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Abstract—Learning generalizable representation and classifier for class-imbalanced data is challenging for data-driven deep models.
Most studies attempt to re-balance the data distribution, which is prone to overfitting on tail classes and underfitting on head classes. In
this work, we propose Dual Compensation Residual Networks to better fit both tail and head classes. Firstly, we propose dual Feature
Compensation Module (FCM) and Logit Compensation Module (LCM) to alleviate the overfitting issue. The design of these two
modules is based on the observation: an important factor causing overfitting is that there is severe feature drift between training and
test data on tail classes. In details, the test features of a tail category tend to drift towards feature cloud of multiple similar head
categories. So FCM estimates a multi-mode feature drift direction for each tail category and compensate for it. Furthermore, LCM
translates the deterministic feature drift vector estimated by FCM along intra-class variations, so as to cover a larger effective
compensation space, thereby better fitting the test features. Secondly, we propose a Residual Balanced Multi-Proxies Classifier
(RBMC) to alleviate the under-fitting issue. Motivated by the observation that re-balancing strategy hinders the classifier from learning
sufficient head knowledge and eventually causes underfitting, RBMC utilizes uniform learning with a residual path to facilitate classifier
learning. Comprehensive experiments on Long-tailed and Class-Incremental benchmarks validate the efficacy of our method.

Index Terms—Class Imbalance Learning, Class-Incremental Learning, Residual Path
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INTRODUCTION

2 INTRODUCTION

Recently, many vision tasks have made significant progress
with deep neural networks [1], driven by the devel-
opment of deep neural networks as well as large-scale
datasets [2]. However, these large-scale datasets are usually
well-designed, and the number of samples in each class
is balanced artifically. In real world, most data exhibits
an extremely class imbalanced (long-tail) distribution [3]], [4],
where a few high-frequency (head) classes occupy most of
the instances, while most low-frequency (tail) classes are
under-represented by limited samples. The data imbalance
poses great challenges to learning unbiased networks [5].
An intuitive solution to address class imbalance problem
is to re-balance data distribution [6]], [7], [8]], [9], including
re-sampling training data [9]], [10], [11] and re-weighting loss
functions [12], [13], [14]. However, the re-balanced dis-
tribution is easily fitted by the over-parameterized deep
networks, increasing the risk of under-fitting the whole
original data distribution while over-fitting the tail data [15]].
Recent work [15] observes that uniform learning (i.e. train-
ing without re-balancing) actually learns more generalizable
representation. Based on above observation, the work [15]
proposed a decoupled scheme. In general, the decoupled
scheme first learns feature representation under Uniform
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Fig. 1. The feature visualization with t-SNE [16]. (a) The classifier of
decoupled method [15] over-fits the biased training features on ftail
classes and under-fits on head classes. (b) The proposed RBMC trained
with compensated features by FCM and LCM could achieve a more
accurate classification boundary, via better fitting both tail and head
classes.

Sampling (US), and then re-adjusts the linear classifier
on frozen features under Class-Balanced Sampling (CBS).
Nevertheless, such a two-stage decoupled scheme still tends
to produce a biased classification boundary and fails to deal
with imbalance issue well.

We argue that there are two main problems that make
existing works [6], [7], [8], [9], [9], [10], [11], [12], [13], [14],
[15], [17] produce biased classification boundary. The first is
the feature drift between training and test data on tail
classes. For a tail class with scanty training samples, the
feature extractor easily overly memorizes the knowledge
of the few samples, which cannot generalize to unseen test
samples [18]. So the extracted features of training and test
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Fig. 2. lllustration of two problems of existing class-imbalanced methods
[14], [15], [17]. (a) The distance of per-class prototype between training
and test data of existing method [15]. As seen, the distance goes
large as the number of training samples decreases, indicting a large
feature drift on tail classes. (b) With frozen features, top-1 accuracy
on head classes of classifier learning under US/CBS sampling |15]. As
observed, re-balanced classifier performs poorly on both training and
test compared to uniform classifier, proving that re-balanced classifier
essentially suffers from under-fitting the head classes.

samples tend to deviate from each other. An example is
illustrated in Fig. (1| (a) and Fig. (a As a consequence,
the classifier trained on the drifted features would fail to
separate the test samples of tail classes, as shown in Fig.
(a). The second is the re-balanced classifier under-fitting
on head classes. In the phase of classifier learning, exist-
ing methods typically utilize the re-balancing strategy to
obtain a class-balanced classifier. However, the re-balancing
strategy encourages the classifier to excessively focus on tail
classes, which inevitably leads to under-optimize on head
classes. An example is illustrated in Fig.[2](b). As a result, the
classifier trained only by re-balancing strategy is insufficient
to recognize all head samples, as shown in Fig. (1 (a).

In this work, we propose Dual Compensation Residual
Networks (DCRNets) to learn a more unbiased classifier
on imbalanced data. DCRNets contains three key mod-
ules: dual compensation component consisting of Feature
Compensation Module (FCM) and Logit Compensation
Module (LCM) to alleviate the overfitting on tail classes,
and Residual Balanced Multi-Proxies Classifier (RBMC)
to alleviate the underfitting on head classes. The proposed
modules can serve as plug-and-play modules, seamlessly
integrating with existing methods with any network archi-
tecture, such as ResNet [1], ResNeXt [19] or Multi-expert
framework [20], forming our DCRNets.

The first module, FCM, alleviates overfitting on tail data
by compensating for feature drift on tail classes. FCM is
designed based on the following observation as shown in
Fig. [1] : (1) The test tail features tend to drift towards the
feature cloud of similar head categories. (2) The feature drift
direction presents a multi-mode, where the test features of
one tail category could drift towards multiple similar head
categories. Based on above observations, FCM estimates a
multi-mode feature drift direction for each tail category
based on nearest head categories. Along the estimated
feature drift vector, original tail features can be moved closer
to the test features, as shown in Fig. |1|(b).

Although FCM can reduce the feature drift of tail classes,
it can be challenging to obtain entirely accurate feature drift
vectors due to the complex distribution often presented by

1. The classes are re-indexed so that the number of training samples
decreases as the class index increases
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test features of tail classes [21]. To this end, we design the
second module, LCM, which translates the deterministic
feature drift direction estimated by FCM along intra-class
variations. In this way, the compensated features can cover
a larger feature space and still live in true feature manifold,
thus can better fit the test features. Furthermore, instead of
performing explicit translation, LCM resorts to an efficient
form of logits (classifier outputs) compensation that allows
for end-to-end training. As shown in Fig. [1| (b), with FCM
and LCM, the training features of a tail category can be
compensated to corresponding test feature space, making
the learned classification boundary more generalizable.

The last module, RBMC, alleviating underfitting on head
data by introducing a residual path from uniform learn-
ing. Motivated by the fact that the classifier trained under
uniform sampling (US) can better fit the head data [15],
RBMC is designed to utilize the predictions of US classi-
fier. In particular, RBMC learns a residual mapping from
imbalanced predictions of US classifier to desired balanced
predictions through class-balanced sampling (CBS) training.
As a result, RBMC is optimized jointly under both US and
CBS strategies, so that it can take full advantage of all
training data to alleviate under-fitting, while also avoiding
highly skewing towards head classes.

For evaluation, we conduct Class Imbalanced exper-
iments on four long-tailed benchmarks. We demonstrate
that various long-tailed methods [15]], [20] can be directly
incorporated into the architecture of DCRNets, yielding
consistent performance improvements. Further, we conduct
experiments on a closely connected field, Class Incremental
Learning, to further show the generality of our method.

3 RELATED WORK
3.1 Long-tailed Classification

Long-tailed classification is a long-standing research
problem in machine learning, where the key is to overcome
the severe class imbalance issue [22]. With the great
success deep neural networks have achieved in balanced
classification tasks, increasing attention is being shifted to
long-tailed classification. Recent studies can be roughly
divided into the following six categories.

Re-sampling/Re-weighting. = An intuitive solution to
long-tailed task is to re-balance the data distribution. Re-
sampling data is a common re-balancing strategy to artifi-
cially balance the imbalanced data. Typical re-sampling in-
cludes over-sampling [5], [12], [23], [24] by simply repeating
data from tail classes, and under-sampling by discarding
data from head classes [5], [9], [13]. However, duplicated tail
data may cause over-fitting tail classes [14], [25]]. In addition,
it is revealed that over-sampling leads to a side-effect of
making head classes under-represented [15], [17]. And dis-
carding head data will certainly impair the generalization
ability of deep networks [17].

Re-weighting loss is another prominent re-balancing
strategy. The basic idea of Re-weighting is to upweight
the tail samples and downweight the head samples in
the loss function [[6]. The class-sensitive loss [6], [26], [27]
assigned the weight to each class inversely proportional to
the number of samples. Cui et al. [14] proposed to adapt
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the effective number of samples instead of proportional
frequency. A more fine-grained usage is at sample level, e.g.
focal loss [28], using meta learning [29], [30] or Bayesian
uncertainty [31]. The work [8] designed a label-distribution-
aware loss to encourage a larger margin for the tail class.
However, It is revealed that re-weighting is not capable
to handle large-scale long-tailed data and easily causes
optimization difficulty [15], [17].

Decoupled Methods. Kang et al. [15] firstly proposed the
decoupled scheme. This work observed that an uniform
sampling scheme actually generated more generalizable
representations and achieved stronger performance after re-
balancing the classifier. So [15] proposed a two-stage decou-
pled training pipeline that learned features using US at the
first stage, then re-adjusted the classifier with frozen features
using CBS at the second stage. However, such a two-stage
design is not for end-to-end frameworks. The works [32],
[33] improved the two-stage strategy by introducing a post-
process to adjust the prediction score. Zhou et al. [17] simu-
lated the two-stage training in a single stage by dynamically
combining uniform sampling and class balanced sampling
with cumulative learning strategy.

In spite of excellent results, above decoupled methods
do not take into account the feature drift of tail categories,
leading to a biased learning of classifier. On the contrary,
our FCM and LCM effectively reduce the unfavorable
feature drift. In addition, the decoupled methods typically
only rely on class balanced sampling to optimize the
classifier. So the classifier learning inevitably suffers from
adverse effects of class balanced sampling, ie., a higher
risk of under-fitting on head data. On the contrary, our
RBMC utilizes the classifier trained with uniform sampling,
which can take full advantage of all training data, thereby
alleviating the under-fitting on head classes.

Self-supervised Contrastive Learning. Self-supervised
contrastive learning [34], [35] trains the model in a
pairwise way by aligning positive sample pairs and
repulsing negative sample pairs. Recently, researchers
have applied self-supervised learning to long-tailed
recognition and demonstrated improved performance.
SSP [36] applied self-supervised learning [34] for a
good feature initialization. KCL [37] further designed a
balanced contrastive loss. However, above works [36],
[37] require a two-stage learning paradigm, which are not
for end-to-end frameworks. Hybrid-SC [38] proposed a
one-stage framework that used a supervised contrastive
loss to learn better representation and a cross-entropy
classification loss to learn a balanced classifier at the same
time. Furthermore, PaCo [39] and GPaCo [40] applied
re-balance strategy in supervised contrastive learning to
tackle imbalance issue. Notably, self-supervised contrastive
learning techniques are orthogonal to our method, which
can be easily combined to learn better representation and
further improve performance.

