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Abstract—Non-autoregressive (NAR) generation, which is first proposed in neural machine translation (NMT) to speed up inference, has
attracted much attention in both machine learning and natural language processing communities. While NAR generation can significantly
accelerate inference speed for machine translation, the speedup comes at the cost of sacrificed translation accuracy compared to its
counterpart, autoregressive (AR) generation. In recent years, many new models and algorithms have been designed/proposed to bridge
the accuracy gap between NAR generation and AR generation. In this paper, we conduct a systematic survey with comparisons and
discussions of various non-autoregressive translation (NAT) models from different aspects. Specifically, we categorize the efforts of NAT
into several groups, including data manipulation, modeling methods, training criterion, decoding algorithms, and the benefit from
pre-trained models. Furthermore, we briefly review other applications of NAR models beyond machine translation, such as grammatical
error correction, text summarization, text style transfer, dialogue, semantic parsing, automatic speech recognition, and so on. In addition,
we also discuss potential directions for future exploration, including releasing the dependency of KD, reasonable training objectives,
pre-training for NAR, and wider applications, etc. We hope this survey can help researchers capture the latest progress in NAR generation,
inspire the design of advanced NAR models and algorithms, and enable industry practitioners to choose appropriate solutions for their
applications. The web page of this survey is at https://github.com/LitterBrother-Xiao/Overview-of-Non-autoregressive-Applications.
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1 INTRODUCTION

MAchine translation [1] is one of the most critical
and challenging tasks in natural language processing

(NLP), which aims to translate natural language sentences
from the source language to the target language. Recently,
with the breakthrough of deep learning [2], Neural Machine
Translation (NMT) [3], [4], [5], [6], [7], [8], which takes
the different neural networks as backbone models, e.g.,
RNN [3], [9] and CNN [10], [11], has achieved outstanding
performances, especially for the self-attention [12] based
Transformer [13] models [14], [15]. NMT usually adopts the
autoregressive generation (AR) method for translation (AT),
which means the target tokens are one-by-one generated in
a sequential manner. Therefore, AT is quite time-consuming
when generating target sentences, especially for long sen-
tences. To alleviate this problem and accelerate decoding,
non-autoregressive generation (NAR) for machine translation
(NAT) is first proposed in [16], which can translate/generate
all the target tokens in parallel. Therefore, the inference
speed is hugely increased, and much attention to NAT/NAR
methods has been attracted with impressive progress [17],
[18], [19], [20], [21], [22], [23]. However, the translation
accuracy is damaged and sacrificed as a result of parallel
decoding. Compared with AT, the tokens are generated
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without internal dependency for NAT models, unlike the AT
models where the t-th token has previous t − 1 contextual
token information to help its generation. Hence, the NAT
models seriously suffer from lacking target side information
to make predictions (e.g., decoding length) and correctly
generate target translations. In summary, we attribute the
main challenge of NAT models to the ‘failure of capturing the
target side dependency.’

To mitigate the above-mentioned challenge, significant
efforts have been paid in the past few years from differ-
ent aspects, e.g., data manipulation [20], [24], modeling
methods [18], [25], decoding strategies [26], [27], to better
capture the dependency on target side information. Although
impressive progress has been achieved and the translation
accuracy is greatly improved for NAT models, the trans-
lation quality still falls behind their AT counterparts. To
continue narrowing the performance gap and facilitating
the development of NAT in the future, a solid review of
current NAT research is necessary. Therefore, we make the
first comprehensive survey of existing non-autoregressive
technologies for NMT in this paper. Our review summarizes
the core challenge of NAT research and presents various
advanced approaches to solve the challenge. Specifically, we
introduce the approaches from the following aspects:

• Data Manipulation. As a data-driven task, the scale and
quality of training data are crucial for NMT tasks. Due
to the lack of target dependency for NAT models, lots of
methods are proposed to reduce the complexity of the
training data to provide an easier training task for them.

• Modeling. Various advanced model architectures are
proposed to better capture the target dependency, includ-
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Fig. 1. Outline of the survey. We first review the developments of neural machine translation and non-autoregressive related methods. Then we
present an overview of recent AT and NAT models, including a comparison of three different aspects (i.e., training objective, model architecture,
and inference schedule). Besides, we also summarize the main challenge that recent NAT models encounter compared with AT models. To solve
this challenge, we introduce several widely used methods to help improve the ability of NAT models at different levels, including data manipulation,
modeling, criterion, decoding, and benefiting from pre-trained models. Then we present a summary of the above methods for the machine translation
task. We also extend this survey to other extensive applications, such as automatic speech recognition, controllable text generation, question
answering, image captioning, text summarization, grammatical error correction, text style transfer, dialogue, semantic parsing, text to speech, speech
translation and diffusion models. Finally, some open problems and future outlooks are discussed. Best viewed this outline in color.

ing iteration-based methods that can provide partially
observed target information, latent variable-based meth-
ods that introduce latent variables to learn the target
side dependency, and enhancements-based methods that
directly provide stronger target side information to the
input/output/intermediate states of the decoder.

• Criterion. Some works point out that the traditional cross-
entropy loss is not optimal for NAT models and propose
better criteria to improve the training of NAT models,
including Connectionist Temporal Classification (CTC)
based, N-gram-based, and order-based loss functions.

• Decoding. Decoding algorithm is another decisive factor
in NMT models. Upon NAT models, different tricks are
proposed to improve the decoding process and provide
better translation results.

• Pre-Trained Model. Finally, given the strong represen-
tation capacity of pre-trained models, it is appealing to
utilize them to improve the performance of NAT models.
Therefore, lots of methods have been proposed to leverage
the information from pre-trained AT models or large-scale
language models to help the training of NAT models.

Besides summarizing the improving works for NAT, we
also review other applications of NAR methods beyond
NMT, such as automatic speech recognition, controllable text

generation, question answering, image captioning, text sum-
marization, grammatical error correction, text style transfer,
dialogue, semantic parsing, text to speech, speech translation
and diffusion models. We further point out the recent trends
and possible promising directions for future development,
such as releasing the dependency of knowledge distillation,
designing more reasonable training objectives, and pre-
training for NAR models. We hope this survey paper can
provide researchers and engineers with valuable insights to
attract more people to either promote the development of
NAT/NAR techniques or bring NAT/NAR methods into
other fields, such as NAR text generation with large-scale
pre-trained language models. Besides, the up-to-the-minute
solutions for each NAT problem and thorough analysis of
model performance and computational cost are also expected
to assist considerable industry practitioners.

The organization of this survey paper is as follows. To
begin with, we make a comparison between AT and NAT
models from different views, such as their training objectives,
model architectures, and inference schedules. Then we
analyze the main challenge that the current NAT models
encounter in Section 2. We attribute the low quality of NAT
models to the failure to well capture the target dependency,
and from Section 3 to Section 7, we summarize the efforts
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paid for improvement from different aspects, including data
manipulations (Section 3), modeling methods (Section 4),
training criterion (Section 5), decoding ways (Section 6),
and the benefit from pre-trained models (Section 7). In
addition, we also give a short summary of current NAT
models in Section 8. Next, we investigate the extension of
NAR generation approaches to other various applications
beyond NMT in Section 9. At last, we conclude this paper
and discuss our future outlooks in Section 10. A detailed
version of our survey outline is also shown in Figure 1.

2 OVERVIEW OF AT AND NAT MODELS

In this section, we first give an overall introduction to AT and
NAT models. We briefly compare them from several different
aspects, including the training objective, model architecture,
and inference strategy. Besides, we also analyze the main
challenge that NAT models encounter compared with AT.

2.1 Comparison

Both AT and NAT models aim to make a correct sentence
translation from a source language to a target language. Due
to their unique characteristics, their differences are apparent
in training, modeling, and inference. Before a detailed
comparison, we first introduce the necessary notations.

Given a dataset D = {(X,Y )i}Ni=1, where (X,Y )i refers
to a paired sentence data, and N is the size of the dataset.
X is the sentence to be translated from source language X
and Y is the ground-truth sentence from target language Y .
The goal of NMT models is to learn a mapping function f(·)
from the source sentence to the target sentence f : X → Y
to estimate the unknown conditional distribution P (Y |X; θ),
where θ denotes the parameter set of a network model. We
now compare the details of AT and NAT models as below.
Training Objective. (1) For paired sentences (X,Y ), where
X = {x1, x2, ..., xTX

} and Y = {y1, y2, ..., yTY
}, the training

objective LAT of an autoregressive NMT (AT) model is to
maximize the following likelihood:

LAT =
∑TY

t=1
logP (yt|y<t, X; θ), (1)

where yt is the token to be translated at current time step t
and y<t are the tokens predicted in previous t− 1 decoding
steps. From the above equation, we can clearly see that the
training of AT models adopts the autoregressive factorization
in a left-to-right manner. Note that during training, the
ground-truth target tokens are leveraged with the teacher
forcing method [13], [28]. In this way, the translation quality
is guaranteed with the help of contextual dependencies.

(2) In contrast, the non-autoregressive NMT (NAT) mod-
els [16] use the conditional independent factorization for
prediction, and the objective is to maximize the likelihood:

LNAT =
∑T

t=1
logP (yt|X; θ), (2)

notice that T is the length of the target sentence. During
training, T = TY is the length of the ground-truth target
sentence, while in inference, T = PL(X) which is usually
predicted by a length prediction module PL. Compared with
AT models, it is obvious that the conditional tokens y<t

are removed for NAT models. Hence, we can do parallel

translations without autoregressive dependencies, and the
inference speed is greatly improved.

(3) Besides the AT and NAT models, researchers aim to
find an intermediate state between current AT and NAT,
which can also serve as a universal formulation of both
models to achieve a balance between decoding speed and
translation quality. For example, Wang et al. [17] propose
a semi-autoregressive NMT (SAT) model, which keeps
the autoregressive property in global but relieves it in
local. Shortly speaking, SAT models can produce multiple
target tokens in parallel at each decoding step (local non-
autoregressive) and dependently generate tokens for the next
step (global autoregressive). Mathematically, SAT models aim
to maximize the following likelihood:

LSAT =
∑[(T−1)/k]+1

t=1
logP (Gt|G<t, X; θ), (3)

where k denotes the number of the tokes that the SAT models
parallelly generate at one time step. Gt is a group of k target
tokens at t-th step. G<t is the t− 1 groups of target tokens
generated in the previous t− 1 decoding steps. Note that if
k = 1, it equals an AT model, and if k = T , it generalizes to
a NAT model.

(4) In comparison, iteration-based NAT models share
a spirit of mixed autoregressive and non-autoregressive
translation, but on the sentence level with a refinement
approach. That is, iteration-based NAT models keep the non-
autoregressive property in every iteration step and refine the
translation results during different iteration steps [18], [29].
The training goal is to maximize:

LIter =
∑

yt∈Ytgt

logP (yt|Ŷ , X; θ), (4)

where Ŷ indicates the translation result of the last iteration,
and Ytgt is the target of this iteration.

In the first iteration, only X is fed into the model,
which is the same as NAT models. After that, each iteration
takes the translation generated from the last iteration as
context for refinement to decode the translation. Generally
speaking, NAT models with iterative refinements are viewed
as iteration-based NAT models, while models with only one
decoding step are viewed as fully NAT models.
Model Architecture. As for model architecture, both AT and
NAT models take the encoder and decoder framework for
translation. The encoder and decoder can be different neural
networks, such as RNN [9], CNN [11], and Transformer [13].
Due to the superior performance of the Transformer network,
we focus on the Transformer model for discussion in this
survey. The encoder is used to encode the source sentences,
while the decoder is utilized for decoding the target sentence.
Compared to AT and NAT models, they adopt the same
encoder architecture, and the differences are reflected in
the decoders to match the specific training objective. (1)
Specifically, AT models need to prevent earlier decoding
steps from peeking at information from later steps. Therefore,
the constraint of an autoregressive factorization of the output
distribution is required, and they adopt the strict causal mask
by applying a lower triangular matrix in the self-attention
module of the conventional Transformer decoder [13]. (2)
However, for NAT models, including the iteration-based
NAT models, this constraint is no longer necessary, so they
adopt the unmasked self-attention over all target tokens [16].
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(3) As for SAT models, they adopt a coarse-grained lower
triangular matrix as the causal mask, which means that they
allow k tokens to peep later information in the same group
while keeping the constraint between different groups.
Inference Schedule. When going to the inference stage,
the differences are as follows. (1) The AT models predict
the target tokens in a one-by-one manner, and the tokens
predicted previously are fed back into the decoder to generate
the next token. (2) While SAT models predict a group of
target tokens at one time, the previously generated groups of
tokens are fed into the decoder to generate the next group of
tokens, which is the same as the AT models. (3) For iteration-
based NAT models, it needs k iterations for inference. The
translated results of the previous iteration will be fed into the
decoder again for refinements. (4) As for fully NAT models,
they generate all predicted target tokens at only one step,
which greatly speeds up inference. It is worth noting that AT
and SAT models suffer from the gap between training and
inference [30], [31], [32]. That is, they utilize ground-truth
target tokens during training, while the models can only
take previously generated target tokens for inference. This
indeed leads to inconsistency between training and inference
and hence hurts the performance. In contrast, fully NAT
models are free from this trouble, but for iteration-based
NAT models, prediction in the previous iteration is adopted
for refinements, and this mismatched problem may be more
serious. More details about this will be discussed in Section 6.

2.2 The Main Challenge of NAT Models

When achieving parallel decoding, a critical issue of NAT
models is that they have no tokens with target information
fed into the decoder [16] during training and inference. They
can only rely on the source side information, which heavily
increases the difficulty for NAT models. Previously, when
Gu et al. [16] first propose their NAT model, they notice
that using nothing or only position embeddings in the first
decoder layer results in poor translation performance. To
alleviate this problem, they propose an initial module by
copying the source tokens as the initialization for the decoder
input. However, the source and target sentences from distinct
languages are indeed different. This way does not help the
decoder since no target information is given.

As a result, missing the target information leads the NAT
models to fail to capture the target dependency of target tokens,
and we attribute the main challenge of low quality for NAT
models to this defect. To better understand and further
release this problem, we now give specific analysis with
examples and also briefly show improvement methods in
the following contents.
Understanding the Problem. Since no target information
is fed into the decoder, NAT models remove the word
dependency of the target sentence completely and generate
target tokens entirely depending on the source sentence.
Hence, terrible situations can happen to harm the translation
quality. (1) First, the conditional independence assumption
prevents a model from properly capturing the highly multi-
modal distribution of target translations, which is called
multi-modality problem [16]. Almost all the NAT models
suffer from this trouble. Due to the strong assumption that
each target token is predicted independently, if there are

several different target sentences that can be viewed as
reasonable translations, NAT models are possible to select
fragments of each sentence and combine them as a candidate
translation. Take an example, when translating thank you
into German, Vielen Dank and Danke are both reasonable
translations. However, NAT models may generate Danke
Dank, which is truly unreasonable but should be impossible
in AT models. Zhang et al. [33] also focus on the multi-
modality problem but especially on the syntactic granularity.
They first categorize the syntactic multi-modality problem
into long-range and short-range types. Then they conduct a
systematic study to evaluate the effectiveness of different loss
functions for each kind. Finally, they introduce Combined
CTC and OAXE (CoCO) loss to alleviate the complicated
syntactic multi-modality problem. (2) Over-translation and
under-translation [22] are also common translation errors.
The issue of over-translation refers to the same word token
being successively generated multiple times, leading the
same token from different reasonable translations to appear
at different positions in the final translation. The under-
translation indicates that several necessary tokens in the
source sentence are neglected, leading to several tokens miss-
ing in the translation results. Take an example, when trans-
lating German sentence es gibt heute viele Farmer
mit diesem Ansatz into English sentence, a reasonable
translation can be there are lots of farmers doing
this today. However, NAT models may miss the word of
(under-translation) or generate the word of twice (over-
translation), leading the results to be there are lots
farmers doing this today or there are lots of
of farmers doing this today. This seriously harms
the translation quality. Instead, if target dependency is given
as AT models, the problem of repetitive tokens and missing
tokens can be avoided.

