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Fast Rolling Shutter Correction in the Wild
Delin Qu∗, Bangyan Liao∗, Huiqing Zhang, Omar Ait-Aider, and Yizhen Lao†

Abstract—This paper addresses the problem of rolling shutter correction (RSC) in uncalibrated videos. Existing works remove rolling
shutter (RS) distortion by explicitly computing the camera motion and depth as intermediate products, followed by motion
compensation. In contrast, we first show that each distorted pixel can be implicitly rectified back to the corresponding global shutter
(GS) projection by rescaling its optical flow. Such a point-wise RSC is feasible with both perspective, and non-perspective cases
without the pre-knowledge of the camera used. Besides, it allows a pixel-wise varying RSC framework called DRSC that handles
locally varying distortion caused by various sources, such as camera motion, moving objects, and depth variation in a scene. More
importantly, our approach is an efficient CPU-based solution that enables undistorting RS video in real-time (40fps for 480p). We
evaluate our approach across a broad range of cameras and video sequences, including fast motion, dynamic scenes, and
non-perspective lenses, demonstrating the superiority of our proposed approach over state-of-the-art methods in both effectiveness
and efficiency. We also evaluated the ability of the RSC results to serve for downstream 3D analysis, such as visual odometry and
structure-from-motion, which verifies preference for the output of our algorithm over other existing RSC methods.

Index Terms—Rolling Shutter, Distortion correction, Optical flow, Epipolar geometry.

✦

1 INTRODUCTION

THE Rolling shutter (RS) is a widely used shutter mech-
anism in most of today’s consumer cameras due to its

low cost and compact design [1]. Compared to a global shut-
ter (GS) camera, which exposes each row simultaneously,
the RS camera sequentially captures the image pixels row
by row from top to bottom [2]. The time delay between
consecutive rows causes different distortions, e.g., skew,
smear and wobble when a camera is moving or filming
dynamic objects [3]. Such distortion, namely the RS effect,
not only brings a visual unpleasantness against user percep-
tion but also defeats further geometry analysis solutions de-
veloped based on GS assumptions, such as structure-from-
motion (SfM) [4] and SLAM [5]. Therefore, by removing
distortions from images, rolling shutter correction (RSC)
benefits various vital applications, such as 3D computer
vision, robotics, and consumer mobile photography, and
attracted much attention in the last decade. Existing works
on RS correction are generally categorized into inertial
measurement unit-based (IMU-based) methods [6], [7], [8],
[9], [10], single-frame methods [11], [12], [13], [14], multi-
frame methods [15], [16], [17], [18], [19] and learning-based
methods [20], [21], [22], [23], [24].

1.1 Related Work

IMU-based methods. Previous works [6], [7], [8], [9] utilize
gyroscopes to measure camera instantaneous motion of the
camera during video caption and assist compensation of
RS effects. Recently, the work of [10] incorporated IMU
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Fig. 1: Quantitative evaluations of the real-world RSC. From
top to bottom are static, dynamic, and non-perspective lens
scenes. RSC results to support the downstream application,
such as visual-odometry, are shown in the last row. Our pro-
posed method generates significantly higher quality images
than commercial software Adobe Pr [25] and state-of-the-art
learning-based RSC method CVR [26].

data into a deep network for RS rectification. However,
these methods strongly depend on external sensors, limiting
their practical use without mentioning the requirement for
precise multi-sensor calibration and synchronization.
Single-frame methods. Most methods in this category use
line features since they are generally abundant in artificial
environments. After detecting line features, performs RSC
following the ”straight lines must be straight” principle
in [11], vanishing direction constraints in [12], [13], or ana-
lytical 3D straight line RS projection model in [14]. However,
such solutions commonly rely on strong assumptions not
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only of the filmed scene, namely abundant 3D line [11],
[12], [13], [14] but also simplified camera motion, namely
rotation-only model [12], [14], [20], Ackermann model [12].
Obviously, these approaches will fail in the wild scenes lack-
ing line features or when the camera is under translation.
Multi-frame methods. Vasu et al. [27], and Zhuang et
al. [28] present two RS removal methods using multiple
1-dimension and 2-dimension local homography fields be-
tween two successive frames, respectively. While the works
of [16] and [29] address the general unordered RS images
(no need to be successive) case and respectively propose
a row-by-row local mixture homography and global ho-
mography for general unordered RS images. Beyond ho-
mography, Zhuang et al. [18] develop an epipolar-geometry-
based RS correction solution with 8pt and 9pt linear solvers
for two consecutive frames under constant velocity and
acceleration. In contrast to a 2-frame solution, the method
of [19] tries to recover the trajectory of the camera and com-
pensate RS effects by scanline realignment via interpolation.
Nevertheless, the above methods strongly depend on prior
lens calibration or suffer from high computational load and
simplified motion assumption.
Learning-based methods. Rengarajan et al. [20] first develop
a learning-based RS correction method using CNN. After
that, Zhuang et al. [21] expand [20] to learn depth and
camera motion from a single RS image. Recently, Liu et
al. [22] present an end-to-end RS correction network with
a differentiable forward warping module by giving two
consecutive RS images. The work of [23] proposes a simul-
taneous RS correction and motion deblur network with a
deformable attention module to fuse features. The work
of [24] presents a deep network that consists of a PWC-
based [30] undistortion flow estimator and a time-centred
GS image decoder. Lately, Fan et al. [26] introduce a context-
aware deep RSC model that enables occlusion reasoning and
motion compensation simultaneously.

Nevertheless, learning-based approaches require signif-
icant storage and computational resources, as well as a
substantial financial investment, due to the large size of
the training model and the need for GPU support, without
mentioning the cost of preparing qualified training datasets.

1.2 Motivation
Although RSC has made significant progress in certain

scenes, such as perspective projection, rigid scenes, and
specific camera motion, no methods have yet addressed the
’wild’ scenarios, namely the following three challenges:
General dynamic scene. Most conventional RSC methods
assume the underlying scene is static and the RS effect is
caused by camera ego motion. Though the homography [16]
based or epipolar [18] based criterion can be utilized in
RANSAC to filter out the dynamic objects features. How-
ever, such approaches will fail when encountering massive
moving objects. Learning-based methods have been seen
as a potential tool to handle such cases once the training
dataset has covered sufficient dynamic scenes [23]. How-
ever, as shown in Fig. 1 (second row), even the state-of-the-
art works are in a nascent stage for dynamic scenes. Since
general dynamic scenes are common in the wild, correcting
the distortion caused by the camera motion and moving
objects simultaneously is challenging but vital.

GPU CPU

TUM

UCR

BS-RSC

TUM

UCR

BS-RSC

1280×1024

640×480

1024×768

1280×1024

640×480

1024×768

Realtime Zone
(30 FPS)

Realtime Zone
(30 FPS)

Adobe PrAdobe Pr DSUN CVPR20DSUN CVPR20 JCD CVPR21JCD CVPR21 SUNet ICCV21SUNet ICCV21 DSfM ICCV17DSfM ICCV17 V-DRSCV-DRSCCVR CVPR22CVR CVPR22

Fig. 2: PSNR(dB) vs. runtime(ms) of state-of-the-art RSC
methods and our method on different datasets. The re-
gion indicates real-time inference at 30 fps. The red icons,
blue icons and green icons are methods on the 1280×1024
dataset, 640×480 dataset and 1024×768 dataset, respec-
tively. Our method is better not only in the efficiency aspect
but also in the accuracy aspect.

Calibration-free RSC with lens distortion. Since both the
RS effect and non-perspective lens will produce image dis-
tortion, correcting the RS effect independently from lens
distortion is challenging. To the best of our knowledge,
except for the works of [31] considering both the RS effect
and radial distortion in camera tracking, no RSC meth-
ods before addressed the RS effect with a non-perspective
model. One possible solution is to rectify the lens distortion
by using the lens calibration as a prior, followed by RSC
later. However, This prevents using these algorithms where
only the video is available, without further knowledge or
access to the lens calibration. Note that calibration-free RSC
methods [16], [27], [28], [32], which assume homography for
the perspective camera, are not feasible in non-perspective
cases. As shown in Fig. 1 (third row), the existing learning-
based methods lost their generalization ability in such sce-
narios without preparing specific training datasets. There-
fore, since non-perspective images/videos are common in
consumer cameras (e.g., sports cameras) and robotic vision,
calibration-free RSC to a non-perspective camera is essen-
tial. Unfortunately, this case has not been well addressed.
Light and efficient RSC. Notice that RSC is common in
(i) consumer image/video editing apps on PC or mobile
phones and (ii) robot vision systems (e.g., cameras on
autonomous vehicles), where real-time correction is often
required (e.g., SLAM/visual odometry) under the limited
power, storage, and computation resources. However, the
existing geometry-based RSC [18] is time-consuming, while
the learning-based approaches are common with massive
model sizes and power-consuming GPU acceleration, with-
out mentioning the cost of preparing the training data. Thus,
an RSC solution that is light (small size, low-cost, and low-
power consuming) and efficient (real-time performance) is
vital for practical applications.