Transfer Learning. Another line is to transfer knowledge
learned from head classes to tail classes. Some works [2],
[41] exploited complex memory backs to transfer seman-
tic features. Wang et al. [42] designed a meta network
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to transfer the meta-knowledge of parameters evolution.
Kim et al. [43] translated the head samples to a synthetic tail
class via a complicated optimizing process. Chu et al. [44]
generated tail features by mixing its class-specific features
with the class-generic features transferred from head classes.
Nevertheless, above methods required either large memory
of historical features [2[, [41] or complex optimization pro-
cess [42]], [43]], [44], incurring high cost in time and memory.
Recent methods [45], [46], [47] proposed to transfer the intra-
class variance from head class to enlarge the diversity of tail
classes. However, [45], [46], [47] made strong assumptions
that each class has a shared variance, which could introduce
harmful features that interfered with tail features [48]]. And
recent works [49], [50] proposed to transfer the mean and
variance statistics for few-shot classification and long-tailed
regression. But [49] focused on few-shot task, which could
not distinguish the tail from head classes. And [50] aimed to
create a continuity in feature space of continuous labels for
regression task, which could not recognize discrete classes
for recognition task.

Our FCM shares a similar idea that the head categories
can be used to help the learning of tail categories. But to
the best of our knowledge, our FCM is the first to point
out the test features of tail category tend to drift towards
the feature space of similar head categories. Therefore,
FCM proposes to compensate the feature drift of tail
categories with the information of similar head categories.
In implementation, FCM is simple and waives the need for
complex memory and optimization mechanism. So FCM
is more easier to combine with other advanced long-tailed
learning frameworks, such as multi-expert network [20].

Data Generation. In the context of long-tailed recogni-
tion, the tail class essentially lacks of sufficient diversity
to learn a generalizable model. Therefore, one remedy is
to generate more tail samples. In this part, we focus on
the approaches that performed generation without using
head information. For example, Zhang et al. [48] estimated
a class-wise feature distribution with statistics calculated
from observed samples, and then generated virtual features
for tail classes based on the estimated distribution. Wang et
al. [51] used training samples from tail classes and noise
vectors to produce new hallucinated tail samples. Mullick et
al. [52] used the convex combination of existing samples
to generate new tail samples. Recent works [53]], [54] used
Implicit Semantic Data Augmentation (ISDA) algorithm [55]
to perform implicit semantic augmentation.

Our LCM shares a similar idea of generating more
diverse tail samples. However, different from most
works [48], [51], [52] that explicitly generate samples, LCM
performs an implicit generation which is highly efficient and
easy to combine with other advanced long-tailed methods.
Notably, ISDA [55] also implicitly generates samples. But
ISDA generates new features around the training instances
of the target class. In long-tail classification task, due to the
feature drift of tail classes, the generated features would
still be far away from the real test features. Thus ISDA
has limited effectiveness in learning a generalized model
for long-tailed data. Differently, LCM utilizes an extra
feature drift compensation operation, which can generate
more realistic features to improve the generalizability of
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Fig. 3. Framework of Dual Compensation Residual Networks. It contains three key parts: Feature Compensation Module (FCM) to compensate the
feature drift of tail categories, Logit Compensation Module (LCM) to implicitly enrich feature diversity, and Residual Balanced Multi-proxies Classifier

(RBMC) to learn a class-balanced classification boundary.

long-tailed models.

Multi-Expert Networks. The recent trend in multi-expert
networks shows their strong potential to effectively address
long-tailed issue. LFME [56] and RIDE [20] are two typical
multi-expert architectures. The two methods learned diverse
models in parallel, combining with knowledge distillation
and distribution-aware expert selection. Further, ACE [57]
proposed to use complementary experts, where each expert
is most knowledgeable in a specific subset and comple-
mentary to other experts. Similarity, ResLT [58] divided
classes into several subsets, i.e., all classes, middle and
tail classes and tail classes. ResLT then trained multiple
experts with various classes subsets under a residual learn-
ing mechanism. Notably, ResLT shares most parameters for
different experts, which has less computational cost than
other multi-expert networks [20], [20], [56]. NCL [59] col-
laboratively learned multiple experts concurrently and used
knowledge distillation strategy [60] to enhance each single
expert. TADE [61] extended the multi-expert network to
test-agnostic long-tailed recognition task, where the training
class distribution is long-tailed while the test class distri-
bution is unknown and can be skewed arbitrarily. With the
ensemble methods, the multi-expert networks set new state-
of-the-art performance on standard long-tailed benchmarks.
We validate in the experiments that our approach can be
effectively inserted into the multi-expert networks to bring
consistent performance improvements.

3.2 Class Incremental Learning

Incremental learning [62] aims to learn efficient models from
the data that gradually comes in a sequence of training
phases. Class Incremental Learning (CIncL) [63] is a thriving
subfield in incremental learning, where each phase has the
data of a new set of classes coming from the identical
dataset. Related methods mainly focus on how to solve
the problems of forgetting old data, which can be roughly
categorized into regularized-based and replay-based meth-
ods. Regularized-based methods [64]], [65], [66] introduce
regularization terms in the loss function to consolidate
previous knowledge when learning from new data. Replay-
based methods [63], [67] use the rehearsal strategy, which
store a tiny subset of old data, and replay the model on
them to reduce the forgetting.

For class incremental learning, data of old classes is gen-
erally not available when new classes appear. Even with the
rehearsal strategy, the ratio of the number of new samples to
that of old exemplars could be very high, leading to a very
serious imbalance issue in class incremental learning [68]]. In
order to address the class imbalance issue in class incremen-
tal learning, Castro et al. [69] utilized a balanced fine tuning
strategy. Belouadah et al. [70] stored the average confidence
at each incremental phase to rectify the imbalanced logits.
Wu et al. [71] added a bias correction layer to correct the
output logits. Hou et al. [72] combined cosine normalization,
less-forget constraint and inter-class separation to mitigate
the impact of class imbalance. Zhao et al. [73] proposed
weight aligning to correct the biased weight in classification
layer after uniform training process, which is similar to the
7-norm classifier of decoupled method [15].

Above methods show that the techniques to address
class imbalance can be applied to Class Incremental Learn-
ing. From the class imbalance view, most above methods
[71]], 172]], [73] combine a uniform training stage on the
imbalanced dataset and a balanced fine-tuning stage, similar
to the two-phase decoupled strategy [15]. However, these
methods neglect the issue of feature drift, which causes
overfitting on the few stored old exemplars and poor per-
formance on old classes. Our FCM and LCM can effec-
tively alleviate the unfavorable feature drift, and improve
classification performance under class imbalance, thereby
benefiting class incremental learning.

4 DUAL COMPENSATION RESIDUAL NETWORKS

In this section, we first present the overall framework of
DCRNets. Then, we elaborate on the dual compensation
modules and the residual balanced classifier used as parts
of DCRNets. We finally give the detailed training and test
algorithm of DCRNets.

4.1 Overall Framework

Fig. B shows the overview of proposed DCRNets. The
network consists of two branches: one Uniform Branch
equipped with Uniform Sampling (US) and one Class
Balanced Branch equipped with Class Balanced Sampling
(CBS). A feature extractor (backbone) is shared between the
two branches, and each branch has its own classifier. The
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Fig. 4. Due to some common characteristics, the features of two test
samples of tail category “Chesapeake Bay retriever” would drift towards
the feature space of similar head categories “golden retriever” and “flat-
coated retriever”, respectively.

Uniform Branch mainly aims to learn generalizable features.
And the Class Balanced Branch is expected to learn a less
biased classifier. Building on the two-branch architecture,
DCRNets contains three novel parts: FCM, LCM and RBMC.
FCM and LCM aims to alleviate overfitting on tail classes
by compensating the feature drift between training and test
data. RBMC aims to alleviate underfitting on head classes
by adding a residual path from uniform branch to class
balanced branch.

Formally, given an input image x“/x’ sampled under
US/CBS, the shared backbone is firstly used to extract
the feature representation f“/f ¥ for Uniform Branch/Class
Balanced Branch. Motivated by the observation that there
is severe feature drift between training and test data on tail
classes, the original feature vectors (f* and f b) are sent into
FCM to compensate the drift, obtaining compensated fea-

tures f" and fb. After that, the compensated feature fis
sent into the uniform classifier of Uniform Branch for feature
learning, and f” is sent into the RBMC of Class Balanced
Branch for classifier learning. To prevent the classifier from
fitting to FCM errors and enrich feature diversity especially
for tail classes, the outputs of uniform classifier and RBMC
are adjusted by LCM. At the last, DCRNets are optimized
by applying cross-entropy classification loss on top of LCM.

4.2 Feature Compensation Module

In this section, we first analyze the feature drift phe-
nomenon in detail, and then present the specific operations
of FCM.
Analysis of Feature Drift. For imbalanced data, the tail
categories typically cannot provide sufficient diversity to
learn generalizable features. So there could be discrepancy
in feature space between training and test data on tail
categories. Fig. |2| (a) computes the Euclidean Distance of
per-class feature prototype between training and test data.
As seen, the distance increases as the number of training
samples decreases, indicating a larger feature drift on tail
categories. As a result, the classifier learned to differentiate
the training samples can not generalize to differentiate test
samples for tail classes.

Furthermore, we analyze the direction of feature drift.
For one thing, we observe that the test features of tail
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Fig. 5. (a) For each tail category on train/test set, the average distance
of all of its features to the prototype of nearest head category. The
tail features of test set become closer to the nearest head category,
indicating a drift towards similar head features. (b) For each tail category
on test set, the number of different nearest head categories across all
samples. On test set, the samples of one tail category could be closest
to different head categories. The result indicates that the tail features
tend to drift towards multiple similar head categories.

category tend to drift towards the feature clouds of similar
head categories. In detail, since tail category contains scanty
training samples, the feature extractor typically learns in-
complete features that over-fit to the scanty training sam-
ples. For example, as shown in Fig. 4} the brown color and
small size features are enough to recognize the training
samples of Chesapeake Bay retriever tail category. But the two
features are insufficient to correctly recognize the unseen
test samples of Chesapeake Bay retriever. Meanwhile, because
test samples of tail category often share some characteristics
with similar head categories, the test features of tail category
tend to drift towards the feature space of similar head
categories, as illustrated in Fig. [ Fig. [f] (a) calculates the
average distance between all train/test features of each tail
category and the prototype of the nearest head category.
As seen, as the number of samples in the tail category
decreases, the test features of tail category become closer
to the nearest head category. The result verifies that the test
features of tail category could drift towards feature space of
similar head categories.

