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Super Sparse 3D Object Detection
Lue Fan, Yuxue Yang, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang

Abstract—As the perception range of LiDAR expands, LiDAR-based 3D object detection contributes ever-increasingly to the long-range
perception in autonomous driving. Mainstream 3D object detectors often build dense feature maps, where the cost is quadratic to the
perception range, making them hardly scale up to the long-range settings. To enable efficient long-range detection, we first propose a fully
sparse object detector termed FSD. FSD is built upon the general sparse voxel encoder and a novel sparse instance recognition (SIR)
module. SIR groups the points into instances and applies highly-efficient instance-wise feature extraction. The instance-wise grouping
sidesteps the issue of the center feature missing, which hinders the design of the fully sparse architecture. To further enjoy the benefit of
fully sparse characteristic, we leverage temporal information to remove data redundancy and propose a super sparse detector named
FSD++. FSD++ first generates residual points, which indicate the point changes between consecutive frames. The residual points, along
with a few previous foreground points, form the super sparse input data, greatly reducing data redundancy and computational overhead.
We comprehensively analyze our method on the large-scale Waymo Open Dataset, and state-of-the-art performance is reported. To
showcase the superiority of our method in long-range detection, we also conduct experiments on Argoverse 2 Dataset, where the
perception range (200m) is much larger than Waymo Open Dataset (75m). Code is open-sourced at https://github.com/tusen-ai/SST.

Index Terms—3D object detection, LiDAR, autonomous driving, sparse, Waymo Open Dataset, instance segmentation, temporal fusion,
point clustering.
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1 INTRODUCTION

UTONOMOUS driving systems are eager for efficient

long-range perception, especially in high-speed sce-
narios. Current LiDAR-based 3D object detectors usually
convert sparse features into dense feature maps for further
feature extraction and prediction, which we name as dense
detectors. Dense detectors perform well on current pop-
ular benchmarks [1], [2], [3], where the perception range
is relatively short (less than 75 meters). However, it is
impractical to scale the dense detectors to the long-range
setting (more than 200 meters, Fig. 1). In such settings, the
computational and spatial complexity on dense feature maps
is quadratic to the perception range. Fortunately, the sparsity
of LiDAR point clouds also increases as the perception range
extends (see Fig. 1), and the calculation on the unoccupied
area is essentially unnecessary. Given the inherent sparsity,
an essential solution for efficient long-range detection is
to remove the dense feature maps and make the network
architectures fully sparse.

However, removing the dense feature map is non-trivial
since it plays an indispensable role in current designs.
Commonly adopted sparse voxel encoders [5], [6], [7] only
extract the features on the non-empty voxels. Without dense
feature maps, the object centers are usually empty, especially
for large objects. We name this issue as “Center Feature
Missing (CFM)” (Fig. 2). CFM significantly weakens the
representation power of the center voxels, even making
the center feature empty in some extreme cases like super
large vehicles. However, almost all popular voxel or pillar
based detectors [5], [6], [8], [9], [10] adopt center-based
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Fig. 1. Short-range point clouds (red, from KITTI [2]) v.s. long-range
point clouds (blue, from Argoverse 2 [4]). The radius of the red circle is
75 meters. The sparsity quickly increases as the range extends.

assignment and rely on the center feature since it is an
ideal representation of the whole object. So they have to
first convert sparse voxels to dense feature maps in Bird’s
Eye View after the sparse voxel encoder. Then they resolve
the CFM issue by applying convolutions on the dense feature
maps to diffuse features to instance centers, which we name
as feature diffusion (Fig. 2).

To properly eliminate the dense feature map, we inves-
tigate the purely point-based detectors because they are
naturally fully sparse. However, two drawbacks limit the
usage of point-based methods. (1) The time-consuming
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Fig. 2. lllustration of center feature missing and feature diffusion on
dense feature maps from Bird’s Eye View. The empty instance center (red
dot) is filled by the features diffused from occupied voxels (with LiDAR
points), after several convolutions.

neighborhood query [11] is the long-standing difficulty
to apply it to large-scale point cloud (more than 100K
points). (2) To reduce the computational overhead, point-
based methods aggressively downsample the whole scene
to a fixed number of points. The aggressive downsampling
leads to inevitable information loss and insufficient recall of
foreground objects [12], [13], especially for small ones. As a
result, very few purely point-based detectors have reached
state-of-the-art performance in the recent benchmarks with
large-scale point clouds.