2.3 Overview of Improving Methods

As we discussed that NAT models are hard to model the
target side dependency, various methods have been proposed
to alleviate this problem by reducing the dependency of
target tokens at different levels, which hence improves the
ability of NAT models. Specifically, these methods include
(1) data manipulation, which focuses on the improvements
of training data corpus and data learning strategies, (2)
improvements on the modeling level, where we first sum-
marize two popular and widely used training frameworks
(iteration-based methods and latent variable-based methods)
along with various specific implementations of them. Besides,
various other enhancements-based methods are introduced
for NAT models, (3) improvements on the training criterion,
where better criteria compared with traditional cross-entropy
loss are proposed to meet the unique characteristics of NAT
models, (4) improvements on the decoding level, where
we introduce the tremendous progress made on length
prediction and decoding strategy, and (5) benefiting from
pre-trained models, i.e., guiding NAT models to benefit
from their AT counterparts and other large-scale pre-trained
language models such as BERT [34]. We plot a figure in the
Appendix (Figure 4) to structure these methods better.

In Table 1, we give a summary and overview of different
NAT models based on the above improvement category.
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2017.11 | NAT [16]
First NAT, apply fertility 
predictor to determine the 
alignment

2018.8 | SAT [17]
Semi-autoregressive  
decoding, an intermediate 
state between AT and NAT 

2020.4 | Imputer [38]
CTC-based model, latent 
alignment with dynamic 
programming

2019.9 | CMLM [18]
Conditional masked 
language model, mask 
and predict decoding

2020.8 | GLAT [39]
Curriculum learning  
from fragments to 
whole sentences

2021.6 | OAXE [41]
Better training criterion,
remove the penalty 
for order errors

2022.3 | CeMAT [42]
Introduce special mask 
strategies during pre-training 
to support NAT fine-tuning 

2022.5 | DA-Transformer [40]
Represent the hidden states in a 
directed acyclic graph, relieve 
dependence on distillation 

Fig. 2. Representative methods along the development of NAT models.

In each category, we also present the specific sub-topics to
better classify the category, along with the representative
published works. For example, the decoding strategies can
be divided to semi-autoregressive decoding (i.e., SAT [17]),
insert and delete (i.e., LevT [35]), mask and predict (i.e., Easy-
First [36]), and also mixed decoding (Unified [37]). Besides,
for each work, we summarize a short description and list its
published place (e.g., ACL, EMNLP), the decoding speed,
and the performance on the mostly evaluated dataset WMT14
English→German (EN→DE) for a quick understanding.

Before introducing these methods, in Figure 2, the most
important and popular works along the NAT development
are shown in the timeline. The NAT is first proposed in
November 2017, and the inference speed is hugely improved,
but the accuracy is far behind the AT model. After its
birth, SAT [17] is proposed to serve as the bridge between
AT and NAT models with better translation performance.
Other representative works are then introduced, including
iteration-based methods: CMLM [18] and Imputer [38], fully
NAT models: GLAT [39] and DA-Transformer [40]. These
models mainly conduct improvements to the model structure.
Besides, improvements based on training criteria are also
introduced in OAXE [41]. Recently, CeMAT [42] is proposed
to explore the potential of pre-training a non-autoregressive
model and then fine-tuning on the translation task. With the
rapid growth of NAT models, their performance gap with
AT models is narrowing, and the tendency to develop NAT
models in real-world systems is increasing. We will elaborate
on these methods in the following sections.

3 DATA MANIPULATIONS

Neural machine translation is a data-driven task, and the
performance of the NAT model heavily relies on the volume
as well as the quality of the bilingual training data. Therefore,
various data manipulation methods are proposed to help
the model better capture the target side dependency. In
this section, we will introduce these methods from two
perspectives: (1) knowledge distillation which aims to reduce
the complexity of the training corpus; (2) data learning
strategies that help the model better learn and understand
the training data. The introduced methods are listed in the
“Data Manipulations” category of Table 1.

3.1 Knowledge Distillation
Initially, Knowledge Distillation (KD) [43] is proposed to train
a weaker student model with soft prediction distributions

generated by a stronger teacher model. Sequence-level knowl-
edge distillation [44] extends it to the sentence level, where a
pre-trained teacher model predicts sequences of tokens that
are taken as the targets of the student model. When applied
to NAT models, a pre-trained AT model is utilized to generate
distilled target sentences for all source sentences in the
training set, with either greedy decoding or beam search. For
example, given a pre-trained AT model θAT and the training
set D = {(X,Y )i}Ni=1, the distilled target sentences Y ′ are
generated as Y ′ ∼ P (Y |X; θAT), where Y ′ are decoded with
various decoding algorithms such as greedy decoding and
beam search decoding. Then, we train the NAR models
on this distilled training set D′ = {(X,Y ′)i}Ni=1 with the
traditional negative log-likelihood loss:

LKD = −
∑

(x,y′)∈D′
logP (y′|x; θNAT), (5)

where θNAT is the parameter set of the NAT model. KD
is widely adopted as the distilled corpus is regarded as
less noisy and more deterministic than the original one. To
investigate the reason behind this, we review related works
and give a detailed analysis from two aspects: (1) why is KD
effective for NAT models? (2) does there exist drawbacks to
current KD methods, and how to solve them?
Understanding Knowledge Distillation. Zhou et al. [45]
propose two quantitive measures, including the complexity
and faithfulness, to analyze the property of distilled data
and its correlation with NAT performance. Specifically, they
find that while KD generally simplifies the training data by
reducing the complexity and increasing the faithfulness, a
larger and better teacher model does not always lead to a
better student model. Instead, the capacity of the teacher
model should be aligned with the student NAT model to
achieve the best performance. In addition, Ren et al. [46]
design a model to measure the target token dependency over
the data and find that KD can reduce the dependency when
predicting target tokens, which is helpful for the training of
NAT. Xu et al. [19] find that KD can also reduce the lexical
diversity and word reordering degree, which helps the model
better learn the alignment between source and target.
Problem and Improvements. Despite the effectiveness, there
exist some problems when utilizing KD. Zhou et al. [45] find
that the capacity of the NAT model should be correlated
with the complexity of the distilled dataset. Therefore they
propose several methods, including born-again network [47]
and mixture-of-experts [48] to adjust the complexity of the
dataset w.r.t the model capacity. In addition, after knowledge
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distillation, the density estimation of real data may be
harmed [49] and the lexical choice may be mistaken [20].
Specifically, Ding et al. [20] suppose that the distilled data
mainly focuses on the performance of high-frequency words.
They propose two evaluation metrics to measure the lexical
translation accuracy and conclude that the accuracy of low-
frequency words is seriously decreased when the NAT
model is trained on distilled datasets. To deal with this
problem, Ding et al. [50] make full use of raw, distilled, and
reverse-distilled data to rejuvenate low-frequency words.
Zhou et al. [51] add monolingual data for training of the
teacher model to enrich the distilled dataset. The effect
and improvement of self-distillation are also explored [21].
Shao et al. [52] also notice that adopting a single distillation
reference from a specific teacher is not optimal for training
NAT models and thus propose the diverse distillation with
reference selection (DDRS) strategy during training.

3.2 Data Learning Strategies

Aside from constructing informative training datasets, de-
signing suitable learning strategies is another way to improve
NAT models. We introduce various data learning strategies
in this subsection. Curriculum learning [100] is a machine
learning strategy inspired by human learning, which trains
the model by feeding training instances in an order (e.g., from
easy to hard) instead of randomly. Guo et al. [24] introduce
the idea of curriculum learning into the training of NAT
models by progressively switching the decoder input from
AT to NAT to provide a smooth transformation between
two training strategies. Liu et al. [95] extend this method
by designing more fine-grained curriculums. Qian et al. [39]
propose an adaptive glancing sampling strategy to guide the
model to learn from fragments first and then from whole
sentences gradually. The ratio of fragments is correlated with
the capacity of the model at the current training stage. Bao et
al. [53] further extend this glancing sampling strategy to a
variable-based model. Song et al. [101] combine this glancing
sampling strategy with a code-switch method for the task
of multilingual machine translation. Ding et al. [54] divide
training data into multiple granularities, such as words,
phrases, and sentences, and propose a progressive multi-
granularity training strategy to train the model from easy to
hard. Apart from curriculum learning, consistency training
is an effective method for autoregressive NMT models [102].
For NAT models, Xie et al. [55] utilize consistency training
to improve the training consistency on different masked
sentences. They assumed that the prediction of the same
masked position should be consistent in different contexts
or with different models. A similar idea is also explored for
variational autoencoder-based latent-variable NAT models
in recent papers [56], which propose posterior consistency
regularization to improve the ability of models. They first
apply data augmentation on both source and target sentences
twice and then predict the latent variable and regularize these
two results. Besides, contrastive learning is also adopted
to improve the performance of NAT models [57], which
optimizes the similarity of several different representations
of the same token in the same sentence, resulting in more
informative and robust representations.

4 MODELING

Model structure plays a critical role for NAT models to
better capture the target side dependency. This section first
introduces two popular frameworks for NAT: iteration-
based methods and latent variable-based methods, then
we summarize the efforts made on other enhancements-
based methods for NAT models. The introduced methods are
listed in the “Modeling” category of Table 1. Representative
methods are illustrated in Figure 5 of the Appendix.

4.1 Iteration-Based Methods
Iteration-based methods aim to find the trade-off between
translation speed and quality. Instead of generating all target
tokens in one pass, they learn the conditional distribution
over partially observed generated tokens. Lee et al. [29] first
propose the iterative model, they utilize either the output of
the previous iteration or the noised target sentence to initial
the decoder input for refinements. Besides, iteration-based
models can be divided into the following categories:
Text Editing. These methods learn to generate tokens with
different atomic operations. Stern et al. [58] propose Insertion
Transformer which models both what to insert and where
to insert relative to the current slot representations via
concatenated outputs. They also introduce several order
loss functions for training. Chan [87] introduce KERMIT,
which is similar to Insertion Transformer but models the
joint data distribution and its decompositions. Welleck et
al. [103] frame the insertion learning problem as an imitation
learning problem, in which a generation policy is learned
to mimic the actions of an oracle generation policy. They
propose an annealed coaching method and a roll-in and
roll-out procedure to learn insertion. Besides, Gu et al. [104]
propose an insertion-based model with Inferred Generation
Order (InDIGO), where the generation orders are modeled
as latent variables. InDIGO can automatically infer the
generation orders by simultaneously predicting a word
and its position to be inserted during inference. Deletion
operation is introduced in [35]. They propose Levenshtein
Transformer (LevT), which adopts dual policy learning for
training and three different classifiers to decide where and
how many tokens to insert, whether to delete the tokens
and predict the tokens. Furthermore, much progress has
been made in exploring more potential of the Levenshtein
Transformer. Xu et al. [105] view translation as a bilingual
synchronization task and propose Edit-LevT to explore the
potential in a non-autoregressive manner, which adopts
Levenshtein Transformer as a backbone model. Later they
also propose TM-LevT [106], where Levenshtein Transformer
with an additional initial deletion operation is adopted to
detect potential irrelevant words in the translation memory.
Niwa et al. [107] adopt the nearest neighbor as the initial
state of the NAR decoder. They introduce NeighborEdit,
which retrieves the nearest neighbor of an input sentence
and edits it to generate the output sentence. Lu et al. [63]
propose a more efficient, flexible, and performance insertion-
based model, which introduces an insertion-oriented position
encoding method and a better algorithm to determine the
parallelization of insertion operations.
Masked Language Modeling. Another line of work lever-
ages the success of masked language modeling, initially
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TABLE 1
A brief summary and overview of different NAT models discussed in this paper. The numbers of iteration, decoding speedup, and performance are all
copied from their original paper. Specifically, “Performance” denotes the BLEU scores on the WMT 14 EN→DE dataset, and “Speedup” refers to the
decoding speedup ratio compared with AT model. Note that “*” indicates training with sequence-level knowledge distillation from a big Transformer.

The speedup may not be comparable due to their different hardware conditions, and we list them here just for reference. “#” denotes Findings.

Category Sub-category Method Description Publication Iteration Speedup Performance

Data Manipulations

Improving KD

MD [51] Add monolingual data, enrich distillation corpus ACL 2020 1 - 25.73
RDP [20] Raw data prior training, improve lexical choice ICLR 2020 2.5 3.5x 27.80*
LRF [50] Add reverse-distill data,rejuvenate low-frequency word ACL 2021 2.5 3.5x 28.20*

SDMRT [21] Self-distillation mixup, pre-rerank and fine-tune training ARXIV 2021 10 - 27.72*
DDRS [52] Diverse distillation with reference selection NAACL 2022 1 14.7x 27.60

Learning Strategies

GLAT [39] Glancing, learn from fragments to whole sentence ACL 2021 1 15.3x 25.21
latent-GLAT [53] Introduce glancing strategy to discrete latent variables ACL 2022 1 11.3x 26.64

PMG [54] Multi-granularity, from words, phrases, sentences gradually ACL# 2021 3.5 - 27.80*
MvSR-NAT [55] Consistency-based, masked token and model level consistency TASLP 2022 10 3.6x 27.39*
LaNMT-C [56] Consistency training for posterior latent variables NAACL 2022 2 11.0x 26.02
CCMLM [57] Contrastive common mask and contrastive dropout for CMLM EMNLP# 2022 10 - 27.93*

Modeling

Iteration-based
methods

NAT-IR [29] Denoising autoencoders, iterative refinement EMNLP 2018 10 1.5x 21.61
Insertion Transformer [58] Insert tokens each iteration, like balanced binary trees ICML 2019 ≈ log2(N) - 27.41

CMLM [18] Masked language model trained with uniform mask strategy EMNLP 2019 10 1.7x 27.03*
DisCo [36] More visible subsets to predict masked tokens ICML 2019 Adaptive 3.5x 27.34*

SMART [59] Introduce correction task during inference for CMLM ARXIV 2020 10 - 27.65
JM-NAT [60] Jointly masked strategy, N-gram level masking in decoder ACL 2019 10 5.7x 27.69*
Imputer [38] Combine conditional masking with CTC EMNLP 2020 8 3.9x 28.20*

REWRITENAT [26] Reviewer and locator, locate the error and rewrite EMNLP 2021 2.7 3.9x 27.83*
CMLMC [61] CMLM with reveal-position and correction function ICLR 2022 10 - 28.37*
SUNDAE [62] Step-unrolled denoising autoencoder ICLR 2022 16 - 28.46*
INSNET [63] Insertion-oriented relative position encoding, insert in each layer NeurIPS 2022 16.1 3.78x 28.05

Latent variable
-based methods

NAT [16] Fertility predictor, determine the latent alignments ICLR 2018 1 15.6x 17.35
FlowSeq [64] Generative flow, a powerful mathematical framework EMNLP 2019 1 1.1x 23.72

