
the searched compressed network to recover the performance
drop. On CIFAR-100, we fine-tune the searched network for
200 epochs with a mini-batch size of 128. The learning rate
is initialized to 0.1 and is divided by 10 at 80-th and 120-
th epochs. For ResNet-18 on ImageNet, we fine-tune the
searched network for 15 epochs with a mini-batch size of 256.
For MobileNetV2 on ImageNet, we fine-tune for 150 epochs.
For all models on ImageNet, the learning rate starts at 0.01
and decays with cosine annealing [55].

4.3 Compared methods

To investigate the effectiveness of SBS, we consider the
following methods for comparisons: SBS: our proposed
method with joint pruning and quantization; SBS-Q: SBS
with quantization only; SBS-P: SBS with pruning only;
and several state-of-the-art model compression methods:
DNAS [87]: it uses multi-path search scheme to search
for optimal bitwidths; HAQ [81]: it uses reinforcement
learning to automatically determine the quantization policies;
HAWQ [16]: it uses second-order Hessian information to
guide the bitwidth search of each layer; DQ [79]: it uses a
gradient-based method to learn the bitwidths; DJPQ [93]:
it combines the variational information bottleneck method
to structured pruning and mixed-bit precision quantization
and learns optimal configurations using a gradient-based
method; Bayesian Bits [80]: the authors cast configuration
search problem of pruning and quantization into a variational
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Fig. 4. Performance comparisons of different methods with different
BOPs and memory footprints. We use different methods to compress
ResNet-56 and report the results on CIFAR-100.

inference problem and use gradient-based method to learn
configurations. We do not consider other methods since
they have been compared in the methods mentioned above.
Except DQ, all the compared methods use the same strategy
that first conducts configurations search based on the same
pre-trained model and then finetunes the resulting model
with the searched configurations.

4.4 Comparisons on CIFAR-100
We apply SBS to compress ResNet-20 and ResNet-56 on
CIFAR-100. We report the results under BOPs and memory
footprints constraints in Tables 1 and 2. Compared with the
full-precision counterparts, 4-bit quantized models achieve
comparable performance or even better performance. This
can be attributed to the redundancy removal and regulariza-
tion effect of network quantization. Similar phenomenon is
also observed in LSQ [17]. Compared with fixed-precision
models, mixed-precision methods are able to further reduce
the BOPs while preserving performance. Critically, SBS-Q
outperforms state-of-the-arts DQ, HAQ, and DNAS with
less computation cost and memory footprints. For example,
SBS-Q ResNet-56 outperforms DNAS by 0.3% on the Top-1
accuracy while achieving 65.3× BOPs reduction. By perform-
ing pruning and quantization jointly, SBS achieves the best
performance while further reducing computation cost and
memory footprints of the compressed models.

We also show the results of the compressed ResNet-
56 with different BOPs and memory footprints in Fig. 4.
From the results, SBS consistently outperforms all the other
methods under variant BOPs and memory footprints settings.
Moreover, our proposed SBS achieves significant improve-
ment in terms of BOPs and memory footprints compared
with fixed-precision quantization, especially at low BOPs and
memory footprints settings. For example, compared with
the fixed-precision counterpart, SBS compressed ResNet-
56 consumes much less computational overhead (783.52
v.s. 1156.46 BOPs) and fewer memory footprints (395.25
v.s. 536.24 KB) but achieves comparable performance.

To evaluate the efficiency of the proposed method, we
also compare the search cost of different methods. From
Table 1, the search cost of the proposed SBS is much smaller
than the state-of-the-art methods. For example, for ResNet-
20, the search cost of SBS is 2.8× lower than DNAS while
the search cost of SBS for ResNet-56 is nearly 5.1× lower
than DNAS. Compared with SBS-Q, SBS only introduces a
small amount of overhead (e.g., 0.2 GPU hour for ResNet-56).
These results show the superior efficiency of SBS-Q and SBS.

TABLE 3
Comparisons between our proposed method and fixed-precision

quantization on ImageNet.

Network Method Top-1 Acc. (%) Top-5 Acc. (%) BOPs (G)

ResNet-18

Full-precision 69.8 89.1 1857.6
8-bit precision 70.0 89.3 116.1
SBS-Q (Ours) 70.2 89.4 114.3

SBS (Ours) 70.3 89.4 108.4
4-bit precision 69.2 89.0 34.7
SBS-Q (Ours) 69.5 89.0 34.4

SBS (Ours) 69.6 89.0 34.0

ResNet-50

Full-precision 76.8 93.3 4187.3
8-bit precision 76.3 93.0 261.7
SBS-Q (Ours) 76.4 93.1 253.1

SBS (Ours) 76.5 93.1 243.9
4-bit precision 75.7 92.7 71.2
SBS-Q (Ours) 75.8 92.8 71.0

SBS (Ours) 75.9 92.8 70.4
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Fig. 5. Performance comparisons of various methods for ResNet-18 and
ResNet-50 under different BOPs on ImageNet.