For another, we observe that the direction of feature
drift presents a multi-mode. In details, the test samples of
one tail category usually have various characteristics, e.g.,
various shapes, sizes and poses. Thus, different test samples
could share characteristics with different head categories,
resulting in a drift towards multiple similar head categories.
For example, in Fig. [ the top test sample has the same
brown color and big body as golden retriever category, while
the bottom test sample has the same black color as flat-coated
retriever category. As a result, the features of the two test
samples drift towards golden retriever and flat-coated retriever
respectively. Fig. [5| (b) counts the number of different
nearest head categories across all test samples for each tail
category. We observe that most tail categories have more
than one nearest head category. The result indicates that
the tail features tend to drift towards the feature space of
multiple head categories.

Computing of Feature Drift. Aiming at reducing fea-
ture drift, we propose FCM to compensate for the training
features. The key idea of FCM is to estimate a multi-mode
feature drift direction for each tail category based on the class
similarity.
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Formally, FCM first computes a prototype ¢, € R for
each category k. The prototype is defined as the mean vector
of the training features belonging to its corresponding class
[74]. Then for each tail category t, we select top m head
categories with the closest distance to the prototype of this
tail category:

C;Cj
7o) = el 1€
Dy ={g(ct,cj) | j € Ch},

St ={Jj | g(ci,¢;) € topm (Dy)},

where C}, and C; denote the set of head and tail categories
respectively, topn(-) is an operator to select the top m
elements from the input distance set D;. S; stores m nearest
head categories with respect to the tail category t.

As above analysis, the test features of one tail cate-
gory could drift towards multiple similar head categories.
Therefore, we estimate a set of feature drift vectors for
each tail category ¢ based on the nearest head categories
in S;. As shown in Fig. [f] (a), since the prototype refers to
class representative points in feature space, the prototype
distance of tail category to the similar head category in S;
can be used to estimate corresponding feature drift vector:

J €Sy, @)

)

0ty = i (¢j — ),

where «; is a positive coefficient to control the strength of
drift compensation. As the generalization of learned features
is often positively correlated with the number of training
samples, the category with fewer training samples is more
likely to be closer to similar head category, as shown in
Fig. |5/ (a). So o is set inversely proportional to the number
of training samples of the tail category ¢. It is defined as:

Nmin) ’ (3)

where " is a hyperparameter, and Npyax and Npin are the
numbers of training samples for the most frequent and least
frequent category in C; respectively.

ay = OAO (Nmax - Nt) / (Nmax -

0

Compensation of Feature Drift. Based on the estimated
feature drift vectors (Eq. [2), FCM compensates for original
training features to reduce the feature drift. In details, for

each tail category ¢, we compute the probability s;; of
drifting towards similar head category j in S;, and the
probability s;; of retaining its feature:

’ ] € Stu (4)

Stj =
T s, exp (19 (er, e)) + exp (tg (ci, cr)

exp (19 (ct, ¢t)) )
ZZESt exp (19 (ct, 1)) + exp (Tg (ct, ¢t))’

exp (19 (¢t ¢;))
(

Stt =

where 7 is the temperature hyperparameter. Eq. 4] shows
that the tail category has a higher probability of drifting
towards more similar head category. Eq.[f|shows that the tail
category is more likely to retain its features if it has a overall
low similarity to all head categories in S;. This operation
prevents the tail category from updating to a unrelated head
category if this tail category has no similar characteristics to
all head categories.

At last, for each training sample (z, t)ﬂ of tail category
t, FCM shifts original feature f € R after backbone along
the estimated drift vector ;; with probability s;;, to obtain
a compensated feature f € RP. FCM is formulated as:

f=7F+r, where p(r =084) =55, j €S U{t}. (6)

Eq.[f]is equivalent to:

fj = f + (St]‘, where p(fj) = Stj, _] S St U {t}, (7)

where 0;; = 0, indicating retaining original feature. No-
tably, we maintain training features of head categories,
which are already fairly close to test features. As shown in
Fig.[T](b), when applying feature drift vectors to correspond-
ing training features, the training features can be moved
to be close to corresponding test space. In this way, the
compensated features by FCM can better represent the test
feature distribution, thereby achieving a more generalizable
classifier.

Notably, although FCM uses prototypes, it does not
employ contrastive learning. The prototypes on FCM are
directly computed and unlearnable, which are only used
to estimate the feature drift direction d¢; (Eq. for tail
classes. With the updated features f, (Eq. by FCM,

2. For simplicity, we omit superscript u and b of all symbols in Section

and
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we only employ classification learning with a cross-entropy
classification loss.

4.3 Logit Compensation Module

While FCM can roughly estimate the feature drift direction,
it is important to note that the test features of a tail class
are unknown during training and typically exhibit complex
distribution. As a result, the drift vectors estimated by
FCM are prone to errors and difficult to cover all drift
directions. To this end, we propose LCM which integrates
uncertainty into drift estimation. Integrating uncertainty can
prevent the subsequent classifier from over-fitting to FCM
errors, thereby enhancing its robustness. Also, integrating
uncertainty can expand estimated region to cover more drift
directions, so that more diverse features for tail classes can
be generated to improve the classification boundary.

As shown in Fig. [f] (c), LCM integrates uncertainty
into the deterministic drift vectors estimated by FCM (¢,
in Eq. ), via translating d;; along intra-class variations.
Concretely, we establish a zero-mean Gaussian Distribution
N (0,0%) for each category t, where o, € RP is the
class-conditional sample standard deviation estimated from all
training features of category {. E]Then a random drift vector
d;; is obtained by translating d,; along a random direction
sampled from N (0, 7). It is formulated as:

8¢j = 84 + Big, where g ~ N (0,07), j € StU{t}, (8)

where 3, is a positive coefficient to control the strength of
translating &,;. Equivalently, we have &;; ~ N (845, B107).
Based on d;, the compensated feature f can be obtained by
applying it to original feature f with probability s;;,

f=f+wv, wherev ~ Z siN (575]-,5,50'?), )

jeSU{t}

where v is the translation of the original feature f, which
is sampled from a Gaussian Mixture Distribution. With
probability s;;, the compensated feature will shift towards
the j'" similar head class (+d;;) and vary along intra-class
variance (3;07). In this way, more diverse features that live
in test manifold can be obtained, thereby achieving a more
generalizable classifier. Notably, FCM (Eq. [6) is a special
case of Eq. E] where the standard deviation of Gaussian
Distribution is equal to 0 (o7 = 0).

Class Adaptive Translation Coefficient. Previous
works [45] observe that due to lack of intra-class diversity,
the class with fewer training instances usually has a smaller
observed variance. So the value of observed standard deviation
(0?) for rarer class is relatively smaller, which harms the di-
versity of generated features by LCM (Eq.[9). To address this
issue, existing works [45], [46] rely on a shared variance for
all classes. But the strong assumption on a shared variance
would introduce harmful features [48]. A recent work [53]
uses a complex meta-learning strategy to learn variance of
tail classes, which incurs excessive computation cost [18]].

3. We assume the dimensions of the feature vector are independent
of each other and consider the covariance matrix of the feature distri-
bution to be diagonal. It can largely reduce the computation complexity
and memory overload.
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We use a simple and effective Class Adaptive Translation
Coefficient mechanism. Eq.[9shows 3, controls the variation
range of generated feature f. Since the category with fewer
training instances tends to have a smaller observed vari-
ance [45]], 3; is set to inversely proportional to the number
of training samples N;. It is formulated as:

ﬁt 60 ( max — Nt) / (Nmax - Nmin) ) (10)

where 80 is a hyperparameter, and Nmax and Npin are the
numbers of training samples for the most frequent and
least frequent category. In this way, class adaptive 3; can
mitigate negative impact of smaller observed variance on
rarer classes.

Logit Compensation Operation. In Eq. ] a naive
method is to explicitly translate original feature f
for M times, forming an augmented feature set

{(F0) . (Ft) o (F71)
trained with a classification loss on the augmented feature
set. We consider the standard cross-entropy loss:

w?fm
La(f, W) = MZ—log<N>, (11)

G]RDXK

}. Then, the network can be

where W = [wy,...,wk] is the weight matrix
of the linear c1a551f1cat10n layerﬂ where K is the total class
number. However, the naive implementation is computa-
tionally inefficient when M is large. Following ISDA [55],
we consider the case when M grows to infinity, and derive
an easy-to-compute logit compensation form for highly
efficient implementation.

The augmented features can be divided into multi-
ple groups {G; }lS'l'H based on drift directions, where
the features in G follow the Gaussian Distribution

N (f + 645, Bi0?). In the case of M — oo, as the probability
of sampling from N (8, 3:07) is sy, the group size of G,
would be s;; M. We can derive the expected classification
loss over the augmented feature sets as:

im, Lo (£, W)

T
w? fm

. 1 e
S 2 2 Tl o

Tfm
jeStu{t}t Fmea;
ST > s
=T TS SK el
M f’”EG Zk:le kf (12)

JESLU{t}
wl'f

T
wy fm

MSho stjM

e

= 545 Z Bfen(s+60;.802) 108 K wlT
k=1

JES U{t}
K e
— o, - (wp—we)" f
= S¢; Z ]EfGN(fﬂLMj,Btdf) log Z € :
JESU{t} k=1

It is infeasible to tackle Eq. [12| directly. Following [55], we
use the Jensen’s inequality E[log X] < logE[X], and the
upper bound of the excepted loss can be derived as:

K
; ) _ (w—we)TF
L < sig > gy EFen(s+80,.8:07)¢ :
jESsu{t} k=1
(13)

Then we leverage the fact that (wy —w)'F ~

N ((wi —wn)" (£ +61) Bil(w —w)?)T0?)  and

4. We set the bias vector of the classifier to 0.
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X1 =

1
moment-generating function Ele el*t29 where

X ~ N (u, o) to obtain:

Iim L

M — o0

sy S logze w—wi)T(F+8:5)+ 5 (wi—wi)*) T o?
FES U{t} k=1 (14)

T
ewt (f+6tj)

= St Z - lOg T Bt T 42

FjES:U{t} Zszl e¥k (F+605)+F (wp—w)*)To?
Let z; (W) = W' (f + d;;) be the K-dimensional output

logit of the linear classifier for compensated feature by FCM
f + 84 (Eq. [7). As shown in Eq. |1 w1th LCM, the k"
dimension of the logit is adjusted by Et((wy, — wy)?) T ol
Therefore, LCM is formulated as:

% (W) =2 (W) + (W - w))Tol, jesiufy. 09
Here, the compensated logits Z; (W) can be used to com-
pute the classification loss for end-to-end training. The r.h.s

of Eq. E can be then denoted as:

lim Ly
M — o0
[z5(w)]
e t
) _ 1
o
J€Siu{t} k=1¢
=L(z;(W)|j €S U{t}).