PNAT [65] Positional predictor, model the position of target tokens ARXIV 2019 1 7.3x 23.05*
SynST [66] Parse decoder, autoregressively predict a chunked parse tree ACL 2019 N/6 4.9x 20.74

LaNMT [67] Delta Posterior, continuous latent variables AAAI 2020 1 6.8x 24.20
ReorderNAT [68] Reorder the source sentence into a pseudo-translation AAAI 2021 1 16.1x 22.79
AligNART [69] Aligner module, alignment decomposition strategy EMNLP 2021 1 13.4x 26.40

CNAT [70] Categorical codes, without external syntactic parser NAACL 2021 1 10.4x 25.56*
SNAT [71] Incorporate the explicit syntactic and semantic structures EACL 2021 1 22.6x 24.64*

Fully NAT [72] Several tricks to improve the Fully NAT ACL# 2021 1 16.5x 27.49*

Other enhancements
-based methods

ENAT [23] Phrase-table lookup, embedding mapping AAAI 2019 1 25.3x 20.65
NAT-REG [22] Similarity and reconstruction regularization AAAI 2019 1 27.6x 20.65

LAVA NAT [73] Vocabulary attention, reorder prediction labels of a word ARXIV 2020 1 29.3x 25.72
CCAN [74] Context-aware cross-attention, local and global contexts COLING 2020 10 - 27.50
DSLP [75] Deep supervision, additional layer-wise predictions AAAI 2022 1 14.8x 27.02
DAD [76] Decoder Input Transformation, backward dependency modeling ARXIV 2022 1 14.7x 27.51

DA-Transformer [40] Represent the hidden states in a directed acyclic graph ICML 2022 1 13.9x 27.49
DA-Transformer Viterbi [77] Adopt viterbi decoding for DA-Transformer EMNLP# 2022 1 13.2x 26.89

FA-DAT [78] Adopt fuzzy alignments for DA-Transformer ICLR 2023 1 14.0x 27.53

Criterion Loss function

CTC [38] Compute and stores partial log-probability EMNLP 2020 1 18.7x 25.60
BoN [79] N-gram level loss, minimize the Bag-of-Ngrams difference AAAI 2020 1 10.8x 20.90
AXE [80] Aligned cross-entropy, a differentiable dynamic program ICML 2020 1 15.3x 23.53*
EISL [81] Compute the n-gram matching differences, more robust NAACL 2022 1 - 24.17*

OAXE [41] Order-agnostic cross-entropy, hungarian algorithm ICML 2021 1 15.3x 26.10*
ngram-OAXE [82] Ngram-based OAXE, allow reordering between ngram phrases NAACL 2022 1 15.2x 26.50*

CoCO [33] Combine CTC and OAXE loss NAACL 2022 1 14.2x 27.41
MgMO [83] Multi-granularity Metric-based Optimization EMNLP 2022 1 - 26.40
NMLA [84] Non-monotonic latent alignments, bipartite matching and n-gram matching NeurIPS 2022 1 14.7x 27.57

Decoding

Semi-autoregressive
decoding

SAT [17] Generate muti-tokens at one decoding step EMNLP 2018 N/2 1.5x 26.90
RecoverSAT [85] Recover segment, recover mistakes of muti-tokens ACL 2020 N/2 2.2x 27.11

GAD++ [86] Collaboration of NAT drafting and AT verification ARXIV 2022 4.0 3.2x 28.89*

Insert and delete KERMIT [87] Model the joint data distribution, adopt bidirectional fine-tuning ARXIV 2019 ≈ log2(N) - 28.7
LevT [35] Insert and delete tokens during each iteration NeurIPS 2019 Adaptive 4.0x 27.27

Mask and predict Mask-Predict [18] Mask the tokens with low confidence and predict them in the next iteration EMNLP 2019 10 1.7x 27.03*
Easy-First [36] Update tokens at each position with an easy to hard order ICML 2019 Adaptive 3.5x 27.34*

Mixed decoding
Unified [37] Unified approach, conditional permutation language modeling COLING 2020 10 - 26.35

Diformer [88] Directional transformer, directional embedding and self-attention EAMT 2022 10 - 27.99
HRT [89] Generate discontinuous sequences autoregressly and fill in others in parallel ARXIV 2022 N/2 + 1 - 28.49*

Benefiting from
Pre-trained Models

AT models

imitate-NAT [90] Imitation learning framework with imitate module ACL 2019 1 18.6x 22.44*
NAT-HINT [91] Hints from the hidden state, constrain attention distributions EMNLP 2019 1 30.2x 21.11

ENGINE [92] Energy-based inference, minimize the AT model’s energy ACL 2020 - - -
EM+ODD [93] Unified framework, dynamically optimize AT and NAT ICML 2020 1 16.4x 24.54
FCL-NAT [24] Curriculum learning from better-trained state of AT model AAAI 2020 1 28.9x 21.70

MULTI-TASK NAT [94] Shared encoder, dynamically mix two training loss NAACL 2021 10 - 27.98*
TCT-NAT [95] Task-level curriculum learning, from AT to SAT, then to NAT IJCAI 2021 1 27.6x 21.94
weak MTL [96] Multitask learning framework, provide more informative learning signals EMNLP 2022 1 - 27.25

Pre-trained language
models

AB-Net [97] Take two different BERT models as the encoder and decoder NeurIPS 2020 - 2.4x 28.69*
NAG-BERT [98] Employ bert as a backbone, add a CRF Layer EACL 2021 - - -

CeMAT [42] Aligned code-switching and masking, dynamic dual-masking ACL 2022 10 - 27.20
XLM-D [99] Lightweight yet effective decorator, adapt the XMLR model into NAT models EMNLP 2022 8 2.8x 29.80

proposed by BERT [34]. Ghazvininejad et al. [18] extend
it to the conditional masked language model (CMLM)
by masking and predicting target tokens during training.
Unlike the fixed masking ratio in BERT, CMLM adopts a
uniform masking strategy to capture the interdependencies
of target tokens during training. Based on this model, several
follow-up works are proposed, including: (1) jointly masking
tokens [60], where the tokens in the source sentences are also
masked; (2) introducing self-review mechanism [108], which
applies an AR-decoder to help infuse sequential information;
(3) predicting more visible subsets [36], instead of only
predicting the masked tokens, the method predicts every
target token; (4) introducing self-correction task [61], rather
than only predicting the masked tokens, which can learn
to correct the unreasonable tokens generated by inputting a

fully masked sequence.

4.2 Latent Variable-Based Methods.
Utilizing latent variables as part of the model is also a
popular method to reduce the target side dependency. Latent
variable models maximize the following likelihood:

LLat =
∑T

t=1
log p(Z|X; θ)p(yt|Z,X; θ), (6)

where Z is a specific latent variable. The latent variable-
based NAT models first predict a latent variable sequence,
where each variable may be a chunk of words or include
some other prompt information. Existing works mainly apply
latent variables to capture the following information.
Prior Target Linguistic Information. Ma et al. [64] utilize
a powerful mathematical framework called generative flow.
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Variational auto-encoders (VAE) based methods are also
applied to model the dependency [109]. Shu et al. [67] and
Lee et al. [49] model the latent variables as spherical Gaussian
for every token in the encoder. Bao et al. [53] utilize a glancing
sampling strategy to optimize latent variables.
Alignments between Source and Target Sentences. Gu et
al. [16] pre-define the latent variable Z as fertility and use it
to determine how many target words every source word is
aligned to. Song et al. [69] predict the alignment by an aligner
module as the latent variable Z .
Position Information of Target Tokens. Bao et al. [65]
propose PNAT, which depends on the part of an extra
positional predictor module to achieve the permutation Z.
Ran et al. [68] propose ReorderNAT, a novel NAT framework
that reorders the source sentence by the target word order to
help the decision of word positions.
Syntactic Information of Target Sentence. Syntactic labels
represent the sentence structure, which can be utilized to
guide the generation and arrangement of target tokens. Ak-
oury et al. [66] first introduce syntactic labels as a supervision
to help the learning of discrete latent variables. However,
the method needs an external syntactic parser to produce
the syntactic reference tree, which is effective only in limited
scenarios. To release the limitation, Bao et al. [70] propose
to learn a set of latent codes that act like the syntactic
label. Liu et al. [71] incorporate the explicit syntactic and
semantic structures to improve the ability of NAT models.
Specifically, they utilize Part of Speech (POS) and Named
Entity Recognition (NER) to introduce these information.

4.3 Other Enhancements-based Methods

In addition to the above two popular frameworks for NAT
models, many efforts have been made to improve the ability
of capturing the target side dependency for NAT models
at different stages, and the corresponding module is also
added to their models. We summarize these methods into
the following categories.
Enhancing the Input of Decoder. Since copying the source
sentence to initial the decoder cannot offer any target
information [16], Guo et al. [23] propose phrase-table lookup
and embedding mapping methods to enhance the input
of the decoder, which can feed tokens with some target
information into the decoder, then help model learn the
training data better. While the used phrase table is trained in
advance, embedding mapping drew lessons on the idea of
adversarial training and can perform word-level constraints
to close the input and target sentence. Zhan et al. [76] also
focus on the input of the decoder. They propose decoder
input transformation, which transforms the decoder input
into the target space. Then this can close the input and target
side embedding and help capture the target side dependency.
Supervising the Intermediate States. Several works give
extra guidance to the decoder module. Firstly, additional
attention modules are applied to learn more information. Li et
al. [73] propose the Vocabulary Attention (VA) mechanism
along with the Look-Around (LA) strategy to help the model
capture long-term token dependencies of the target sentence.
Ding et al. [74] propose a context-aware cross-attention
module that focuses on both local and global contexts
simultaneously and therefore enhances the supervision signal

of neighbor tokens as well as the information provided by
the source texts. Besides, Huang et al. [75] provide layer-wise
supervision to the intermediate states of each decoder layer.
Improving the Output of Decoder. For the output of the de-
coder, Wang et al. [22] regularize the learning of the decoder
representations by introducing similarity and reconstruction
regularizations, where the former aims at avoiding similar
hidden states to alleviate the repetitive translation problem,
and the latter constraints the results to help address the
problem of incomplete translations. Besides, Ran et al. [85]
propose the RecoverSAT model to recover from repetitive
and missing token errors by dynamically determining the
length of segments that need to recover and then deleting
repetitive segments. Huang [40] propose Directed Acyclic
TransfoRmer (DA-Transformer), which represents the hidden
states in a Directed Acyclic Graph (DAG), and each path
of the DAG denotes a specific translation. This method
dramatically helps capture the dependency of target tokens.
Recently, more enhancing methods based on DA-Transformer
have also been proposed [77], [78]. Shao et al. [110] introduce
a rephraser to provide a better training target for NAT
models. They apply reinforcement learning to obtain a good
rephraser and then train NAT models based on the rephraser
output.

5 CRITERION

In addition to training data and model structure, training
criterion is always another decisive factor for the success
of neural network models. Most NMT models apply cross-
entropy (CE) loss as their training criterion:

LCE = −
∑T

t=1
logP (yt|X; θ), (7)

where each P (yt|X; θ) is calculated conditional indepen-
dently by the NAT model with parameters θ. However,
several researchers have pointed out that the traditional CE
loss may not be optimal for NAT models and they propose
better criteria to improve the performance of NAT models.
This section compares these criteria with traditional CE loss,
emphasizes their advantages, and summarizes them into the
following categories.
Connectionist Temporal Classification (CTC). CTC based
criteria [27] compute and store partial log-probability sum-
mations for all prefixes and suffixes of the output sequence
by dynamic programming to alleviate the misalignment
problem. Libovicky et al. [111] and Shu et al. [67] also use CTC
loss to marginalize all the monotonic alignments between
target and predictions, which can be written as

LCTC = −
∑

a∈β(y)

∏
i

p(ai|x, θ)), (8)

where a is a possible latent alignment, β(y) denotes all
possible alignments based on the CTC format. Shao et
al. [84] further explore non-monotonic latent alignments and
propose two matching objectives named bipartite matching
and n-gram matching to enhance the training of NAT models.
N-Gram-Based. N-gram-based criteria [79] focus on n-gram
level relationships. The word-level CE loss encourages NAT
to generate the target tokens without considering the global
correctness, which aggravates the weakness in capturing
target side dependency. Shao et al. [79] propose an n-gram
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level loss function to minimize the Bag-of-Ngrams (BoN)
difference between the model output and the reference
sentence. Guo et al. [60] also introduce the n-gram-based
dependency of target tokens to alleviate the problem of
repetitive translations. N-gram-based loss can be written as:

LBoN =
BoN-L1

2(T − n+ 1)
, (9)

where BoN-L1 is the L1 distance between the number of n-
grams predicted by the NAT model and that in the reference
sentence, which can be calculated as:

BoN-L1 =
∑

g
|BoNθ(g)− BoNY (g)|, (10)

where g = (g1, g2, ..., gn) is a possible n-gram set.
BoNY (g) =

∑T−n
t=0 1{yt+1:t+n = g} is the number of

occurrences of g in sentence Y . BoNθ(g) denotes the BoN for
a NAT model with parameters α, which can be written as:

BoNθ(g) =
∑

Y
P (Y |X, θ) ∗ BoNY (g)

=
∑

Y
P (Y |X, θ) ∗

∑T−n

t=0
1{yt+1:t+n = g}

=
∑T−n

t=0

∏n

i=1
P (yt+i=gi|X,θ)

(11)

where X and Y denote the source and target sentences,
respectively. Liu et al. [81] propose a novel Edit-Invariant Se-
quence Loss (EISL) which focuses on the n-gram matching to
make the model perform more robustly when encountering
inconsistent sequence order of source and target. They show
that NAT benefits from this loss since the vanilla NAT model
is struggling to model flexible generation order.
Order-Based. CE loss is sensitive to any inconsistent align-
ments between the prediction and target, which leads to
penalizing a reasonable translation if it only mismatches the
positions of target tokens. To soften the penalty for word
order errors, Ghazvininejad et al. [80] propose aligned cross-
entropy (AXE) loss, which uses a differentiable dynamic
programming method to determine loss based on the best
possible monotonic alignment between the ground-truth and
the model predictions. The AXE loss is calculated as:

LAXE = −
∑T

t=1
logPα(yt|X; θ)−

∑
k/∈θ

Pk(ϵ), (12)

where the first term indicates the aligned cross-entropy
loss function between the target tokens and predictions,
and the second term penalizes the unaligned predictions.
Besides, Du et al. [41] further propose the order-agnostic
cross-entropy (OAXE) loss, which applies the Hungarian
algorithm to find the best possible alignment. The OAXE
loss almost removes the penalty for order errors and guides
NAT models to focus on lexical matching. Du et al. [82]
also extend OAXE loss by allowing reordering between n-
gram phrases but maintaining a strict match of word order
within phrases. Li et al. [83] additionally learn to alleviate
the constraint of strict match between the hypothesis and the
reference tokens. They propose Multi-granularity Metric-
based Optimization (MgMO) to collect model behaviors
on varied granularity of translation segments and use the
feedback for back-propagation.

