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Knowledge-based Embodied Question
Answering

Sinan Tan, Mengmeng Ge, Di Guo, Huaping Liu, and Fuchun Sun

Abstract—In this paper, we propose a novel Knowledge-based Embodied Question Answering (K-EQA) task, in which the agent
intelligently explores the environment to answer various questions with the knowledge. Different from explicitly specifying the target
object in the question as existing EQA work, the agent can resort to external knowledge to understand more complicated question such
as “Please tell me what are objects used to cut food in the room?”, in which the agent must know the knowledge such as “knife is used
for cutting food”.
To address this K-EQA problem, a novel framework based on neural program synthesis reasoning is proposed, where the joint
reasoning of the external knowledge and 3D scene graph is performed to realize navigation and question answering. Especially, the 3D
scene graph can provide the memory to store the visual information of visited scenes, which significantly improves the efficiency for the
multi-turn question answering. Experimental results have demonstrated that the proposed framework is capable of answering more
complicated and realistic questions in the embodied environment. The proposed method is also applicable to multi-agent scenarios.

Index Terms—Knowledge, Question Answering, Logical Reasoning, Dataset
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1 INTRODUCTION

R ECENTLY in AI communities, we have been pursuing the
goal of enabling intelligent agents to help humans accom-

plish practical tasks, such as actively perceiving the environment,
searching for objects, and answering questions. As a big step
towards useful AI agents, Embodied Question Answering (EQA)
[1], a type of task that controls an agent to navigate in a 3D
environment and answer a specific problem given by natural
language, has been getting more and more attention.

Currently, most EQA tasks [1], [3], [4] mainly focus on simple
questions, in which utilizing information inside the 3D environ-
ment is enough to answer the question. However, these EQA tasks
and methods have some drawbacks in real-world applications.
Firstly, the target object in the question is explicitly specified
and the embodied agent can not use external knowledge to
answer complicated questions, while such a problem task has been
discussed for vision and language in many recent publications [5],
[6], [7]. For example, to answer “Please tell me what are objects
used to cut food in the room?”, the agent would have to query the
knowledge graph to learn about the relationship (‘Knife’, ‘Used
To’, ‘Cut food’). Only after learning about this, the agent would
know the knife is a target when it comes across one.Secondly, the
logical reasoning is not supported, while questions in real-world
scenarios could have logical relations. For example, if someone
who considers both apple and tomato are acceptable and wants
to find something to eat may ask “Are there any apple or tomato
in the room?”. This example involves more than one object and
the logical relation between objects in the question. Although
this scenario is previously discussed in Multi-Target Embodied
Question Answering (MT-EQA) [3], it has the limitation that each
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Figure 1. An intuitive demonstration of Knowledge-based EQA. The
agent is asked to “Find all objects that can be eaten on the table in this
room.”. To answer this question, the agent needs to both understand the
3D scene, realizing the existence of the apple, the bread and the tomato,
and get knowledge from the knowledge graph, learning about the rela-
tion triplets (‘Apple’, ‘ReceivesAction’, ‘Eat’), (‘Bread’, ‘ReceivesAction’,
‘Eat’), (‘Tomato’, ‘ReceivesAction’, ‘Eat’). To this end, the exploration and
joint reasoning are employed to solve this problem.

object exists only once, and it uses a template-based method to
break down the questions, which may be powerless to understand
sentences with complex structures. Thirdly, the agent is not aware
of the already explored parts of a scenario. For example, someone
preparing dinner may ask “Is there any apple on the table?”. And
then ask the agent to do something else. When the food is ready,
he might then ask “Are there any objects used for storing food on
the table?”. With multiple turns of questions coming to the agent
in the same environment, the agent should be able to utilize the
previous memories to avoid unnecessary exploration.

To investigate the above problems, we propose a novel
Knowledge-based EQA problem and a framework that utilizes the
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Method Navigation + QA Multi-Target Logical Reasoning Interaction Knowledge Multi-Turn
EQA [1] X – – – – –
VideoNavQA [2] X X – – – –
MT-EQA [3] X X X – – –
IQA [4] X X – X – –
K-EQA(ours) X X X – X X

Table 1
A comparison of our proposed K-EQA task with other existing EQA tasks.

knowledge and 3D scene graph to help the agent navigate in the
environment and answer the question (Figure 1). The proposed
method is based on neural-program-synthesis, which translates
the question to a Structured Query Language(SQL) statement,
enabling the agent to handle questions requiring knowledge and
logical reasoning. Additionally, the 3D scene graph can provide
the memory to store the visual information of visited scenes, which
significantly improves the efficiency for the multi-turn question
answering. Moreover, the proposed framework plans the agent’s
motion by selecting relevant sub-regions of the scene and uses
a Monte-Carlo tree search (MCTS)-based executor to control its
low-level action, making it extendable to multi-agent scenarios
easily.