4.5 Comparisons on ImageNet

To evaluate the effectiveness of our method, we first apply
SBS and SBS-Q to compress ResNet-18 and ResNet-50 and
evaluate the performance on ImageNet. From Table 3, SBS-Q
compressed models with lower BOPs achieve better perfor-
mance than the fixed-precision counterparts. For example,
for ResNet-18, SBS-Q with 1.8G fewer BOPs outperforms
8-bit quantization by 0.2% on the Top-1 accuracy. These
results justify the effectiveness and necessity of bitwidth
search. By combining pruning and quantization, SBS yields
compressed models with higher accuracy and lower BOPs.
For example, for ResNet-50, SBS outperforms SBS-Q by 0.1%
on the Top-1 accuracy while reducing 9.2G BOPs. We also
show the results of compressed ResNet-18 and ResNet-50
with different BOPs in Fig. 5. Compared with SBS-Q, SBS
achieves better accuracy-BOPs trade-off, which shows the
benefit of performing pruning and quantization jointly.

To compare SBS with other state-of-the-art methods, we
apply different methods to compress ResNet-18 and Mo-
bileNetV2. From Table 4, SBS-Q with less computation cost
outperforms the state-of-the-art baselines. Specifically, SBS-Q
compressed MobileNetV2 surpasses the one compressed by
HAQ with more BOPs reduction. By combining pruning and
quantization, SBS further improves the performance while
reducing the computation cost of the compressed models. For
example, SBS compressed MobileNetV2 reduces the BOPs by
22.6× while only resulting in 0.1% performance degradation
in terms of the Top-1 accuracy.

We also illustrate the detailed configurations (i.e., bitwidth
and pruning rate) of each layer from the compressed ResNet-
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TABLE 4
Comparisons of different methods on ImageNet. “*” denotes that we get the results from the figures in [80] and “–” denotes that the results are not

reported. “BOP comp. ratio” denotes the BOP compression ratio.

Network Method BOPs (G) BOP comp. ratio Top-1 Acc. (%) Top-5 Acc. (%)

ResNet-18

Full-precision 1857.6 1.0 69.8 89.1
4-bit precision 34.7 53.5 69.2 89.0

DQ [79] 40.1 46.3 68.9 88.6
Bayesian Bits* [80] 35.9 51.7 69.5 –

DJPQ [93] 35.5 52.3 69.1 –
HAQ [81] 34.4 54.0 69.2 89.0

HAWQ [16] 34.0 54.6 68.5 –
SBS-Q (Ours) 34.4 54.0 69.5 89.0

SBS (Ours) 34.0 54.6 69.6 89.0

MobileNetV2

Full-precision 308.0 1.0 71.9 90.3
8-bit precision 19.2 16.0 71.5 90.1

DQ [79] 19.6 1.9 70.4 89.7
HAQ [81] 13.8 22.3 71.4 90.2

Bayesian Bits* [80] 13.8 22.3 71.4 –
SBS-Q (Ours) 13.6 22.6 71.6 90.2

SBS (Ours) 13.6 22.6 71.8 90.3

TABLE 5
Effect of the bit sharing scheme. We report the Top-1/Top-5 accuracy, BOPs, search cost, and GPU memory footprints on CIFAR-100. The search

cost and GPU memory are measured on a GPU device (NVIDIA TITAN Xp).

Network Method Top-1 Acc. (%) Top-5 Acc. (%) BOPs (M) Search Cost (GPU hours) GPU Memory (GB)

ResNet-20
w/o bit sharing 67.8±0.1 90.5±0.2 664.2 2.8 4.4
w/ bit sharing 68.1±0.1 90.5±0.0 649.5 0.8 1.5

ResNet-56
w/o bit sharing 71.3±0.3 91.4±0.4 2001.1 8.7 10.9
w/ bit sharing 71.5±0.2 91.5±0.2 1970.7 1.3 3.0

18 and ResNet-50. From Figs. 6 and 7, SBS assigns higher
bitwidth to 1 × 1 convolutional layers (including down-
sampling layers). One possible reason is that the number
of parameters and computation cost of 1× 1 convolutional
layers are much smaller than other layers. Compressing these
layers may lead to a significant performance decline. Besides,
SBS allocates fewer bitwidth to 3 × 3 convolutional layers
to reduce BOPs. Note that the bit-width allocation might
vary among weights, activations, and various models due
to distinct tensor dimensions or network building blocks
(non-bottleneck for ResNet-18 and bottleneck for ResNet-50),
which affects layer complexity and compression trade-offs.
For filter pruning, SBS inclines to prune more filters in the
shallower layers of ResNet-18 and middle layers of ResNet-
50, which significantly reduces the number of parameters
and computational overhead. More detailed configurations
of the other models are put in the supplementary material.

4.6 Hardware resource-constrained compression
To investigate the effect of SBS on hardware devices, we
further apply SBS to compress MobileNetV2 under various
resource constraints on the BitFusion architecture [72], which
is a state-of-the-art spatial ASIC accelerator for neural
networks. We measure the computation cost by the latency
and energy on a simulator of the BitFusion with a batch
size of 16. We report the results on ImageNet in Table 6.
Compared with fixed-precision quantization, SBS achieves
better performance with lower latency and energy. For
example, SBS compressed MobileNetV2 with 3.3ms lower

latency outperforms 8-bit MobileNetV2 by 0.5% on the Top-
1 accuracy. These results show the promising hardware
efficiency of our SBS.