Given a parallel training sample (X,Y ), we can define the
alignment between a model prediction Ŷ = {ŷ1, ŷ2, ..., ŷTŶ

}
and a target sentence Y = {y1, y2, ..., yTY

} as an ordering

of the set of target tokens Y , e.g., Oi = {yTY
, y1, ..., yTY −1

}
denotes that tokens ŷ1, ŷ2, ..., ŷTŶ

in model prediction Ŷ are
aligned with tokens yTY

, y1, ..., yTY −1
in target sentence Y

respectively. Note that during training, TY = TŶ . For each
target sentence, we can get TY ! monotonic alignments. Based
on each alignment state Oi, the corresponding CE loss can
be calculated as LOi = − logP (Oi|X; θ). Given all possible
alignment states O = {O1, O2, ..., OTY !}, the OAXE objective
is defined as finding the best alignment Oi to minimize:

LOAXE = argmin
Oi∈O

(LOi) (13)

where − logP (Oi|X; θ) indicates the CE loss with ordering
Oi. The above methods are listed in the “Criterion” category
of Table 1 and exemplified in Figure 6 of the Appendix.

6 DECODING

The decoding stage is also crucial for neural machine transla-
tion models. Some works try to improve the NAT decoding
schedule by applying different tricks. As mentioned in
section 2.1, NAT models need to know the target length to
guide decoding. And after the length is predicted, different
decoding schedules are adopted to improve decoding. In this
section, we will introduce various length prediction methods
and decoding strategies.

6.1 Length Prediction
In AT models, the beginning and end of decoding are
controlled by special tokens, including [BOS] (beginning of
a sentence) and [EOS] (end of a sentence), which implicitly
determine the target length during decoding. However, as all
target tokens are generated in parallel in NAT models, there
is no such special token or target information to guide the
termination of decoding. NAT models must know the target
length in advance and then generate the content based on
it. Therefore, how to predict the correct length of the target
sentence is critical for NAT models [112]. Different methods
for target length prediction have been proposed.
Length Prediction Mechanism. Length information of target
sentence is essential to NAT models as mentioned above.
Gu et al. [16] propose a fertility predictor to decide how many
times the source token will be copied when constructing the
decoder input. Then, the sum of fertility numbers could be
viewed as the length of the target sentence. Other length
prediction methods are also proposed: (1) Classification
modeling, which formulates the length prediction as a
classification task and utilizes the encoder output to predict
the target length or the length difference between the source
and target [29], [90]; (2) Linear modeling, Sun et al. [25]
try to use a linear function such as Ty = α Tx + B to
directly calculate the target length based on source length; (3)
Special token modeling by introducing a special [LENGTH]
token [18], [39], [92]. Akin to the [CLS] token in BERT, the
[LENGTH] token is usually appended to the encoder input,
and the model is trained to predict the length of the target
sentence utilizing the hidden output of the [LENGTH] token;
(4) CTC-based modeling, several models implicitly determine
the target length from the word alignment information [38],
[111] based on the connectionist temporal classification
(CTC) [27] results.



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 10

Length Prediction Improvements. Inevitably, there is a
deviation between the predicted length and the true length.
To release the inherent uncertainty of the data itself, length
parallel decoding (LPD) [23], [29] and noise parallel decoding
(NPD) [16], [18] are widely utilized during inference. (1)
LPD is often used in classification-based models. Once the
length T is determined, they choose an LPD window m and
then obtain multiple translation results with lengths in the
range [T −m,T +m]. A pre-trained autoregressive model
is then used to score and select the best overall translation.
(2) Models that adopt NPD choose the top m lengths with
the highest length prediction probability and return the
translation candidate with the highest log probabilities on
the average of all tokens.

6.2 Decoding Strategy

Fully NAT models adopt only one-step decoding, which can
greatly speed up decoding but fail to achieve high-quality
translation. As shown in Table 1, the performance of iteration-
based models is generally better than that of fully NAT
models, indicating that NAT models fail to capture the target
side dependency correctly with only one-step decoding.
Semi-Autoregressive Decoding. Semi-autoregressive decod-
ing is adopted for SAT models, which generates multiple
target tokens at one decoding step. This decoding manner
does not remove the dependency of target tokens com-
pletely. Several methods are proposed based on the semi-
autoregressive decoding manner, such as: (1) Syntactic labels
based [66], which applies a syntactic parser to produce
the syntactic reference tree for the tokens in the current
decoding step, then a group of tokens with a close syntactic
relationship will be generated at one step. (2) Recover
mechanism [85], which aims to alleviate the multi-modality
problem by introducing a recovered segment. Once a group
of tokens is generated, the model will recover from missing
and repetitive token errors. (3) Aggressive decoding [86],
which first aggressively decodes several tokens as a draft
in a non-autoregressive manner and then verifies them in
an autoregressive manner. This method can improve the
translation quality and lower the latency as the drafting and
verification can execute in parallel.
Insert and Delete. Insertion-based decoding methods aim
to insert tokens during each decoding step. Many works
explore this method based on different generation orders,
including uniform [103], random [104], or balanced binary
trees [58], [87]. More exploration of insertion orders can
be found in [113]. Besides, several advanced methods are
proposed: (1) introducing deletion operations [35], which
also allows the model to delete the unreasonable tokens
during each decoding step; (2) adaptive parallelization of
insertions [63], where parallel insertion is conducted between
each decoder layer to better improve decoding efficiency.
Mask and Predict. Ghazvininejad et al. [18] first propose
a mask-predict algorithm. Starting from a fully masked
sequence, the model aims to predict the masked tokens
during each iteration. Then a fraction of target tokens with
low prediction probability will be masked again and fed to
the decoder for the next iteration. Many related works try
to improve the performance of this decoding method: (1)
easy-first policy [36], which modifies the mask prediction

algorithm by updating each position with an easy to hard
order given the prediction probability of previous iterations;
(2) correcting the unmasked tokens [59], [61], where the
unmasked tokens are self-corrected during each iteration; (3)
substitutive masking strategies [114], where several strategies
are proposed to explore the effect of numbers and rules
of masking tokens; (4) utilizing the locator module [26],
which also focuses on the importance of determining the
tokens replaced by [mask] tokens in the next iteration and
transforms it into a binary classification problem. Inspired
by the beam search algorithm for the CTC-based model,
Kasner et al. [115] apply beam search and employ additional
features in its scoring model to improve the fluency of NAT.
Mixed Decoding. Since different types of decoding strategies
have been proposed for NAT, several works aim to combine
these decoding strategies into a unified model [37], [88].
Tian et al. [37] propose a unified approach for machine
translation that supports autoregressive, semi-autoregressive,
and iterative decoding methods. Once the model is trained,
any of the above decoding strategies can be applied by repeat-
edly determining positions and generating tokens on them.
Taking a step further, Wang et al. [88] propose a directional
Transformer, which models the AR and NAR generation with
a unified framework by designing a special attention module.
Their model supports four decoding strategies and can
dynamically select strategies during each iteration. Wang et
al. [89] combine the strengths of autoregressive and non-
autoregressive translation paradigms well. They propose
hybridregressive translation method, which first generates
discontinuous sequences autoregressively and then fills in
all previously skipped tokens in parallel. We depict typical
decoding strategies in Figure 7 of the Appendix and use an
example to show their differences in the Appendix Figure 8.

7 BENEFITING FROM PRE-TRAINED MODELS

To improve the performance of NAT models, various meth-
ods are proposed to leverage the information from other
strong models, such as their AT counterparts and large-
scale pre-trained language models. We will introduce these
methods in the following content.

7.1 AT Models
Due to the strong performance of AT models, leveraging AT
models to help the NAT model training is appealing. But they
differ in model structure and decoding strategy. Therefore,
different techniques to benefit the NAT model from their AT
counterparts are proposed:
Training with the Supervision of AT Models. Wei et al. [90]
propose a novel imitation learning framework, introducing a
better trained AT demonstrator to supervise each decoding
state of the NAT model across different times so that the
problem of huge search space can be alleviated. Li et al. [91]
design two kinds of hints from the hidden representation
level to regularize the KL-divergence of the encoder-decoder
attention between the AT and NAT models, which can help
the training of NAT models. Besides, Tu et al. [92] propose an
energy-based inference network to minimize the energy of
AT model and give several methods for relaxing the energy.
Fine-Tuning from AT Models. Guo et al. [24] utilize curricu-
lum learning to fine-tune from a better-trained state of AT
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models, and two curricula for the decoder input and mask
attention are applied. In addition, Liu et al. [95] propose
task-level curriculum learning to shift the training strategy
from AT to SAT gradually, and finally to NAT.
Training with AT Models Together. Sun et al. [93] propose
a unified Expectation-Maximization (EM) framework. It
optimizes both AT and NAT models jointly, which iteratively
updates the AT model based on the output of the NAT
model and trains the NAT model with the new output of
AT model. Besides, Hao et al. [94] propose a model with a
shared encoder and separated decoders for AT and NAT
models. The training for these two models is controlled by
different weights to mix two training losses. A similar idea is
also adopted in [96], but they introduce a weak AR decoder
module that predicts the tokens entirely depending on the
information provided by the NAR decoder to improve the
capability of the NAR decoder.

7.2 Pre-Trained Language Models

While large-scale pre-trained language models have been
proven effective in autoregressive machine translation [116],
[117], efforts are also made for non-autoregressive machine
translation. Guo et al. [97] incorporate BERT into machine
translation based on the mask-predict decoding method,
which initializes the encoder and decoder with correspond-
ing pre-trained BERT models, and inserts adapter layers into
each layer. Su et al. [98] employ BERT as the backbone model
and add a CRF output layer for better capturing the target
side dependency to improve the performance further. Li et
al. [42] propose a conditional masked language model with
an aligned code-switching masking strategy to enhance the
cross-lingual ability. The proposed model can be fine-tuned
on both NAT and AT tasks with promising performance.
Wang et al. [99] present XLM-D, where a lightweight yet
effective decorator is adopted to adapt the cross-lingual
pretraining model (XLMR) into NAT models.

8 SUMMARY OF NON-AUTOREGRESSIVE NMT
All of the above techniques can mitigate the challenge
of failing to capture the target side dependency more or
less by reducing the reliance of NAT models on target
tokens. Since NAT models are essentially data-driven, their
performance highly depends on data volume, quality, and
learning strategies. Thus, data manipulation methods are
almost indispensable for existing NAT works. Various KD
methods can reduce the complexity of the training corpus,
while data learning strategies can facilitate the understanding
and learning of training data. Another critical element
in capturing the target side dependency is NAT model
structure, e.g., iteration-based methods, latent variables, and
various add-ons for the decoder module. In addition to data
manipulation and model structure, better training criteria are
proposed to make up for the deficiency of cross-entropy
loss, e.g., leveraging CTC-based criteria to alleviate the
misalignment problem, introducing n-gram-based criteria
to capture global context other than word-level correctness,
and designing order-based criteria to soften the penalty for
reasonable translations but with mismatched tokens at the
target positions. Since the differences between AT and NAT

models are mainly manifested in the decoder part, different
improving skills for the NAT decoding mode are also
presented. Typical strategies include performing target length
prediction to guide the end of decoding and improving
the one-step decoding by keeping part of the target side
dependency information in semi-autoregressive decoding,
providing partial target information in iterative decoding,
and exploring their combinations in mixed decoding. Besides,
leveraging the information from other strong models can
further improve the performance of NAT models, such as
utilizing information from their AT counterparts and large-
scale pre-trained language models. To help researchers and
engineers select appropriate techniques in applications, we
also conduct a brief comparison between existing methods
on their effectiveness and inference speed in Appendix based
on the contents of Figure 9 and Figure 10.

Recent research has also disclosed the potential problems
of NAT models. One recent concern is that the decoding
speedup ratio mentioned in Table 1 is measured by LGPU

1 ,
i.e., the translation latency of one input sentence by running
the model on a single GPU. With the increase of batch size,
the superiority of NAT models against AT alternatives on
inference efficiency will be shortened [118]. The speedup
reported on different hardware architectures also makes the
comparison less persuasive. Moreover, the inference speedup
of NAT models is generally measured on AT frameworks
with a symmetrical encoder and decoder structure with the
same number of transformer layers without considering
these more efficient AR models with shallow decoders [119].
Besides the lack of evaluation fairness in latency, other
defects in translation quality evaluation also exist. Helcl et
al. [118] point out that the NAT models produce unusual
errors that the widely used BLEU [120] metric does not
penalize very heavily, leading to spurious comparability
in translation quality between AT and NAT models. It is
necessary to introduce more feasible metrics [118], [121]
such as CHrF [122], ScareBLEU [123], COMET [124] to
obtain a reliable and comprehensive evaluation. Last but
not least, fine-grained evaluation of translation quality from
different aspects, e.g., word repetition, sentence fluency,
lexical choice, sentence consistency, and syntactic accuracy,
are underexplored but critical to move NAT forward.

9 EXTENSIVE APPLICATIONS BEYOND NMT
After seeing the success of non-autoregressive (NAR) tech-
niques on neural machine translation, these strategies are also
widely applied to extensive text generation tasks, semantic
parsing [125], [126], text to speech [127], [128], etc. In this
section, we will conduct a brief discussion about these works.

9.1 Text Generation

The inference efficiency is not only required for neural
machine translation but also indispensable for many other
text generation tasks [98], [129], [130]. Existing works of
introducing NAR techniques into text generation tasks focus
on automatic speech recognition [131], [132], [133], text
summarization [134], grammatical error correction [135],
[136], dialogue [137], [138]. Resembling the encountered
challenge of NAT models in Section 2.2, representative works
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of non-autoregressive text generation mainly address the
problems of missing target side information and length pre-
diction. According to the involved tasks, we structure these
works into different groups, including general-purpose NAR
methods and typical models for each specific generation task.
General-Purpose NAR Text Generation. Some works aim
to design a general NAR method that can support multiple
text generation tasks. Su et al. [98] employ BERT as the
backbone of a NAR generation model for machine translation,
sentence compression, and summarization. They add a CRF
output layer on the BERT architecture for non-autoregressive
tasks. For length prediction, they adopt two special tokens
[eos] to dynamically guide the end of the generation. They
extend the architecture of BERT to capture the target side
dependency better and improve the performance further.
For length prediction, they propose a simple and elegant
decoding mechanism to help the model determine the target
length on-the-fly. Jiang et al. [130] propose a new paradigm
to adopt pre-trained encoders for NAR text generation
tasks. They propose a simple and effective iterative train-
ing method, MIx Source and pseudo Target (MIST), for
the training stage without introducing extra cost during
inference. Yang et al. [129] attempt to explore the alternatives
for KD in text summarization and story generation. They
focus on linguistic structure predicted by a Part-of-Speech
(POS) predictor to help alleviate the multimodality problem.
Mallinson et al. [139] propose EdiT5, which decomposes the
generation process into three sub-tasks: tagging, re-ordering,
and insertion, where the first two adopt a non-autoregressive
manner, but the last one uses an autoregressive decoder. They
evaluate the performance in sentence fusion, grammatical
error correction, and decontextualization. Qi et al. [134]
explore to design a large-scale pre-trained model that
can support different decoding strategies when applied
to downstream tasks. Concretely, they leverage different
attention mechanisms during the training stage and fine-
tuning strategies to adapt from AR to NAR generation. To
verify the effectiveness of their model, they evaluate the pro-
posed method for question generation, summarization, and
dialogue generation tasks. Moreover, they further introduce
a self-paced mixed distillation method [140] to improve the
generation capability of BANG. Agrawal et al. [141] propose
a framework that adopts an imitation learning algorithm for
applying NAR models to editing tasks such as controllable
text simplification and abstractive summarization. They
introduce a roll-in policy and a controllable curriculum to
alleviate the mismatching problem between training and
inference. Li et al. [142] propose ELMER, which introduces
a token-level early exit mechanism into NAR models for
the first time. They leverage layer permutation language
modeling for pre-training, which can achieve substantial
performance improvements on text summarization, question
generation, and dialogue generation tasks.
Task-Specific NAR Text Generation. Many other works
introduce NAR methods for a specific text generation task.
• Automatic Speech Recognition. Consistent with neural ma-

chine translation, automatic speech recognition (ASR) has
benefited dramatically from non-autoregressive models.
NAR ASR models can significantly speed up the decoding
process but also suffer from lower recognition accuracy
due to the failure of capturing target side dependency.