1.3 Contribution and Paper Organization
To fill the gap between the three challenges of in-the-

wild RSC and existing works, we introduce a novel RSC
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TABLE 1: Comparison of the proposed method DRSC vs. the state-of-the-art RSC solutions.

Method

Learning-based Geometry-based

DSUN
[22]

JCD
[23]

SUNet
[24]

CVR
[26]

Mixed
homography [16]

Global
homography [32]

Multiple
homography [28]

DSfM
[18]

DRSC
(ours)

Dynamic Scene
√ √ √ √ √

Depth-dependent RS effect
√ √ √ √ √ √

Calibration-free
√ √ √ √ √ √ √ √

Lens distortion
√

GPU-free
√ √ √ √ √

Runtime (FPS) 8 5 17 11 5 0.2 - 0.005 40

(a) RS input (b) optical flow

(c) Correction vector (d) Corrected image

Fig. 3: (a) RS frame in the dynamic scene. (b) Raw optical
flow. (c) Our pixel-wise varying correction vector field. (d)
Output corrected image.

framework called direct RS correction (DRSC) that can
effectively and efficiently remove the RS effect from two
successive frames. Our novel insight is that an optical flow
between two successive RS frames implicitly models the
instantaneous motion and scene depth. Thus, we draw the
mathematical link (Fig. 6) between the optical flow (1st RS
to 2nd RS frame) and its corresponding correction flow (1st
RS to 1st GS frame) based on epipolar geometry. In other
words, we express the RSC of each pixel parametrically as a
rescaling of its corresponding optical flow vector. Therefore,
by tracking the optical flow of a single point feature between
two successive RS frames, the proposed method directly
brings this RS feature back to the GS projection coordinates.
As summarized in Tab. 1, this simple but effective strategy
leads to five advantages over the existing works:
1. General 6 DoF motion and depth-dependent RS ef-
fect. The proposed method can handle the general 6 DoF
motion and depth-dependent RS effect while the single-
frame-based method [11], [12], [13], [14] and homography-
based method [16], [27], [28], [29] fails in correcting RS effect
produced by translation and depth.
2. Dynamic scenes. As shown in Fig. 1(second row), the
proposed method with a pixel-wise correction scheme can
handle locally varying distortion caused by camera motion
and moving objects better than the existing RSC works
without expensive image segmentation.
3. Calibration-free for non-perspective cameras. The pro-
posed method performs RSC in pixel-level image space

exposure time
total readout time

 Treadout

delay time
 Tdelay

RS frame I1RS RS frame I2RS 

ℎ rows in total

relative pose  � �  

readout time ratio: 

� =
Treadout

Treadout + Tdelay

Fig. 4: Illustration of the exposure mechanism between two
RS consecutive frames.

without requiring any prior calibration. Besides, we theoret-
ically and experimentally verify that the proposed method
is feasible for both perspective and non-perspective models
( Fig. 1(third row)). To the best of our knowledge, this is the
first calibration-free RSC solution for the non-perspective
case.

4. Serve for downstream 3D analysis. Thanks to the pixel-
wise correction scheme, the proposed method corrects the
matched or tracked features which can serve for down-
stream 3D vision applications such as SfM/SLAM. Thus,
as shown in Fig. 1(fourth row), we can easily use DRSC as a
flexible tool to plug in most of the famous SfM (e.g., Visual-
SfM [4]) and SLAM frameworks (e.g., ORB-SLAM2 [33]).

5. Fast RSC in real-time. The proposed solution is based
on a novel single-point analytical solver free from iterative
optimization or RANSAC selection. As shown in Fig. 2,
DRSC runs efficiently over the existing works without GPU
acceleration.

In summary, our contributions include:

• A novel geometry-based pixel-wise pose-free correction
solver that corrects a single image pixel parametrically
by rescaling its corresponding optical flow vector, which
faithfully models the general 6 DoF motion and depth-
depend RS effect.

• A calibration-free RSC method that handles both perspec-
tive and non-perspective cameras in dynamic scenes.

• Extensive evaluations of visual correction quality across
a broad range of cameras and scenes demonstrate the
superiority of our proposed approach over state-of-the-art
methods in terms of effectiveness and efficiency. Besides,
we experimentally verify that the proposed method can
effectively augment GS SfM/SLAM to RS-aware ones.

• A highly efficient RSC solution that corrects RS video at
40 fps can support the RS-VO and RS-SLAM in real-time.
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2 OPTICAL FLOW FOR GS AND RS INSTAN-
TANEOUS MOTION

In this section, we provide a brief description of the
derivation of optical flow that relates to the instantaneous
motion between two successive GS frames and two RS
frames, respectively. Since this section does not include our
contributions, we give only the basic information to follow
the rest of this paper. More details of the algorithm can be
found in our supplementary materials and [18], [34], [35].

2.1 Instantaneous GS Optical Flow Model [34] [35]

Assuming a 3D point P = [X,Y, Z]⊤ is projected
as normalized image points qGS

1 = [xGS
1 , yGS

1 , 1]⊤ and
qGS
2 = [xGS

2 , yGS
2 , 1]⊤ in two consecutive GS frames IGS

1 and
IGS
2 with the constant instantaneous motion integrated by

translation velocity t = [t1, t2, t3]
⊤ and rotational velocity

r = [r1, r2, r3]
⊤. The GS optical flow uGS

(1:2) induced by (r, t)

of a certain qGS
1 is first introduced in [34] as:

uGS
(1:2) =

A(xGS
1 , yGS

1 )t

Z
+B(xGS

1 , yGS
1 )r, (1)

A(xGS
1 , yGS

1 ) =

[
−1 0 xGS

1

0 −1 yGS
1

]
, (1a)

B(xGS
1 , yGS

1 ) =

[
xGS
1 yGS

1 −(1 + xGS
1

2
) yGS

1

(1 + yGS
1

2
) −xGS

1 yGS
1 −xGS

1

]
, (1b)

where the global shutter homogeneous optical flow vector
uGS, uGS ∈ R3 and uGS

(3) = 0, indicates the displacement of
a pixel over two consecutive GS frames, which is equal to
qGS
2 − qGS

1 . We denote uGS
(i:j) as a vector consisting of the ith

to jth elements of uGS. Z is the corresponding depth of each
pixel and can be eliminated to yield the differential epipolar
constraint, which is first given in [35] as:

uGS⊤[t]×q
GS
1 − qGS

1

⊤
sqGS

1 = 0, (2)

with, s =
1

2
([t]×[r]× + [r]×[t]×), (2a)

where the velocities r and t indicate the poses of two GS
frames. Specifically, [I|0] for IGS

1 and [R|t] for IGS
2 , where the

relative rotation is modelled using small rotation approxi-
mation R = Exp(r) ≈ I + [r]×, where [r]× is the skew-
symmetric matrix of r.

2.2 Instantaneous RS Optical Flow Model [18]

The work of [18] extends the instantaneous GS optical
flow model to RS case. As the rolling shutter mechanism
shown in Fig. 4, the sensor scans the scene rapidly and
sequentially. Thus, every single scanline holds an individual
camera pose relevant to the row index and readout time
ratio γ. Assuming a 3D point P is filmed by two consec-
utive RS frames IRS

1 and IRS
2 as qRS

1 = [xRS
1 , yRS

1 , 1]⊤ and
qRS
2 = [xRS

2 , yRS
2 , 1]⊤. As shown in Fig. 5, with the temporal

varying pose during the exposure, the relative pose between
qRS
1 and qRS

2 becomes:

rRS
1→2 = (1 +

γ

h
(yRS

2 − yRS
1 ))r,

tRS
1→2 = (1 +

γ

h
(yRS

2 − yRS
1 ))t,

(3)

�1→2
GS = �,  �1→2

GS = � 

�1
GS

�1
RS

�2
RS

�2
GS

I1
GS I2

GS

I1
RS I2

RS

Relative Pose:

Relative Pose:

Absolute Pose:

�1→2
RS = (1 +

�
ℎ

(�2
RS − �1

RS))�,  �1→2
RS = (1 +

�
ℎ

(�2
RS − �1

RS))� 

�1
GS = �,  �1

GS = � 

Absolute Pose:
�2

GS = �,  �2
GS = � 

Absolute Pose:
�1

RS =
�
ℎ

�1
RS�,  �1

RS =
�
ℎ

�1
RS� 

Absolute Pose:
�2

RS = (1 +
�
ℎ

�2
RS)�,  �2

RS = (1 +
�
ℎ

�2
RS)� 

Fig. 5: Configurations of instantaneous GS optical flow [35]
(top) and instantaneous RS optical flow [18] (bottom).

where h is the normalized image height, and γ is the readout
time ratio. By substituting Eq. (3) into Eq. (2), we obtain the
constraint of homogeneous RS optical flow uRS

uRS⊤

1 + γ
h (y

RS
2 − yRS

1 )
[t]×q

RS
1 − qRS

1

⊤
sqRS

1 = 0, (4)

where s is defined in Eq. (2a). The rolling shutter
homogeneous optical flow vector uRS, uRS ∈ R3 and
uRS
(3) = 0, indicates the displacement of a pixel over

two consecutive RS frames, which is equal to qRS
2 − qRS

1 .
Removing the common factor of t and r in Eq. (2) and
(4), we have the following Lemma illustrating the relation
between uGS and uRS.