5 FURTHER STUDIES

In this section, we conduct further studies for our SBS. 1) We
investigate the effect of the bit sharing scheme in Section 5.1.
2) We explore the effect of the one-stage compression scheme
in Section 5.2. 3) We study the effect of the alternating training
scheme in Section 5.3. 4) We explore the effect of different
group sizes in Section 5.4. 5) We investigate the effect of
SBS with non-power-of-two bitwidths in Section 5.5. 6) We
compare the training from scratch scheme with the fine-
tuning strategy in Section 5.6.

5.1 Effect of the bit sharing scheme
To investigate the effect of the bit sharing scheme, we apply
SBS to quantize ResNet-20 and ResNet-56 with and without
the bit sharing scheme and report the results on CIFAR-100.
Here, SBS without the bit sharing denotes that we compress
the models with the multi-path scheme [87]. We report the
Top-1/Top-5 accuracy and BOPs in Table 5. We also present
the search cost and GPU memory footprints measured on a
GPU device (NVIDIA TITAN Xp). From the results, SBS with
the bit sharing scheme obtains more compact models and
consistently outperforms the ones without the bit sharing
scheme while significantly reducing the search cost and GPU
memory footprints. For example, ResNet-56 with the bit
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TABLE 6
Hardware resource-constrained compression on BitFusion. We evaluate the proposed SBS under the latency and energy constraints and report the

Top-1 and Top-5 accuracy on ImageNet.

Network Method
Latency-constrained Energy-constrained

Top-1 Acc. (%) Top-5 Acc. (%) Latency (ms) Top-1 Acc. (%) Top-5 Acc. (%) Energy (mJ)

MobileNetV2
8-bit precision 71.5 90.1 24.9 71.5 90.1 37.0

SBS (Ours) 72.0 90.4 21.6 71.7 90.3 29.8

Downsampling layer: more bits 

(a) SBS searched bitwidths of ResNet-18.
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(b) SBS searched pruning rates of ResNet-18.

Fig. 6. SBS searched configurations of ResNet-18 on ImageNet. The
Top-1 accuracy, Top-5 accuracy and BOPs of the compressed ResNet-18
are 69.6%, 89.0% and 34.0G, respectively.

sharing scheme outperforms the counterpart by 0.2% in the
Top-1 accuracy and achieves 3.6× reduction on GPU memory
and 6.7× acceleration during training.

5.2 Effect of the one-stage compression
To investigate the effect of the one-stage compression scheme,
we perform model compression with both the one-stage
and the two-stage compression schemes on ResNet-56.
Specifically, the one-stage compression scheme means that
we perform filter pruning and quantization jointly. The
two-stage compression scheme is that we perform filter
pruning and network quantization in a separate stage. For
convenience, we denote the two-stage compression scheme
as A→B, where A→B denotes that we first perform A and
then conduct B. We consider both SBS-Q→ SBS-P and SBS-P
→ SBS-Q for comparisons. For the two-stage compression
method, we have conducted extensive experiments to find
a trade-off between pruning and quantization that leads to
high accuracy in the final compressed model following [93].
From Table 7, the resulting model obtained by the one-stage
scheme with less computation cost outperforms the two-
stage counterparts. For example, SBS with 1064.1M BOPs
outperforms SBS-P→ SBS-Q by 0.2% on the Top-1 accuracy.
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Fig. 7. SBS searched configurations of ResNet-50 on ImageNet. The
Top-1 accuracy, Top-5 accuracy and BOPs of the compressed ResNet-50
are 75.9%, 92.8% and 70.4G, respectively.

These results show the superiority of performing pruning
and quantization jointly.

5.3 Effect of the alternating training scheme

To investigate the effect of the alternating training scheme
introduced in Algorithm 1, we apply SBS to compress
ResNet-56 with a joint training scheme and an alternating
training scheme on CIFAR-100. Here, the joint training
scheme denotes that we train the binary gates of weights and
activations jointly. The alternating training scheme indicates
that we train the binary gates of weights and activations
in an alternating way, as mentioned in Section 3.3.2. From
the results of Table 8, the model trained with the alternating
scheme achieves better performance than those of the joint
scheme while consuming lower computational overhead,
which demonstrates the effectiveness of the proposed alter-
nating training scheme.

5.4 Effect of different group sizes

To investigate the effect of different group sizes B, we apply
SBS to compress ResNet-20 and ResNet-56 with differentB ∈
{1, 2, 4, 8} and show the results in Table 9. From the table,
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TABLE 7
Effect of the one-stage compression. We report the results on

CIFAR-100. A→B denotes that we first perform A and then conduct B.

Network Method Top-1 Acc. (%) Top-5 Acc. (%) BOPs (M)

ResNet-56
SBS-P→ SBS-Q 70.7±0.2 91.3±0.2 1092.4
SBS-Q→ SBS-P 70.6±0.3 91.4±0.3 1067.1

SBS 70.9±0.3 91.4±0.2 1064.1

TABLE 8
Effect of the alternating training scheme. We report the results of

ResNet-56 on CIFAR-100.