The difference reflects in the processing unit, which is
a unique characteristic in NAR ASR [131]. The models
with token-level processing units need length prediction,
while models with frame-level need not. Thus, many NAR
methods in neural machine translation cannot be directly
used for ASR, but require specific modifications and de-
signs, e.g., Iteration-based [143], [144], Audio-CMLM [145],
Imputer [146], Mask-CTC [147], and Insertion-based [58],
[87] methods. Besides, knowledge distillation is also an
effective skill for NAR ASR [148], [149]. Considering
that the most widely used CTC method in NAR ASR is
under the assumption that there exists strong conditional
independence between different token frame predictions,
researchers have made considerable efforts to optimize the
vanilla CTC-based model [26], [133], [150], [151], [152],
[153], [154], [155], [156], [157]. Simultaneously, similar to
the NAT method, the NAR ASR model can also benefit
from pre-trained models, e.g., BERT [132], [158], [159].
Besides, Higuchi et al. [131] carry out a comparative study
on NAR ASR to better understand this task. Recently, error
correction for NAR ASR has also been explored [160], [161].

• Summarization. The summarization task is less subject to
target side dependency modeling than neural machine
translation since all the target output information is
explicitly or implicitly included in the long text input.
As a result, NAR methods for the summarization task
mainly alleviate the challenge of length prediction. For
instance, a Non-Autoregressive Unsupervised Summariza-
tion (NAUS) model has been proposed recently [162],
which first performs an edit-based search towards a
heuristically defined score and then generates a summary
as a pseudo-ground-truth. The authors also propose a
length-control decoding approach for better target length
prediction. Furthermore, Liu et al. [163] propose a Non-
Autoregressive summarization model with Character-level
length Control (NACC), which extends the length con-
trol algorithm to character level and achieves significant
performance improvements on several datasets.

• Grammatical Error Correction. Grammatical Error Correc-
tion (GEC) is an important NLP task that can automatically
detect and correct grammatical errors within a sentence. As
most contents of a sentence are correct and unnecessary to
be modified for the GEC task, the problem of lacking target
side information can be effectively alleviated. Thus, NAR
methods are more feasible for this task. Li et al. [136] focus
on the variable-length correction scenario for Chinese GEC.
They employ BERT to initialize the encoder and add a
CRF layer on the initialized encoder, augmented by a focal
loss penalty strategy to capture the target side dependency.
Besides, Straka et al. [135] propose a character-based non-
autoregressive GEC approach for Czech, German and
Russian languages, which focuses on sub-word errors.
Shen et al. [164] propose a simple yet effective masking
strategy to encourage the model to focus on the correct
tokens and thus to better understand the sentence.

• Dialogue. Dialogue generation has achieved remarkable
progress in the last few years, and many methods have
been proposed to alleviate the notorious problem of diver-
sity [165]. However, due to their autoregressive generation
strategy, these dialogue generation models suffer from low
inference efficiency for generating informative responses.
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Inspired by the advances made in NAT [25], [65], NAR
models are adopted in dialogue generation to lower the
inference latency, where the response length is predicted in
advance. Han et al. [137] apply the NAR model to model
the bidirectional conditional dependency between contexts
(x) and responses (y). They also point out that NAR models
can produce more diverse responses. Zou et al. [138]
propose a concept-guided non-autoregressive method for
open-domain response generation, which customizes the
Insertion Transformer to complete response and then
facilitates a controllable and coherent dialogue. These NAR
models for dialogue generation can significantly improve
response generation speed. Besides, NAR methods can
improve task-oriented dialogue systems by enhancing the
spoken language understanding sub-task [166], [167].

• Text Style Transfer. Autoregressive models have been
widely used in unsupervised text style transfer. Despite
their success, they suffer from high inference latency
and low content preservation problems. Several works
explore non-autoregressive (NAR) decoding to alleviate
these problems. Ma et al. [168] first directly adapt the
common training scheme from the AR counterpart in
their NAR method and then propose to enhance the NAR
decoding from three perspectives: knowledge distillation,
contrastive learning, and iterative decoding. They also
explore the potential reasons why these methods can
narrow the performance gap with AR models. Huang et
al. [169] point out that the autoregressive manner might
generate some irrelevant words with strong styles and
ignore part of the source sentence content. They propose a
NAR generator for unsupervised text style transfer (NAST),
which effectively avoids irrelevant words by alignment
information. NAST can dramatically improve transfer
performance with efficient decoding speed.

• Controllable Text Generation. Controllable Text Generation
(CTG) is an emerging area in the field of natural language
generation [170]. It aims to generate texts that meet certain
controllable constraints as humans wish reliably. These
constraints are generally task-specific, and CTG can be
exploited in various tasks. A few recent works have begun
to explore CTG on NAR models. Agrawal et al. [171]
introduce a non-autoregressive approach for controllable
text simplification, where the model iteratively edits an
input sequence and incorporates lexical complexity infor-
mation into the refinement process to generate simplifica-
tions. Iso et al. [172] propose AutoTemplate for lexically
constrained text generation task, which decomposes the
generation process into two steps, template generation and
lexicalization, by converting the input and output formats.
Li et al. [173] apply the diffusion model to six fine-grained
controllable tasks. Surprisingly, their method doubles the
control success rate of prior methods and is competitive
with strong baseline methods that require additional
training (fine-tuning). Recently, Kumar et al. [174] propose
MUCOLA, a sampling strategy that flexibly combines pre-
trained language models with differentiable constraints.
Evaluation with several CTG tasks proves that MUCOLA
can achieve excellent performance on toxicity avoidance,
sentiment control, and keyword-guided generation.

• Image Captioning. Image captioning is the task of gen-
erating natural language captions for given images. In

recent years, many researchers have brought NAR models
into image captioning, and their introduced methods have
achieved very appealing progress [175], [176], [177]. Moti-
vated by Levenshtein Transformer [35], Wang et al. [178]
propose TIger for image captioning, which consists of three
modules, i.e., Inserter, Taggerdel and Taggeradd to achieve
explicit caption editing. Besides, Fei et al. [179] customize
the shared encoder [94], [180] and a NAR decoder for
image captioning to improve the modeling capacity of the
AR model. Fei et al. [181] also introduce a novel uncertainty-
aware framework that leverages an Insertion Transformer-
based [58] structure to generate image captions from
easy to difficult non-autoregressively and an uncertainty-
adaptive beam search technique to speed up the decoding
further. Chen et al. [182] additionally explore the potential
of a fully NAR model for image captioning, in which a
Discrete Mode Learning (DML) paradigm is employed to
alleviate the mode collapse problem.

• Question Answering. NAR components also serve a vital
role in question answering. To solve the exposure bias
problem when using AR models in hybrid tabular-textual
question answering, Zhang et al. [183] propose a non-
autoregressive program generation framework, which can
generate complete program tuples in parallel and help
address the error accumulation issue, and thus can boost
both the performance and efficiency. Wang et al. [184]
propose Knowledge Enhanced Contrastive Prompt-tuning
(KECP) for Extractive Question Answering (EQA). They
transform the task into a NAR Masked Language Modeling
(MLM) generation problem without additional pre-training
stages. Experiments on multiple benchmarks demonstrate
the effectiveness of the proposed strategy.

9.2 Semantic Parsing
Compared with the non-autoregressive text generation tasks,
non-autoregressive semantic parsing relies more on the
length prediction mechanism, in which minor differences can
lead to entirely different results. Several NAR models applied
to semantic parsing are inspired by CMLM [18] but with
better length prediction mechanisms. Babu et al. [125] study
the potential limitations of the original CMLM when applied
for semantic parsing and designed a new LightConv Pointer
model to improve it, where the target length is computed
by a separate module of multiple layers of CNNs with
gated linear units. They also use label smoothing to avoid
the easy over-fitting in length prediction. During inference,
iterative refinement does not bring many benefits to task-
oriented semantic parsing, and thus only one step is applied.
Shrivastava et al. [126] design Span Pointer Networks based
on CMLM with a span prediction mechanism to decide the
target length. The length module of semantic parsing merely
needs frame syntax to perform span prediction, while text
generation requires both syntax and semantics.

9.3 Text to Speech
Significant progress has also been made in the non-
autoregressive text to speech (NAR TTS) task. Ren et
al. [127] point out three main problems in autoregressive
TTS compared with the non-autoregressive fashion, i.e., the
speed of the inference stage is slow, the generated speech
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is not robust, and the generated speech is unable to be
controlled. Accordingly, they present a model based on
Transformer in a non-autoregressive manner to alleviate the
above three problems. Besides, one-to-many (O2M) mapping
problem is typical in NAR TTS since differences lie in human
speaking greatly. Many other NAR TTS models are also
proposed to alleviate this problem and improve speech
quality. Peng et al. [128] propose ParaNet, which extracts
attention from the autoregressive TTS model and then re-
defines the alignment. Lu et al. [185] apply the variational
auto-encoder structure to model the alignment information
with a latent variable and further use the attention-based
soft alignment strategy. Shah et al. [186] propose a NAR
model by replacing the attention module of the conventional
attention-based TTS model with an external duration model
for low-resource and highly expressive speech. Besides, a
very deep VAE model with residual attention also benefits
the NAR TTS [187]. Notice that the above models may need a
teacher model to guide their learning. Lee et al. [188] propose
a bidirectional inference variational auto-encoder to rely less
on the teacher model and meanwhile without decreasing the
performance. Since over-smoothing is a severe problem that
harms the performance of NAR TTS models, many works
focus on alleviating this problem. Ren et al. [189] summarize
these methods into the two categories, i.e., simplify data
distributions [190], [191], which provides more conditional
input information, and enhance modeling methods [192],
[193], which try to enhance the model capacity to fit the
complex data distributions. Ren et al. [189] combine these two
methods to improve the performance of NAR TTS further.
The diversity problem of TTS is also explored in recent
work. Bae et al. [194] propose a variational autoencoder
with the hierarchical and multi-scale structure for NAR
TTS (HiMuV-TTS) to improve the diversity of generated
speech. As most parallel end-to-end TTS models fail to
disentangle general prosody features from the speech, Li et
al. [195] introduce a cross-utterance conditional VAE (CUC-
VAE) system to achieve better naturalness and more prosody
diversity. Besides, Liu et al. [196] propose Controllable and
LOssless Non-autoregressive End-to-end TTS (CLONE) to
model the general prosody effectively.

9.4 Speech Translation

Much progress has also been made in speech translation
along with the development of NAR ASR models mentioned
in section 9.1. Many NAR ASR models are applicable
for end-to-end speech translation [197] by completing the
automatic speech recognition and machine translation stages
simultaneously. Since speech translation resembles text
translation, effective strategies applied in text translation
are also introduced to speech translation. In seeing the
success of connectionist temporal classification (CTC) on
machine translation [67], Chuang et al. [198] propose CTC-
based speech-to-text translation model. They construct an
auxiliary speech recognition task based on CTC to further
improve performance. Inaguma et al. [199] propose Orthros
to jointly train the NAR and AR decoders on a shared speech
encoder, which is similar to sharing encoder structure in
machine translation [94]. Besides, a rescoring mechanism is
proposed for Orthros [200], in which an auxiliary shallow

Fig. 3. The forward and reverse process of a diffusion model [205].

AR decoder is introduced to choose the best candidate. On
the NAR side, they use CMLM and a CTC-based model
as NAR decoders, denoted as Orthros-CMLM and Orthros-
CTC, respectively. Such muti-decoder is also widely used
for speech translation [201], [202], which is a two-pass
decoding method that decomposes the overall task into two
sub-tasks, i.e., ASR and machine translation. Inaguma et
al. [203] propose Fast-MD, where the hidden intermediates
are generated in a non-autoregressive manner by a Mask-
CTC model. They also introduce a sampling prediction
strategy to reduce the mismatched training and testing.

9.5 Diffusion Models

The diffusion model is first proposed in [204], which es-
timates the data distribution X0 ∈ Rd through a series
of latent variables XT · · ·X0 as Markov chain, with each
variable Xi ∈ Rd and XT a Gaussian noise. During train-
ing, the diffusion model defines a forward process that
constructs the intermediate latent variables X1 · · ·XT by
incrementally adding Gaussian noise to data X0 until it
turns to approximate a Gaussian at diffusion step T . As
shown in Figure 3, q(Xt|Xt−1) denotes the forward process
and pθ(Xt−1|Xt) refers to the reverse process estimated
by pθ. During inference, diffusion models adopt a non-
autoregressive manner to denoise from XT (a Gaussian)
to X0 (target data). Early research mainly explores their
effectiveness on continuous data, such as images and audio
generation [205], [206], [207], [208], [209], [210], [211], [212].
Very few works investigate diffusion models with discrete
state spaces, such as text generation [212], [213], [214]. Among
which, Savinov et al. [62] learn from the vanilla diffusion
model and propose SUNDAE, a step-unrolled denoising
autoencoder that introduces a specific corruption function
during training. Unlike previous diffusion models, SUNDAE
converges in fewer iterations during inference. More recently,
Li et al. [173] propose Diffusion-LM, which adopts continuous
latent representations and efficient gradient-based methods
for controllable text generation. Gong et al. [215] further
extend the diffusion model to more text generation tasks,
which achieves promising performance. Yu et al. [216]
combine Energy-Based Models (EBMS) and the diffusion
model for interpretable text modeling. Reid et al. [217]
propose DIFFUSER, a new edit-based generative model for
text generation based on denoising diffusion models. They
also confirm the effectiveness of the diffusion model on
machine translation, summarization, and style transfer. There
are also existing works that draw the connection between
non-autoregressive methods and the diffusion model. In
fact, Bert [34] and generative masked language models [18],
[218] can also be viewed as diffusion models. They just
adopt the different training methods to model the denoising
process [209]. Gong et al. [215] conduct a theoretical analysis
to reveal the connection between their diffusion model
DIFFUSEQ and non-autoregressive models. They claim that
DIFFUSEQ can be seen as a more generalized form of
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an iterative non-autoregressive model. As mentioned in
Section 4.1, each denoising process from XT to X0 of the
diffusion model serves as a decoding iteration.