Lemma 1. The homogeneous RS optical flow vector uRS when
scaled by dimensionless scaling factor 1 + γ

h (y
RS
2 − yRS

1 ) is
equivalent to the homogeneous GS optical flow vector uGS:

uGS =
1

1 + γ
h (y

RS
2 − yRS

1 )
uRS. (5)

□

3 METHODOLOGY
By Lemma 1, the work of [18] rescales all uRS vectors

followed by the conventional GS-based linear 8pt algo-
rithm [35] to recover the instantaneous motion r and t
and depth. Finally, RSC can be done jointly using camera
motion and depth variation in a static scene. However,
we found out that such a solution does not hold well in
computing the depth map since with a short baseline and
is time-consuming with RANSAC filtering and nonlinear
refinement.

In contrast, our insight is to correct an RS projection qRS
1

directly by using its optical flow uRS without the need to
compute the camera instantaneous motion and depth as an
intermediate product or any joint process (e.g., RANSAC).

In this section, we first present the pixel-wise pose-free
RSC solver in calibrated case (Sec. 3.1.2) and then show that
it still holds in the uncalibrated case with both perspec-
tive (Sec. 3.1.3) and non-perspective projection (Sec. 3.1.4)
models. In Sec. 3.2, we introduce our direct RSC framework
(DRSC) based on pixel-wise pose-free RSC solver for image
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u

(a)          (b)          

Fig. 6: Two examples of proposed pixel-wise pose-free RSC
solver (a) on the normalized image plane (Proposition 1)
and (b) pixel measurement plane (Corollary 1 and Corollary
2).

correction (Sec. 3.2.1) and keypoint correction (Sec. 3.2.2)
respectively, and followed by its error analysis details in
Sec. 4.1.

3.1 Pixel-wise pose-free RSC Solver
3.1.1 Correction Vector

In order to correct RS projection qRS
1 back to GS projec-

tion qGS
1 as Fig. 6(a), we model the homogeneous correction

vector ucorr = qGS
1 − qRS

1 . As shown in Fig. 5, all the points
in IGS

1 share the same pose as rGS
1 = 0 and tGS

1 = 0. While
the pose of qRS

1 in IRS
1 is

rRS
1 =

γyRS
1

h
r, tRS

1 =
γyRS

1

h
t, (6)

where the pose of scanline yRS
1 is a linear scaling of r and t.

Thus, we have the following Lemma.

Lemma 2. The GS optical flow vector uGS when scaled by
dimensionless scaling factor −γyRS

1

h is equivalent to the correction
vector ucorr:

ucorr = −γyRS
1

h
uGS. (7)

Proof. Since rGS
1 = 0 and tGS

1 = 0, the relative pose from qRS
1

to qGS
1 is the same as Eq. (6). By substituting rRS

1 , tRS
1 into

Eq. (1)

ucorr
(1:2) =

A(xGS
1 , yGS

1 )(tGS
1 − tRS

1 )

Z
+B(xGS

1 , yGS
1 )(rGS

1 − rRS
1 )

= −γyRS
1

h
(
A(xGS

1 , yGS
1 )t

Z
+B(xGS

1 , yGS
1 )r)

= −γyRS
1

h
uGS
(1:2)

(8)

where A and B are defined in Eq. (1a) and (1b), respectively.
In addition, ucorr is the correction homogeneous optical
flow vector, where ucorr ∈ R3 and ucorr

(3) = 0. □

Lemma 2 describes the relationship between ucorr and
uGS, namely, they are equivalent by a dimensionless scaling
factor −γyRS

1

h .

3.1.2 Pixel-wise pose-free RSC Solver to Calibrated Image
Note that we aim to obtain the correction vector ucorr as

Fig. 6(b) by using uRS directly without computing the depth
or instantaneous motion in [18]. To this end, we introduce

the following proposition.

Proposition 1. Given two consecutive RS images IRS
1 and IRS

2 ,
the RS image point qRS

1 can be corrected to the corresponding GS
image point qGS

1 by following transform:

qGS
1 = qRS

1 − yRS
1

h
γ + (yRS

2 − yRS
1 )

uRS. (9)

Proof. By Lemma 1 and Lemma 2, we substitute ucorr from
Eq. (7) and uGS from Eq. (5) cascadingly into qGS

1 = qRS
1 +

ucorr, we obtain:

qGS
1 = qRS

1 + ucorr = qRS
1 − γyRS

1

h
uGS

= qRS
1 −

γyRS
1

h

1 + γ
h (y

RS
2 − yRS

1 )
uRS

= qRS
1 − yRS

1
h
γ + (yRS

2 − yRS
1 )

uRS.

(10)

□

Note that given two consecutive RS images IRS
1 and IRS

2 ,
one can use pixel-wise pose-free RSC solver in Proposition
1 to correct the RS projection qRS

1 back to qGS
1 , since yRS

1 , yRS
2

and uRS are directly measured from IRS
1 and IRS

2 .

3.1.3 Pixel-wise pose-free RSC solver for uncalibrated per-
spective image

Notice that Proposition 1 models the correction proce-
dure in the normalized image plane. For the uncalibrated
perspective case, we assume the image measurements are
projected by mGS

1 = [uGS
1 , vGS

1 , 1]⊤ = KqGS
1 , mGS

2 =
[uGS

2 , vGS
2 , 1]⊤ = KqGS

2 , mRS
1 = [uRS

1 , vRS
1 , 1]⊤ = KqRS

1 , and
mRS

2 = [uRS
2 , vRS

2 , 1]⊤ = KqRS
2 with intrinsic matrix

K =

fx s ux

0 fy uy

0 0 1

 , (11)

where fx and fy are focal lengths, ux, uy and s are the
principal point offset and skew coefficient. With such a
setting, we present the following corollary of Proposition 1.

Corollary 1. Given two consecutive RS images IRS
1 and IRS

2 with
a perspective projection model, the RS image point mRS

1 can be
corrected to the corresponding GS image measurement mGS

1 by
the following transform:

mGS
1 = mRS

1 − vRS
1

h̃
γ + (vRS

2 − vRS
1 )

ũRS, (12)

where ũRS indicates the RS optical flow in the image pixel
level system, and h̃ = fyh is the image height.
Proof. By substituting the definition of K in Eq. (11) into
Eq. (5) and Eq. (7), Lemma 1 and Lemma 2 still hold for the
image measurement level as:

ũGS =
1

1 + γ

h̃
(vRS

2 − vRS
1 )

ũRS, (5a)

ũcorr = −γvRS
1

h̃
ũGS, (7a)
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Fig. 7: Example of pixel-wise pose-free RSC with perspec-
tive camera model (Corollary 1). The perspective warp of
the input RS image (left) has been removed, yielding the
corrected image (right).

where the dimensionless scaling factors follow the same
patterns as those in Eq. (5) and (7). By recursively
substituting ũcorr from (7a) and ũGS from (5a) into
mGS

1 = mRS
1 + ũcorr, we obtain Corollary 1. □

Thus as shown in Fig. 7, which provides a visual exam-
ple from Sec. 4.2.1, by giving two consecutive RS images
with the perspective projection assumption, one can use the
pixel-wise pose-free RSC solver in Corollary 1 to correct
the RS projection mRS

1 back to mGS
1 using its optical flow

vector. Note that the h̃ can be measured directly from the
input images, while γ are obtained from pre-calibration
or manually set as a fixed number (detailed discussion in
Sec. 4.2.6).