4.4 Residual Balanced Multi-Proxies Classifier

Multi-Proxies Classifier. As above analysis, the test fea-
tures of one tail class tend to drift towards multiple similar
head classes. So the distribution of test features of one tail
class could present a multi-mode [21]]. In the naive linear
classifier, the weight vector for each class acts as a single
proxy [65], [75], which is difficult to optimize on a multi-
mode setting. To this end, we consider a multi-proxies
classifier to better capture the complex feature distribution.

In particular, the multi-proxies classifier allows for L
proxies on each tail class during training. As pointed by [75],
the proxies can be interpreted as the weight vectors in the
classifier. Thus we design one weight vector for each head
class, and L weight vectors {w; }£ , for each tail class t.
Then, the class-wise logit z € R¥ for each input feature f
can be computed as,

wif, if k€ Cp,

. L w?l ?
2 — o e kil
1=l E Tkl (wg,zf) L itk e
1=1 D€k
17)

where 7 ; denotes the similarity of input feature to the [*"

proxy of class k. Notably, the multi-proxies classifier can be
regarded as a sample-adaptive linear classifier, where the
equivalent weight matrix is W = [w;, W3, ..., Wk]|,

wy, if k}ECh,

. L
wy = 18
b Zﬂ'k,lwk,l if ke (18)

1=1

Notably, in the case of multi-proxies classifier, LCM simply
needs to replace W with W in Eq.
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Residual Balanced Multi-Proxies Classifier. In order to
prevent the classifier predictions from highly biasing to
head classes, existing methods [15], [17] use CBS to opti-
mize the classifier. However, CBS leads to a side-effect of
making head classes under-optimized, increasing the risk of
classifier under-fitting the head data. As shown in Fig.[2|(b),
CBS classifier performs poorly on both training and test set
of head classes, which proves that CBS essentially suffers
from under-fitting on head classes. To this end, we design
a RBMC that uses a residual mechanism to learn a class-
balanced classifier.

The structure of RBMC is illustrated in Fig. B} RBMC
consists of a Uniform Classifier and a Residual Classifier.
Both classifiers adopt multi-proxies classifiers, which are
trained under US and CBS respectively. In particular, given
the feature vector f* € R” after FCM on Uniform Branch
with US, the uniform classifier can be formulated as:

—w T (19)
where W denotes the weight matrix of the multi-proxies
uniform classifier (Eq. . However, since US ignores the
tail data [15], the prediction of uniform classifier is imbal-
anced and highly skewed to head classes.

Therefore, another residual classifier is used to produce
a class balanced prediction. It learns the mapping from
feature space to the residual between the imbalanced logits
obtained by uniform classifier and desired balanced logits.

Given the feature vector fb € RP after FCM on Class
Balanced Branch with CBS, RBMC is formulated as:

Zb _ Wqub + WTbe _ (Wu + WT)T fb7 (20)
where W7 is the weight matrix of the multi-proxies residual
classifier. In such design, RBMC is jointly learned under
both CBS (through residual classifier) and US (through uni-
form classifier) schemes. Therefore, the head information
compromised by CBS can be recovered through uniform
classifier. In this sense, RBMC can utilize the information
from whole training dataset to alleviate under-fitting, while
avoiding highly skewing to head classes.

4.5 Overall Algorithm

Training phase. The training algorithm of DCRNets is
shown in Algorithm [l} We apply US and CBS to train-
ing set separately, and obtain sample (x*,y") for uniform
branch and (xb yb) for class balanced branch. Then, the
two samples are fed into the shared feature extractor to
acquire the feature vectors f* € RY and f¥ € RP. Since the
training and test features of tail categories deviate from each
other, the feature vectors are sent into FCM to compensate
the drift. FCM generates a set of comensated features

{fi}jes,uuiyny and {f?}jegybu{yb} (Eq.[7). After that, each
E is sent into the uniform classifier of weight matrix W*"

to predict the class-wise logit 2z € RE (Eq! And
each f is sent 1nto RMBC of welght matrix W* + W'
to pred1ct the logit z € R (Eq.[20). In order to prevent the
model from over—flttmg to FCM errors, the output logits are

adjusted by LCM and obtain compensated logits z% and z
(Eq. . Finally, the classification loss on Uniform Branch i 1s

—



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 1 Learning algorithm of DCRNets.

Require: X' is Training Dataset; Fenn(;0) is CNN feature
extractor with parameter ©; W*/W" is weight matrix
of uniform/residual multi-proxies classifier; T" is the total
training epochs.

1: fort =1toT do

2: (x Y *) <= UniformSampler (X)

3: ( Y ) + ClassBalancedSampler (X)

4: I Fenn (x“; )

5 P Fonn (x%0)

6:  Send f“ to FCM to obtain {f7} JE8,u Uy} with Eq.

7 Send f° to FCM to obtain { b il with Eq.
J€S,pU{yb}

e CIT

o E = (W W) (B
10: send zj to LCM to obtain 2 (W“) with Eq. (1
11: send z% to LCM to obtain 2! (W“ + WT) w1th Eq.|1
122 Ly Lz} ZI(WH) |7 € Syu U {y“}) with Eq.
13: Lo+ L zflj’(ﬁ/\“ + V‘//\T)U €S, U {yb}) with Eq.
14: L=¢Li+(1-¢)L2
15: Update parameters {©, W*, W} by minimizing £
16: end for

denoted as £1 = L (?(W“)h € Syu U {y“}) (Eq.|1 , and
the classification loss on Class Balanced Branch is_defined
as Lo = L(z (W“—!—W’N]ES » U {y? }) (Eq. [1 . The
overall loss for DCRNets is computed as ¢L£1 + (1 — ¢)La,
where ¢ is a trade-off hyperparameter. DCRNets can be end-
to-end optimized by minimizing the overall loss function.
Test Phase. In the test phase, only Class Balanced Branch
is used for prediction and the compensation modules (FCM
and LCM) are removed. Formally, given a test sample, we
first use the feature extractor to obtain the feature vector.
Then the feature is sent into RBMC to obtain a class balanced
prediction (Eq. 20). So DCRNets only incur little computa-
tional burden, which is extremely efficient.

5 DISCUSSIONS

RBMC. The scheme of decoupling feature learning and
classifier learning [15] has become a dominant direction for
class-imbalanced task. Our RBMC uses uniform sampling
to benefit classifier learning, which effectively alleviates the
under-fitting of decoupled classifier [15] to head classes.
Also, the feature learning and classifier learning can obey
a unified way without decoupling. The jointly learning en-
hances the compatibility between features and classifier, and
meets the end-to-end merit in deep learning. Considering its
simplicity and effectiveness, RBMC could serve as a generic
classifier in class-imbalanced learning literature.

FCM and LCM. Most studies on class imbalanced learn-
ing [15], [17], [76] attempt to deal with label shift between
training and test phase. Existing works generally assume
that the extracted features of training and test data follow a
same distribution. However, this assumption may not hold.
As shown in Fig. (a), there is a severe feature drift between
training and test especially on tail classes. To the best of our
knowledge, we are the first to point out the test features
of tail classes tend to drift towards similar head classes.
And our FCM and LCM can effectively alleviate the feature
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drift issue through compensation operations. Also, we com-
bine FCM and LCM with various long-tailed methods and
demonstrate that the two modules can consistently boost
their performances. So we suggest that FCM and LCM can
be used as general modules for class imbalanced learning to
enhance generalization ability.

Combination of “FCM and LCM” and “RBMC”". In
DCRNets, FCM and LCM use a set of hyper-parameters,
{ou}E | and {B:}E |, to control a stronger data augmenta-
tion for tail class as compared to head class, while RBMC
uses a residual path to alleviate underfitting on head class.
The optimal combination of “FCM and LCM” and “RBMC”
should achieve the best trade-off performance on both head
and tail classes. As shown in Eq.[B|and Eq.[10} as the values
of a® and B° of FCM and LCM decrease, the difference
between augmentation strength applied to head and tail
classes reduces. Thus, a® and 3° control the ability of
FCM and LCM to improve tail accuracy while potentially
suppressing head accuracy. So adjusting o’ and (° can
modulate the ability of FCM and LCM, enabling them to
work collaboratively with RBMC to achieve the best trade-
off performance on both head and tail classes.

Comparison to BBN [17]. Our framework DCRNets share
similarity to BBN [17]] of using a two-branch architecture.
However, DCRNets differ from BBN in the following ways:

(1) Different Network Architecture. From classifier
view, the classifiers of the two branches of BBN are indepen-
dent of each other. Differently, DCRBets add a residual con-
nection from uniform classifier to class-balanced classifier.
With the residual connection, the class-balanced classifier
can effectively utilize the prediction of uniform classifier,
thereby better fitting the head data; From feature extrac-
tor view, BBN uses separate parameters for part of feature
extractors of the two branches. Instead, DCRNets share the
backbone parameters, which largely reduces computation
cost in the inference phase.

(2) Different Learning Mechanism. BBN adopts cumu-
lative learning mechanism while our DCRNets adopt residual
learning mechanism. The cumulative learning of BBN gradu-
ally assigns a bigger weight to class-balanced branch. How-
ever, as pointed by [15], over-emphasizing on class balanced
learning even only at the later training stage damages the
generalization of feature representation. Differently, DCR-
Nets use a residual connection to bridge uniform learning
and class-balanced learning, and always gives a fixed and
dominant weight to uniform learning branch, which ensures
high-quality representation.

(3) DCRNets add FCM and LCM modules. BBN suffers
from feature drift between training and test data, which
leads to overfitting on tail classes. On the contrary, FCM
and LCM in DCRNets can effectively alleviate the feature
drift, thereby achieving a more generalizable classifier. In
addition, FCM and LCM can applied to various long-tailed
learning methods including one-branch [15] and two-branch
methods [17]. Therefore, different from BBN, our proposed
method is not limited to a two-branch architecture.

Comparison to ResLT [58]. Our RBMC and ResLT [58]
share a similar idea of using a residual mechanism for long-
tailed recognition. However, they have following sufficient
differences:
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(1) The implementation and function of residual learn-
ing are fundamentally different. ResLT [58] designs three
branches equipped with many+medium-+tail, medium-+tail
and tail data respectively. It adds the residual connections
from medium+tail/tail branch to main branch, which aims to
enhance performance on medium and tail data. On the contrary,
our RBMC designs two branches equipped with uniform
and class-balanced sampling respectively. RBMC adds a
residual connection from uniform branch to class-balanced
branch, which aims to enhance performance on head data.

(2) The architecture of residual branches is different.
ResLT conducts re-balance in the aspect of parameter space
of feature extractor. So ResLT allocates individual parameters
for feature extractor and uses a shared classifier on residual
branches. In contrast, RBMC conducts re-balance in the
aspect of parameter space of classifier. So RBMC uses a
shared feature extractor and allocates individual parameters
for classifier on residual branch.

(3) The learning strategy of residual branches is dif-
ferent. ResLT optimizes residual branches using different
sub-group data, i.e., medium-+tail and tail data, while RBMC
optimizes residual branch with a class-balanced sampling
strategy. Therefore, RBMC does not need to artificially di-
vide many, medium and tail data, which is more flexible
and easier to implement
Comparison to ISDA [77]. Recently, [77] proposes a sim-
ilar semantic data augmentation algorithm ISDA. We sum-
marize the main differences between ISDA and LCM.