Furthermore, we present the K-EQA dataset — a new dataset
for the K-EQA task with logic clauses and knowledge-related
phrases, which will be released soon. We also propose a novel
data generation method defined by a formal grammar. This method
would generate more complex and various questions in the dataset.
Table 1 compares our proposed dataset with other existing EQA
datasets.
Contributions. Our main contributions include:

• Problem. We present a generalization of the existing EQA
task called K-EQA, which features knowledge and scene
graph based reasoning, logical reasoning, holistic scene
understanding, and multi-turn & multi-agent question an-
swering.

• Dataset. We propose a novel approach to generate the
dataset for the K-EQA task, utilizing a formal grammar,
scene graph data, and external knowledge base data. The
generated questions in the dataset are more enriched
and require knowledge and logical reasoning to answer,
providing support for more realistic and complicated QA
tasks in an Embodied environment.

• Method. We propose a neural-program-synthesizer-based
framework for K-EQA, which generates a SQL program
to reason over the 3D scene graph and the knowledge
graph. The answering program will be executed on the
3D scene graph and the knowledge graph to answer the
question. The planning program plans the agent’s mo-
tion by selecting relevant sub-regions using the generated
SQL program and uses an MCTS-based route planner
to visually cover these regions. The framework solves
the proposed knowledge-based EQA (K-EQA) problems
and works well in multi-turn and multi-agent question
answering.

2 RELATED WORK

2.1 Embodied Question Answering
Our work is a generalization of the recently proposed Embodied
Question Answering (EQA) [1], [8], [9], [10] task, where the agent

needs to explore the scene and answer a given question. After
EQA is proposed, many variants are developed to improve the
logical reasoning of the given questions. Multi-Target Embodied
Question Answering (MT-EQA) [3] uses a template-based method
to expand the original EQA from the single-target setting to a
challenging multi-target setting, which requires the agent to per-
form comparative reasoning before executing answering. Neural
modular control [11] applies neural module networks [12] to EQA
tasks. Interactive Question Answering (IQA) [4], [13] considers
cases where objects of interest are distributed in many different
locations. Recent works [14], [15], [16] focus on multi-agent
cooperation in embodied environments.

2.2 Question Answering with Knowledge and Logic
Traditional Visual Question Answering (VQA) [17] datasets focus
on questions answered by only direct analysis of image and
question. These questions require limited common sense and
factual knowledge to answer. Recently, several works [5], [6] start
to include external knowledge and facts to the VQA datasets.
[18] proposes MemexQA task where the answer contains not only
text but also photos of history events. [19] proposes inverse VQA
tasks where question needs to be generated according to the image
and the answer. These works use scene graph representation and
grammars to generate complex questions. [20] proposes visual
dialog dataset requiring dialog context reasoning. [5] composes
questions requiring external knowledge by introducing relations
triplets in knowledge bases like ConceptNet to the questions.
We following a similar approach to generate knowledge-based
reasoning clauses in our dataset generation process.

To investigate and tackle the limit of existing VQA models
in complex scenarios with questions requiring logical reasoning.
CLEVR [21], [22] and GQA [23] are proposed to diagnose visual
reasoning abilities on VQA tasks. These datasets have inspired
several methods [12], [24], [25], [26], [27] emphasizing visual
reasoning ability.

3 PROBLEM FORMULATION

The Knowledge-based EQA is formulated as a question-answering
task in an embodied environment E with knowledge graph GK .
At each time step t, the agent utilizes the knowledge graph
GK , the question Q, and the previous observations o1:t−1 =
(o1, o2, ..., ot−1) to generate the action as:

at = πnav(GK , Q, o1:t−1)

After performing the action at, the agent receives a new
observation ot from E . Such a procedure iterates until the agent
triggers a special stop action at time instant T . Then the agent
could get the answer from

ans = πans(GK , Q, o1:T−1)
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Existence Counting Comparing Enum. All
Split Yes No Total 0 1 2 3 4 Total Yes No Total Total Total
Train 6250 6250 12500 2500 2500 2500 2500 2500 12500 6250 6250 12500 12500 50k
Test 1250 1250 2500 500 500 500 500 500 2500 1250 1250 2500 2500 10k

Table 2
Question types and answers distribution of the proposed K-EQA dataset, applied to both K-EQA and K-EQA Extension. “Enum.” stands for

“Enumerating”.

The goal is to design appropriate policies πnav and πans
which leverages the advantages of the training data and the ex-
ternal knowledge. This problem significantly differs from existing
work such as [1], [3], [4] because of the introduction of the
knowledge graph, which provides strong support for navigation
in complex environments and answering complicated problems.