3.1.4 Pixel-wise pose-free RSC Solver for Uncalibrated
Non-perspective Image

To the best of our knowledge, RSC to uncalibrated non-
perspective images has never been addressed in the existing
literature. We point out that the proposed pixel-wise pose-
free RSC solver also holds in such cases. We model the
image measurements with the one parameter additive radial
distortion [36], [37] as:

mRS
1 = K

xRS
1 (1 + k1r

2
1)

yRS
1 (1 + k1r

2
1)

1

 ,

mRS
2 = K

xRS
2 (1 + k1r

2
2)

yRS
2 (1 + k1r

2
2)

1

 ,

with, r21 = (xRS
1 )2 + (yRS

1 )2, r22 = (xRS
2 )2 + (yRS

2 )2,

(13)

where k1 is a radial distortion coefficient of the lens. Note
that we use a single coefficient of the quadratic term only.
With such a setting, we present the following corollary of
Proposition 1:

Corollary 2. Given two consecutive RS images IRS
1 and IRS

2 with
a non-perspective projection model, the RS image point mRS

1 can
be corrected to the corresponding GS image measurement mGS

1 by
the following transform:

mGS
1 = mRS

1 − vRS
1

h̃
γ + (vRS

2 − vRS
1 )

ũRS, (14)

where h̃ = fy(h+ k1h
2).
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Fig. 8: Example of pixel-wise pose-free RSC with non-
perspective camera model (Corollary 2). The distortion of
the input RS image (left) is removed, yielding the corrected
image (right).
Proof. By substituting the distortion model in Eq. (13) into
Eq. (5) and Eq. (7), Lemma 1 and Lemma 2 still hold for the
image measurement level as:

ũGS =
1

1 + γ

h̃
(vRS

2 − vRS
1 )

ũRS, (5b)

ũcorr = −γvRS
1

h̃
ũGS, (7b)

subject to two approximations r21 ≈ r22 and
1 + k1h

2 ≈ 1 + k1r
2
1 . The dimensionless scaling factors

stay the same patterns as those in Eq. (5) and (7). Now, by
recursively substituting ũcorr from (7a) and ũGS from (5a)
into mGS

1 = mRS
1 + ũcorr, we obtain Corollary 2. □

By following the experiment setup and evaluation in
Sec. 4.1 and Eq. 15, we evaluated the performance of pixel-
wise pose-free RSC solver in a simulated dynamic scene
with lens distortion by increasing the distortion coefficient
k1 (b) from 0 to 0.90, which is rare in real applications. As
shown in Fig. 11(b), pixel-wise pose-free RSC solver can
provide RSC errors below 10px even with 0.90 distortion
coefficient k1. This strongly proves the effectiveness of the
single-pixel pose-free solver correction when dealing with
non-perspective projection. A visualized example of RSC on
the non-perspective camera model is shown in Fig. 8, the
pixel-wise pose-free RSC solver still holds with RS images
with non-perspective projection assumption. However, once
the camera has high values of high-order radial distortion
terms or decentering distortion terms, the two approxi-
mations used in Corollary 2 may fail, leading to lower
performance in RS correction.

3.1.5 Degeneracy Analysis

Note that some degenerate cases have been reported
in existing optical flow-based works [18], [28], [35] that
multiple combinations of camera motion and scene can
explain a group of optical flows. Although such degeneracy
in the optical flow-based methods is rarely raised in real
applications, they still bring potential risks in recovering the
camera motion and leading to the failure of RSC.

In contrast, the proposed pixel-wise pose-free RSC solver
corrects the RS projections directly in the image without
estimating camera motion or depth. Therefore, it has no
known degenerate solution as optical flow-based motion
recovery algorithms using epipolar [18] or homography [28]
geometry.
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Fig. 9: Pipelines of the proposed two types of DRSC, namely, visual correction one as V-DRSC (top) and keypoint correction
one as K-DRSC (bottom).

3.2 Direct RS Correction (DRSC)

As shown in Fig. 9, we present a direct RS correction
(DRSC) framework for various applications using the pro-
posed pixel-wise pose-free RSC solver:
• Visual correction (V-DRSC). By computing the dense

optical flow over video, we can correct each frame with
high quality and efficiency.

• Keypoint correction (K-DRSC). Towards 3D analysis,
we only correct tracked keypoints instead of correct-
ing the whole frame pixels, which allows argument GS
SLAM/VO solutions to handle RS input in real-time.

3.2.1 V-DRSC
In this mode, we visually correct the distortion of input

RS video in 3 steps:
Step 1: Dense optical flow estimation. To efficiently and ro-
bustly correct the whole RS frame with our pixel-wise pose-
free RSC solver, the key is to obtain the accurate dense
optical flow as input in a short time. Since dense optical flow
estimation is a well-studied topic in the Computer Vision
community, we choose the sparse pyramidal KLT to track
features [38] and then interpolate the per-pixel optical flow
using edge-preserving scheme [39] 1.
Step 2: Correction vector field estimation. With the obtained
dense optical flow ũRS, we can compute the correction vector
field ũcorr by applying Eq. (12) for both perspective and non-
perspective camera based on Corollary 1 and 2.
Step 3: Image correction. In the final step, we apply a generic

geometrical transformation to the current RS frame IRS with
correction vector field ũcorr as displacement map 2. Then
a bilinear interpolation is applied to handle the corrected
pixels with non-integer coordinates.

3.2.2 K-DRSC
In this mode, we correct sparse features only instead

of every pixel as a pre-processing step for the downstream
geometry-based 3D analysis, such as SfM, VO, and SLAM.
In this paper, we use ORB-SLAM2 [33] as an example to
illustrate how to use K-DRSC to argue classical GS VO to
handle RS input. It is important to note that K-DRSC can

1calcOpticalFlowSparseToDense function in opencv [40]
2remap function in opencv [40]

also be easily applied to other 3D vision solutions. K-DRSC
has two main steps:
Step 1: Features matching. Since the tracking thread in ORB-
SLAM2 extracts ORB features [41] of every current frame
and matches to the map points observed in the last frame.
This mechanism directly provides sparse optical flow vec-
tors ũcorr between every two consecutive frames.
Step 2: Output corrected features. We update the coordinates
of every matched feature on the current frame by perform-
ing pixel-wise pose-free RSC solvers independently based
on Eq. (12). Note that the correction is directly on the image
pixel level and is feasible for both perspective and non-
perspective cases. Then the tracking thread continues the
procedure to optimize the camera pose using the corrected
2D ORB feature. Thus we correct the detected features on
every frame instead of processing the keyframes only to
improve the quality of pose estimation and point reconstruc-
tion.

3.3 Limitation

The proposed method cannot be applied to all RSC
scenarios. As with most other RSC works, it comes with
some limitations:
• We focus on the RSC with video as input. Thus the

proposed method can not rectify a single RS image alone.
This limitation is shared with most state-of-the-art RSC
solutions [16], [18], [22], [23], [24], [27], [28], [32]. But it
is important to note that the existing single image base
RSC works commonly suffer from strong assumptions on
camera motion (e.g., rotate-only [12], [20]) or 3D scene
(e.g., Manhattan world [11], [12], [29]) while the video-
based approaches relax these restrictive assumptions.

• For visual correction, the proposed V-RSDC requires
dense matching between two consecutive frames. How-
ever, we perform a backward-forward checking to filter
the mismatching, but it still leads to risk in correcting
close-depth RS projections with high-speed instantaneous
motion. This drawback may be avoided by applying the
Kalman filter over the whole RS video. Note that [18] also
requires dense matching for depth map generation.

• For visual correction, V-RSDC does not handle the oc-
clusion issue. However, with the report in [18] and our
observations in the experiment that the correction vectors
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(a) Input RS (b) CVR result, PSNR= 22.1 (c) V-DRSC result, PSNR=26.6 

Fig. 10: (a) Input RS image has occlusion with ground-truth
GS. (b) Corrected result by SOTA RSC method CVR [26]
which can reason about occlusions. (c) Corrected result by
proposed V-DRSC.

between two consecutive frames are small, and the ghost-
ing artifacts caused by the mismatching can be negligible.
Thus, we do not apply the gap-filling by copying the
pixel from the next frame as [27]. As shown in Fig. 10,
the occlusion leads to local blur after performing V-RSDC
but is visually negligible and surprisingly better than the
state-of-the-art RSC method CVR [26] which is designed
to handle such occlusion.

4 EXPERIMENTS
Comparison methods. In our experiments, the proposed
method V-DRSC and K-DRSC were compared to four state-
of-the-art RS correction solutions and one famous commer-
cial application:
• DSfM: Differential RS-SfM based RSC method [18]. Specif-

ically, we use the 4pt linear solver with the constant ve-
locity model in synthetic experiments, and the 9pt linear
solver with the constant acceleration model in real im-
age experiment3. Note that DSfM requires pre-calibration.
Thus we use the ground-truth information as input if it is
available. Otherwise, we use rough estimates of intrinsic
for the uncalibrated cases.

• Adobe Pr: Premiere Pro (Pr) [25] is a well-known pro-
fessional video editing software developed by Adobe. In
the experiment, we use the RS repair function in Adobe
Pr4. Specifically, we use the ’Pixel-Motion’ method, which
experimentally outperforms other selections.

• DSUN: Learning-based two-view RSC method [22]5.
• JCD: Learning-based two-view RSC and deblurring ap-

proach [23] 6.
• SUNet: Learning-based two-view RSC and interpolation

method [24]7.
• CVR: Learning-based context-aware two-view RSC solu-

tion [26]8.

4.1 Validating Modeling Assumption
In this section, we analyze three main error sources of

the proposed RSC method and experimentally evaluate the
MAE error in Eq. (15) of DRSC with increasing rotation
speed, distortion coefficient k1, rotation acceleration, and
translation acceleration, respectively.

3https://github.com/ThomasZiegler/RS-aware-differential-SfM
4https://helpx.adobe.com/premiere-pro/using/rolling-shutter-
repair.html

5https://github.com/ethliup/DeepUnrollNet
6https://github.com/zzh-tech/RSCD
7https://github.com/GitCVfb/SUNet
8https://github.com/GitCVfb/CVR
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Fig. 11: Errors of the input RS image before and after cor-
rection by pixel-wise pose-free RSC with increasing rotation
speed (a), distortion coefficient k1 (b), rotational acceleration
(c), and translation acceleration (d).