Network Method Top-1 Acc. (%) Top-5 Acc. (%) BOPs (M)

ResNet-56
Joint training 71.3±0.2 91.6±0.3 1942.4

Alternating training 71.6±0.1 91.8±0.4 1918.8

TABLE 9
Performance comparisons with different group sizes B on CIFAR-100.

Network B Top-1 Acc. (%) Top-5 Acc. (%) BOPs (M)

ResNet-20

1 67.7±0.2 90.5±0.1 648.3
2 68.0±0.1 90.4±0.1 631.2
4 68.1±0.3 90.6±0.2 630.6
8 67.9±0.1 90.4±0.1 631.1

ResNet-56

1 71.3±0.1 91.6±0.2 1945.3
2 71.3±0.1 91.6±0.1 1949.5
4 71.6±0.1 91.8±0.4 1918.8
8 71.5±0.2 91.4± 0.2 1956.5

TABLE 10
Performance comparisons of different methods on CIFAR-100. ∗

denotes our SBS with the candidate bitwidths of {3, 6, 12}.

Network Method Top-1 Acc. (%) Top-5 Acc. (%) BOPs (M)

ResNet-20
Full-precision 67.5 90.8 41798.6
6-bit precision 68.3±0.1 90.7±0.2 1482.1

SBS∗ 68.4±0.2 90.8±0.2 1481.2

ResNet-56
Full-precision 71.7 92.2 128771.7
6-bit precision 71.7±0.1 91.7±0.4 4539.7

SBS∗ 71.8±0.2 91.8±0.3 4504.3

the performance of the compressed models first improves
and then degrades with the increase of B. For example, the
compressed ResNet-56 with B = 4 outperforms those of
B = 1 by 0.3% in terms of the Top-1 accuracy. In fact, a large
B leads to a small search space. With limited computing
resources, we are able to find good configurations with high
probability and thus improve performance. In contrast, a
too large B results in extremely small search space, which
may ignore many good compression configurations and
thus limits the performance. Since our SBS achieves the
best performance with B = 4, we use it by default for the
experiments on CIFAR-100.

5.5 Effect of SBS with non-power-of-two bitwidths.

To investigate the effect of our SBS on non-power-of-
two bitwidths, we apply SBS to compress ResNet-20/56
on CIFAR-100 and ResNet-18/50 on ImageNet with the
non-power-of-two bitwidths. As shown in Theorem 1, if
we set b1 to 3 and γj to 2, we have the quantization
decomposition for an example of the non-power-of-two

TABLE 11
Performance comparisons of different methods on ImageNet. ∗ denotes

our SBS with the candidate bitwidths of {3, 6, 12}.

Network Method Top-1 Acc. (%) Top-5 Acc. (%) BOPs (G)

ResNet-18
Full-precision 69.8 89.1 1857.6
6-bit precision 69.9 89.3 68.6

SBS∗ 70.1 89.4 67.7

ResNet-50
Full-precision 76.8 93.3 4187.3
6-bit precision 76.1 93.0 150.6

SBS∗ 76.3 93.1 150.0

TABLE 12
Performance comparisons of different methods on CIFAR-100. All the

compressed models are trained from scratch.

Network Method Top-1 Acc. (%) Top-5 Acc. (%) BOPs (M)

ResNet-20
Full-precision 67.5 90.8 41798.6
4-bit precision 65.7±0.2 89.4±0.3 674.6

SBS (Ours) 65.9±0.2 89.6±0.2 657.7

ResNet-56
Full-precision 71.7 92.2 128771.7
4-bit precision 67.4±0.1 89.9±0.3 2033.6

SBS (Ours) 67.7±0.4 90.2±0.2 1981.3

bitwidths (i.e., bj ∈ {3, 6, 12, 24, · · · }). Similar to the power-
of-two bitwidths, we only consider those bitwidths that are
not greater than 12-bit since the normalized quantization
error change is small when the bitwidth is greater than 12
according to Corollary 1. We denote SBS with the candidate
bitwidths of {3, 6, 12} as SBS∗ for convenience. From Ta-
bles 10 and 11, SBS∗ obtains fewer BOPs while achieving
better performance than the fixed-precision counterparts.
For example, for ResNet-50, SBS∗ outperforms the 6-bit
conterpart by 0.2% on the Top-1 accuracy. These results
show the effectiveness of SBS with the non-power-of-two
bitwidths. Moreover, the non-power-of-two bitwidths are not
hardware-friendly due to the bit wasting in values packing
(See Appendix D), which seriously degrades the hardware
utilization. Therefore, we only consider the power-of-two
bitwidths in our experiments.

5.6 Training from scratch v.s. fine-tuning scheme

To investigate the effect of SBS with training from scratch
scheme, we apply SBS to compress ResNet-20 and ResNet-56
on CIFAR-100. The experimental settings are the same as
Section 4.2 except that we do not use any pre-trained model.
From Table 12, the models obtained by our SBS surpass
the full-precision counterparts. Moreover, the performance
improvement brought from SBS is smaller than those that are
from fine-tuning. For example, for ResNet-56, the improve-
ment of SBS over the fixed-precision quantization is 0.3%
while the fine-tuning counterpart is 0.7% in Table 1. As the
model are not well-trained, the searched configurations may
not be accurate, which hinders the effect of our method.