4 K-EQA DATASET

Our dataset is built upon AI2Thor [28], a photorealistic 3D
environment for embodied vision research. The AI2Thor simulator
contains 120 different room layouts of 4 categories (Bedroom,
Living room, Kitchen, and Bathroom), with 30 room layouts
for each category. Each layout allows randomizing the quantities
and locations of all “pickupable” objects (e.g. Apple, Knife, and
Book). The proposed dataset is split into 2 subsets — K-EQA and
K-EQA Extension, where the K-EQA split contains questions
more likely to appear in daily life, while the K-EQA Extension
split contains more complex questions challenging the reasoning
ability of the model, which could be useful for challenging the
limit of reasoning ability for the methods. For both subsets, the
dataset organization is similar — We create 50 scenes for each
layout in AI2Thor, yielding 6,000 different rooms in total. With
10 questions are asked to the agent for each room, the generated
dataset has 60,000 questions in total. For each room category, 25
layouts will be used for training and the other 5 will be used for
testing. Therefore the training split will have 50,000 questions,
and the test split will have 10,000 questions.

4.1 Choosing Entities and Relations for Generating
Questions

In the first step of building the dataset, we will map each entity that
appeared in the AI2Thor environment [28] to a set of knowledge
base relations to choose from. We select ConceptNet [29] as the
knowledge base used in our work, which contains more than
1.5M entities for English Language. To choose possible relation
triplets for our dataset, we first restrict all the relations in the
knowledge base to the ones including entities directly or indi-
rectly related to objects appearing in the AI2Thor dataset. (Here
“indirectly” means that some knowledge would require multi-step
reasoning, for example, the following relation triplet (‘Basketball’,
‘ReceivesAction’, ‘purchased at a sporting goods store’) could be
inferred from the following relations in ConceptNet: (‘Basketball’,
‘IsA’, ‘Basketball equipment’), (‘Basketball equipment’, ‘IsA’,
‘Sports equipment’) and (‘Sports equipment’, ‘ReceivesAction’,
‘purchased at a sporting goods store’)).

We then manually annotate some entities to further filter some
misformed relations from the knowledge base to improve the
quality of our dataset. The final set of relations used for question-
answering in our work contains 7,451 relation triplets.

4.2 Question Types and the Dataset
There are 4 different types of questions in our dataset: Existence,
Counting, Enumerating and Comparing. The “Existence” problem
and “Comparing” problems ask whether objects meet certain
condition exists, or are more/less than objects of another category.
The “Counting” problem asks the number of objects meeting
certain conditions. The most difficult type of problem is the
“Enumerating” problem, which asks about the exact number of
objects by category. Table 3 shows examples of questions and
their answers.

To generate questions using the relations we have chosen from
the knowledge base, we extend the templates provided in IQA and
MT-EQA to a set of grammar. For each type, objects can be spec-
ified directly by their category, or by relations with other objects
in the scene, or by relations with other entities in the knowledge
graph. These object type specifiers could be connected with logic
connector “and” or “or” in K-EQA Extension, challenging the
reasoning ability of the question answering model. The proposed
method for generating questions is similar to [21], [23].

4.3 Question generation
Now we are looking into the details of how exactly a question is
generated. A question in the proposed dataset is generated using
the following steps. Note that the following steps apply to KEQA
Extension. For the basic K-EQA dataset, some steps will be
skipped:

• Question type sampling: A question type among the
4 types of questions (Counting, Existence, Comparing,
Enumerating) is chosen. We generate 300 questions of
each type for each scene so that there will be enough
questions for further steps regarding dataset balancing.

• Object count sampling: The number of object filters
(i.e. the element in the grammar that would choose an
object category, and knowledge graph restriction or a scene
graph restriction) that will appear in the question will be
randomly chosen. For Comparing problems, there are 2
groups of object filters, and the number of object filters
for each group will be randomly chosen respectively.

• Logic connector sampling. For questions with the type
”Existence”, the logic connector could be “and” or “or”.
And for Comparing Problem, the compare word (could be
“more” or “ less”) will also be randomly chosen. This step
only applies to KEQA Extension.

• Object Sampling: Objects are chosen randomly from the
list of all possible appearing objects for a given room type.
Note that for a specific room, the chosen object may exist
or not exist.

• Introducing knowledge graph: A precomputed object-
to-entity and entity-to-relation mapping are used. The
question generator will randomly decide whether or not to
use knowledge to refer to an object category. If it decides
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K-EQA K-EQA Extension

Existence
Q: Is there an object used to cut food near a
salt shaker somewhere nearby?
A: Yes

Q: Is there an object that is a type of herb near an egg or a
roll of paper towel near an egg in the room?
A: Yes

Counting
Q: Please tell me how many objects which
you can use to hold rice are around here?
A: 2

Q: How many pens near a desk or objects used to listen to
music above an alarm clock or books above an alarm clock
are there in the room?
A: 3

Comparing

Q: Are there more spray bottles than objects
for drying the body after a bath near a toilet
in the room?
A: No

Q: Are there less objects used to store binary information or
credit cards above a keychain than objects that are a kind of
mechanical device or cell phones in the room ?
A: Yes

Enumerating
Q: there are some objects for eating in the
room. What are they?
A: A loaf of bread, a tomato and 2 apples

Q: There are some objects which are used for sleeping or
objects for cuddling in the room. What are they?
A: A pillow and a teddy bear

Table 3
Sample questions and answers of each type in K-EQA and K-EQA Extension. Object category specifiers are colored in red; knowledge graph

clauses are colored in green; spatial relations are colored in blue; logical connectors are colored in orange.

to use knowledge to refer to that object, the category will
be replaced by entity and relations in the knowledge graph.