(1) Problem Setting: ISDA mainly focuses on a balanced
classification task while our work considers the problem of
learning form long-tailed imbalanced dataset.

(2) Insight: ISDA aims to augment training samples to
regularize deep networks. Differently, our LCM aims to
better calibrate the training features to the corresponding
test feature space, which aims to learn a more generalizable
classifier for tail classes.

(3) Technique: In order to better address long-tailed
problem, LCM has the following different designs from
ISDA. Firstly, LCM performs augmentation around the
feature drift vectors instead of original features. As shown
in Equation 4 of [77], i.e., a; ~ N (a;, \%,,), ISDA performs
augmentation around the original features. But on long-tailed
recognition, due to the scare samples of tail classes, there
is a large drift between training and test features. So the
augmented features around original training features would
probably not lie in true (test) feature manifold, especially for
tail classes. Differently, as shown in Eq. |8} LCM performs
augmentation around the feature drift vector 8., in which d;
is crucial to bridge the feature drift of tail classes to generate
more realistic tail features.

Secondly, LCM derives derivation based on Gaussian
Mixture Distribution instead of Gaussian Distribution. As
shown in Equation 7 of [77], ISDA derives the derivation
based on a Gaussian Distribution. It is built on the assump-
tion that the feature representation of each class follows a
uni-modal Gaussian distribution. However, as pointed by
[21], the feature distribution of test data of a tail class
usually presents multi-modal [21]]. To this end, LCM takes a
step further and extends the derivation to Gaussian Mixture
Distribution (Eq.[12). Built on Gaussian Mixture Distribution,
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LCM is more conducive to capture the complex multi-modal
distributions of tail classes.

Thirdly, LCM adapts Class Adaptive Translation in-
stead of same augmentation for each class. As shown in
Equation 4 of [77], ie., a; ~ N (a;,A\X,,), ISDA uses the
same augmentation strength () for all classes. However, on
long-tailed recognition, the observed variance of tail class
is usually very small [45]. Therefore, the augmented tail
features of ISDA would be in closer vicinity to the original
ones, thereby limiting the tail data variety and even aggra-
vating imbalance issue. Differently, as shown in Eq. 8} LCM
designs a class adaptive translation coefficient (/3;) to adaptively
increase the augmentation strength for tail classes, thereby
ensuring the diversity of generated tail features.

6 EXPERIMENTS

We mainly evaluate the proposed DCRNets on long-tailed
classification task. We use five long-tailed benchmarks,
ie., ImageNet-LT [2], iNaturalist18 [78], CIFAR100-LT [79],
CIFAR10-LT [79] and PLACE-LT [2]. We incorporate DCR-
Nets with multiple network architectures (ResNet and
ResNeXt), and a multi-expert framework and achieve the
best model performance for all settings. We also evaluate
DCRNets on Class Incremental Learning task on CIFAR100
[79] to show its generality.

6.1 Datasets and Evaluation Protocol

ImageNet-LT dataset. ImageNet-LT is proposed by [2].
ImageNet-LT is a long-tailed subset of ImageNet-2012 [80]
by sampling a subset following the Pareto distribution with
power value of 6. It contains 105.8K training images and
50,000 test images from 1,000 categories. The number of
samples per class ranges from 5 to 1280.

iNaturalist18 dataset. iNaturalist18 [78] is one species
classification dataset with images collected from real world,
which is on a large scale and suffers from extremely imbal-
anced class distribution. It is composed of 437.5K training
images and 2.4K test images from 8,142 categories. The
number of samples per class ranges from 2 to 1,000. In addi-
tion to the extreme imbalance, iNaturalist18 also confronts
the fine-grained problem.

CIFAR100-LT and CIFAR10-LT dataset. CIFAR10 and
CIFAR100 dataset have 60,000 images, 50,000 for train-
ing and 10,000 for validation with 100 and 10 categories.
Following [8], [17], we use a long-tailed version of CI-
FAR10/CIFAR100 dataset, which follows an exponential
decay in sample sizes across different classes with various
imbalance factors. The imbalance factor is defined as the
ratio between the numbers of training samples for the most
frequent class and the least frequent class. We use the
imbalance factor of 100 in our experiments.

Places-LT dataset.  Places-LT is proposed by [2].
Places-LT is a long-tailed version of the large-scale scene
classification dataset Places [81]. It consists of 184.5K images
from 365 categories. The number of samples per class ranges
from 5 to 4980.

Evaluation Protocol.  After training on long-tailed
dataset, we evaluate the models on a balanced test set, and
report the top-1 accuracy over all classes, denoted as “All”.
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Following [2], we further report accuracy on three splits
of classes: Many-shot (more than 100 samples), Medium-shot
(with 20 to 100 samples) and Few-shot (less than 20 samples).

6.2

Implementation Details on ImageNet-LT. For ImageNet-
LT, we use standard ResNet-10, ResNet-50 [1] and ResNeXt-
50 [19] as backbone. We follow the same training strategy
in [15]. In details, we use SGD optimizer with momentum
0.9 and train for 90 and 200 epochs respectively. We adopt
cosine learning rate schedule gradually decaying from 0.075
to 0, and batch size 192 and 64 for uniform branch and
class balanced branch respectively. We define the classes
with more than 100 training samples as head classes, and
the remaining classes as tail classes. In FCM, the number
of selected head classes m is 2 (Eq. . The parameter o
is set to 0.5/0.5/1.0 for ResNet-10/ResNet-50/ResNeXt-
50. In LCM, the parameter B0 is set to 1.5/6.0/9.0 for
ResNet-10/ResNet-50/ResNeXt-50. In RBMC, the number
of proxies on each tail class (L) is set to 2 (Eq. . The
weighting factor of loss function ¢ is set to 0.8.

Implementation Details on iNaturalist18. Follow-
ing [76], we utilize ResNet-50 as backbone and train it for
90 and 200 epochs respectively. We set a° to 0.5, 3° to 3.0.
Other settings are the same as those in ImageNet-LT.

Implementation Details on CIFAR100-LT. For CIFAR-
100 dataset, the implementation details mainly follow [7].
We use ResNet32 as backbone. The networks are trained for
500 epochs. The initial learning rate is set to 0.05, and the
batch size of uniform branch and class balanced branch is
set to 384 and 128 respectively. For the hyperparameter, o’
and 3% are set to 0.5 and 1.0 respectively. Other setting are
the same as those in ImageNet-LT.

Implementation Details on Places-LT. For Places-LT,
following previous setting [17], we choose ResNet-152 pre-
trained on ImageNet dataset as backbone network, and train
the model for 30 epochs. We set a” to 0.5, 8% to 1.0. Other
settings are the same as those in ImageNet-LT.

Implementation Details

6.3 Comparisons with State-of-the-art Methods

In this section, we compare our DCRNets with other state-
of-the-arts on ImageNet-LT, iNaturalist18, CIFAR100-LT and
Places-LT benchmarks. Numerical results can be found in
Tab.

The compared methods cover various categories of ideas
for imbalanced classification:

1) Re-weighting (RW). Re-weighting the loss function,
such as Focal Loss [28]], BALMS [7] and LDAM [8].

2) Decoupled scheme (DE). Decoupling the feature
learning and classification, such as Two-stage [15],
[32], [76], [82], CBS+RRS [83] and BBN [17].

3) Data Generation (DG). Generating new samples for
tail categories, such as MetaSAug [53] and RSG [84].

4) Transfer Learning (TL). Transferring knowledge
learned from head classes to tail classes, such as
OLTR [2] and M2m [43].

5) Representation Learning (RL). Using self-
supervised for better representation: SSP [36],
Hybrid-PSC [38] and PaCo [39].
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TABLE 1
Long-tailed classification performance (overall top-1 accuracy %)
compared to related methods on ImageNet-LT. } indicates our
reproduced results with the released code. R-10, R-50 and X-50 means
ResNet-10, ResNet-50 and ResNeXt-50.

Epoch Method R-10 | R-50 | RX-50
RW Focal [28] 30.5 - 437
BALMS [7] 41.8 | 48.8f | 514
T-norm [15] 40.6 | 46.7 | 494
cRT [15] 41.8 | 473 | 495
CBS+RRS [83] 419 | 473 | -
DE | LWS [15] 414 | 47.7 | 499
90 LADE [76] 416" | 508" | 51.9
TDE [32] - 51.1 51.8
DisAlign [82] - 51.3 | 52.6
DG MetaSAug [53] - 474 -
RSG [84] - - 51.8
TL M2m [43] - 437 | -
OLTR [2] 373 | - 46.3
DCRNets 43.8 53.2 54.8
cRT [15] 4277 | 50.87 | 51.27
DE | LADE [76] 431" | 523" | 53.0
> 180 LWS [15] 435" | 51.7f | 51.9¢
RL | SSP [36] 432 | 513 -
ME | ResLT [58] 438 | - 52.9
DCRNets 45.0 54.1 55.0
RIDE [20]](2 experts) | 45.3 | 54.4 | 55.9
DCRNets(2 experts) | 46.6 55.7 56.8
100 ME | ACE [57](3 experts) | 44.0 | 54.7 | 56.8
RIDE [20](3 experts) | 45.9 | 549 | 56.4
DCRNets(3 experts) | 47.6 56.9 57.2

6) Multi-Expert Network (ME). Using an ensemble
network to extract features or extra distillation train-
ing procedures: RIDE [20], ACE [57]], ResLT [58] and
NCL [59].

Main Results on ImageNet-LT.  Tab. [I| reports the
main results on ImageNet-LT. Our method achieves the
best performance under the same setting. It is noted that:
(1) Decoupled methods [15], [32], [76], [82] (DE) are prone
to under-fitting the head and over-fitting the tail classes.
It is noteworthy that DCRNets have outperformed all the
decoupled methods by about 2% top-1 accuracy, which
validates its superiority. (2) Data-generation methods [53],
[84] (DG) and Transfer-learning methods [2], [43] (TL) use
complex generation/transfer modules and explicitly gen-
erate features. By contrast, DCRNets implicitly generate
features by two shift operations. Our method puts much less
overhead with a much better performance: about 3% top-1
accuracy improvement. (3) Representation-learning method
[36] (RL) employs a self-supervised learning to obtain a
good feature initialization. DCRNets still surpass SSP [36]
by 1.8% top-1 accuracy with ResNetl0 as backbone and
2.8% top-1 accuracy with ResNet50 as backbone. Notably,
as a model initialization technique, SSP is orthogonal to
our method and can be easily combined to further improve
performance. (4) ResLT [58] and our method both use a
residual mechanism for long-tailed recognition. Our method
surpasses ResLT by 1.2% and 2.1% top-1 accuracy with
ResNet10 and ResNeXt50 as backbone respectively, validat-
ing its superiority.
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TABLE 2
Comparison to related methods on iNaturalist18.