Simulation Setup: We generated a cube scene with
602 feature points, which was imaged in two RS consec-
utive frames under constant velocity with 480 × 640px
image resolution and 320px focal length. Since we obtain
matched features between two views, we can only evaluate
K-DRSC to DSfM in this experiment. We compared the
two approaches by varying the motion speed, depth of the
3D points, camera scanning speed, noise on image mea-
surements, non-rigidity of the scene, and hyper-parameter
setting. To simulate the noise, we directly added random
Gaussian noise to the image measurements (pixel-level)
in the experiments. The default setting is 15 deg/frame
and 2.4 unit/frame for rotational and translational speed,
10m depth, 7.1510−5seconds/row for scanning speed, 1.5px
noise, 0% dynamic 3D feature point, and 0.9 for readout
ratio.

Evaluation Metrics: Since ground truths are available at
each configuration, we evaluated RSC accuracy by running
100 trials and computing the mean absolute error (MAE):

MAE =
1

n

n∑
i=1

∥∥∥mGS
1,i − m̄GS

1,i

∥∥∥ , (15)

where n is the number of features. m̄GS
1,i is the coordinates

of ith corrected projection in the first image while mGS
1,i is its

corresponding ground truth GS projection.

4.1.1 instantaneous motion Modelling
The proposed RSC method is based on the optical flow

modelling between two consecutive RS frames based on a
small rotation approximation and constant velocity assump-
tion.
1) Small rotation approximation. The rotation
parametrization used in the works of [18], [35] and
this paper is defined as R = Exp(r) ≈ I + [r]×, which
is a linearization of Rodrigues rotation formula by using
first-order Taylor expansion around the rotation of IRS

1 .
There is a gap between this approximation and a more
accurate rotation such as SLERP [42]. However, note that
such approximation holds when the relative rotation is
small between two consecutive frames. This simplification

https://github.com/ThomasZiegler/RS-aware-differential-SfM
https://github.com/ThomasZiegler/RS-aware-differential-SfM
https://helpx.adobe.com/premiere-pro/using/rolling-shutter-repair.html
https://helpx.adobe.com/premiere-pro/using/rolling-shutter-repair.html
https://github.com/ethliup/DeepUnrollNet
https://github.com/ethliup/DeepUnrollNet
https://github.com/zzh-tech/RSCD
https://github.com/zzh-tech/RSCD
https://github.com/GitCVfb/SUNet
https://github.com/GitCVfb/SUNet
https://github.com/GitCVfb/CVR
https://github.com/GitCVfb/CVR
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Fig. 12: Correction errors for DSfM [18] and K-DRSC with
increasing rotational (a)(b)(c) and translation speed (d)(e)(f).

has been widely used in existing RS vision works [3],
[18], [28], [29], [43], [44], and is a good compromise
between precision and model complexity. As shown in
Fig. 11(a), the proposed pixel-wise pose-free RSC solver
with approximation can reduce the RS distortion caused
by camera rotation with precise Rodrigues rotation from 0
deg/frame to 45 deg/frame speed.

2) Constant velocity vs acceleration. The works of [12],
[18], [28] argue that the constant velocity assumption can be
too restrictive for hand-held devices shaking and propose
considering constant acceleration to enhance the general-
ity of the motion model. As shown in Fig. 11(c)(d), the
proposed DRSC solution can keep correcting RS projec-
tions back to the GS projection up to 25 deg/frame2 and
0.022m/frame2 ≈ 17m/s2 (a scene with average 1m depth)
which is rarely reached in real applications. We interpret this
observation as the instantaneous motion with significant ac-
celeration can be approximated as constant velocity motion
between two consecutive frames.

4.1.2 Constant Depth Assumption
Notice that the optical flow models [18], [35] assume the

scene depths are the same in the first and second frames, and
so does the proposed pixel-wise pose-free RSC solver. This
constant depth assumption may deviate from reality under
certain instantaneous motion types. This section analyzes
how this gap affects the accuracy of the proposed pixel-
wise pose-free RSC solver. We point out that the error comes
from the fact that the optical flow ũRS used in Proposi-
tion 1 and its corollaries are based on the constant depth
assumption, while in the real application, the optical flow
vectors are measured as mRS

2 − mRS
1 with varying depth in

two consecutive frames. Here, we model the error (in pixel)
between ground truth GS projection m̄GS

1 and mGS
1 corrected

by our pixel-wise pose-free RSC solver using Eq. (12) under
different types of instantaneous motion as:∥∥∥m̄GS

1 −mGS
1

∥∥∥ =

∥∥∥∥∥∥m̄GS
1 −mRS

1 +
vRS
1 (mRS

2 −mRS
1 )

h̃
γ + (vRS

2 − vRS
1 )

∥∥∥∥∥∥ , (16)

m̄GS
1 =

1

ZGS
1

K(IP+ 0), (16a)

mRS
1 =

1

ZRS
1

K((I+ vRS
1 [ω]×)P+ vRS

1 d), (16b)

where ZGS
1 and ZRS

1 respectively denote the depth of GS
and RS pixel. The instantaneous motion ω = [ωx, ωy, ωz]

⊤

and d = [d, dy, dz]
⊤ has 6 types of atomic motion, namely

ωx, ωy , ωz , dx, dy and dz . With these atomic motions, the
correction error becomes:
• Substituting ωz ̸= 0 and the others = 0, dx ̸= 0 and the

others = 0 or dy ̸= 0 and the others = 0 into Eq. (16a) and
(16b), the correction error becomes 0 (proof in the sup-
plemental material), which means that the instantaneous
motion constituted by these three types introduce no error
in proposed pixel-wise pose-free RSC solver.

• Substituting ωx ̸= 0, ωy ̸= 0 and dz ̸= 0 into Eq. (16a)
and (16b) leads to non-zero error (proof in the supple-
mental material). Thus, the correction accuracy of DRSC
will decrease with increasing speed. However, existing
work [35] and our experiments show that the depth vari-
ation between two consecutive frames is small and can
be ignored. Thus, the correction error caused by deviation
from constant depth is negligible.

The experiment results shown in Fig. 12 verify our above
theoretical analysis that pixel-wise pose-free RSC solver
leads to no error with the atomic motions along ωz , dx, dy .
While the correction error of the pose-free RSC solver grows
with the increasing speed along ωx, ωy , dz but is still able to
reduce 90% RS effect error even up to 25 deg/frame and 3.5
m/frame.

4.2 Synthetic Data

4.2.1 Effect of instantaneous motion
We evaluated the robustness of the two methods against

six atomic kinematics types, namely ωx, ωy , ωz , dx, dy , dz ,
with increasing rotational and translation speed from 0 to
30 deg/frame and 4 units/frame gradually. The results in
Fig. 12 show DSfM provides satisfying corrections with slow
kinematics but drop dramatically beyond 9 deg/frame or
1 unit/frame. We attribute the performance gap between
DRSC and DSfM to the fact that DRSC is a pixel-wise pose-
free method that warps each pixel directly on the image,
while DSfM requires an accurate estimation of the camera
motion and depth for each pixel before correction. Thus,
even small recovered errors among the mid-product r, t
and Z by DSfM could lead to bad corrections. For instance,
we observe that DSfM often predicts a large depth for
each feature with pure translation and leads to almost no
correction (Fig. 12 (d)(e)(f)). In contrast, K-DRSC can provide
stable and accurate corrections under all configurations.

4.2.2 Effect of Depth
In this experiment, we vary the average depth of 3D features
from 1 to 100 m. The results in Fig. 13(a) show that both
DSfM and K-DRSC perform better with large depth. How-
ever, K-DRSC outperforms DSfM significantly under small
depth. This is easily understood because any movement
generally induces an optical flow of magnitude inversely
proportional to the depth (except for pure rotations).

4.2.3 Effect of Scanning Speed
We evaluate the robustness of the two methods with

increasing camera scanning speed. The results in Fig. 13(b)
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Fig. 13: Correction errors for DSfM [18] and K-DRSC under
different feature depth (a), camera scanning period Tv (b),
noise levels in the image (c), and the ratio of dynamic 3D
feature (d).

show that the RSC errors of DSfM and K-DRSC increase
linearly. Therefore, the slower the scanning speed (tv), the
larger RSC error due to the violation of constant depth and
small motion assumptions. However, the RSC errors of K-
DRSC rise slightly from 0 to 16px in the interval from 0 to
0.1 seconds/frame, while DSfM increases dramatically and
closing RS projection errors.

4.2.4 Effect of Image Noise
In Fig. 13(c), we observe that the errors for all methods

increase linearly when noise varies from 0 to 4 pixels.
However, K-DRSC shows a significantly better tolerance to
noise than DSfM.

4.2.5 Effect of Non-rigidity
We evaluated the performance of DSfM and K-DRSC

in a simulated dynamic scene with varying non-rigidity
by increasing the ratio of randomly moving 3D features
from 0% to 100%. As shown in Fig. 13(d) that DSfM, which
assumes a static scene, fails with a large ratio of dynamic
features. Thanks to the pixel-wise pose-free RSC solver, the
proposed K-DRSC corrects each feature independently with-
out rigidity assumption. Therefore, K-DRSC can provide
RSC errors below 1px even with 100% dynamic features.