9.6 Others

In addition to the success of NAR methods on the above-
mentioned tasks, many researchers have conducted a pilot
study on other scenarios. Information Extraction (IE) also
benefits from the non-autoregressive technique. In essence,
the facts in plain text are unordered, but the AR models need
to predict the following fact conditioned on the previously de-
coded ones. Yu et al. [219] propose a novel non-autoregressive
framework, named MacroIE, for OpenIE, which treats IE as
a maximal clique discovery problem and predicts the fact
set at once to relieve the burden of predicting fact order. For
Video Generation (VG), Yu et al. [220] propose a dynamics-
aware implicit generative adversarial network (DIGAN) for
non-autoregressive video generation, which greatly increases
inference speed via parallel computing of multiple frames.
For Voice Conversion (VC), Hayashi et al. [221] extend the
FastSpeech2 model in NAR TTS to the voice conversion
task and introduce a convolution-augmented Transformer
(Conformer). The proposed method can learn both local
and global context information of the input sequence and
extend variance predictors to variance converters to trans-
pose the prosody components of the source speaker. A
fully non-autoregressive many-to-many voice conversion
method is also presented in [222], which includes a streaming
transformer-based acoustic model and a streaming vocoder.
Wang et al. [223] propose FastLTS for unconstrained lip-to-
speech synthesis. They use a GAN-based vocoder along with
adversarial training to improve audio quality and adopt
a fully parallelized architecture with a non-autoregressive
decoder and vocoder to improve inference efficiency. Be-
sides, self-supervised speech representations are effective in
various speech applications. However, existing representa-
tion learning methods generally rely on the autoregressive
model, leading to low inference efficiency. Liu et al. [224]
propose Non-Autoregressive Predictive Coding (NPC) to
learn speech representations in a non-autoregressive manner
by only considering local dependencies of speech, which
can significantly improve inference speed. The decoding
efficiency of full-line code completion can also benefit from
NAR models [225], where a syntax-aware sampling strategy
is leveraged to improve the performance. The authors further
point out that the dependency on target tokens in code
completion is weaker, which is profit for NAR modeling.
Barezi et al. [226] make an attempt to adopt the NAR model in
multi-label learning for extreme classification tasks. Their de-
signed non-autoregressive latent variable model significantly
outperforms the autoregressive baselines. Feng et al. [227]
propose Multi-scale Attention Normalizing Flow(MANF),
a novel non-autoregressive deep learning model for time
series forecasting tasks. MANF can avoid the influence of
cumulative error and meanwhile reduce the time complexity.

10 CONCLUSION AND OUTLOOKS

This paper reviews the development of non-autoregressive
methods in neural machine translation and other related

tasks. We first summarize the main challenge encountered in
NAT research. Then, we structure existing solutions from dif-
ferent perspectives, including data manipulation, modeling,
criterion, decoding, and benefiting from pre-trained models,
along with a discussion on their effectiveness and inference
speed. Besides, we present an overview of the applications
of NAR methods in extensive tasks, e.g., summarization,
semantic parsing, text to speech, and speech translation. We
hope this survey can help researchers and engineers better
understand the non-autoregressive techniques and choose
suitable strategies for their application tasks.

Although impressive progress has been made on non-
autoregressive models, there still exist some open problems:

• KD is the most effective method utilized in NAR models,
which depends on pre-training an AR model in advance.
However, how to release this condition and improve the
performance of NAR models on raw datasets are worthy
of further consideration.

• Although iteration-based models have been proposed
to help capture the target side contextual dependency
in multiple decoding steps and achieved comparable
performance with AR models, their speedup w.r.t AR
models will diminish when decoding with large batch
sizes [118], [119]. Therefore, more attention should be
paid to mitigate the challenge mentioned above under
the framework of fully NAT models.

• Reasonable training objectives are critical for capturing
the target side dependencies for NAR models. Recently,
Huang et al. [228] point out that simply training NAT
models by maximizing the likelihood can lead to an
approximation of marginal distributions but drops all
dependencies between tokens, and they revisit the
previous success (including some advanced criterion
introduced in Section 5) in a unified framework. Thus,
how to design suitable training objectives is worth
further exploration.

• AR models are generally applied to various application
scenarios, including bilingual and multilingual, high-
resource and low-resource, etc. However, most appli-
cations of NAR models are limited to the bilingual
scenario until now. Therefore, to expand the impact
of NAR models, it is worthy of applying NAR to more
application scenarios.

• In recent years, considerable efforts have been made
to enhance autoregressive models with powerful pre-
training techniques and models, with impressive perfor-
mance being achieved. However, only very few papers
apply these powerful pre-trained models to help NAR
models [97], [130], and there is only a preliminary
exploration of the pre-training techniques for NAR
models [42], [134], [142]. Thus, it is promising to explore
pre-training methods for non-autoregressive generation
and other related tasks.
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APPENDIX

OVERVIEW OF IMPROVING METHODS FOR NAT

To have a clear overview of improving methods for NAT,
we show the general framework and the data flow of
various NAT models in Figure 4, which contain different
components such as the data preparation, NAT encoder, and
NAT decoder.

REPRESENTATIVE MODELING METHODS

Figure 5 presents a few representative modeling methods
mentioned in Section 4.

CRITERION

Figure 6 compares different loss functions in NAT models.

ILLUSTRATION OF DECODING STRATEGIES

We show several typical decoding strategies in Figure 7
and their detailed decoding process with a specific exam-
ple in Figure 8, including autoregressive decoding, semi-
autoregressive decoding, fully non-autoregressive decoding,
mask and predict iterative decoding, and insert and delete
iterative decoding.

COMPARISONS BETWEEN EXISTING METHODS

In the paper, we mainly present the NAT works with
their performances on the WMT14 English→German trans-
lation task. Here we give a broader comparison of WMT14
English↔German, WMT16 English↔Romanian (EN↔RO),
and IWSLT14/16 English↔German translation benchmark
datasets. The decoding iterations and the speedup ratio com-
pared to AT models are reported in Table 2. Figure 9 plots
the BLEU-Speedup curve to demonstrate the correlations
between performance and inference speed achieved by repre-
sentative NAT methods better, and Figure 10 further presents
the evolution of BLEU scores on WMT14 English→German
translation by the time of Fully NAT and Iterative NAT.
Methods in the lower left part of Figure 9, e.g., DisCo [36],
NAT [16] can achieve much faster inference speed but at
the cost of significant performance decrease, while methods
in the upper right part can make a better trade-off between
speed-up and performance. A few powerful NAT methods
can even achieve comparable and slightly better performance
than the strong AT model with a speed advantage. In
Figure 10, iteration-based NAT models generally achieve
higher BLEU scores than fully NAT methods at the cost
of multiple inference time, but their performance gap is
rapidly shrinking, e.g., the recent combination of CTC length
prediction, latent variable, and extra upsampling module can
achieve competitive performance with strong iteration-based
NAT methods. It can be expected that fully NAT methods can
achieve better performance while maintaining their speed
advantage with emerging effective strategies and a suitable
combination.

RESOURCES

We collect valuable resources for NAT models with their
open-source information, including the paper URL, code
address (Github), and deep learning tools. Table 3, Table 4
and Table 5 are the summarized information for the resources
of NAT task and other extensive tasks.
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Fig. 4. The overall framework of various components for improving NAT models. The dashed arrow denotes this part is not applied in all NAT models.
Different knowledge distillation methods will be applied in Data Preparing part. Length Predictor is involved in most NAT models, and Latent Variable
Predictor is applied in latent variable-based models. The initial Module is used to initialize the Decoder Input, such as soft copy, source copy, partial
target tokens, etc.
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Fig. 5. We show the model structures of two iteration-based methods, e.g., two iteration-based methods, NAT-IR [29] and LevT [35]; two latent
variable-based methods, e.g., NAT [16] and ReorderNAT [68], where the fertility predictor and reorder module are applied to predict the latent
variables; and two enhancements-based model, NAT-REG [22] and ENAT [23], and the corresponding enhancement module is also given.
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Fig. 6. An illustration of different loss functions. e.g., Model prediction: Last night I feel sad and Ground-truth: I feel sad last night. Traditional
CE loss will give a penalty to all tokens. N-gram CE loss only finds a two-gram night I unreasonable. AXE loss finds the best possible monotonic
alignment and penalizes unaligned tokens, denoted as ϵ, while OAXE loss removes the order errors and give no penalty to this prediction.
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Fig. 7. An illustration of several different decoding strategies introduced in Section 6, e.g., autoregressive and semi-autoregressive decoding methods
generate tokens in a left-to-right order, fully non-autoregressive and mask and predict iterative decoding methods predict all/part of target tokens in
parallel (tokens marked by red), insert and delete iterative decoding method generate tokens with insertion (tokens marked by red) and deletion
(tokens marked by grey) operations.
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Src: Wir sind stolz auf wusere Leistung , aber wir wollen jedes Spiel game .
Tgt: We are proud of our performance , but we want to win every game .
Output of different decoding strategies:
Autoregressive decoding:
Iter.1: We are proud of our performance , but we want to win every game .
Iter.2: We are proud of our performance , but we want to win every game .
Iter.3: We are proud of our performance , but we want to win every game .
...
Iter.15: We are proud of our performance , but we want to win every game .
Semi-autoregressive decoding (k=2): 
Iter.1: We are proud of our performance , but we want to win every game .
Iter.2: We are proud of our performance , but we want to win every game .
Iter.3: We are proud of our performance , but we want to win every game .
...
Iter.8: We are proud of our performance , but we want to win every game .
Fully non-autoregressive decoding: 
Iter.1: We are proud of our performance , but we want to win every game .
Mask and Predict iterative decoding (Iteration=4):
Iter.0: We are of of our perform , and and want to to win win games .
Iter.1: We are of of our perform , but and we want to win win game .
Iter.2: We are of of our performance , but we want want win every game .
Iter.3: We are of of our performance , but we want win every game .
Iter.4: We are proud of our performance , but we want to win every game .
Insert and Delete iterative decoding:
Iter.0: We are proud of our performance , but we want to win every game .
Iter.1: We are proud of our performance , but we want to to win every game .
Iter.2: We are are proud of our performance , but we want to win every game .
Iter.3: We are proud of our performance , but we want to win every game .
Iter.4: We are proud of our performance , but we want to win every game .
Iter.5: We are proud of our performance , but we want to win every game .

Fig. 8. Cases of several different decoding strategies discussed in this paper. Texts marked in yellow denote the content that will be masked and
generated in next iteration.
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TABLE 2
Performances on popular datasets, i.e., WMT’16 EN↔RO, WMT’14 EN↔DE, and IWSLT’14/16 EN↔DE. “*” indicates training with sequence-level
knowledge distillation from a big Transformer; “†” denotes training without sequence-level knowledge distillation; “‡” refers to results on IWSLT’16.

Model Iteration Speedup WMT’14 WMT’16 IWSLT’14/16
EN→DE DE→EN EN→RO RO→EN EN→DE DE→EN

NAT [16] 1 15.6x 17.69 21.47 27.29 29.06 26.52‡ -
NAT-IR [29] 10 1.5x 21.61 25.48 29.32 30.19 27.11‡ 32.31‡

RDP [20] 2.5 3.5x 27.8* - - 33.8 - -
LRF [50] 2.5 3.5x 28.2* - - 33.8 - -

SDMRT [21] 10 - 27.72* 31.65* 33.72 33.94 27.49 -
MD [51] 1 - 25.73 30.18 31.96 33.57 - -

DDRS [52] 1 14.7x 27.60 31.48 34.60 34.65 - 33.12
LaNMT-C [56] 2 11.0x 26.02 31.23 32.50 - - -
CCMLM [57] 10 - 27.93* 31.57* 33.88 34.18 - -

perLDPE [229] Adaptive - 26.3 29.5 - - - -
GLAT [39] 1 15.3x 25.21 29.84 31.19 32.04 - 29.61†
PMG [54] 2.5 3.5x 27.8* - - 33.8* - -

latent-GLAT [53] 1 11.3x 26.64 29.93 - - - 32.47
Insertion Transformer [58] ≈ log2(N) - 27.41 - - - - -

LevT [35] Adaptive 4.0x 27.27 - - 33.26 - -
CMLM [18] 10 1.7x 27.03* 30.53* 33.08 33.31 - -
SMART [59] 10 1.7x 27.65* 31.27* - - - -
DisCo [36] Adaptive 3.5x 27.34* 31.31* 33.22 33.25 - -

JM-NAT [60] 10 5.7x 27.69* 32.24 * 33.52 33.72 - 32.59
AR Deep-Shallow [119] N 2.5x 28.3* 31.8* 33.8 34.8 - -

MvSR-NAT [55] 10 3.8x 27.39* 31.18* 33.38 33.56 - 32.55
REWRITENAT [26] 2.3 3.9x 27.83* 31.52* 33.63 34.09 - -

CMLMC [61] 10 - 28.37* 31.41* 34.57 34.13 28.51 34.78
FlowSeq [64] 1 1.1x 23.72 28.39 29.73 30.72 27.55 -

NART-DCRF [25] 1 10.4x 23.44 27.22 - - - 27.44
PNAT [65] 1 7.3x 23.05 27.18 - - - 31.23‡
SynST [66] N/6 4.6x 20.74 25.50 - - 23.82 -

LaNMT [67] 1 6.8x 25.10 - - - - -
Imputer [38] 8 3.9x 28.2* 31.8* 34.4 34.1 - -

LAT [230] 4 6.7x 27.35 32.04 32.87 33.26 - 34.08
SUNDAE [62] 16 - 28.46* 32.30 * - - - -
INSNET [63] 16.1 3.78x 28.05 - - 33.91 - -

AligNART [69] 1 13.2x 26.4 30.4 32.5 33.1 - -
ReorderNAT [68] 1 6.0× 22.79 27.28 29.30 29.50 25.29‡ -

CNAT [70] 1 10.4x 25.56* 29.36* - - - 31.15
SNAT [71] 1 22.6x 24.64* 28.42* 32.87 32.21 - -

Fully NAT [72] 1 16.5x 27.49 31.39 33.79 34.16 - -
ENAT [23] 1 25.3x 20.65 23.02 30.08 - - 24.13

NAT-REG [22] 1 27.6x 20.65 24.77 - - 23.14‡ 23.89
LAVA NAT [73] 1 20.2x 27.94 31.33 - 32.85 - 33.59†

CCAN [74] 10 - 27.5* - - 33.7 - -
DSLP [75] 1 14.8x 27.02 31.61 34.17 34.60 - -
DAD [76] 1 14.7× 27.51 31.96 34.68 34.98 - -

DA-Transformer [40] 1 13.9x 27.49 31.37 - - - -
DA-Transformer Viterbi [77] 1 13.2x 26.89 31.10 - - - -

FA-DAT [78] 1 14.0x 27.53 31.37 - - - -
CTC [38] 1 18.6× 25.7 28.10 32.20 31.60 - -

Reinforce-NAT [231] 1 3.6x 22.27 27.25 30.57 30.83 27.78‡ -
BoN [79] 1 9.6x 20.90 24.61 28.31 29.29 25.72‡ -
AXE [80] 1 15.3x 23.53* 27.90* 30.75 31.54 - -

OAXE [41] 1 15.3x 26.10* 30.20* 32.40 33.30 - -
ngram-OAXE [82] 1 15.2x 26.50* 30.50* - - - -

CoCO [33] 1 14.2x 27.41 31.37 34.32 - - -
MgMO [83] 1 - 26.4 30.3 32.9 33.6 - -
NMLA [84] 1 14.7x 27.57 31.28 33.86 33.94 - -

SAT [17] N/2 1.5x 26.90 - - - - -
RecoverSAT [85] N/2 2.1x 27.11 31.67 32.92 33.19 30.78‡ -

GAD++ [86] 4.0 3.2x 28.89* - - - - -
Unified [37] 10 - 26.24 - - - - 30.73

Diformer [88] 10 - 27.99 31.68 34.37 33.34 - -
HRT [89] N/2 + 1 - 28.49* 32.28* 34.24 34.35 - -

imitate-NAT [90] 1 18.4x 22.44* 25.67* 28.61 28.90 28.41‡ -
NAT-HINT [91] 1 30.2x 21.11 25.24 - - - 25.55

ENGINE [92] 10 - - - - 34.04 - 33.17
EM+ODD [93] 1 16.4x 24.54 27.93 - - - 30.69
FCL-NAT [24] 1 28.9x 21.70 25.32 - - - 26.62

MULTI-TASK NAT [94] 10 - 27.98* 31.27* 33.80 33.60 - -
TCT-NAT [95] 1 27.6x 21.94 25.62 - - 26.01‡ 28.16
weak MTL [96] 1 - 27.25 30.70 33.88 34.73 35.15 -

AB-Net [97] - 2.4x 28.69* 33.57* - 35.63 - 36.49
NAG-BERT [98] 1 11.3x - - - - - 30.45

CeMAT [42] 10 - 27.2 29.9 33.3† 33.0† 26.7† 33.7†
XML-D [99] 8 2.8x 29.80 32.88 35.34 35.50 - -
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TABLE 3
A collection of NAT published papers and codes.