• Adding scene graph relations: For each possible object,
a scene relation could be randomly added to the object.
Similar to the knowledge graph relations, all possible
scene graph relations are also precomputed using the
ground truth scene graph.

• Computing the ground truth answer: The answer is
computed using the ground truth scene graph, the syntax
tree, and the knowledge graph.

4.4 Balancing and Generating Datasets
As mentioned above, the objects in our dataset may be specified
by their categories, relations with other objects, or relations
with other entities in the knowledge graph. With these low-
level language features, it would be important to eliminate po-
tential biases in the answer distribution. To make the proposed
dataset balanced, we will first create a “tag” for each question
to represent these low-level language features. For example, a
question, with the type “Comparing”, comparing word “less” and
spatial relations “near” and “above”, will be tagged as “COM-
PARE less 1 1 No near above”. We will firstly generate a huge
number of questions, resulting in a question sampling pool. Then
we would remove some questions from the sampling pool so that
each kind of tag brings no biased distribution of answers in the
dataset. To be specific, we use a 2-stage algorithm to balance the
question pool for our proposed dataset:

4.4.1 Balancing the proposed dataset
To make a balanced dataset, we first generate more questions than
we need to build the dataset, and then we would assign a tag
for each question. The question format for each kind of question
would be:

• Counting: Tag format consists of “COUNTING”, number
of object filters, and the answer.

• Existence: Tag format consists of “EXISTENCE”, logic
Connector, number of object filters, and the answer.

• Comparing: Tag format consists of “COMPARE”, com-
pare Word, number of object filters in the first group,
number of object filters in the second group, and the
answer.

• Enumerating: Tag format consists of “ENUMERAT-
ING”, number of object filters, and number of objects in
the answer.

When sampling from the generated questions to form the
proposed dataset, we will control the exact number of questions
belonging to each tag of each type. This makes our proposed
dataset precisely balanced in terms of answer and object distri-
bution, as is shown in Table 2.

4.4.2 Sub-tag balancing

However, the objects in our dataset may be specified by their
categories, relations with other objects, or relations with other
entities in the knowledge graph. Making the tag-level balancing
inadequate to provide a balanced dataset. To eliminate potential
biases in the answer distribution, we will first create a “sub-tag”
for each question to represent these low-level language features.
For example, a question, with the type “Comparing”, comparing
word “less”, and each part to compare containing only 1 object
specifier, and spatial relations “near” and “above”, and the answer
“No”, will be tagged as “COMPARE less 1 1 No near above”.
Despite we have already generated a large number of questions
for a scene, making the dataset precisely balanced with regards to
sub-tag is impossible. Therefore we would remove some questions
from the sampling pool so that each kind of tag brings no biased
distribution of answers in the dataset. (e.g. the number of questions
with tag “COMPARE less 1 1 No near above” and the number
of questions with tag “COMPARE less 1 1 Yes near above”
should be the same.). Despite that the number of questions will not
be balanced for different types of sub-tags, the answer distribution
for each sub-tag is a uniform one.

Because of the sub-tag balancing technique, when sampling
from the generated questions, the answer distribution for every
kind of sub-tag is balanced. Despite the number of questions of
each sub-tag is not the same, it would be not possible to infer the
answer from those low-level language features.

All possible tags of the proposed dataset are provided in Table
4.

We then sample questions from the tag-balanced sampling
pool, with constraints controlling exact answer distribution for
each question type. As a result of this process, both splits of
the proposed K-EQA dataset consist of 60000 questions across
6000 different environment setups, with balanced question types
and answer distributions. Table 2 shows the dataset splits and the
distribution of question types and answers for each split.
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Existence Counting Comparing Enumerating

K-EQA EXISTENCE 1 No
EXISTENCE 1 Yes

COUNTING 1 0
COUNTING 1 1
COUNTING 1 2
COUNTING 1 3
COUNTING 1 4

COMPARE less 1 1 No
COMPARE less 1 1 Yes
COMPARE more 1 1 No
COMPARE more 1 1 Yes

ENUMERATING 1 1
ENUMERATING 1 2
ENUMERATING 1 3
ENUMERATING 1 4

K-EQA Extension

COUNTING 2 0
COUNTING 2 1
COUNTING 2 2
COUNTING 2 3
COUNTING 2 4
COUNTING 3 0
COUNTING 3 1
COUNTING 3 2
COUNTING 3 3
COUNTING 3 4