4.2.6 Hyper-parameter γ Sensitivity
Notice that Proposition 1 and its corollaries require read-

out ratio γ as input. Hence, we evaluate the sensitivities
of the proposed method and DSfM to hyper-parameter γ.
In the first experiment, we set the value of γ as ground
truth in all configurations. As shown in Fig. 14(a), K-
DRSC provides accurate correction with increasing γ and
outperforms DSfM by a significant margin. In the second
experiment, we evaluate the influence on the accuracy of
the proposed pixel-wise pose-free RSC solver caused by the
deviation between the setting value and the ground truth
one. The value of γ is fixed to 0.9 in all configurations.
The results in Fig. 14(b) show that both DSfM and K-DRSC
remain stable with varying different camera readout ratios.
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Fig. 14: Correction errors for DSfM [18] and K-DRSC with
increasing camera readout ratio γ. As a hyper-parameter,
we set γ as the ground truth value in (a), and the fixed
value as 0.9 in (b).

K-DRSC provides MAE of RSC lower than 13px even with
significant difference between ground truth γ = 0.5 and the
fixed setting γ = 0.9.

4.3 RS Image Correction
Datasets. We compare all the RSC methods in the following
publicly available RS datasets:
• Carla-RS and Fastec-RS: Both datasets were published

in [22] and contain ground truth GS images. Carla-RS
dataset9 is synthesized from a virtual 3D scene while
Fastec-RS10 is synthesized by high frame rate GS video.

• WHU: WHU dataset11 was published in [45] and provides
ground truth GS images and camera poses.

• TUM: The TUM RS dataset12 was published in [46] and
contains time-synchronized global-shutter and rolling-
shutter images captured by non-perspective cameras and
provides ground-truth poses for ten RS video sequences.

• GPark: Strong RS video sequences from [7].
• Seq77: Synthetic indoor RS video and provides ground-

truth poses of each frame [47]13.
• 3GS and House: Rolling shutter rectification dataset

in [19]14. which provides synthetic RS images with ground
truth GS images (House sequences), and real RS video
captured by iPhone 3GS (3GS sequences).

• BS-RSC: Real-world RSC dataset with various motions
collected by a beam-splitter acquisition system [48]15.

• UCR: We contribute the first synthetic RS dataset for
dynamic scene UCR (Urban Crossroads Rolling Shutter
Dataset) based on Kubric [49] that contains seven chal-
lenging sequences with various strong dynamic objects
and camera motions16.

• YouTube: We collect a number of RS sequences, which
contain non-perspective (fisheye camera) videos captured
in highly dynamic scenes from YouTube.

9https://drive.google.com/file/d/15vXSX3g STd6RPDWLg2sIn11m
KH0sXxg/view

10https://drive.google.com/file/d/1gJoI7PSv7KEm2qb9-bt6hiyZ3PPlw
Epd/view

11http://aric.whu.edu.cn/caolike/2019/11/05/the-whu-rsvi-dataset
12https://vision.in.tum.de/data/datasets/rolling-shutter-dataset
13https://cs.adelaide.edu.au/∼jaehak/data/rolling shutter
14https://www.cvl.isy.liu.se/research/datasets/rs-dataset
15https://github.com/ljzycmd/BSRSC
16https://github.com/DelinQu/Urban-Crossroads-Rolling-Shutter-Da

taset

https://drive.google.com/file/d/15vXSX3g_STd6RPDWLg2sIn11mKH0sXxg/view
https://drive.google.com/file/d/15vXSX3g_STd6RPDWLg2sIn11mKH0sXxg/view
https://drive.google.com/file/d/15vXSX3g_STd6RPDWLg2sIn11mKH0sXxg/view
https://drive.google.com/file/d/15vXSX3g_STd6RPDWLg2sIn11mKH0sXxg/view
https://drive.google.com/file/d/1gJoI7PSv7KEm2qb9-bt6hiyZ3PPlwEpd/view
https://drive.google.com/file/d/1gJoI7PSv7KEm2qb9-bt6hiyZ3PPlwEpd/view
https://drive.google.com/file/d/1gJoI7PSv7KEm2qb9-bt6hiyZ3PPlwEpd/view
https://drive.google.com/file/d/1gJoI7PSv7KEm2qb9-bt6hiyZ3PPlwEpd/view
http://aric.whu.edu.cn/caolike/2019/11/05/the-whu-rsvi-dataset/
http://aric.whu.edu.cn/caolike/2019/11/05/the-whu-rsvi-dataset
https://vision.in.tum.de/data/datasets/rolling-shutter-dataset
https://vision.in.tum.de/data/datasets/rolling-shutter-dataset
https://cs.adelaide.edu.au/~jaehak/data/rolling_shutter/
https://cs.adelaide.edu.au/~jaehak/data/rolling_shutter
https://www.cvl.isy.liu.se/research/datasets/rs-dataset/
https://www.cvl.isy.liu.se/research/datasets/rs-dataset
https://github.com/ljzycmd/BSRSC
https://github.com/ljzycmd/BSRSC
https://github.com/DelinQu/Urban-Crossroads-Rolling-Shutter-Dataset
https://github.com/DelinQu/Urban-Crossroads-Rolling-Shutter-Dataset
https://github.com/DelinQu/Urban-Crossroads-Rolling-Shutter-Dataset
https://github.com/DelinQu/Urban-Crossroads-Rolling-Shutter-Dataset
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TABLE 2: Quantitative performance comparisons between our approach and the state-of-the-art methods. The Best and
second results are shown in green and blue.

PSNR ↑ SSIM ↑
Method Adobe Pr DSfM [18] DSUN [22] JCD [23] SUNet [24] CVR [26] V-DRSC Adobe Pr DSfM [18] DSUN [22] JCD [23] SUNet [24] CVR [26] V-DRSC

Fastec [22] 24.36 23.70 24.59 24.55 29.66 30.43 26.98 0.77 0.72 0.77 0.75 0.87 0.88 0.82
BS-RSC [48] 32.24 30.12 19.67 24.53 15.37 28.41 34.53 0.93 0.91 0.71 0.80 0.56 0.90 0.95

TUM [46] 25.28 28.24 24.36 25.81 22.59 27.22 28.96 0.86 0.90 0.85 0.85 0.80 0.90 0.92
UCR 28.02 24.92 21.92 22.85 17.70 24.86 32.39 0.88 0.88 0.81 0.81 0.67 0.88 0.97
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Fig. 15: Visual comparisons of our V-DRSC with existing RSC algorithms Adobe Pr [25], DSfM [18], DSUN [22], JCD [23],
SUNet [24] in synthetic RS image datasets.

4.3.1 Quantitative Analysis

Evaluation Metrics. We use signal-to-noise ratio (PSNR)
and the structural similarity index (SSIM) metrics to report
the quantitative results of our method: The larger PSNR and
SSIM score, the higher quality of the corrected GS image.

Four datasets that provide both RS and ground truth
GS images are used: Fastec, BS-RSC, TUM and UCR. We
reported the median of PSNR and SSIM against the state-
of-the-art methods in Tab. 2. Except for Fastec dataset V-
DRSC achieves third performance. In the rest datasets, V-
DRSC outperforms the other five methods by a significant
margin. An interesting observation is that all the learning-
based methods DSUN, JCD, SUNet and CVR fail in handling
the distortion caused by RS effect and lens distortion simul-
taneously and provide obvious lower scores than geometry-
based methods DSfM and V-DRSC in TUM dataset.

4.3.2 Visual Comparisons

We report the visual comparisons against the previous
RSC methods in this experiment. For a more comprehensive
evaluation, we divide the datasets into four categories:
synthetic RS image scene, general scene, dynamic scene, and
non-perspective scene.
Synthetic RS image. We first evaluate the correction results
by all the methods on synthetic RS image datasets Carla,
House, WHU, Seq77 and UCR. As shown in Fig. 15, the
learning-based approaches often produce artifacts, e.g., sig-
nificant local blur and distortion, while the geometry-based

methods DSfM and Adobe Pr achieve better performance
but fail in handling the depth-dependent RS distortions. For
example, in House dataset, the electric pole and house facade
have different depths and thus lead to distinct slopes on the
image. However, all the previous methods cannot correct
them back to vertical. In contrast, the proposed V-DRSC
provides more clean and visually pleasant corrections in all
sequences.

General scene. Then, we evaluate the correction results
by all the methods on real RS image datasets captured in
a general scene. As shown in Fig. 16, existing works fail
in handling strong rotation (e.g. 3GS, GPark) and strong
translation (e.g. YouTube and BS-RSC). Learning-based ap-
proaches produce local blur in 3GS and YouTube sequences.
In contrast, obvious skew, curvature, and depth-dependent
distortions in these varied datasets are properly removed by
our method.