In this paper, we first propose Fully Sparse Detector
(FSD) to sidestep the issue of center feature missing. FSD
is built upon a general sparse voxel encoder [5], [6], [7]
for voxel/point feature extraction. Then FSD groups the
points into an instance, and further extract the instance-
level feature and predict a single bounding box from the
integrated instance feature, via a novel Sparse Instance
Recognition (SIR) module. In this way, predictions are made
from the whole instance feature instead of the weak or
missed center feature. As a point-based module, SIR has
several desired properties: (1) Unlike previous point-based
modules, SIR simply treats instances as groups, and does not
apply the time-consuming neighborhood query for further
grouping. (2) Similar to dynamic voxelization [14], SIR
leverages dynamic broadcast/pooling for tensor manipulation
to avoid point sampling or padding. (3) Since the group in
SIR covers the whole instance, it builds a sufficient receptive
field regardless of the physical size of the instance.

To unleash the full potential of FSD, we further utilize
temporal information and propose a Super Sparse 3D Ob-
ject Detector, named FSD++. FSD++ is inspired by human vi-
sual behavior: human is sensitive to and focuses on dynamic
parts of the physical world. In particular, FSD++ utilizes ego-
motion to remove the static parts containing heavy temporal
redundancy, while only retaining the informative dynamic
parts. We name the detected dynamic parts as residual points
since the process is similar to applying the difference between
frames. In this way, we create a super sparse point cloud
consisting of residual points and a small number of past
foreground points from history predictions. FSD++ then
takes the super sparse point cloud as input, achieving a very
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efficient detection framework with temporal fusion. We owe
the credit of the high efficiency to the synergy of the fully
sparse characteristic and the super sparse input. We list our
contributions as follows.

o We introduce the concept of Fully Sparse Detector (FSD),
which is the essential solution for efficient long-range
LiDAR detection. We further propose Sparse Instance
Recognition (SIR) to sidestep the issue of Center Feature
Missing (CFM) in sparse feature maps. Combining SIR
with general sparse voxel encoders, we develop an
efficient and effective FSD implementation.
Based on FSD, we further present the FSD++ framework,
which aggregates a super sparse point cloud from multi-
frames as input, yet removing the temporal redundancy
of point clouds. The proposed framework uncovers the
untapped potential of sparse architecture. We hope our
efforts attract the attention of the community to fully
sparse architecture.

« FSD achieves state-of-the-art performance on the com-
petitive Waymo Open Dataset. Besides, we further apply
our method to the recently released Argoverse 2 dataset
to demonstrate the superiority of FSD in long-range
detection, where FSD is much more efficient than its
dense counterparts. FSD++ achieves comparable per-
formance with mainstream state-of-the-art multi-frame
detectors with minimal additional overhead compared
with single-frame input.

2 RELATED WORK

In reviewing the evolution of LiDAR-based 3D object de-
tectors, the previous methods could be categorized into
three types by their spatial sparsity: dense detectors, sparse
detectors, and semi-dense detectors. Below, we provide a
brief revisit of previous arts according to spatial sparsity.

2.1 Voxel-based Dense Detectors

Pioneering work 3DFCN [15] and VoxelNet [16] use dense
convolution for voxel feature extraction. They bring con-
volutional neural networks to the field of LiDAR-based
3D object detection and achieve competitive results at the
time. However, it is inefficient to apply dense convolution
to 3D voxel representation. MV3D [17], PIXOR [18], and
PointPillars [19] adopt 2D dense convolution in Bird’s Eye
View (BEV) feature maps achieving significant efficiency
improvement. We refer to such detectors as dense detectors
since they convert the sparse point cloud into dense feature
maps.

2.2 Point-based Sparse Detectors

Since PointNet [20] and PointNet++ [11] shed light on the
deep learning for 3D point sets, a series of point-based
detectors have emerged. These purely point-based detectors
are born to be fully sparse. PointRCNN [21] is the pioneering
work of this line of work. 3DSSD [12] accelerates the point-
based method by removing the feature propagation layer
and refinement module. VoteNet [22] first makes a center
voting and then generates proposals from the voted center
achieving better accuracy. Albeit many methods [12], [13],
[23] have tried to accelerate the point-based method, the
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time-consuming point sampling and neighborhood query
are still unaffordable in large-scale point clouds (more than
100k points per scene). So current benchmarks [1], [3] with
large-scale point clouds are still dominated by voxel-based
dense/semi-dense detectors [10], [24], [25].