COMPARE less 1 2 No
COMPARE less 1 2 Yes
COMPARE less 2 1 No
COMPARE less 2 1 Yes
COMPARE less 2 2 No
COMPARE less 2 2 Yes
COMPARE more 1 2 No
COMPARE more 1 2 Yes
COMPARE more 2 1 No
COMPARE more 2 1 Yes
COMPARE more 2 2 No
COMPARE more 2 2 Yes

COMPARE less 1 2 No
COMPARE less 1 2 Yes
COMPARE less 2 1 No
COMPARE less 2 1 Yes
COMPARE less 2 2 No
COMPARE less 2 2 Yes
COMPARE more 1 2 No
COMPARE more 1 2 Yes
COMPARE more 2 1 No
COMPARE more 2 1 Yes
COMPARE more 2 2 No
COMPARE more 2 2 Yes

ENUMERATING 2 1
ENUMERATING 2 2
ENUMERATING 2 3
ENUMERATING 2 4
ENUMERATING 3 1
ENUMERATING 3 2
ENUMERATING 3 3
ENUMERATING 3 4

Table 4
Question tags of each type in K-EQA and K-EQA Extension.

Figure 2. Overview of the proposed framework. The Action Planner uses text-to-SQL translation to select a set of relevant regions and a scan
executor to plan the agent’s action sequences. 3D scene graph will be updated based on the observations and the 3D voxel reconstruction. When
the Action Planner decides there are no more regions to explore, the agent will stop and use the Question Answerer to answer the question.

5 OVERVIEW OF THE PROPOSED FRAMEWORK

As is demonstrated in Figure 2, our proposed framework is based
on the 3D reconstruction and the 3D scene graph of the environ-
ment. As the agent explores, it will maintain a state memory st
for each step t, which is a 3D scene graph built gradually based
on the voxel-level reconstruction.

The state memory is used for two purposes: (1) Guide the
agent. This is done with the help of the Action Planner, which
will first select a set of relevant regions in the scene graph
according to the question. A scan executor will plan the agent’s
low-level actions (e.g. Move/Rotate), according to a map built on
the 3D reconstruction and the relevant regions. The agent will
then update the state memory according to its observations. (2)
Answer the question. When the Action Planner decides there are
no longer relevant regions in the 3D environment, the agent will
stop and use the Question Answerer to answer the question.

Here are the components of our proposed framework:

• Scene Graph-based State Memory: a memory storing
visual information perceived in the scene. In our work,
the state memory is a 3D scene graph, built upon the
environment’s voxel-level reconstruction.

• Action Planner: The planner first determines whether or
not the agent needs to continue the exploration process
and which region will be searched when performing explo-
ration. In practice, the Action Planner uses an attentional
LSTM-based program synthesizer, taking the question as
its input, and generates a SQL program to choose the
relevant regions in the current scene graph. After deciding
the voxel sets to explore, an MCTS-based scan executor
capable of multi-agent controlling will plan the agent’s
navigational path.

• Question Answerer: If the planner decides to stop ex-
ploration, the answerer will give the answer based on the
scene graph and the knowledge graph. In our implementa-
tion, the Question Answerer also generates a SQL program
from the question. The program will be able to run on the
3D Scene Graph and the Knowledge Graph, extracting the
answer to the given question.
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6 METHODS AND MODELS

6.1 Scene Data Structure

An important sub-task in our framework is to encode the visual
observations to the internal state st. Here we use a mixture of the
voxel-based 3D reconstruction and the 3D scene graph.

Voxels. For each observed image frame, we first run an
instance segmentation model (Mask R-CNN [30]), which will
assign a semantic label for each pixel in the image. Then pixels
are back-projected into the 3D space with the depth data, forming
the voxel-level reconstruction. For each voxel, its 3D coordinate,
semantic category, and a confidence score for each category are
recorded.

Connecting voxels to generate 3D object detections. Voxels
of the same category with a threshold-bounded distance are
considered connected. After the connectivity of the voxels is
generated, we will be able to get a reconstructed voxel volume,
with voxels also form an undirected graph, whose edge is defined
by the connectivity of these voxels. The 3D object regions of the
scene graph are generated by merging all connected components
of the voxel graphs. The maximum coordinate and minimum
coordinate of each dimension of the bounding box of these 3D
objects will also be determined by the voxel with maximum and
minimum coordinate at that dimension.

Object-object relation and 3D scene graph generation. To
complete the scene graph, spatial relations need to be generated
for all objects. Similar to [31], Here we consider 3 categories
of object-object relations in the scene graph:(1) Contain, In,
Holding, and On If object A’s bounding box overlaps with object
B’s bounding box, and object B is of a container category, then
object B is considered to “Contain” object A, and object A is
“Inside” object B. The “Holding” and “On” relations are defined
similarly, but for objects with plains that other objects could be on
(e.g table).(2) Above and Below If the rectangle of the top-bottom
view of object A and object B overlaps or their distance is within
0.25m, and the maximum z-coordinate of object B is lower than
the minimum coordinate of Object A, then we consider object A
is “Above” object B, and object B is “Below” object A. (3) Near
If the distance between the 3D box of Object A and Object B is
less than 0.25m. This relation is symmetry.