Method Paper URL Code URL Framework
Machine Translation

NAT [16] https://openreview.net/pdf?id=B1l8BtlCb https://github.com/salesforce/nonauto-nmt Pytorch
NAT-IR [29] https://aclanthology.org/D18-1149.pdf https://github.com/nyu-dl/dl4mt-nonauto Pytorch

RDP [20] https://openreview.net/pdf?id=ZTFeSBIX9C - -
LRF [50] https://aclanthology.org/2021.acl-long.266.pdf https://github.com/longyuewangdcu/RLFW-NAT To be released

SDMRT [21] https://arxiv.org/pdf/2112.11640v1.pdf - -
MD [51] https://aclanthology.org/2020.acl-main.171.pdf - -

DDRS [52] https://aclanthology.org/2022.naacl-main.277.pdf https://github.com/ictnlp/DDRS-NAT Pytorch/Fairseq
LaNMT-C [56] https://aclanthology.org/2022.naacl-main.45.pdf https://github.com/zomux/lanmt Pytorch
CCMLM [57] https://aclanthology.org/2022.findings-emnlp.463.pdf - -

perLDPE [229] https://arxiv.org/pdf/2107.13689.pdf - -
GLAT [39] https://aclanthology.org/2021.acl-long.155.pdf https://github.com/FLC777/GLAT Pytorch/Fairseq
PMG [54] https://aclanthology.org/2021.findings-acl.247.pdf - -

latent-GLAT [53] https://aclanthology.org/2022.acl-long.575/ https://github.com/baoy-nlp/Latent-GLAT Pytorch
Insertion Transformer [58] http://proceedings.mlr.press/v97/stern19a/stern19a.pdf https://github.com/pytorch/fairseq Pytorch/Fairseq

LevT [35] https://dl.acm.org/doi/pdf/10.5555/3454287.3455290 https://github.com/pytorch/fairseq Pytorch/Fairseq
CMLM [18] https://aclanthology.org/D19-1633.pdf https://github.com/facebookresearch/Mask-Predict Pytorch/Fairseq
SMART [59] https://arxiv.org/pdf/2001.08785.pdf - -
DisCo [36] http://proceedings.mlr.press/v119/kasai20a/kasai20a.pdf https://github.com/facebookresearch/DisCo Pytorch/Fairseq

JM-NAT [60] https://aclanthology.org/2020.acl-main.36.pdf https://github.com/lemmonation/jm-nat Pytorch/Fairseq
AR Deep-Shallow [119] https://openreview.net/pdf?id=KpfasTaLUpq https://github.com/jungokasai/deep-shallow Pytorch/Fairseq

MvSR-NAT [55] https://ieeexplore.ieee.org/abstract/document/9944912 - -
REWRITENAT [26] https://aclanthology.org/2021.emnlp-main.265.pdf https://github.com/xwgeng/RewriteNAT Pytorch/Fairseq

CMLMC [61] https://openreview.net/pdf?id=I2Hw58KHp8O - -
FlowSeq [64] https://aclanthology.org/D19-1437.pdf https://github.com/XuezheMax/flowseq Pytorch

NART-DCRF [25] https://dl.acm.org/doi/pdf/10.5555/3454287.3454558 - -
PNAT [65] https://arxiv.org/pdf/1911.10677.pdf - -
SynST [66] https://aclanthology.org/P19-1122.pdf https://github.com/dojoteef/synst Pytorch

LaNMT [67] https://ojs.aaai.org/index.php/AAAI/article/view/6413 https://github.com/zomux/lanmt Pytorch
Imputer [38] https://aclanthology.org/2020.emnlp-main.83.pdf https://github.com/rosinality/imputer-pytorch Pytorch

LAT [116] https://aclanthology.org/2020.emnlp-main.79.pdf https://github.com/shawnkx/NAT-with-Local-AT Pytorch
AligNART [69] https://aclanthology.org/2021.emnlp-main.1.pdf - -

ReorderNAT [68] https://ojs.aaai.org/index.php/AAAI/article/view/17618 https://github.com/ranqiu92/ReorderNAT Pytorch/OpenNMT
CNAT [70] https://aclanthology.org/2021.naacl-main.458.pdf https://github.com/baoy-nlp/CNAT Pytorch
SNAT [71] https://aclanthology.org/2021.eacl-main.105.pdf - -

Fully NAT [72] https://aclanthology.org/2021.findings-acl.11.pdf https://github.com/pytorch/fairseq Pytorch/Fairseq
ENAT [23] https://ojs.aaai.org/index.php/AAAI/article/view/4257 - -

NAT-REG [22] https://ojs.aaai.org/index.php/AAAI/article/view/4476 - -
LAVA NAT [73] https://arxiv.org/pdf/2002.03084v1.pdf - -

CCAN [74] https://aclanthology.org/2020.coling-main.389.pdf - -
DSLP [75] https://ojs.aaai.org/index.php/AAAI/article/view/21323 https://github.com/chenyangh/DSLP Pytorch/Fairseq
DAD [76] https://arxiv.org/pdf/2203.16266.pdf https://github.com/zja-nlp/NAT with DAD Pytorch/Fairseq
CTC [27] https://www.cs.toronto.edu/∼graves/icml 2006.pdf https://github.com/parlance/ctcdecode C++

Reinforce-NAT [231] https://aclanthology.org/P19-1288.pdf https://github.com/ictnlp/RSI-NAT Pytorch
BoN [79] https://ojs.aaai.org/index.php/AAAI/article/view/5351 https://github.com/ictnlp/BoN-NAT Fairseq
AXE [80] http://proceedings.mlr.press/v119/ghazvininejad20a/ghazvininejad20a.pdf https://github.com/m3yrin/aligned-cross-entropy Pytorch
EISL [81] https://aclanthology.org/2022.naacl-main.150.pdf https://github.com/guangyliu/EISL Pytorch/Fairseq

OAXE [41] http://proceedings.mlr.press/v139/du21c/du21c.pdf https://github.com/tencent-ailab/ICML21 OAXE Pytorch/Fairseq
SAT [17] https://aclanthology.org/D18-1044.pdf - -

SUNDAE [62] https://openreview.net/pdf?id=T0GpzBQ1Fg6 https://github.com/vvvm23/sundae Pytorch
INSNET [63] https://openreview.net/pdf?id=vsShetzoRG9 - -

DA-Transformer [40] https://proceedings.mlr.press/v162/huang22m/huang22m.pdf https://github.com/thu-coai/DA-Transformer Pytorch/Fairseq
DA-Transformer Viterbi [77] https://aclanthology.org/2022.findings-emnlp.322.pdf - -

FA-DAT [78] https://openreview.net/pdf?id=LSz-gQyd0zE - -
ngram-OAXE [82] https://aclanthology.org/2022.coling-1.446.pdf - -

CoCO [33] https://aclanthology.org/2022.naacl-main.126.pdf - -
MgMO [83] https://aclanthology.org/2022.emnlp-main.339.pdf - -
NMLA [84] https://openreview.net/pdf?id=Qvh0SAPrYzH https://github.com/ictnlp/NMLA-NAT Pytorch/Fairseq
GAD++ [86] https://arxiv.org/pdf/2203.16487v2.pdf https://github.com/hemingkx/Generalized-Aggressive-Decoding Pytorch/Fairseq

HRT [89] https://openreview.net/pdf?id=2NQ8wlmU9a - -
weak MTL [96] https://aclanthology.org/2022.emnlp-main.371.pdf https://github.com/wxy-nlp/MultiTaskNAT -

RecoverSAT [85] https://aclanthology.org/2020.acl-main.277.pdf https://github.com/ranqiu92/RecoverSAT Pytorch/OpenNMT
Unified [37] https://aclanthology.org/2020.coling-main.25.pdf - -

Diformer [88] https://aclanthology.org/2022.eamt-1.11.pdf - -
imitate-NAT [90] https://aclanthology.org/P19-1125.pdf - -
NAT-HINT [91] https://aclanthology.org/D19-1573.pdf https://github.com/zhuohan123/hint-nart Pytorch

ENGINE [92] https://aclanthology.org/2020.acl-main.251.pdf https://github.com/lifu-tu/ENGINE Pytorch/Fairseq
EM+ODD [93] http://proceedings.mlr.press/v119/sun20c/sun20c.pdf https://github.com/Edward-Sun/NAT-EM Pytorch
FCL-NAT [24] https://ojs.aaai.org/index.php/AAAI/article/view/6289 https://github.com/lemmonation/fcl-nat Tensorflow/Tensortotensor

MULTI-TASK NAT [94] https://aclanthology.org/2021.naacl-main.313.pdf https://github.com/yongchanghao/multi-task-nat Pytorch/Fairseq
TCT-NAT [95] https://www.ijcai.org/Proceedings/2020/0534.pdf - -

AB-Net [97] https://dl.acm.org/doi/pdf/10.5555/3495724.3496634 https://github.com/lemmonation/abnet Pytorch/Fairseq
NAG-BERT [98] https://aclanthology.org/2021.eacl-main.18.pdf https://github.com/yxuansu/NAG-BERT Pytorch/Fairseq

CeMAT [42] https://aclanthology.org/2022.acl-long.442.pdf https://github.com/huawei-noah Pytorch/Fairseq
XML-D [99] https://aclanthology.org/2022.emnlp-main.466.pdf - -

https://openreview.net/pdf?id=B1l8BtlCb
https://github.com/salesforce/nonauto-nmt
https://aclanthology.org/D18-1149.pdf
https://github.com/nyu-dl/dl4mt-nonauto
https://openreview.net/pdf?id=ZTFeSBIX9C
https://aclanthology.org/2021.acl-long.266.pdf
https://github.com/longyuewangdcu/RLFW-NAT
https://arxiv.org/pdf/2112.11640v1.pdf
https://aclanthology.org/2020.acl-main.171.pdf
https://aclanthology.org/2022.naacl-main.277.pdf
https://github.com/ictnlp/DDRS-NAT
https://aclanthology.org/2022.naacl-main.45.pdf
https://github.com/zomux/lanmt
https://aclanthology.org/2022.findings-emnlp.463.pdf
https://arxiv.org/pdf/2107.13689.pdf
https://aclanthology.org/2021.acl-long.155.pdf
https://github.com/FLC777/GLAT
https://aclanthology.org/2021.findings-acl.247.pdf
https://aclanthology.org/2022.acl-long.575/
https://github.com/baoy-nlp/Latent-GLAT
http://proceedings.mlr.press/v97/stern19a/stern19a.pdf
https://github.com/pytorch/fairseq
https://dl.acm.org/doi/pdf/10.5555/3454287.3455290
https://github.com/pytorch/fairseq
https://aclanthology.org/D19-1633.pdf
https://github.com/facebookresearch/Mask-Predict
https://arxiv.org/pdf/2001.08785.pdf
http://proceedings.mlr.press/v119/kasai20a/kasai20a.pdf
https://github.com/facebookresearch/DisCo
https://aclanthology.org/2020.acl-main.36.pdf
https://github.com/lemmonation/jm-nat
https://openreview.net/pdf?id=KpfasTaLUpq
https://github.com/jungokasai/deep-shallow
https://ieeexplore.ieee.org/abstract/document/9944912
https://aclanthology.org/2021.emnlp-main.265.pdf
https://github.com/xwgeng/RewriteNAT
https://openreview.net/pdf?id=I2Hw58KHp8O
https://aclanthology.org/D19-1437.pdf
https://github.com/XuezheMax/flowseq
https://dl.acm.org/doi/pdf/10.5555/3454287.3454558
https://arxiv.org/pdf/1911.10677.pdf
https://aclanthology.org/P19-1122.pdf
https://github.com/dojoteef/synst
https://ojs.aaai.org/index.php/AAAI/article/view/6413
https://github.com/zomux/lanmt
https://aclanthology.org/2020.emnlp-main.83.pdf
https://github.com/rosinality/imputer-pytorch
https://aclanthology.org/2020.emnlp-main.79.pdf
https://github.com/shawnkx/NAT-with-Local-AT
https://aclanthology.org/2021.emnlp-main.1.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/17618
https://github.com/ranqiu92/ReorderNAT
https://aclanthology.org/2021.naacl-main.458.pdf
https://github.com/baoy-nlp/CNAT
https://aclanthology.org/2021.eacl-main.105.pdf
https://aclanthology.org/2021.findings-acl.11.pdf
https://github.com/pytorch/fairseq
https://ojs.aaai.org/index.php/AAAI/article/view/4257
https://ojs.aaai.org/index.php/AAAI/article/view/4476
https://arxiv.org/pdf/2002.03084v1.pdf
https://aclanthology.org/2020.coling-main.389.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/21323
https://github.com/chenyangh/DSLP
https://arxiv.org/pdf/2203.16266.pdf
 https://github.com/zja-nlp/NAT_with_DAD
https://www.cs.toronto.edu/~graves/icml_2006.pdf
https://github.com/parlance/ctcdecode
https://aclanthology.org/P19-1288.pdf
https://github.com/ictnlp/RSI-NAT
https://ojs.aaai.org/index.php/AAAI/article/view/5351
https://github.com/ictnlp/BoN-NAT
http://proceedings.mlr.press/v119/ghazvininejad20a/ghazvininejad20a.pdf
https://github.com/m3yrin/aligned-cross-entropy
https://aclanthology.org/2022.naacl-main.150.pdf
https://github.com/guangyliu/EISL
http://proceedings.mlr.press/v139/du21c/du21c.pdf
https://github.com/tencent-ailab/ICML21_OAXE
https://aclanthology.org/D18-1044.pdf
https://openreview.net/pdf?id=T0GpzBQ1Fg6
https://github.com/vvvm23/sundae
https://openreview.net/pdf?id=vsShetzoRG9
https://proceedings.mlr.press/v162/huang22m/huang22m.pdf
https://github.com/thu-coai/DA-Transformer
https://aclanthology.org/2022.findings-emnlp.322.pdf
https://openreview.net/pdf?id=LSz-gQyd0zE
https://aclanthology.org/2022.coling-1.446.pdf
https://aclanthology.org/2022.naacl-main.126.pdf
https://aclanthology.org/2022.emnlp-main.339.pdf
https://openreview.net/pdf?id=Qvh0SAPrYzH
https://github.com/ictnlp/NMLA-NAT
https://arxiv.org/pdf/2203.16487v2.pdf
https://github.com/hemingkx/Generalized-Aggressive-Decoding
https://openreview.net/pdf?id=2NQ8wlmU9a_
https://aclanthology.org/2022.emnlp-main.371.pdf
https://github.com/wxy-nlp/MultiTaskNAT
https://aclanthology.org/2020.acl-main.277.pdf
https://github.com/ranqiu92/RecoverSAT
https://aclanthology.org/2020.coling-main.25.pdf
https://aclanthology.org/2022.eamt-1.11.pdf
https://aclanthology.org/P19-1125.pdf
https://aclanthology.org/D19-1573.pdf
https://github.com/zhuohan123/hint-nart
https://aclanthology.org/2020.acl-main.251.pdf
https://github.com/lifu-tu/ENGINE
http://proceedings.mlr.press/v119/sun20c/sun20c.pdf
https://github.com/Edward-Sun/NAT-EM
https://ojs.aaai.org/index.php/AAAI/article/view/6289
https://github.com/lemmonation/fcl-nat
https://aclanthology.org/2021.naacl-main.313.pdf
https://github.com/yongchanghao/multi-task-nat
https://www.ijcai.org/Proceedings/2020/0534.pdf
https://dl.acm.org/doi/pdf/10.5555/3495724.3496634
https://github.com/lemmonation/abnet
https://aclanthology.org/2021.eacl-main.18.pdf
https://github.com/yxuansu/NAG-BERT
https://aclanthology.org/2022.acl-long.442.pdf
https://github.com/huawei-noah
https://aclanthology.org/2022.emnlp-main.466.pdf
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TABLE 4
A collection of NAR related published papers and codes on general-purpose and task specific text generation tasks.