2.3 Semi-dense Detectors

Different from dense detectors, semi-dense detectors incor-
porate both sparse features and dense features. SECOND [5]
employs sparse convolution to extract the sparse voxel
features in 3D space, which then are converted to dense
feature maps in BEV to enlarge the receptive field and
integrate with 2D detection head [26], [27], [28]. Based on
SECOND-style semi-dense detectors, a series of work [29],
[30], [31] made further improvements on the single-stage
paradigm. And other methods attach a second stage for
fine-grained feature extraction and proposal refinement [7],
[8], [10], [32], achieving superior performance. Although
semi-dense detectors become dominating in academia and
industry, related research has stagnated here because the
semi-dense detector cannot be trivially lifted to be fully
sparse as we discussed in Sec. 1.

3 FSD: FuLLY SPARSE 3D OBJECT DETECTION
3.1 Overall Architecture

Following the motivation of instances as groups, we have
four steps to build the fully sparse detector (FSD): 1) We
first utilize a sparse voxel encoder [5], [6], [7] to extract
voxel features and casts votes for object centers(Sec. 3.2).
2) Instance Point Grouping groups foreground points into
instances based on the voting results (Sec. 3.2). 3) Given the
grouping results, Sparse Instance Recognition (SIR) module
extracts instance/point features and generates proposals
(Sec. 3.3). 4) The proposals are utilized to correct the point
grouping and refine the proposals iteratively (Sec. 3.4).

3.2 Instance Point Grouping

Classification and Voting We first extract voxel features
from the point cloud with a sparse voxel encoder, such
as sparse attention blocks in SST [6] or sparse convolution
encoder. Then we build point features by concatenating voxel
features and the offsets from points to their corresponding
voxel centers. These point features are passed into two heads
for foreground classification and center voting. The voting is
similar to VoteNet [22], where the model predicts the offsets
from foreground points to corresponding object centers. L1
loss [27] and Focal Loss [33] are adopted as voting loss L ete
and semantic classification loss Lep,.

Connected Components Labeling (CCL) To group points
into instances, we regard all the predicted centers (red dots
in Fig. 3) as vertices in a graph. Two vertices are connected
if their distance is smaller than a certain threshold. Then
a connected component in this graph can be viewed as an
instance, and all points voted to this connected component
share a group ID. Unlike the ball query in VoteNet, our
CCL-based grouping avoids fragmented instances in most
cases. Although there are many elaborately designed instance
grouping methods [34], [35], [36], we opt for the simple CCL
because it is adequate in our design and can be implemented
by the efficient Union-Find algorithm [37] in parallel.

3.3 Sparse Instance Recognition
3.3.1 Preliminaries: Dynamic Broadcast/Pooling

Given N points belong to M groups, we define their cor-
responding group ID array as I in the shape of [N,] and
their feature array as F' in the shape of [N, C], where C is
the feature dimensions. F(*) is the feature array of points
belonging to the i-th group. Dynamic pooling aggregates
each F(¥) into one group feature g, of shape [C,]. Thus we
have g; = p(F ), where p is a symmetrical pooling function.
The dynamic pooling on all group features G of shape [, C]
is formulated as G = p(F, I). The dynamic broadcast can be
viewed as the inverse operation to dynamic pooling, which
broadcasts g; to all the points in the i-th group. Since the
broadcasting is essentially an indexing operation, we use
the indexing notation [] to denote it as G[I], which is in the
shape of [N, C]. Dynamic broadcast/pooling is very efficient
because it can be implemented with high parallelism on
modern devices and well fits the sparse data with dynamic
size. We provide an efficient implementation and runtime
evaluation in Appendix A.

The prerequisite of dynamic broadcast/pooling is that
each point uniquely belongs to a group, i.e. groups should
not overlap with each other. Thanks to the fact that there is
no overlap among instances in the real 3D world, the groups
do not overlap with each other naturally.

3.3.2 Formulation of Sparse Instance Recognition

After grouping points into instances in Sec. 3.2, we can
directly extract instance features via some basic point-
based networks like PointNet, DGCNN, etc. There are three
elements to define a basic point-based module: group center,
pair-wise feature and group feature aggregation.