6.2 Question Answering

As was previously specified, our framework requires a question
answerer πans(st, Q,GK). Since now we’re using the scene
graph GS as the state memory, the QA model will need to be
graph-based. Here we consider a neural-program-synthesize-based
approach: The question will be first converted to a query language
statement Pans, then the database software will execute the query
language statement as a program on both the scene graph and the
knowledge graph. Here we are using SQL as the query language,
the Text-to-SQL conversion is a well-discussed topic in the field of
natural language processing [32], [33], [34]. In our work, we use a
synthetic dataset generated from the question grammar introduced
in section 4.

We need to generate a programPans used to perform the query
on both graphs. We formulate the problem as

Pans = ma(Q1, Q2, ..., Qn) (1)

where Pans = (Pans,1, Pans,2, ..., Pans,m) is the program,
Pans,i is a token in the program. ma is the translation model, and

Qi is the token of the question. This sub-problem is a sequence-
to-sequence translation problem and we use the attention model in
[35] to solve it.

6.2.1 Executing Generated Programs
To make use of the SQL to perform queries on the knowledge
graph and the scene graph, we first convert all the scene graph
and knowledge graph data to tables, so that the SQL server would
be able to execute queries on them. Each entity in the knowledge
graph will be added to an entity table, and each object in the
scene graph will be added to an object table. These Object-Object
relations and Entity-Entity relations are written into other tables,
connected to these two tables by foreign keys. The SQL server will
then execute the program on the graphs to answer the question. We
create custom SQL functions to avoid the program being too long.
We use PostgreSQL [36] as the SQL server.

6.3 Action Planner
Unlike traditional planners that would control the agent directly,
our Action Planner will first specify a range of relevant regions
(voxel sets) instead. Similar to the Question Answerer, we need
to generate a program Pplan. Unlike Pans, the program Pplan is
not only executed on scene graph and external knowledge graph
but also the scene priors extracted from the train set [37]. To be
specific, the output SQL of the Action Planner generates possible
relation triplets that the object relevant to the current question
may appear from the scene priors and the external knowledge
graph. We then remove all voxels in these irrelevant regions from
the regions passed to the scan executor. (For example, for a ques-
tion searching for basketball, if the relation triplet (“Basketball”,
“above”, “Bed”) does not appear in the returned query result of
the SQL statement, then all voxels above a bed will be excluded
from the relevant regions.)

The MCTS-based scan executor use the voxel reconstruc-
tion data to determine the visible voxels for each viewport
v = (x, y, θ, φ). (where (x, y) is the location, and θ, φ are
the azimuth and inclination angle respectively) Then, the path
planning problem becomes finding an optimal viewport sequence
v∗ = (v∗1 , v

∗
2 , ..., v

∗
n) so that all voxels in relevant regions can be

observed, and the distance of the sequence could be as short as
possible.

Similar to previous works [38], [39], we use an MCTS-
based approach to find the approximate optimal solution to the
problem of planning the viewport sequence. The child of each
node in the search tree stands for selecting the next view the
agent would approach. The value function of each node is set as
1 − l−lmin

lmax−lmin
, where l is the average simulation result (track

length) , and lmin, lmax are global best and worst simulation
result, respectively. For multi-agent cases, the agent would need
to select the next viewport in turn.

6.3.1 Details of the action planner and the Executor.
Similar to the answering SQL, the program generated by the action
planner Pplan will look up the SQL tables and return relations
triplets. Here we will further explain what the returned relation
triplets will be like, using the example “How many objects used
for a game or pillows on a bed are there in the room?”. The
planning SQL is:
select *
from scene_priori_relations_joint
where (
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Existence Counting Comparing Enum. Overall
Dataset Acc. Length Acc. Length Acc. Length Acc. Length Acc. Length
K-EQA 58.8% 58.0 31.6% 87.5 62.0% 97.7 12.8% 87.8 41.3% 82.7
K-EQA Extension 58.0% 81.5 29.2% 88.1 54.4% 101.9 6.8% 95.6 37.1% 91.8

Table 5
Comparing K-EQA Extension experiment results with K-EQA experiment results. “Enum.” stands for “Enumerating”. “Acc.” stands for “Accuracy”.

(
object1_entity in (

select entity1
from knowledge_graph_relations
where (

relation = ’/r/UsedFor’
and entity2 = word_to_knowledge_graph_entity (’a game’)

)
)

)
or (

object1_category = word_to_scene_object_category (’pillows’)
and relation = ’on’
and object2_category = word_to_scene_object_category (’bed’)

)
)

A part of the typical result returned from such a query of the
planner statement will be like the following table:

Object1 Category Relation Object2 Category
Basketball Near Bed
Pillow On Bed
... ... Other Objects

Table 6
An example of possible partial output of the question “How many

objects used for a game or pillows on a bed are there in the room?”