Method 90E  >180E
Focal [28] 61.1 -
RW | LDAM [8] 1 64.6 -
BALMS [7] - 69.8
cRT [15] 652 67.6
T-norm [15] 65.6 69.3
LWS [15] 659 69.5
DE | BBN [17] 66.3 69.3
LADE [76] - 70.0
DisAlign [82] 67.8 70.6
LDAM+DRW [8] 68.0 -
DG MetaSAug [53] 66.3 -
RSG [84] 679 70.3
RL SSP [36] - 68.1
Hybrid-PSC [38] 68.1 704
ME | ResLT [58] - 70.2
DCRNets 703 723
RIDE [20] (2 experts) | 714 -
DCRNets (2 experts) | 72.0 -
ME RIDE [20] (3 experts) | 722 -
ACE [57]] (3 experts) | 729 -
DCRNets (3 experts) | 73.0 -

TABLE 3
Comparison to related methods on CIFAR100-LT and CIFAR10-LT with
an imbalance of 100.

Method CIF100-LT | CIF10-LT
Focal [28] 384 70.4
RW | LDAM 8] 42.1 77.0
BALMS [7] 50.8 84.9
BBN [17] 256 798
pw | Logit Adj. [33] 439 77.7
cRT [15] 50.0 82.0
LWS [15] 50.5 83.7
DG RSG [84] 44.6 79.6
MetaSAug [53] 48.0 80.7
L | OLTR[2] W) -
M2m [43] 435 79.1
RL Hybrid-PSC [38] 449 78.8
Hybrid-PSC [38] 46.7 81.4
ME | ResLT [58] 45.3 80.4
DCRNets 51.4 85.0
RIDE [20] (2 experts) 47.0 -
DCRNets (2 experts) 55.0 85.8
ME RIDE [20] (3 experts) 48.0 -
ACE [57] (3 experts) 494 81.2
DCRNets (3 experts) 56.0 87.0

Recently, Multi-Expert networks [20], [57] (ME) achieve
state-of-the-art performance on long-tailed recognition. For
fair comparison, we further adopt the multi-expert network
of RIDE [20] as backbone. Notably, the self-distillation and
EA module in RIDE are not used for simplification. As
shown in Tab. [I} under the same multi-expert network, our
method outperforms RIDE [20] and ACE [57] by 1% — 2%
top-1 accuracy, which shows the proposed modules can well
incorporate with multi-expert networks.

Main Results on iNaturalist18. Tab. |2| reports the
main results on a real world benchmark, iNaturalist18.
Our method also achieves the best accuracy. Compared to
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TABLE 4
Comparison to related methods on Places-LT.

Method ResNet-152
Focal [28] 34.6
RW | BALMS |7] 38.6
LADE [8] 38.8
cRT [15] 36.7
DE LWS [15] 37.6
7-norm [15] 379
LADE [76] 38.8
DG | RSG [84] 39.3
TL | OLTR [2] 35.9
ME | ResLT [58] 39.8
DCRNets 40.0

non-Multi-Expert methods, DCRNets outperform the best
Hybrid-PSC [38] by about 2% top-1 accuracy. Under the
multi-expert network, DCRNets still outperform RIDE [20]
and ACE [57]]. The improvements prove that our proposed
method consistently improves performance on both artifi-
cial and real-world large-scale datasets.

Main Results on CIFAR100-LT and CIFAR10-LT.
Tab. reports the main results on CIFAR100-LT and
CIFAR10-LT. Our method significantly outperforms the ex-
isting methods. By introducing the powerful compensation
modules without using multi-expert, DCRNets are even
competitive compared with multi-expert methods. Combing
with multi-expert networks, DCRNets surpass RIDE and
ACE by up to 6% top-1 accuracy. The superior results on the
two small-scale datasets further validate the effectiveness
and robustness of our method.

Main Results on Places-LT. Tab. 4| reports the main
results on Places-LT dataset. DCRNets yields 40.0% top-
1 accuracy, with a notable performance gain at 0.2% over
the prior methods. Places-LT has an extremely imbalance
class distribution, where the imbalance factor is up to 990.
The superior results on this highly long-tailed benchmark
further validate that our method can effectively address the
class imbalance issue.

6.3.1

Recently, PaCo [39] and NCL [59] achieve state-of-the-
art performance on long-tailed recognition. PaCo [39] im-
proves supervised contrastive loss by adding a set of para-
metric learnable class centers to tackle imbalance issue.
PaCo aims to utilize self-supervised contrastive learning
to improve feature representation. Differently, our method
employs classification learning, which uses residual con-
nection, feature shift and logit shift operations to learn a
more generalizable classifier. So PaCo is complementary to
our method, which can be easily combined to learn better
feature representation; NCL [59] is built on a multi-expert
framework, which learns multiple experts concurrently and
uses knowledge distillation to enhance each single expert.
Our method can be integrated into NCL framework, where
we use DCRNets as each expert of NCL framework. To sum
up, the techniques of PaCo and NCL are complementary
to our method, which can be easily incorporated to further
improve performance.

Comparison with PaCo and NCL.
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TABLE 5
Comparison with PaCo [39] and NCL [59]. We use ResNet-50 as backbone network for ImageNet-LT, and use the same training strategies as [39)],
|59]: training all the models with RandAugment [85] for 400 epochs except models on Places-LT, which is 30 epochs. “RA” denotes RandAugment,
“DIS” denotes Distillation and “SS” denotes self-supervised learning.

Method RA  DIS SS | Img-LT | iNatl8 | CIF100-LT CIF10-LT | Places-LT

PaCo [39] v X v 57.0 732 52.0 - 41.2
Single Model DCRNets v X X 57.6 74.0 52.0 85.1 41.5

DCRNets+PaCo v X v 58.0 74.2 52.2 85.5 41.7

NCL [59] (single) v v v 57.4 74.2 53.3 84.7 41.5
Multiple Models DCRNets (single) v v X 59.0 74.8 54.0 85.9 41.6

NCL [59] (ensemble) v v v 59.5 749 54.2 85.5 41.8

DCRNets (ensemble) | v v X 60.3 75.7 56.0 87.0 42.0

In implementation, PaCo and NCL both use the strong TABLE 6

data augmentation Rand Augment [85], which is well known
to be a practical strategy to improve performance. And
NCL uses multi-expert and knowledge distillation to further
improve classification accuracy. So for a fair comparison, we
use the same training strategies as [39], [59], i.e., training all
the models with RandAugment [85]] for 400 epochs except
models on Places-LT, which is 30 epochsﬂ To compare with
NCL, we also apply multi-expert and knowledge distillation
strategies to our method. The results are listed in Tab.

Compared to PaCo [39]. As shown in Tab. our
method can be well incorporated with strong augmentation.
Equipped with RandAugment [85], our method achieves
57.6% and 74.0% top-1 accuracy on ImageNet-LT and iNat-
uralist18, outperforming PaCo by 0.6% and 0.8% respec-
tively. Furthermore, we add PaCo loss to our method. As
shown in Tab. [5} integrating with PaCo can further lift the
performance by 0.2% — 0.4%, which shows our method can
well combine with self-supervised contrastive PaCo.

Compared to NCL [59]. NCL adopts a multi-expert
framework. NCL maintains three experts and uses a distil-
lation training phase, which increases the training compu-
tational cost by almost three times. For a fair comparison,
we also train three separate DCRNet experts and add a
simple Kullback-Leibler (KL) distillation loss [60] among
any two experts. Notably, the Hard Category Mining and
Self-supervised contrastive loss in NCL are not used in our
method. Tab. [5| reports the performance of a single expert
and an ensemble of multiple experts following [59]]. As seen,
our method can be well incorporated with distillation tech-
nique to further improve accuracy. Under the same multi-
expert distillation framework, our method outperforms
NCL by 1.6%, 0.6%, 0.7%, 1.2% (using a single expert) and
0.8%, 0.8%, 1.8%, 1.5% (using an ensemble of experts) on
imageNet-LT, iNaturalist18, CIFAR100-LT and CIFAR10-LT
benchmarks respectively, and achieves comparable perfor-
mance on Places-LT benchmark, showing the superiority of
our method.

6.4 Ablation Study

To investigate the effectiveness of each component in DCR-
Nets, we conduct a series of ablation studies on ImageNet-
LT and iNaturalist18. All models are trained for 90 epochs

5. Notably, NCL [59] did not use RandAugment [85] on Places-LT
benchmark. For a fair comparison on Places-LT, we reimplement NCL
with RandAugment on Places-LT, and report this result on Tab.

Ablation study on ImageNet-LT and iNaturalist18 for 90 epochs training.

ImageNet-LT

Method RBMC FCM LCM R0 =50  RX50 iNat
cRT [15] 418 473 49.5 65.2
v 428 514 52.9 67.7
v v 434 523 54.0 69.2
DCRNets v v v 43.8 53.2 54.8 70.3

in this section. Tab. [f| and Tab. [7] summary the comparison
results for different settings.

Two-stage Learning v.s. Joint Learning. In order to
verify the effectiveness of RBMC, we provide three variants
of RBMC: RBMC-wo-R, RBMC-wo-MC and RBMC-wo-
R&MC. RMBC-wo-R uses multi-proxies classifiers without
residual connection; RBMC-wo-MC uses linear classifiers
with a residual connection; RBMC-wo-R&MC uses linear
classifiers without residual connection. We first investigate
the necessity of joint learning of feature extractor and
classifier. To verify this, we choose the two-stage decoupled
cRT [15] as a baseline. As shown in Tab. [7] all variants of
RBMC achieve obviously superior performance compared
to cRT. We argue that the two-stage training of cRT harms
the compatibility between features and classifier, resulting
in poor adaptability of classifier. Therefore, it is necessary
to jointly optimize the feature extractor and classifier for
class imbalanced learning.

Effectiveness of Residual Connection in RBMC. We
further assess the effectiveness of the residual connection in
RBMC. As shown in Tab. |7} compared to RBMC-wo-R&MC,
employing residual mechanism (RBMC-wo-MC) brings
1.1% overall gain with negligible computational overhead.
Also, compared to RBMC-wo-R, RBMC achieves 1.0%
overall gain, which validates the capability of the residual
connection. Specifically, employing residual connection
brings above 3% gain on many-shot split. The reason is that
RBMC-wo-R directly applies CBS to train the classifier of
class balanced branch, which leads to under-fitting on head
classes. On the contrary, RBMC introduces a residual path
from uniform classifier. It ensures the class balanced branch
can exploit the rich information of head classes encoded
by uniform classifier. Such that the under-fitting issue can
be alleviated and a better accuracy on many-shot split
could be achieved. However, RMBC-wo-R achieves better
performance on few-shot split. It is reasonable since the
classifier of RMBC-wo-R puts more focus on few-shot data.
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TABLE 7
Ablation study and complexity comparison on ImageNet-LT. ResNet-50
is used as backbone for training 90 epochs. PN: the number of
parameters. GFLOPs: the number of floating-point operation of a
forward pass for an input image.
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of this category. As shown, the distance goes large as the
number of training instances decreases. The phenomenon
reveals that the training and test features of a tail category
do not occupy the same feature space. By contrast, as shown
in Fig [7] (b), the compensated features of FCM are closer
to the test features. As a consequence, FCM can make the

GFlops

classification boundary better adapt to the test data on tail

classes.