Method Paper URL Code URL Framework
General-Purpose
Text Generation

POSPD [129] https://aclanthology.org/2021.acl-long.467.pdf https://github.com/yangkexin/pospd Pytorch/Fairseq
MIST [130] https://arxiv.org/pdf/2110.11115v1.pdf https://github.com/kongds/mist Pytorch/Fairseq

BANG [134] http://proceedings.mlr.press/v139/qi21a/qi21a.pdf https://github.com/microsoft/BANG -
EDITCL [141] https://aclanthology.org/2022.acl-long.520.pdf - -

NAG-BERT [98] https://aclanthology.org/2021.eacl-main.18.pdf https://github.com/yxuansu/NAG-BERT Pytorch
EDIT5 [139] https://arxiv.org/pdf/2205.12209.pdf - -

ELMER [142] https://aclanthology.org/2022.emnlp-main.68.pdf https://github.com/RUCAIBox/ELMER Pytorch/Fairseq
Summarization

NAUS [162] https://aclanthology.org/2022.acl-long.545.pdf - -
NACC [163] https://openreview.net/pdf?id=KXybrIUJnya https://github.com/MANGA-UOFA/NACC Pytorch/Fairseq

Dialogue
CG-nAR [138] https://aclanthology.org/2021.emnlp-main.169.pdf https://github.com/rowitzou/cg-nar Pytorch/Transformers

NonAR+MMI [137] https://arxiv.org/pdf/2002.04250v2.pdf - -
GL-GIN [232] https://aclanthology.org/2021.acl-long.15.pdf https://github.com/yizhen20133868/GL-GIN Pytorch

SlotRefine [233] https://aclanthology.org/2020.emnlp-main.152.pdf https://github.com/moore3930/SlotRefine Tensorflow
NADST [234] https://openreview.net/pdf?id=H1e cC4twS https://github.com/henryhungle/NADST PyTorch

LR-Transformer [166] https://dl.acm.org/doi/abs/10.1145/3459637.3482229 - -
Grammatical Error

Correction
TtT [136] https://aclanthology.org/2021.acl-long.385.pdf https://github.com/lipiji/TtT Pytorch

BERT-GEC [135] https://aclanthology.org/2021.wnut-1.46.pdf https://github.com/ufal Pytorch
MaskCorrect [164] https://arxiv.org/pdf/2211.13252.pdf - -
Text Style Transfer

NAST [169]. https://aclanthology.org/2021.findings-acl.138.pdf https://github.com/thu-coai/NAST -
KD+CL+ID [168] https://aclanthology.org/2021.emnlp-main.730.pdf https://github.com/sunlight-ym/nar style transfer -
Controllable Text

Generation
PMI [171] https://aclanthology.org/2021.findings-acl.330.pdf - -

MUCOLA [174] https://aclanthology.org/2022.emnlp-main.144.pdf https://github.com/Sachin19/mucoco/tree/sampling Pytorch
Diffusion-LM [173] https://openreview.net/pdf?id=3s9IrEsjLyk https://github.com/XiangLi1999/Diffusion-LM Pytorch/Transformers
AutoTemplate [172] https://arxiv.org/pdf/2211.08387.pdf - -

Image
Captioning
TIger [178] https://link.springer.com/chapter/10.1007/978-3-031-20059-5 7 https://github.com/baaaad/ECE Pytorch

FutureCap [179] https://dl.acm.org/doi/abs/10.1145/3503161.3547840 https://github.com/feizc/Future-Caption Pytorch/Transformers
Transformer-DML [182] https://openreview.net/pdf?id=LMuh9bS4tqF https://github.com/bladewaltz1/ModeCap Pytorch/Transformers

UAIC [181] https://arxiv.org/pdf/2211.16769.pdf - -
Question

Answering
NAPG [183] https://arxiv.org/pdf/2211.03462.pdf - -
KECP [184] https://arxiv.org/pdf/2205.03071.pdf https://github.com/alibaba/EasyNLP Pytorch/EasyNLP

Automatic Speech
Recognition

NAR CTC/attention [152] https://ieeexplore.ieee.org/abstract/document/9746316 - -
S-CFE CTC [235] https://ieeexplore.ieee.org/abstract/document/9746770 - -
CASS-NAT [153] https://ieeexplore.ieee.org/abstract/document/9413429 - -

DLP [154] https://ieeexplore.ieee.org/abstract/document/9414198 - -
CTC-enhanced [133] https://ieeexplore.ieee.org/abstract/document/9414694 - -
Align-Refine [143] https://aclanthology.org/2021.naacl-main.154.pdf https://github.com/amazon-research/align-refine To be released

Align-Denoise [144] http://dx.doi.org/10.21437/Interspeech.2021-1906 https://github.com/bobchennan/espnet/tree Pytorch/Espnet
LASO [158] https://ieeexplore.ieee.org/document/9437636 - -

NAR-BERT-ASR [132] https://arxiv.org/pdf/2104.04805v1.pdf - -
CondChain [192] https://arxiv.org/pdf/2106.08595v1.pdf https://github.com/pengchengguo/espnet Pytorch/Espnet

Streaming NAR [236] https://arxiv.org/pdf/2107.09428v1.pdf https://github.com/espnet/espnet Pytorch/Espnet
Mask-CTC [147] http://www.interspeech2020.org/uploadfile/pdf/Thu-1-3-7.pdf https://github.com/espnet/espnet Pytorch/Espnet

Intermediate CTC [150] https://ieeexplore.ieee.org/abstract/document/9414594/ https://github.com/espnet/espnet Pytorch/Espnet
Self-Conditioned CTC [151] https://arxiv.org/pdf/2104.02724.pdf https://github.com/espnet/espnet Pytorch/Espnet

GIC [155] https://arxiv.org/pdf/2205.12462.pdf - -
CAKT [156] https://ieeexplore.ieee.org/abstract/document/10022825 - -

Inter-KD [149] https://ieeexplore.ieee.org/abstract/document/10022581 - -
BECTRA [159] https://arxiv.org/pdf/2211.00792.pdf - -

https://aclanthology.org/2021.acl-long.467.pdf
https://github.com/yangkexin/pospd
https://arxiv.org/pdf/2110.11115v1.pdf
https://github.com/kongds/mist
http://proceedings.mlr.press/v139/qi21a/qi21a.pdf
https://github.com/microsoft/BANG
https://aclanthology.org/2022.acl-long.520.pdf
https://aclanthology.org/2021.eacl-main.18.pdf
https://github.com/yxuansu/NAG-BERT
https://arxiv.org/pdf/2205.12209.pdf
https://aclanthology.org/2022.emnlp-main.68.pdf
https://github.com/RUCAIBox/ELMER
https://aclanthology.org/2022.acl-long.545.pdf
https://openreview.net/pdf?id=KXybrIUJnya
https://github.com/MANGA-UOFA/NACC
https://aclanthology.org/2021.emnlp-main.169.pdf
https://github.com/rowitzou/cg-nar
https://arxiv.org/pdf/2002.04250v2.pdf
https://aclanthology.org/2021.acl-long.15.pdf
https://github.com/yizhen20133868/GL-GIN
https://aclanthology.org/2020.emnlp-main.152.pdf
https://github.com/moore3930/SlotRefine
https://openreview.net/pdf?id=H1e_cC4twS
https://github.com/henryhungle/NADST
https://dl.acm.org/doi/abs/10.1145/3459637.3482229
https://aclanthology.org/2021.acl-long.385.pdf
https://github.com/lipiji/TtT
https://aclanthology.org/2021.wnut-1.46.pdf
https://github.com/ufal
https://arxiv.org/pdf/2211.13252.pdf
https://aclanthology.org/2021.findings-acl.138.pdf
https://github.com/thu-coai/NAST
https://aclanthology.org/2021.emnlp-main.730.pdf
https://github.com/sunlight-ym/nar_style_transfer
https://aclanthology.org/2021.findings-acl.330.pdf
https://aclanthology.org/2022.emnlp-main.144.pdf
https://github.com/Sachin19/mucoco/tree/sampling
https://openreview.net/pdf?id=3s9IrEsjLyk
https://github.com/XiangLi1999/Diffusion-LM
https://arxiv.org/pdf/2211.08387.pdf
https://link.springer.com/chapter/10.1007/978-3-031-20059-5_7
https://github.com/baaaad/ECE
https://dl.acm.org/doi/abs/10.1145/3503161.3547840
https://github.com/feizc/Future-Caption
https://openreview.net/pdf?id=LMuh9bS4tqF
https://github.com/bladewaltz1/ModeCap
https://arxiv.org/pdf/2211.16769.pdf
https://arxiv.org/pdf/2211.03462.pdf
https://arxiv.org/pdf/2205.03071.pdf
https://github.com/alibaba/EasyNLP
https://ieeexplore.ieee.org/abstract/document/9746316
https://ieeexplore.ieee.org/abstract/document/9746770
https://ieeexplore.ieee.org/abstract/document/9413429
https://ieeexplore.ieee.org/abstract/document/9414198
https://ieeexplore.ieee.org/abstract/document/9414694
https://aclanthology.org/2021.naacl-main.154.pdf
https://github.com/amazon-research/align-refine
http://dx.doi.org/10.21437/Interspeech.2021-1906
https://github.com/bobchennan/espnet/tree
https://ieeexplore.ieee.org/document/9437636
https://arxiv.org/pdf/2104.04805v1.pdf
https://arxiv.org/pdf/2106.08595v1.pdf
https://github.com/pengchengguo/espnet
https://arxiv.org/pdf/2107.09428v1.pdf
https://github.com/espnet/espnet
http://www.interspeech2020.org/uploadfile/pdf/Thu-1-3-7.pdf
https://github.com/espnet/espnet
https://ieeexplore.ieee.org/abstract/document/9414594/
https://github.com/espnet/espnet
https://arxiv.org/pdf/2104.02724.pdf
https://github.com/espnet/espnet
https://arxiv.org/pdf/2205.12462.pdf
https://ieeexplore.ieee.org/abstract/document/10022825
https://ieeexplore.ieee.org/abstract/document/10022581
https://arxiv.org/pdf/2211.00792.pdf
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TABLE 5
A collection of other NAR related published papers and codes beyond text generation. IE denotes information extraction task, VG denotes video

generation task, VC denotes voice conversion task, and SR denotes speech representation task, CC denotes code completion task, PTSF denotes
time series forecasting task.

Method Paper URL Code URL Framework
Text to
Speech

BVAE-TTS [188] https://openreview.net/pdf?id=o3iritJHLfO https://github.com/LEEYOONHYUNG/BVAE-TTS Pytorch
GAN-TTS [192] https://arxiv.org/pdf/2203.01080.pdf https://github.com/yanggeng1995/GAN-TTS Pytorch
VARA-TTS [187] https://arxiv.org/pdf/2102.06431v1.pdf https://github.com/vara-tts/VARA-TTS -
Glow-TTS [193] https://dl.acm.org/doi/pdf/10.5555/3495724.3496400 https://github.com/jaywalnut310/glow-tts Tensorflow/Tensor2tensor

VAENAR-TTS [185] https://arxiv.org/pdf/2107.03298v1.pdf https://github.com/thuhcsi/VAENAR-TTS Pytorch
ParaNet [128] http://proceedings.mlr.press/v119/peng20a/peng20a.pdf https://github.com/ksw0306/WaveVAE Pytorch

FastSpeech [127] https://dl.acm.org/doi/pdf/10.5555/3454287.3454572 https://github.com/coqui-ai/TTS PyTorch/TTS
TalkNet2 [237] https://arxiv.org/pdf/2104.08189v3.pdf https://github.com/rishikksh20/TalkNet2-pytorch -

FastSpeech2 [238] https://ieeexplore.ieee.org/abstract/document/9383629 https://github.com/ming024/FastSpeech2 Pytorch
HiMuV-TTS [194] https://arxiv.org/pdf/2204.04004.pdf - -

CLONE [196] https://arxiv.org/pdf/2207.06088.pdf - -
CUC-VAE [195] https://aclanthology.org/2022.acl-long.30.pdf - -

Speech
translation
MTL [198] https://aclanthology.org/2021.findings-acl.92.pdf https://github.com/voidism/NAR-ST Pytorch/Espnet

Orthros [199] https://ieeexplore.ieee.org/abstract/document/9415093 - -
Orthros-CMLM [200] https://arxiv.org/pdf/2109.04411v1.pdf - -

Fast-MD [203] https://ieeexplore.ieee.org/abstract/document/9687894 - -
Semantic
Parsing

Span Pointer [126] https://aclanthology.org/2021.findings-emnlp.161.pdf - -
LightConv Pointer [125] https://aclanthology.org/2021.naacl-main.236.pdf https://github.com/facebookresearch/pytext Pytorch/Pytest

RNGTr [239] https://aclanthology.org/2021.tacl-1.8.pdf https://github.com/idiap/g2g-transformer Pytorch
Diffusion

Models
WaveGrad [206] https://openreview.net/pdf?id=NsMLjcFaO8O - -

DDPM [205] https://dl.acm.org/doi/pdf/10.5555/3495724.3496298 https://arxiv.org/pdf/2006.11239.pdf Tensorflow
D3PMs [209] https://openreview.net/pdf?id=h7-XixPCAL - -
Imagen [210] https://openreview.net/pdf?id=08Yk-n5l2Al - -
unCLIP [211] https://arxiv.org/pdf/2204.06125.pdf - -
GLIDE [212] https://proceedings.mlr.press/v162/nichol22a/nichol22a.pdf https://github.com/openai/glide-text2im Pytorch

classifier-free guidance [240] https://openreview.net/forum?id=qw8AKxfYbI - -
LDEBM [216] https://proceedings.mlr.press/v162/yu22h/yu22h.pdf - -

Diffusion-LM [173] https://openreview.net/pdf?id=3s9IrEsjLyk https://github.com/XiangLi1999/Diffusion-LM Pytorch/Transformers
DIFFUSER [217] https://arxiv.org/pdf/2210.16886.pdf - -
DIFFUSEQ [215] https://arxiv.org/pdf/2210.08933.pdf https://github.com/Shark-NLP/DiffuSeq Pytorch/Transformers

DiffGAR [241] https://arxiv.org/pdf/2210.08573.pdf - -
Others

MacroIE [219](IE) https://aclanthology.org/2021.emnlp-main.764.pdf - -
DIGAN [220](VG) https://openreview.net/pdf?id=Czsdv-S4-w9 - -

FastSpeech2-VC [221](VC) https://ieeexplore.ieee.org/abstract/document/9413973 - -
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