The explanation for such an output is that basketball will not
appear on/above bed (in terms of both common sense and the pro-
posed dataset). (”BasketBall”, ”Bed”, ”near”) is the only relation
that Basketball could have with (There is also no (”BasketBall”,
”Bed”, ”below”)) is because Bed often stands the lowest part of
the room). If we can already locate regions representing a bed, we
will only need to explore regions “On” and “Near” that bed.

Similar to object relations are defined in Section 6.1, each
voxel can be considered to have similar relations to an object.
(e.g. “above” means that the z-coordinate of that voxel is more
than 0.25m higher than the object and the distance of the voxel
to the object in the XY-plane is within 0.25m. ). Since now we
know that all relevant objects cannot appear on the region “above”
a bed, these regions will be opted out for the scan executor.

Method Exist. Count. Cmp. Enum. All
Priori 50.0% 20.0% 50.0% 1.72% 30.4%
Blind. 53.0% 19.7% 51.3% 3.5% 31.9%
IQA* 49.8% 21.4% N/A N/A N/A
w/o KG 52.4% 22.0% 49.2% 3.6% 31.8%
Ours 58.8% 31.6% 62.0% 12.8% 41.3%

Table 7
K-EQA experiment results comparing with baseline methods. “Cmp.”

stands for “Comparing”, “Enum.” stands for “Enumerating”. “Blind.”
stands for “Blindfold” [40]. * For the IQA baseline, we only choose

questions considered in both ours and IQA’s method [4].

7 EXPERIMENT

In the following sections, we will report extensive experiments on
the proposed dataset, including performance analysis with other
methods, the ablation study on the components of our proposed
framework, and the performance of the proposed framework on

multi-turn and multi-agent scenarios. For all experiments without
multi-turn or multi-agent scenarios, we only use the first question
of the 10 questions for each test scene, which is similar to the
common settings of other EQA tasks [1], [3]. The agents will be
spawned at a fixed location defined in the AI2Thor. Following [4],
we use the overall accuracy and the accuracy of each sub-type of
problems as the metric in our experiments.

7.1 Performance Comparison

Firstly we test the proposed method on K-EQA with a set of
baseline methods. Priori guesses the most likely answer of the
question only from its type according to the answer distribution.
Blindfold is a blindfold baseline similar to [40], using a Seq2Seq
model similar to our proposed method but tries to predict the
answer directly from the question. IQA uses the proposed model
in IQA [4], where the ground truth semantic map is used as
the input of the model. w/o KG uses a similar approach to our
proposed method, but without the knowledge base. Here the Text-
to-SQL translator tries to generate a program that only looks up
the scene graph.

Results of these baseline methods are reported in Table 7.
All Question-only baselines (Priori and Blindfold) perform sig-
nificantly worse than our proposed method, with even LSTM
used to extract information from the questions, indicating that the
proposed method for balancing the dataset can mostly eliminate
biases in the question. Another two baselines (IQA and w/o KG)
only look up to the question and the scene semantic map/scene
graph also perform similar to the Priori baseline, showing the
importance of knowledge base for answering questions in the
proposed dataset.

7.2 Ablation Analysis

We perform a set of ablation studies to investigate the impact
of the performance of each component of the proposed method,
here are the experiment setups we adapt in the ablation study:
GT Scene Graph uses ground truth scene graph. In this oracle
setup, no exploration is performed. GT Segm is similar to our
proposed method, but ground truth semantic segmentation is used.
In the FS (Full Scan) setup, the planner will not use the generated
program Pplan for planning to select relevant regions to search.
Instead, it will scan the whole room. The result of the ablation
study is reported in Table 8, from which we make the following
observations:

The proposed planner helps to reduce unnecessary explo-
ration. With the proposed planner, the path length is only a half to
the path length of using the full scan approach, while the accuracy
only drops 1%, showing a better trade-off between track-length
and exploration accuracy.

The text-to-SQL neural program synthesizer works fine.
When using the program generated by the text-to-SQL translator,
the model reaches a high accuracy of 90.3%, indicating that using
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Existence Counting Comparing Enumerating Overall
Method Acc. Len. Acc. Len. Acc. Len. Acc. Len. Acc. Len.
Ours + GT Scene Graph 92.8% N/A 89.2% N/A 93.2% N/A 86.0% N/A 90.3% N/A
Ours + FS + GT Segm 81.6% 87.4 63.6% 126.5 83.2% 132.5 51.6% 120.8 70.0% 116.8
Ours + FS 60.8% 122.5 34.0% 120.3 62.4% 143.9 10.8% 137.8 42.0% 131.1
Ours + GT Segm 76.0% 39.7 63.2% 86.2 81.2% 99.5 49.6% 90.2 67.5% 78.9
Ours 58.8% 58.0 31.6% 87.5 62.0% 97.7 12.8% 87.8 41.3% 82.7

Table 8
K-EQA experiment results with ablation analysis. “Acc.” stands for “Accuracy”. “Len.” stands for “Length”.

neural program synthesis to perform joint reasoning is a viable
approach.