We then investigate whether the multi-mode feature drift
compensation is necessary. We explore a variant FCM-m=1
that estimates a uni-mode feature drift direction for each

tail category. It is equivalent to setting the number of

Method PN Teai ALL | Many  Med Few
rain Test
cRT [15] 25.6M 4.100 4.100 47.3 58.8 440 26.1
RBMC-wo-R&MC 27.6M 4.100 4.100 499 59.7 47.7 30.1
RBMC-wo-R 28.1M | 4.101  4.101 50.4 59.9 48.0 31.6
RBMC-wo-MC 27.6M 4.102 4.102 51.0 62.9 48.1 27.3
RBMC 28.1M 4.103 4.103 51.4 63.3 48.5 28.5
+FCM-m=1 - - - 51.7 61.1 49.6 32.8
+FCM 28.1M | 4.113  4.103 52.3 61.2 50.5 33.6
+FCM-LCM-fix - - - 52.6 62.0 50.5 33.1
+FCM-LCM-SV - - - 52.7 61.8 50.8 33.4
+FCM-LCM 28.1M 4.115 4.103 53.2 62.3 51.2 33.8

selected head categories (m in Eq. [I) to 1. As shown in
Tab. [/, FCM-m=1 leads to marginal improvements and

s

Euclidean Distance

— original distance
—— Compensated distance

o 200 0
Class Index

600 800 1000 860 880 900 920

Tail Class Index

940 90 980 1000

Fig. 7. (a) For each category, the average distance of all the test features
to the closest original training feature of this category. (b) For each tail
category, the average distance of all the test features to the closest
original training feature (blue) / compensated feature by FCM (orange)
of this category.

But the overall 1.0% accuracy gain manifests that RMBC
derives a more balanced decision boundary which better
trade-offs the head and tail classes.

Effectiveness of Multi-proxies Classifier in RBMC. We
then investigate the influence of multi-proxies classifier
(MC) in RBMC. As shown in Tab. [/} Compared to RBMC-
wo-R&MC, employing MC (RBMC-wo-R) brings 0.5%
overall gain. And compared to RBMC-wo-MC, RBMC
achieves 0.4% overall gain with negligible computational
overhead. The consistent improvements validate the
effectiveness of MC. Specifically, MC achieves above
1.0% improvement on few-shot split, which indicates the
robustness of MC on tail classes. Notably, RBMC shares
a similar idea with Infinite Mixture Prototypes (IMP) [21]
that represents each few-shot class by a set of clusters.
However, IMP only considers the closest cluster of each
class, while MC considers all clusters of a class. That allows
MC to decrease the intra-class similarity when the training
instances are insufficient, thereby alleviating the overfitting
to the few training instances of tail classes.

Effectiveness of FCM. To show the separate influence
of FCM and LCM, we provide a variant of DCRNets that
adds FCM alone (+FCM). As shown in Tab. [7} FCM brings
remarkable improvements on few-shot split by up to 5.1%.
The significant improvements indicate that it is important to
compensate the feature drift between training and test data
on tail classes. Fig.|7|(a) visualizes the average distance of all
test features of each category to the closest training feature

FCM outperforms FCM-m=1 by 0.6%. The results verify the
hypothesis that the features from one tail category could
drift towards multiple head categories. Notably, [21] also
observe the test data distribution of each few-shot category
is clearly not uni-modal. So it is necessary for FCM to
estimate a multi-mode feature drift vector to better fit the
complex test distribution of tail category.

Effectiveness of LCM. Next, we assess the effectiveness
of LCM. As shown in Tab. [/} LCM further achieves 0.9%
overall top-1 gain over FCM. Also, we observe that LCM im-
proves the accuracy of head and tail classes simultaneously.
The improvements can be attributed to the effectiveness of
integrating uncertainty into the estimation of feature drift
directions. The uncertainty of LCM can prevent the subse-
quent classifier from over-fitting to FCM errors, thereby im-
proving classifier’s generalization. Then, we investigate the
influence of Class Adaptive Translation Coefficient (8, in Eq.[5).
We provide a variant LCM-fix that uses a fix translation
coefficient for each class. LCM-fix is equivalent to setting
B¢ to 1. As shown in Tab. [7} LCM-fix brings negligible gain
over FCM, which indicates the necessity of using a larger
translation coefficient for the more minority category.

As discussed in Sec. in order to deal with the smaller
observed variance of a rarer class, previous work (SV) [45]
uses a shared variance for all classes. Tab. [7] compares
the proposed class adaptive strategy with SV. We observe
that LCM outperforms LCM-SV by 0.5%. One possible
explanation is that the unrelated classes, such as person and
bag, generally have different intra-class variations. So for
a specific tail class, the shared variance among all classes
may lead to unreasonable translation directions, resulting
in disturbed features. Differently, LCM uses the estimated
variance from samples of the target class, which ensures the
rationality of variation directions. In this way, the generated
features still live in the true feature manifold, which can
effectively benefit the learning of classifier.

Complexity Comparisons. To illustrate the cost of
DCRNets, we report the number of parameters (PN)
and the number of floating-point operations (GFLOPs). As
shown in Tab. [/} RBMC only introduces 2.5M parameters
compared to a naive linear classifier (cRT). In addition,
RBMC requires 4.103 GFLOPs in a single forward pass for a
224 x 224 input image, corresponding to only 0.07% relative
increase over cRT. FCM and LCM incurs 0.010 and 0.002
GFLOPs during training phase respectively. The increased
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TABLE 8
Combination FCM and LCM with various long-tailed methods on
ImageNet-LT dataset. ResNet-50 is used as backbone trained for 90

epochs.

Method FCM LCM | ImageNet-LT
495
BBN [17] v 51.3
v v 51.9
50.7
BALMS [7] v 52.3
v v 53.0
51.5
LDAM [8] v 52.5
v v 53.3

cost of FCM mainly comes from the extra classification of
generated compensated features. And the increased cost of
LCM comes from the computation of logit compensation
in Eq. Both operations can be worked out by matrix
multiplication thus occupy little training time in GPU
libraries. During test phase, FCM and LCM are discarded
and DCRNets only introduces negligible inference time.

Generalization of DCRNets across Different Backbones.
To investigate the effectiveness and generalization of
DCRNets across different backbones, we also provide the
ablation study based on ResNet-10 and ResNeXt-50 on
ImageNet-LT dataset. As shown in Tab. [§ the proposed
RBMC, FCM and LCM can consistently improve the results
across different backbones. We also observe that: (1) the
improvements of FCM and LCM are more obvious for
deeper network. Specifically, the compensation modules,
FCM and LCM, bring 1.0%/1.8%/1.9% gain with ResNet-
10/ResNet-50/ResNeXt-50 as backbone. We argue that
the deeper network has a higher risk of overfitting on
tail classes, resulting in a larger feature drift between
training and test data. Thus the compensation modules
could be more effective on deeper networks. (2) The result
of DCRNets based on ResNet-50 is much higher than the
results of baseline cRT [15] based on ResNeXt-50 (+3.7%),
where cRT based on ResNeXt-50 has more parameters and
computational complexity. This comparison demonstrates
that the improvement of DCRNets does not rely on the
extra parameters and computational load.

Generalization of DCRNets across Different benchmarks.
We further provide the ablation study on iNaturalist18. As
shown in Tab. @ the proposed modules, RBMC, FCM and
LCM, consistently improve the performance across different
benchmarks. Notably, FCM and LCM bring 2.6% gain on
iNaturalist18, which is higher than 1.8% gain on ImageNet-
LT. The reason is that iNaturalist18 contains a large number
of fine-grained classes. The tail classes would be more
similar to head classes of the same superclass, resulting
in a more serious feature drift. So FCM and LCM, which
compensate the feature drift, could be more effective on the
fine-grained iNaturalist18 benchmark.
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Fig. 8. Hyper-parameter analysis of DCRNets on ImageNet-LT. ResNet-
50 is used as backbone for 90 epochs training. (a) FCM compensation
strength parameter o°. (b) LCM translation strength parameter 3°. (c)
The number of selected head categories in FCM m. (d) Loss trade-off
parameter ¢.

6.5 Combination FCM/LCM with Various Methods

Most studies on class imbalanced learning attempt to deal
with label shift between training and test phase. Existing
works generally assume that the extracted features of train-
ing and test data follow the same distribution. In this work,
we point out that this assumption does not hold on tail
classes. And we propose FCM and LCM to alleviate the
feature drift of tail classes between training and test phase.
To demonstrate that addressing feature drift can consis-
tently improve long-tailed performance, we combine FCM
and LCM with several mainstream long-tailed methods, i.e.,
BBN [17], BALMS [7] and LDAM [8], based on their open-
source codes. As shown in Tab. [8f FCM and LCM con-
sistently bring about 2% overall accuracy gains to various
long-tailed methods, which validates the effectiveness and
versatility of FCM and LCM. The consistent gains show that
FCM and LCM can be used as general modules, which can
combine with various long-tailed methods to enhance their
feature generalization ability.

6.6 Parameter Analysis

The affects of hyper-parameters.  Fig. explores
the hyper-parameter sensitivity of our method. Hyper-
parameter o’ and ° control the strength of feature drift
compensation, m is the number of selected head categories
for compensation and ¢ balances the two losses in DCRNets.
We respectively evaluate each hyper-parameter, where we
change its value and fix other hyper-parameters to the
optimal values. Notably, we select the hyper-parameters
based on the performance of the validation set. And the
phenomenon w.r.t different hyper-parameters on validation
set is consistent with that on test set. So we only present the
performance on the test set in Fig.

Firstly, we change o from 0 to 1.0 and 3° from 0 to
7.5. As shown in Fig. [8 (a) and (b), the performances of
different o’ > 0/8° > 0 consistently outperform that of
a’ = 0/B8° = 0, which further verifies the effectiveness of
FCM and LCM. In addition, the performances of different
a® > 0 and B° > 0 fluctuate in a small range (< 0.5%),
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TABLE 9
The performance of DCRNets with different batch sizes for uniform
branch and class-balanced branch. ResNet-50 is used as backbone for
training 90 epochs on ImageNet-LT. n1 /n2 denote the batch size of
uniform/class-balanced branch.

224/32  192/64 128/128
52.9 53.2 523

ni /n2
DCRNets

64/192
476

indicating the robustness of FCM and LCM to various o’

and 3° in some degree.

Secondly, we change m from 1 to 10. As shown in Fig.
(), the performances of different m > 1 consistently outper-
form that of m = 1, which implies the effectiveness of the
multi-mode drift vector in FCM. But there is an accuracy drop
when m is too big. The main reason is that the tail features
could compensate towards unrelated head categories if the
number of selected head categories is too large.