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed an automatic loss-aware
model compression method called Single-path Bit Sharing
(SBS) for pruning and quantization jointly. The proposed
SBS introduces a novel single-path bit sharing model to
encode all bitwidths in the search space, where a quantized
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representation will be decomposed into the sum of the lowest
bitwidth representation and a series of re-assignment offsets.
Based on this, we have further introduced learnable binary
gates to encode the choice of different compression config-
urations. By jointly training the binary gates and network
parameters, we are able to make a trade-off between pruning
and quantization and automatically learn the configuration
of each layer. Experiments on CIFAR-100 and ImageNet have
shown that SBS is able to achieve significant computation
cost and memory footprints reduction while preserving
performance. In the future, we plan to combine our proposed
SBS with other methods, e.g., neural architecture search, to
find a more compact model with better performance.
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Supplementary Materials for “Single-path Bit Sharing for
Automatic Loss-aware Model Compression”

In the supplementary, we provide the detailed proof of Theorem 1, Corollary 1, Proposition 1, more details and more
experimental results of the proposed SBS. We organize the supplementary material as follows.

• In Section A, we provide the proof for Theorem 1.
• In Section B, we give the proof for Corollary 1.
• In Section C, we offer more details about the proof of Proposition 1.
• In Section D, we provide more explanations on the hardware-friendly decomposition.
• In Section E, we give more details about the search space of SBS.
• In Section F, we give more details about the quantization configurations of different methods.
• In Section G, we offer more results in terms of MobileNetV3 on CIFAR-100.
• In Section H, we report the searched compression configurations of the compressed models.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we first provide a lemma of quantization formulas as follows.

Lemma 1. Let z ∈ [0, 1] be a normalized full-precision input, and {bj}Kj=1 be a sequence of candidate bitwidths. If bj is an integer
multiple of bj−1, i.e., bj=γjbj−1(j > 1), where γj ∈ Z+\{1} is a multiplier, then the quantized zbj+1 can be decomposed into the
quantized zbj and quantized value re-assignment rbj+1

zbj+1 = zbj + rbj+1 ,

where rbj+1 = D(z − zbj , sbj+1),

zbj = D(z, sbj ),

sbj =
1

2bj − 1
.

(A)

Proof. We construct two sequences {Am} and {Bn} for the bj-quantized value and the bj+1-quantized value{
0,

1

2bj − 1
,

2

2bj − 1
, . . . ,

2bj − 2

2bj − 1
, 1

}
, (B)

{
0,

1

2bj+1 − 1
,

2

2bj+1 − 1
, . . . ,

2bj+1 − 2

2bj+1 − 1
, 1

}
. (C)

First, we can obtain each value in {Am} is in {Bn}, i.e., {Am} ⊂ {Bn} since 2bj+1−1=(2bj )γj+1−1 is divisible by 2bj−1.
Then we rewrite the sequence {Bn} as:{

0,
1

2bj+1 − 1
, . . . ,

1

2bj − 1︸ ︷︷ ︸
A2

, . . . ,
t− 1

2bj+1 − 1︸ ︷︷ ︸
Bt

,
t

2bj+1 − 1︸ ︷︷ ︸
Bt+1

, . . . ,
2

2bj − 1︸ ︷︷ ︸
A3

, . . . ,
2bj+1 − 2

2bj+1 − 1
, 1

}
. (D)

Note that A1, A2, . . . ∈ {Bn}, thus we only focus on the sequence Bn. For an attribute z ∈ [0, 1], it surely falls in some
interval [Ai, Ai+1]. Without loss of generality, we assume z ∈ [A2, A3] and z ∈ [Bt, Bt+1] (see sequence D).

Next, we will discuss the following cases according to the position of z in [A2, A3]:
1) If z ∈ [A2,

A2+A3

2 ], based on the definition of zbj = D(z, sbj ), we have zbj = A2. Moreover, if z ∈ [Bt,
Bt+Bt+1

2 ], then
zbj+1 = Bt and rbj+1 = D(z − A2, sbj+1) = Bt − A2. Thus, we get zbj+1 = zbj + rbj+1 ; otherwise if z ∈ (Bt+Bt+1

2 , Bt+1],
then zbj+1 = Bt+1 and rbj+1 = Bt+1 −A2. Therefore, we have the same conclusion.
2) If z ∈ (A2+A3

2 , A3], similar to the first case, we have zbj = A3. Moreover, if z ∈ [Bt,
Bt+Bt+1

2 ], then zbj+1
= Bt and

rbj+1
= D(z − A3, sbj+1

) = −(A3 − Bt). Thus we have zbj+1
= zbj + rbj+1

; otherwise if z ∈ (Bt+Bt+1

2 , Bt+1], then
zbj+1

= Bt+1 and rbj+1
= −(A3 −Bt+1). Hence we still obtain the same conclusion.
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Fig. I. The normalized quantization error change and error bound vs. bitwidth. The normalized quantization error change (red line) is bounded by
C/(2bK−1) (blue line).