Dynamic scene. Particularly, we collect a series of chal-
lenging RS videos that capture various moving objects in
Youtube dataset to evaluate the performances of compared
approaches in the dynamic scene. In the ’Cycling’ and ’Bus’
sequences, the static camera captured moving objects (e.g.,
advancing bicycle or bus). As shown in Fig. 17 (1st and 2nd
row), only the proposed method V-DRSC can rectify the
moving bus back to the right position while the others either
fail in correction or produce artifacts. More challenging
scenes are in the ’Train at speed’ sequences, where the
camera moves while the captured objects are also under
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Fig. 16: Visual comparisons of our V-DRSC with existing RSC algorithms Adobe Pr [25], DSfM [18], DSUN [22], JCD [23],
SUNet [24] in general scenes.
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Fig. 17: Visual comparisons of our V-DRSC with existing RSC algorithms Adobe Pr [25], DSfM [18], DSUN [22], JCD [23],
SUNet [24] in dynamic scenes.

other motions. For example, Fig. 17 (3rd row) shows that all
the existing state-of-the-art approaches are unable to correct
the train and pole (lean to the left and right, respectively)
to the vertical simultaneously. While Adobe Pr and V-DRSC
correct distortions to a good extent. However, in the next
subsequence, where the camera was rotating rapidly to
film the forwarding train, the corrections of Adobe Pr are
imperfect among the pole and building (blur and skew).
Similarly, all existing RSC solutions fail in such a dynamic
scene. In contrast, V-DRSC corrects distortions properly in
all these varied examples.

Non-perspective camera scene. Fig. 18 (1st column) shows
RS images with both heavy lens distortions and RS effect
captured with moving fisheye RS camera in TUM datasets.
Fig. 18 (3rd to 8th column) shows that the commercial soft-
ware V-DRSC and state-of-the-art learning-based methods
DSUN [22], JCD [23], SUNet [24] and CVR [26] provide sig-

nificant artifacts (blur and split) among the outputs. While
geometry-based method DSfM and V-DRSC achieve the best
corrections that are close to the ground-truth GS image in
Fig. 18 (2nd column). However, it is important to realize
that we provide the ground truth intrinsic information (K
together with the lens distortion parameters) to DSfM while
V-DRSC is calibration-free without requiring pre-knowledge
about the camera intrinsic.

Human perception rating. Further, We questioned 56 users
to provide preferences for corrected frames by Adobe Pr,
DSfM, DSUN, JCD, SUNet, CVR and the proposed method
V-DRSC based on their visual perception. Corrected images
from all the datasets mentioned above are distributed to
users without information about the corresponding gen-
eration method for specific images. As shown in Fig. 19,
our outputs are rated equal to or better than comparison
methods at least 80% of the time across all datasets.
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Fig. 18: Visual comparisons of our V-DRSC with existing RSC algorithms Adobe Pr [25], DSfM [18], DSUN [22], JCD [23],
SUNet [24] in correcting RS image with lens distortion.
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Fig. 19: User survey rating for proposed method V-DRSC against Adobe Pr [25], DSfM [18], DSUN [22], JCD [23], SUNet [24].

TABLE 3: Comparing runtime across nHD (480p), HD
(720p), and FHD (1080p) input RS image resolutions.

Time cost

GPU CPUResolution

Adobe Pr DSUN [22] JCD [23] SUNet [24] CVR [26] DSfM [18] V-DRSC

480P 0.072 0.122 0.211 0.059 0.093 206.052 0.025
720P 0.362 0.381 0.687 0.147 0.199 1469.020 0.073
1080P 0.721 0.909 — 0.348 0.314 1525.880 0.153

4.3.3 Runtime Comparison

Our method is implemented in C++ and runs on a desk-
top with a Core i9 CPU. On average, our method uses 73ms
to correct a frame of HD resolution (1280×720). The runtime
breakdown is 62ms for dense image matching, 3ms for
correction field computation, and 8ms for frame warping. In
Tab. 3, we compare runtime for processing nHD (640×360),
HD (1280×720), and FHD (1920×1080). The results demon-
strate that our method is nearly an order of magnitude
faster than the commercial software Adobe Pr, and nearly
4 orders of magnitude faster than the geometrical-based
method DSfM. Besides, without GPU acceleration, V-DRSC
is faster than the learning approaches, specifically, nearly 5
times faster than DSUN, 8 times faster than JCD, and 2 times
faster than SUNet and CVR. Also, note that our method
runs at a real-time speed for nHD video without attempting
to optimize the implementation. We believe that the speed
of our pipeline can be further improved by using parallel
computing.

4.4 RSC for 3D Analysis

As discussed in Sec. 1.2, RSC should visually be more
appealing and rectified to be geometrically more mean-
ingful. Thus, we evaluate the effectiveness of all the RSC
methods on different datasets by applying the correction
results to various downstream 3D analyses, namely, relative
pose estimation, visual odometry, and SfM. We use K-DRSC
to the RSC for 3D analysis tasks instead of V-DRSC for
higher efficiency.

4.4.1 Relative Pose Estimation

Recovering relative pose between two given images is
vital in 3D vision. This experiment applies all RSC meth-
ods to RS sequences frame-by-frame and is followed by a
conventional relative pose estimation.
Metrics. Once the RS frames are well rectified, the
corrected images in the pair are related by homography or
epipolar geometry. Thus, we compute the homography or
fundamental matrix between every two consecutive images
and use the median value of found inliers |RF | and the
ratio of inlier out of rough matches |RF | for evaluation.
We apply the Homography-RANSAC procedure to 3GS,
GPark, YouTube sequences where the cameras were under
approximate pure rotation, while fundamental-RANSAC
to Seq77, Fastect and TUM sequences where cameras were
under significant translation. Specifically, the RANSAC
procedure was applied 100 times on each image pair. The
inlier threshold is chosen as 1 pixel in all the cases.

The experiment results in Fig. 20 and Tab. 4 demon-
strate that the proposed method K-DRSC outperforms all
the existing approaches with a significant margin in both
homography and epipolar estimation with a high |RF | and
|RF | scores.

4.4.2 Visual Odometry

In this experiment, we compare the abilities of different
RSC methods to support VO. Specifically, we used Se-
quence77, 6 sequences in WHU and 10 sequences in TUM for
comparison since they all provide both RS video sequence
and ground truth camera poses.

Note that Adobe Pr, DSUN, JCD, SUNet and CVR perform
RSC to each frame and then use the corrected sequence
as input to ORB-SLAM2 [33]. In contrast, as discussed in
Sec. 3.2, the geometry-based approaches DSfM and K-DRSC
can plug-in GSVO system by correcting the keypoint only
instead of rectifying the whole image. Despite this, we also
report the results of V-DRSC to demonstrate its effectiveness
in geometrically correcting the whole frame. However, it is
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Fig. 20: Two examples of image matching comparison on ’3GS’ (top) and ’GPark’ sequences (bottom). A selected image
pair from each sequence are displayed in separate rows for better qualitative comparison. The inliers are displayed along
with the median of the number of inliers RF . Details of quantitative comparison are reported in Tab. 4.

TABLE 4: Inlier Feature Numbers and Rate of corrected frame-pairs on vast RS datasets. The best results are shown in
green.

|RF | ↑ |RF |Rate ↑
Method Adobe Pr DSfM [18] DSUN [22] JCD [23] SUNet [24] CVR [26] V-DRSC Adobe Pr DSfM [18] DSUN [22] JCD [23] SUNet [24] CVR [26] V-DRSC

3GS [19] 57.0 42.0 26.5 30.0 11.0 35.0 62.0 0.41 0.35 0.30 0.32 0.35 0.38 0.44
BS-RSC [48] 259.0 198.0 30.0 127.0 12.0 110.0 294.0 0.64 0.49 0.26 0.44 0.21 0.44 0.70

Gpark [7] 113.0 78.5 55.0 123.0 15.0 152.5 222.0 0.47 0.39 0.33 0.48 0.33 0.56 0.64
Fastec [22] 26.0 18.0 24.0 24.0 24.0 26.0 26.0 0.38 0.31 0.38 0.38 0.39 0.41 0.40
Seq77 [47] 45.0 36.0 34.0 40.0 21.0 45.0 49.0 0.61 0.47 0.57 0.60 0.42 0.62 0.62
TUM [46] 66.0 57.0 18.0 37.0 10.0 34.0 73.0 0.40 0.35 0.32 0.37 0.28 0.34 0.41
YouTub 810.5 660.0 601.0 720.5 576.0 816.0 843.0 0.62 0.54 0.56 0.32 0.56 0.64 0.64

TABLE 5: The ratio of successfully tracked frames divided by the total frames DUR of different RSC methods. The best and
second best results are shown in green and blue, respectively.