Group center The group center is the representative point
of a group. For example, in the ball query, it is the local
origin of the sphere. In SIR, the group center is defined as
the centroid of all voted centers in a group.

Pair-wise feature defines the way to pair group center and
neighbor points input for group-aware neighbor point feature
extraction. SIR adopts two kinds of pair-wise features: 1) the
relative coordinate between the group center and each point,
2) the concatenation of the group feature and each point fea-
ture. Taking feature concatenation as an example and using
the notations in 3.3.1, the pair-wise feature can be denoted
as CAT(F, G[I]), where CAT is channel concatenation.
Group feature aggregation In a group, a pooling function
is used to aggregate neighbor features. SIR applies dynamic
pooling to aggregate feature array F'. Following the notations
in 3.3.1, we have G = p(F, I), where G is the aggregated
group features.

Integration Combining the three basic elements, we could
build many variants of point-based operators, such as Point-
Net [20], DGCNN [38], Meta-Kernel [39], etc. Fig. 4 illustrates
the basic idea of how to build an instance-level point operator
with dynamic broadcast/pooling. In our design, we adopt
the formulation of VFE [16] as the basic structure of SIR
layers, which is basically a two-layer PointNet. In the [-th
layer of SIR module, given the input point-wise feature array
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F}, point coordinates array X, the voted center X’ and group
ID array I, the output of [-th layer can be formulated as:

F] = LinNormAct (CAT (F1, X — pave (X', D[I])), (1)
Fyy1 = LinNormAct (CAT (F}, pmax(F}, I)[I])) , )

where LinNormAct is a fully-connected layer followed by
a normalization layer [40] and an activation function [41].
The p.yg and the pn,, are average-pooling and max-pooling
function, respectively. The output F;;; can be further used
as the input of the next SIR layer, so our SIR module is a
stack of a couple of basic SIR layers.

3.3.3 Sparse Prediction

With the formulation in Eqn. 1 and Eqn. 2, SIR extracts
features of all instances dynamically in parallel. And then
SIR makes sparse prediction for all groups. In contrast to
two-stage sparse prediction, our proposals (i.e., groups)
do not overlap with each other. Unlike one-stage dense
prediction, we only generate a single prediction for a group,
which significantly reduces the cost of prediction head. It
is noteworthy that the fully sparse architecture may face a
severe imbalance problem: short-range objects contain much
more points than long-range objects. Some methods [39],
[42] use hand-crafted normalization factors to mitigate the
imbalance. Instead, SIR avoids the imbalance because it
only generates a single prediction for a group regardless
of the number of points in the group. In most cases, a group
corresponds to only a single ground truth box.

Specifically, for each SIR layer, there is a G| = praq (F}, )
in Eqn. 2, which can be viewed as the group features. We
concatenate all G; from each SIR layer in channel dimension
and use the concatenated group features to predict bounding

boxes and class labels via MLPs. All the groups whose
centers fall into ground-truth boxes are positive samples.
For positive samples, the regression branch predicts the
offsets from group centers to ground-truth centers and object
sizes and orientations. L1 loss [27] and Focal Loss [33] are
adopted as regression loss L., and classification loss L5,
respectively.

3.4 Group Correction

There is inevitable incorrect grouping in the Instance Point
Grouping module. For example, some foreground points
may be missed, or some groups may be contaminated
by background clutter. So we leverage the bounding box
proposals from SIR to correct the grouping. The points inside
a proposal belong to a corrected group regardless of their
previous group IDs. Since a few points may fall into multiple
proposals, we simply make copies for these points along
with their features and assign different copies to difference
proposals. After correction, we apply an additional SIR to
these new groups. To distinguish it from the first SIR module,
we denote the additional SIR module as SIR2.

SIR2 predicts box residual from the proposal to its
corresponding ground-truth box, following many two-stage
detectors. To make SIR2 aware of the size and location of a
proposal, we adopt the offsets from inside points to proposal
boundaries as extra point features following [43]. The regres-
sion loss is denoted as L,.s = L/l(\ATes, Ayes), where A5 is
the ground-truth residual and A,..; is the predicted residual.
Following previous methods [7], [8], the 3D Intersection over
Union (IoU) between the proposal and ground-truth serves as
the soft classification label in SIR2. Specifically, the soft label
q is defined as ¢ = min(1, max(0, 2IoU —0.5)), where IoU is
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the area of Intersection over Union (IoU) between proposals
and corresponding ground-truths. Then cross entropy loss is
adopted to train the classification branch, denoted as L.
Taking all the loss functions in grouping (Sec. 3.2) and sparse
prediction into account, we have

Ltotal = Lsem + Lvote + Lreg + Lcls + Lres + Liouv (3)
where we omit the weight of each term for simplicity.
3.5 Discussion
The center voting in FSD is inspired by VoteNet [22], while

FSD has two essential differences from VoteNet.