Theorem 1. Let z ∈ [0, 1] be a normalized full-precision input, and {bj}Kj=1 be a sequence of candidate bitwidths. If bj is an integer
multiple of bj−1, i.e., bj=γjbj−1(j > 1), where γj ∈ Z+\{1} is a multiplier, then the following quantized approximation zbK can be
decomposed as:

zbK = zb1 +
K∑
j=2

rbj ,

where rbj = D(z − zbj−1
, sbj ),

zbj = D(z, sbj ),

sbj =
1

2bj − 1
.

(E)

Proof. By summing the equations zbj=zbj−1 + rbj in lemma 1 from j=2 to K , we complete the results.

APPENDIX B
PROOF OF COROLLARY 1

Corollary 1. (Normalized Quantization Error Bound) Given z ∈ [0, 1]d being a normalized full-precision vector, zbK being its
quantized vector with bitwidth bK , where d is the cardinality of z. Let εK =

‖z−zbK
‖1

‖z‖1 be the normalized quantization error, then the
following error bound w.r.t. K holds

|εK−εK+1| ≤
C

2bK−1
, (F)

where C= d
‖z‖1 is a constant.

Proof. Let z = [z1, z2, . . . , zd] and zbK = [z1bK , z
2
bK
, . . . , zdbK ], we rewrite the normalized quantization error as:

εK =

∑d
i=1 |zi − zibK |
‖z‖1

. (G)

Then, we get the following result

|εK−εK+1|=
1

‖z‖1

d∑
i=1

∣∣∣|zi − zibK |−|zi − zibK+1
|
∣∣∣≤ 1

‖z‖1

d∑
i=1

∣∣∣zibK−zibK+1

∣∣∣= 1

‖z‖1

d∑
i=1

∣∣∣ribK+1

∣∣∣
≤ 1

‖z‖1

d∑
i=1

|sbK |=
d

‖z‖1(2bK−1)
=

C

2bK − 1
.

(H)

To empirically demonstrate Corollary 1, we perform quantization on a random toy data z ∈ [0, 1]100 and show the
normalized quantization error change |εK−εK+1| and error bound C

2bK−1 in Fig. I. From the results, the normalized
quantization error change decreases quickly as the bitwidth increases and is bounded by C/(2bK−1).
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APPENDIX C
PROOF OF PROPOSITION 1
To prove Proposition 1, we derive a lemma of normalized quantization error as follows.

Lemma 2. Given z ∈ [0, 1]d being a normalized full-precision vector and zbK being its quantized vector with bitwidth bK , where d is
the cardinality of z, let εK=

‖z−zbK
‖1

‖z‖1 be the normalized quantization error, then εK decreases with the increase of K.

Proof. Let z = [z1, z2, . . . , zd] and zbK = [z1bK , z
2
bK
, . . . , zdbK ], we rewrite the normalized quantization error as:

εK =

∑d
i=1 |zi − zibK |
‖z‖1

. (I)

Since zbK is the only variable, we focus on one term z − zbK of the numerator in Eq. (I). Next, we will prove |z − zbj | ≥
|z − zbj+1

|. Following the sequence (D) in Lemma 1 and without loss of generality, we assume z ∈ [Bt, Bt+1] ⊂ [A2, A3],
then we have the following conclusions:
1) If A2 = Bt < Bt+1 < A3, then |z − zbj | = |z − A2| ≥ |z − zbj+1

|, where |z − A2|=|z − zbj+1
| happens only when

z ∈ [Bt,
Bt+Bt+1

2 ] ;
2) If A2 < Bt < Bt+1 < A3, then |z − zbj | ≥ Bt+1 −Bt > Bt+1−Bt

2 ≥ |z − zbj+1
|;

3) If A2 < Bt < Bt+1 = A3, then |z − zbj | = |z − A3| ≥ |z − zbj+1
|, where |z − A3|=|z − zbj+1

| happens only when
z ∈ [Bt+Bt+1

2 , Bt+1].
Therefore, we have |z − zbj | ≥ |z − zbj+1

|. Thus, summing from i = 1 to d complete the conclusion.

Proposition 1. Consider a linear regression problem min
w∈Rd

E
(x,y)∼D

[(y −wx)2] with data pairs {(x, y)}, where x ∈ Rd is sampled

from N (0, σ2I) and y ∈ R is its response. Consider using SBS and DNAS to quantize the linear regression weights. Let wt
L and wt

D

be the quantized regression weights of SBS and DNAS at the iteration t of the optimization, respectively. Then the following equivalence
holds during the optimization process

lim
t→∞

E(x,y)∼D[(y−wt
L x)2]= lim

t→∞
E(x,y)∼D[(y−wt

D x)2],

where wt
L=wt

L,b1+g
t
b2

(
rtb2+· · ·+g

t
bK−1

(
rtbK−1

+gtbKr
t
bK

))
,

rtbj = D(wt
L −wt

L,bj−1
, sbj ), j = 2, · · · ,K,

wt
D =

K∑
i=1

ptiw
t
bi ,

K∑
i=1

pti = 1.