DUR
Method GS RS Adobe Pr DSfM [18] DSUN [22] JCD [23] SUNet [24] CVR [26] V-DRSC K-DRSC

Seq77 [47] FULL — 94.96 80.26 95.11 94.89 94.44 0.00 90.53 92.67 95.56

Traj 1 FC 99.94 99.72 99.70 99.54 50.34 99.35 99.74 99.56 99.80 99.76WHU [45] Traj 2 FC 99.34 98.73 99.53 98.73 99.63 99.47 99.01 99.67 99.73 99.32

Seq 01 99.67 50.55 48.73 37.36 24.33 48.32 12.36 37.41 99.71 99.61
Seq 02 99.50 82.19 29.20 28.88 9.58 77.45 1.68 26.44 99.72 99.72TUM [46]
Seq 06 99.85 83.74 64.31 58.92 5.75 60.88 5.37 58.12 99.91 99.89

Adobe Pr DSfM DSUN JCD SUNet K-DRSCCVR

Fig. 21: Ground truth camera trajectory (red), the trajectory of GS method on RS data (convention ORB-SLAM2 with RS
sequences input, blue), and trajectories estimated by ORB-SLAM2 augmented by different RSC methods (green).

important to realize that we always recommend K-DRSC for
supporting 3D analysis over V-DRSC due to its significantly
higher efficiency and to boost the number of inliers poten-
tially.
Metrics. We use the absolute trajectory error (ATE) [46]
to evaluate the VO results quantitatively. Given ground
truth frame positions c̄i ∈ R3 and corresponding ORB-
SLAM2 [33] tracking results ci ∈ R3 using corrected se-
quence by each RSC method. It is defined as

eate = min
T∈Sim(3)

√√√√ 1

n

n∑
i=1

∥T(ci)− c̄i∥, (17)

where T ∈ Sim(3) is a 7D similarity transform that aligns
the estimated trajectory with the ground truth one since the
scale is not observable for monocular methods. We run each
method 20 times on each sequence to obtain the APE eate.
Besides, we found out that some RSC solutions provide re-
sults of the corrections that are even worse than the original
input RS frames. This leads to failure in tracking and makes
ORB-SLAM2 interrupt before the last frame. Therefore, we
use the ratio of the successfully tracked frames out of the
total frames DUR as an evaluation metric.

The results demonstrate that the proposed V-DRSC and
K-DRSC outperform existing RSC methods in camera pose
estimation. Qualitatively, this is clearly visible in Fig. 21 that
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TABLE 6: Absolute trajectory error (ATE) of different RSC methods after Sim(3) alignment to ground truth. The best
and second results are shown in green and blue. Since some methods will lose tracking without processing the whole
frame, thus we highlight the background of each cell with different colours depending on its corresponding DUR value.
Specifically, DUR > 0.9, 0.5 < DUR ⩽ 0.9 and DUR ⩽ 0.5 are highlighted in light green , cyan , and orange .

APE
Method GS RS Adobe Pr DSfM [18] DSUN [22] JCD [23] SUNet [24] CVR [26] V-DRSC K-DRSC

Seq77 [47] FULL — 0.2253 0.2439 0.2196 0.2304 0.2449 — 0.2260 0.2180 0.2074

Traj 1 FC 0.0313 0.2822 0.2303 0.3659 — 0.2198 0.0868 0.0804 0.1116 0.0760WHU [45] Traj 2 FC 0.0077 0.0404 0.0331 0.0509 0.0328 0.0873 0.0107 0.0106 0.0107 0.0129

Seq 01 0.0056 — — — — — — — 0.0118 0.0149
Seq 02 0.0049 0.0962 — — — 0.0881 — — 0.0077 0.0143TUM [46]
Seq 06 0.0040 0.1177 0.0742 — — 0.1665 — 0.0233 0.0095 0.0093

TABLE 7: Realtime factor ϵ is computed by the duration of the successfully tracked frames in the sequence divided by the
processing time of different RSC augmented ORB-SLAM2. The best results are shown in green.

Real time factor ϵ ↑

GPU CPUMethod

Adobe Pr DSUN [22] JCD [23] SUNet [24] CVR [26] GS RS DSfM [18] V-DRSC K-DRSC

Seq77 [47] 0.58481 0.37021 0.22596 — 0.62330 — 3.78200 0.00025 1.30707 1.64976
WHU [45] 0.57471 0.36231 0.22154 0.66984 0.46373 3.26613 3.30405 0.00024 1.25023 1.46146
TUM [46] 0.16118 0.08600 0.04680 0.20400 0.21530 1.84048 1.90404 0.00002 0.37123 1.55851

Adobe Pr, DSfM,DSUN, JCD, SUNet and CVR lost tracking
and provide incomplete trajectories with obvious systematic
drift to the ground truth.

More quantitative comparisons are given in Tab. 5 and 6.
On the sequences in Sequence and WHU where RS effects
are limited, ORB-SLAM2 successfully tracks over all the
frames by using the corrected frame by all the RSC methods.
However, surprisingly, the APEs of Adobe Pr, DSfM and JCD
are even larger than the GS method on RS data (convention
ORB-SLAM2 with RS sequences input) RS. While DSUN,
SUNet, CVR and proposed methods V-DRSC and K-DRSC
provide significantly smaller APEs than RS.

However, as shown in the Tab. 5, for the 10 sequences
in TUM where the camera is under rapid movement and
has significant RS effect, Adobe Pr, DSfM, DSUN, SUNet,
and CVR can only track less than 50% of the frames while
JCD achieves 60% of DUR. Note that it is meaningless to
evaluate the APE of these methods with short trajectories.
In contrast, the proposed V-DRSC and K-DRSC are capable
of tracking 100% of the frames. Moreover, as shown in the
Tab. 6, the APEs of V-DRSC and K-DRSC are smaller than
RS by one order of magnitude in most cases. Particularly,
we observe that a comparison of the GS method on GS data
(convention ORB-SLAM2 with GS sequences input) GS
with the proposed V-DRSC and K-DRSC on RS data does
not yield a clear preference for all sequences in all datasets.

Runtime. Tab. 7 reports the efficiencies of Adobe Pr,
DSfM,DSUN, JCD, SUNet, CVR, V-DRSC and K-DRSC. The
real-time factor ϵ is calculated as the real duration of the
sequence divided by the processing time of the algorithm.
The results show that the learning-based methods are faster
than geometry-based approaches Adobe Pr and DSfM by one
order of magnitude. However, even with GPU acceleration,
the fastest learning-based method CVR achieves ϵ ≈ 0.5.
In contrast, without GPU, the proposed K-DRSC achieves

average ϵ > 1.5 performance in three datasets, indicating it
is a real-time capable method.

4.4.3 Structure-from-Motion
This experiment shows the results of applying the pro-

posed RSC algorithm to serve downstream SfM applica-
tions. First, we present the results on pairs of consecutive
images from the sequences on House dataset. As shown in
Fig. 22 that the reconstructed point clouds by the corrected
frames of existing RSC methods Adobe Pr, DSfM,DSUN,
JCD, SUNet and CVR are uncompleted, noisy with observ-
able distortions. In contrast, the proposed method K-DRSC
provides a much more complete and clean reconstruction.
Besides, we recorded three own RS sequences for larger-
scale SfM evaluation. The results in Fig. 22 demonstrate
that the frames corrected by the proposed RSC method
K-DRSC augment the classical GS-SfM pipeline to handle
the large-scale 3D reconstruction by using image sequences
even with significant RS effect. Nevertheless, we can observe
that the state-of-the-art RSC methods’ reconstructions of the
corrected images suffer from fragmented reconstructions or
apparent deformations.

5 CONCLUSIONS
In this paper, we propose a geometry-based fast RSC so-

lution. We draw the mathematical link between the natural
optical flow and its corresponding corrected flow based on
epipolar geometry. As a result, we then propose a novel
RSC solution called DRSC based on a pixel-wise pose-
free RSC solver. Given two consecutive RS images, it can
effectively and efficiently estimate the corresponding GS
image without GPU acceleration. The proposed method
brings five primary advantages over the previous works: 1)
It can handle the depth-dependent RS effect. 2) It is feasible
to highly dynamic scenes. 3) It is a calibration-free method
without requiring pre-knowledge of camera intrinsics. 4) It



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

R
S

R
S

A
d

o
b

e
 P

r
A

d
o

b
e

 P
r

D
Sf

M
D

Sf
M

D
SU

N
D

SU
N

JC
D

JC
D

SU
N

e
t

SU
N

e
t

C
V

R
C

V
R

K
-D

R
SC

K
-D

R
SC

In
p

u
t

TUMHousePinnacle

t

Fig. 22: Reconstruction results of SfM using corrected results by various RSC methods in Pinnacle (our self-collected
dataset), House [19] and TUM [46] dataset.
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performs the RSC in real-time without GPU assistance. 5) It
is capable of the plugin and augmenting GS-SfM and GS-
SLAM to handle RS images as input. Extensive experiments
demonstrate that the proposed DRSC solution achieves
state-of-the-art RS correction performances in both visual
corrections and supports downstream 3D analysis tasks. We
are currently concerned that the proposed method does not
fully use the constraints between continuous frames over
the whole sequence in RS video processing. In the future,
we will explore further optimizing the video-based RSC
by modeling the camera trajectory to increase accuracy and
stability.
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