Scene graph generation has much room to improve. The
result of the proposed model has much room to improve according
to Table 8. To investigate it, we replace the trained Mask R-
CNN [30] model with the ground truth segmentation (GT Segm).
Thus, the only problem with this setup is the voxel-based scene
graph generation. The model still performs well for the “Exis-
tence” and “Comparing” problem. However, for the Counting and
Enumerating problems, the performance drops more significantly,
indicating the voxel clustering approach could sometimes generate
wrong object counts. The performance drop from “Ours + GT
Segm” to “Ours” is mostly caused by instance segmentation
models’ imperfectness. Under the current implementation of the
framework, detections of the wrong category with high confidence
could be very hard to fix. Furthermore, since the asked objects are
mostly small, this will make the detection more difficult.

7.3 Qualitative Example

Figure 3. A representative example of the proposed method on the K-
EQA dataset. The agent successfully explores and performs voxel-level
reconstruction of the scene, and then generates a scene graph. The
generated program is executed on the scene graph and the correct
answer is obtained.

In Figure 3 we present an example of the actual execution
of the proposed framework. The agent first builds a voxel-level
reconstruction and then uses the clustering to build the 3D Scene
Graph. The generated program parses the words in the question,
extracts (“used for”, “a game”) to a ConceptNet entity and then
looks it up, finds the category “Basketball”, and finally queries

all basketballs and pillows on the bed in the scene, generating the
correct answer “2”.

7.4 K-EQA Extension Experiments
To investigate the limit of the proposed method for questions with
complex logical reasoning. We evaluate it on the proposed dataset
on both K-EQA split and K-EQA Extension split. As is shown
in Table 5, the proposed method performs worse on the K-EQA
Extension split than the K-EQA split. This indicating that with
more logic connectors in the questions, the problem is becoming
more challenging. The proposed framework could work on these
complex questions, but will still suffer from a drop in performance.

7.5 Multi-agent and Multi-turn Experiments

No. of Agents Accuracy Length Speedup
1 41.3% 82.7 1.00
2 41.3% 51.1 1.62
3 42.2% 42.4 1.95
4 40.2% 38.1 2.17
5 40.4% 35.6 2.32

Table 9
Multi-agent experiment results on K-EQA dataset.

No. of Turns Accuracy Length Speedup
1 41.3% 82.7 1.00
2 41.8% 51.1 1.62
3 42.8% 37.5 2.21
4 42.6% 29.3 2.82
5 42.4% 23.8 3.46
10 42.7% 12.5 6.64

Table 10
Multi-turn experiment results on K-EQA dataset.

Our proposed framework also supports multi-turn and multi-
agent question answering tasks. To demonstrate and test our
method on these scenarios, the following experiment setups are
also investigated:

Multi-Turn Setup. In this setup, the agent will be asked 10
questions in turn for one scene. The agent will get the next ques-
tion only after it answers the previous one and stops exploration.
This setup requires the agent to make use of its memories when
answering previous questions.

Table 10 shows that reconstruction and scene graph-based
memory is useful for a persistent agent. Our proposed framework
can keep a state memory that could fully represent the semantic
structure of the scanned parts of the scene. Therefore, when an
agent needs to answer multiple questions in turn, the proposed
method can significantly reduce the average track length for
answering each question.
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Multi-Agent Setup. In this setup, multiple agents will be
spawned at the same time, allowing them to explore and build
the 3D scene graph collaboratively. All agents will be spawned at
the same location as the single-agent setup. To evaluate the multi-
agent efficiency, the maximum action sequence length among all
agents is also computed [15], [16].

Multi-agent experiment results in Table 9 show that the pro-
posed method could schedule multiple agents effectively. The
average maximum step of all agents declines as the number of
agents increases. In this experiment setup, the best speed-up ratio
we can achieve is 2.32 for 5 agents.

8 CONCLUSION

We present Knowledge-based Embodied Question Answering —
a new task where the agent answers questions based on external
knowledge and scene graph in 3D embodied environment. We
develop a new dataset containing complex questions with logical
clauses and knowledge-related phrases for this task. To address
this, we propose a novel framework based on neural program
synthesis, where joint reasoning of the external knowledge and
3D scene graph is performed to realize navigation and question
answering. Experiments show that our framework could answer
more complicated questions requiring knowledge and logical rea-
soning. It can also support multi-agent and multi-turn scenarios
with the help of the scene graph. For future works, a stronger
scene graph generation model (e.g. a point-cloud-based model)
can further improve the performance of the task.
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