(J)

Proof. We first rewrite the optimization objective as:

(y−wt x)2=(w∗ x−wt x+∆x)2=
(
(w∗−wt)x)

)2
+2∆x

〈
w∗−wt,x

〉
+∆2

x=(rt x)2+2∆x

〈
rt,x

〉
+∆2

x,

where w∗ is the optimal value of w, ∆x is the regression error that is a constant, and rt denotes the weight quantization
error at the t-th iteration. Taking expectation, we have following results

E(x,y)∼D[(y−wt x)2]=Ex∼N (0,σ2I)(r
t x)2+2∆x

〈
rt,x

〉
+∆2

x

=Ex∼N (0,σ2I)(r
t x)2+∆2

x

=Ex∼N (0,σ2I)

(
d∑
i=1

rtixi

)2

+∆2
x

=Ex∼N (0,σ2I)

d∑
i=1

(rtixi)
2+2

∑
k 6=j

rtkr
t
jxkxj+∆2

x

=
d∑
i=1

(rti)
2Ex∼N (0,σ2I)(x

2)+2
∑
k 6=j

rtkr
t
j

(
Ex∼N (0,σ2I)(x)

)2
+Ex∼N (0,σ2I)∆

2
x

=
d∑
i=1

(rti)
2σ2+Ex∼N (0,σ2I)∆

2
x,

where we use assumption of Gaussian distribution E(x) = 0 and E(x2) = σ2.
The last equation suggests the training quantization error is only related to the weight quantization error (rti) in an

iteration since the term Ex∼N (0,σ2I)∆
2
x is a constant. Followed by Lemma 2, the quantization error decreases as the bitwidth

increases. This means that for each iteration, both the SBS and the DNAS are able to search for the K-bit to lower the
quantization error by gradient descent.
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Therefore, with gradient descent, for attribute η/σ2 > 0, there exists some iteration T so that when t > T , we have∣∣∣∣∣
d∑
i=1

(r̃ti)
2−

d∑
i=1

(r̂ti)
2

∣∣∣∣∣ ≤ η/σ2,

where r̃ = w∗−wL and r̂ = w∗−wD denote the weight quantization error with the SBS and the DNAS, respectively. Then
multiplying σ2 gives that ∣∣∣∣E(x,y)∼D[(y−wt

L x)2]−E(x,y)∼D[(y−wt
D x)2]

∣∣∣∣ ≤ η.
Based on the definition of limit, the following result holds

lim
t→∞

∣∣∣∣E(x,y)∼D[(y−wt
L x)2]−E(x,y)∼D[(y−wt

D x)2]

∣∣∣∣=0.

Therefore, we have
lim
t→∞

E(x,y)∼D[(y−wt
L x)2]= lim

t→∞
E(x,y)∼D[(y−wt

D x)2].

APPENDIX D
MORE DETAILS ABOUT HARDWARE-FRIENDLY DECOMPOSITION

In this section, we provide more explanations on hardware-friendly decomposition. As mentioned in Section 3.1, b1 and
γj can be set to arbitrary appropriate integer values (e.g., 2, 3, etc.). By default, we set b1 and γj to 2 for better hardware
utilization. On general-purpose computing devices (e.g., CPU, GPU), byte (8 bits) is the lowest data type for operations.
Other data types and ALU registers are all composed of multiple bytes in width. By setting b1 and γj to 2, 2-bit/ 4-bit/ 8-bit
quantization values can be packed into byte (or short, int, long) data type without bit wasting. Otherwise, if b1 and γj set to
other values, it is inevitable to have wasted bits when packing mixed-precision quantized tensors on general-purpose devices.
For example, a 32-bit int data type can be used to store ten 3-bit quantized values with 2 bits wasted. One might argue
that these 2 bits can be leveraged with the next group of 3-bit data, but it will result in irregular memory access patterns,
which will degrade the hardware utilization more seriously. Moreover, 8-bit quantization is able to achieve comparable
performance with the full precision counterparts for many networks [17] and the normalized quantization error change is
small when the bitwidth is greater than 8 as indicated in Corollary 1 and Fig. 2. Therefore, there is no need to consider a
bitwidth higher than 8.

APPENDIX E
MORE DETAILS ABOUT SEARCH SPACE FOR MODEL COMPRESSION

Given an uncompressed network with L layers, we use Cl to denote the number of filters at the l-th layer. Let B be the
number of filters in a group. For any layer l, there would be G =

⌈
Cl

B

⌉
groups in total. Since we quantize both weights and

activations, given K candidate bitwidths, there are K2 different quantization configurations for each layer. Thus, for the
whole network with L layers, the size of the search space Ω can be computed by

|Ω| =
L∏
l=1

(
K2 ×G

)
. (K)

Eq. (K) indicates that the search space is extremely large when we have large L, K , and smaller B. For example, the search
space of ResNet-18 is |Ω| ≈ 4.3 × 1034 with K = 3 and B = 16, which is large enough to cover the potentially good
configurations.