Thirdly, we change ¢ from 0.6 to 0.9. As shown in Fig.
(d), the performances of different ¢ consistently outperform
cRT baseline, and our method achieves the best performance
when ¢ = 0.8. Notice that there will be 2% accuracy
drop when ¢ is too small (¢ = 0.6). The main reason
is that the feature extractor would over-emphasis on class
balanced learning when ¢ is too mall, which damages the
generalization of feature representations [15].

Overall, as shown in Fig. [§ the performances of DCR-

Nets fluctuates within 2%. The phenomenons show that our
method is not sensitive to the hyper-parameters in some
degree, and can achieve competitive results under a wide
range of hyper-parameters values.
The affects of batch sizes of two branches. We then
explore how batch sizes of Uniform Branch and Class-
Balanced Branch affect the performance. Denote the batch
size of uniform branch and class-balanced branch as n;
and ny respectively, Tab. [0 shows the performance of
DCRNets with different n; and ns on ImageNet-LT. As
shown, ny/n2 = 192/64 outperforms ny/ne = 128/128
and ny/ne = 64/192 by a large margin. We argue that
using a too large my would hurt feature representation.
In particular, during each training iteration, a batch of n;
examples and np examples are sampled using uniform
sampler and class-balanced sampler respectively. So using
a too large no would increase the risks of over-fitting the
tail data (by over-sampling) and under-fitting the head data
(by under-sampling). This could unexpectedly damage the
representative ability of the learned deep features [15]. In
addition, due to the small number of parameters in the
classifier, a small ny is usually sufficient to learn a good
balanced classifier. Therefore, it is reasonable to set n; > ns.
Tab. E] also shows that ny /ng = 192/64 achieves marginally
better result than ny/ny = 224/32. We argue that using a
too small ny is inadequate to learn a class-balanced classifier.
Therefore, we set no = n1/3 on all benchmarks, which is
capable of simultaneously learning a good feature represen-
tation and class-balanced classifier.

6.7 Evaluation on Class Incremental Learning

For Class Incremental Learning (CIncL), an underlying
problem is that the ratio of the number of new samples to
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TABLE 10
Class incremental learning performance (top-1 accuracy %) on
CIFAR100 with 2, 5 and 10 incremental steps. The average results over
all incremental steps except the first step are reported. ClncL stands
for Class Incremental Learning methods and ClmbL indicates Class
Imbalanced Learning inspired methods. We produce the results using
their public code.

Method #zmcremSental stleg))s
LwF [64] 52.6 | 47.1 39.7
iCaRL [63] 62.0 | 633 | 61.6
CIncL EEIL [69] 60.8 | 63.7 63.6
IL2M [70] 65.0 | 655 | 63.7
BiC [71] 65.3 | 66.0 | 63.7
MDECIL [73]] | 66.5 | 67.2 64.7
Tnorm [15] | 65.7 | 665 | 644
cRT [15] 66.2 | 66.8 65.5
CImbL | LWS [15] 66.6 | 66.5 63.5
LADE [76| 66.6 | 67.4 64.4
DCRNets 68.2 | 68.5 67.4

that of old samples (preserved exemplars) could be very
high, resulting in severe class imbalance. Thus DCRNets
that address class imbalance can be leveraged for CIncL. In
this section, we additionally evaluate DCRNets on CIncL.

Datasets and Implementations. @ We conduct ClncL
experiments on CIFAR100 [79] following a closely related
work [73]. CIFAR100 contains 60,000 samples of 32 x 32
images for 100 classes. Following the exact setting in [73]],
we deploy a 32-layer ResNet [1] as the baseline architecture
for CIFAR100. We use SGD to train our model and set the
batch size for uniform branch and class balanced branch to
128 and 32 respectively. The learning rate starts from 0.1 and
reduces to 0.1 of the previous learning rate after 120, 180, 240
epochs (250 epochs in total). The hyper-parameters m, o’
and 3 are set to 2, 0.5 and 0.5 respectively. The weighting
factor of loss function ¢ is set to 0.9.

Memory Budge. We follow the same data reply setting
used in [73]. We store 2,000 samples for old classes, and
select rehearsal exemplars based on herding selection [86].
More classes have been seen, fewer images can be retained
per class. As a result, the problem of class imbalance be-
comes more serious.

Benchmark Protocol. We follow the common protocol
used in [73]. On CIFAR100 benchmark, 100 classes are
evenly split into 2/5/10 incremental steps. In each step, the
model is evaluated on the test data for all seen classes. Since
the first step is not related to class incremental learning
actually, we report the average top-1 accuracy over all
incremental phases except the first step.

Comparison to Other Methods. We compare DCR-
Nets with several competitive or representative methods,
including Class Incremental Learning methods (CIncL) and
Class Imbalanced Learning inspired methods (CImbL). As
for CIncL, we compare LwF [64], iCaRL [63], EEIL [69],
IL2M [70], BiC [71] and MDEFCIL [73]]. Note that EEIL, BiC,
IL2M and MDFCIL attempt to address the class imbalance
problem in CIncL. As for CImbL-inspired methods, we
compare cRT [15], 7-norm [15], LWS [15] and LADE [76]. We
produce the results using their public codes. The compared
results are shown in Tab.
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As for CIncL methods, LwF [64] achieves much lower
performance than others. It is reasonable since it incorpo-
rates no imbalance technique, making it vulnerable to class
imbalance. EEIL [69], BiC [71], IL2M [70] and MDECIL [73]
propose different bias correction techniques to boost the
performance. MDFCIL [73] is the most effective one. In MD-
FCIL, by normalizing the classifier weights to have similar
norms, the bias induced by different numbers of samples
can be removed. As for CImbL methods, cRT [15], 7-norm
[15], LWS [15] and LADE [76] add a class-balanced step
to correct the outputs, which achieve similar performance
with MDFCIL. Our DCRNets consistently outperform the
compared methods. Specifically, the overall performance
on 10 incremental steps is improved by 2.7% accuracy
compared to MDFCIL, and 1.9% compared to cRT. The
reason is that all above methods assume that the extracted
features of training and test data follow a same distribution,
which is not hold on imbalanced data of CIncL. Our method
effectively reduces the unfavorable feature drift between
training and test phases to better address imbalance issue,
thereby benefiting incremental learning.

Overall, Tab. indicates that the techniques in CImbL
can be applied in CIncL as well. And our approach is
more effective to handle class imbalance in CIncL. Our
DCRNets can achieve better results compared to state-of-
the-art approaches under different incremental settings.

7 CONCLUSION

We propose a framework, DCRNets, for class imbalanced
learning. Firstly, we observe that there is a severe feature
drift between training and test data, especially on tail class.
So we design FCM and LCM to estimate the feature drift
and compensate for it. Our study suggests that feature
compensation is important to achieve a generalizable clas-
sifier on imbalanced data. Secondly, we observe that CBS
essentially leads to underfitting on head classes. So RBMC
is designed to add a residual path from Uniform Branch to
facilitate classifier learning. Our study suggests that uniform
learning is also useful for learning a class-balanced classifier.
Our overall framework is generic and can be easily incor-
porated into existing Class Imbalanced methods to boost
their performance. We also evaluate our approach on Class
Incremental Learning to show its universality.

8 FURTHER WORK

In this part, we briefly discuss the feasibility of our approach
on other tasks. We leave the specific application of our
proposed method to other tasks as a further work.
Vehicle/Person ReID. This work mainly explores deep
classification task. We argue our method can be also used
to Vehicle/Person relD (metric learning task) when the iden-
tities present an imbalanced distribution.

Firstly, the overall two-branch framework is applicable
for reID. The recently most successful approaches [87]] show
that the metric loss [87], [88] is superior to reID. However, on
imbalanced setting, metric loss would concentrate more on
head identities than tail ones since the comparison chances
for tail identities reduce quadratically. So the metric training
process is dominated by head identities, which could distort
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overall feature space [45]. In our framework, the metric loss
can be added on the class-balanced branch to perform bal-
anced metric learning, to learn better feature representation
for relD.

Secondly, our FCM and LCM which compensate tail
identities with higher diversity are applicable for relD.
As pointed by [45], on reID with imbalanced data, the head
identity often occupies a large spatial span, while the tail
identity often occupies a very small spatial span on feature
space due to lack of intra-class diversity. This uneven distri-
bution distorts overall feature space, consequentially com-
promising the discriminative ability of learned features. In
our framework, FCM translates the tail features along mean-
ingful nearest-neighbor directions, and LCM augments tail
features along intra-class variations more strongly. Thus
FCM and LCM can provide a larger space span with higher
diversity for tail identities, thereby alleviating the distortion
of feature space and improving representation learning on
relD with imbalanced identities.

Unsupervised Learning.  Unsupervised Clustering Algo-
rithm [89], [90] is an important line of unsupervised learn-
ing. Unsupervised Clustering usually alternately learns the
network parameters and the cluster assignments (pseudo-
labels) for unlabeled data. We argue that our method could
be applied to unsupervised clustering methods in the fol-
lowing two ways: (1) Our two-branch framework could
compensate for imbalanced clusters. [89] observes that
clustering algorithm, e.g., k-means, is vulnerable to imbal-
anced clusters (pseudo-labels), where vast majority of exam-
ples are assigned to a few clusters. For unsupervised learn-
ing, our two-branch framework could use pseudo-labels to
perform uniform and class-balanced sampling. In this way,
the class-balanced branch could compensate for imbalanced
clusters. (2) Our FCM and LCM could reduce clustering
errors. [91], [92] observe that the clustering pseudo-labels
are inherently noisy, e.g., the samples sharing the same true
class could be split into two or more clusters. The key of
FCM and LCM is to synthesize new samples along the
directions to its nearest neighbors. Therefore, FCM and LCM
can be used to synthesize intermediate samples between
two neighbor sub-clusters with the same true class. The
synthesized samples can help correctly merge the two sub-
clusters into one cluster. Therefore, we argue that FCM and
LCM are able to reduce clustering errors and thus improve
unsupervised learning.

Unsupervised Domain Adaptation (UDA). The key
problem of UDA is the feature drift between source-domain
and target-domain data. Our FCM and LCM are designed
to deal with feature drift between training and test data,
which can also address the feature drift issue on UDA. That
is, FCM and LCM can translate the source features towards
the target domain, by setting the feature drift vector of class
¢ (0.) as the distance of class-c prototype between source
data and target data. By adding the feature drift vector to
original source features, the new generated source features
will be closer to the target domain, which is conducive to
train a more transferable classifier.

Continual UDA. The work [93] proposed Continual
UDA where unlabeled target-domain samples are received
in small batches and adaptation is performed continually.
The target-domain data is collected randomly and incremen-
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tally in small batches, which easily causes the observed data
to be class-imbalanced, especially in the early continual
learning stage. Therefore, our framework can also be ap-
plied to Continual UDA to address its class imbalance issue.
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