APPENDIX F
MORE DETAILS ABOUT QUANTIZATION CONFIGURATIONS

Note that all the compared methods follow the quantization configurations in their papers. Specifically, for DQ [79], we
parameterize the fixed-point quantizer using case U3 with θ = [d, qmax]. We initialize the weights using a pre-trained model.
The initial step size is set to d = 2blog2(max(|W|)/(2b−1−1)c for weights and 2−3 for activations. The remaining quantization
parameters are set such that the initial bitwidth is 4-bit. For HAQ [81], we first truncate the weights and activations into the
range of [−vw, vw] and [0, vx], respectively. We then perform linear quantization for both weights and activations. To find
more proper vw and vx, we minimize the KL-divergence between the original weight distribution W and the quantized one
Q(W). For DNAS [87], we follow DoReFa-Net [96] to quantize weights and follow PACT [11] to quantize activations. We
initialize the learnable clipping level to 1. For DJPQ [93] and Bayesian Bits [80], we directly get the results from original
papers. For other methods, we use the quantization function introduced in Section 3. The trainable quantization intervals vx
and vw are initialized to 1.
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TABLE I
Comparisons of different methods in terms of MobileNetV3 on CIFAR-100.

Method BOPs (M) BOP comp. ratio Top-1 Acc. (%) Top-5 Acc. (%)

Full-precision 68170.1 1.0 76.1 93.9
6-bit precision 2412.6 28.3 76.1±0.0 93.7±0.0

DQ 2136.3 31.9 75.9±0.1 93.7±0.1
HAQ 2191.7 31.1 76.1±0.1 93.5±0.0

DNAS 2051.9 33.2 76.1±0.1 93.7±0.1
SBS-P (Ours) 59465.8 1.1 76.0±0.0 93.5±0.0
SBS-Q (Ours) 2021.9 33.7 76.1±0.1 93.7±0.1

SBS (Ours) 2006.6 34.0 76.1±0.1 93.7±0.1

APPENDIX G
MORE RESULTS IN TERMS OF MOBILENETV3 ON CIFAR-100
To investigate the effectiveness of the proposed SBS on the lightweight models, we apply our methods to MobileNetV3
on CIFAR-100. Following LSQ+ [2], we introduce a learnable offset to handle the negative activations in hard-swish. We
show the results in Table I. From the results, our proposed SBS outperforms the compared methods with much fewer
computational cost, which demonstrates the effectiveness of the proposed SBS on the lightweight models.

APPENDIX H
MORE DETAILS ABOUT THE COMPRESSION CONFIGURATIONS OF THE COMPRESSED MODELS

In this section, we illustrate the detailed compression configurations (i.e., bitwidth and/or pruning rate) of each layer from
the quantized and compressed ResNet-18 and MobileNetV2 in Figures II, III, IV, and V. From the results, our SBS assigns
more bitwidths to the weights in the downsampling convolutional layer in ResNet-18 and depthwise convolutional layer
in MobileNetV2. Intuitively, one possible reason is that the number of parameters and computational cost of these layers
are much smaller than other layers. Compressing these layers may lead to a significant performance decline. Moreover,
our SBS inclines to prune more filters in the shallower layers of ResNet-18, which can significantly reduce the number
of parameters and computational overhead. To further explore the relationship between pruning and quantization, we
illustrate the detailed configurations of each layer from a more compact MobileNetV2, as shown in Fig. VI. From the figure,
if a layer is set to a high pruning rate, our SBS tends to select a higher bitwidth to compensate for the performance decline.
In contrast, if a layer is set to a low pruning rate, our SBS tends to select a lower bitwidth to reduce the model size and
computational costs.
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Downsampling layer: more bits 

Fig. II. SBS-Q searched bitwidths of ResNet-18 on ImageNet. The Top-1 accuracy, Top-5 accuracy and BOPs of the quantized ResNet-18 are 69.5%,
89.0% and 34.4G, respectively.
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Fig. III. SBS-Q searched bitwidths of MobileNetV2 on ImageNet. The Top-1 accuracy, Top-5 accuracy and BOPs of the quantized MobileNetV2 are
71.6%, 90.2% and 13.6G, respectively.
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Downsampling layer: more bits 

(a) SBS searched bitwidths of ResNet-18.
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(b) SBS searched pruning rates of ResNet-18.

Fig. IV. SBS searched configurations of ResNet-18 on ImageNet. The Top-1 accuracy, Top-5 accuracy and BOPs of the compressed ResNet-18 are
69.6%, 89.0% and 34.0G, respectively.
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(a) SBS searched bitwidths of MobileNetV2.
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(b) SBS searched pruning rates of MobileNetV2.

Fig. V. SBS searched configurations of MobileNetV2 on ImageNet. The Top-1 accuracy, Top-5 accuracy and BOPs of the compressed MobileNetV2
are 71.8%, 90.3% and 13.6G, respectively.
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(a) SBS searched bitwidths of MobileNetV2.
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(b) SBS searched pruning rates of MobileNetV2.

Fig. VI. SBS searched configurations of MobileNetV2 on ImageNet. The Top-1 accuracy, Top-5 accuracy and BOPs of the compressed MobileNetV2
are 71.4%, 90.1% and 10.8G, respectively.
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