« After voting, VoteNet simply aggregates features around
the voted centers without further feature extraction. FSD
goes beyond this and builds a highly efficient SIR module
taking advantage of dynamic broadcast/pooling, allowing
for further instance-level feature extraction. Thus, FSD
extracts more powerful instance features, which is experi-
mentally demonstrated in Sec. 5.5.

« VoteNet is a typical point-based method. As we discussed
in Sec. 1, it aggressively downsamples the whole scene to
a fixed number of points for efficiency, causing inevitable
information loss. Instead, the dynamic characteristic and
efficiency of SIR enable fine-grained point feature ex-
traction from any number of input points without any
downsampling. In Sec. 5.5, we showcase the efficiency of
our design in processing large-scale point clouds and the
benefits of fine-grained point representation.

4 FSD++: FSD WITH SUPER SPARSE INPUT

It is well known that aggregating multiple frames as an
input benefits performance. However, naive aggregation
could result in a denser point cloud, which slows down
the algorithm significantly, especially in the architecture
with sparse operations. This motivates us to pursue more
sparse input data by removing temporal redundancy from
the original point cloud stream. Thanks to the fully sparse
characteristic, the fully sparse model could greatly benefit
from the increase of sparsity after redundancy removal. Thus
a natural question arises: How can we remove the redundancy
while retaining the informative parts in advance? The similarities
between consecutive point cloud frames offer us a potential
solution to this question.

In particular, the spatial distribution of points varies con-
tinuously and smoothly in a sequence. We name the points
that change between consecutive frames as residual points.
The residual points are informative since they represent new
observations in a time step. Combining the residual points
and history predictions, detectors have sufficient knowledge
to infer about current objects. In this paradigm, the residual
points and previous foreground points together form a super
sparse point cloud. FSD could directly take them as input for
much more efficient object detection.

4.1

LiDAR sensors capture plenty of newly observed foreground
points at each time step. These points can be attributed to
two main sources: (1) objects moving to new positions; (2)
occluded regions becoming visible. These newly observed

Residual Points Probing
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points are referred to as residual points. Residual points are
critical to locate moving objects and detect recently emerged
objects. As we mentioned before, the residual points could
be detected from the changes of point spatial distribution.

The residual point detection algorithm must fulfill two
key requirements. (1) The algorithm is supposed to be
robust to tiny disturbances of points, which might be caused
by sensing noise or tiny ego-motion estimation error. It
is unexpected that such point disturbances are detected
as residual points. (2) The algorithm should be highly
efficient to handle millions of points from multiple frames. In
particular, each frame in WOD contains up to 200,000 points.

Several straightforward solutions meet the first require-
ment, i.e. ball query or voxelization into dense occupancy
maps. A point can be viewed as a residual point if no
previous points fall into its neighborhood defined by the
ball query radii. The residual points can also be detected
by the simple difference between the two dense occupancy
maps. Although proper ball query radii or voxel sizes bring
robustness to point disturbances, these solutions still come
with either high computational complexity (O(N?)) or a
huge memory footprint.

To fulfill both of the demands outlined above, we resort
to hashing and design an algorithm shown in Algo. 1, named
Residual Points Probing (RPP). RPP consists of two steps. (1)
It first quantizes the point coordinates into integers. The
granularity of quantization controls the robustness to point
disturbances. (2) For each point, RPP verifies if it is a residual
point by hash probing. Specifically, RPP first builds a hash
table from previous quantized points. The key set of the hash
table is denoted as K C Z?3, which is the quantized integer
coordinates. And value set of the hash table is denoted
as V = {1,0}, where 1 indicates the slot is occupied and
0 indicates the slot is unoccupied. RPP then uses current
quantized coordinates to probe the hash table. If a current
point hits an unoccupied slot, it is treated as a residual point.
Here is a hidden assumption in RPP that we assume two
points are the same if they occupy the same voxel after
quantization. We adopt the well-known open addressing for
probing and the double hashing as the hash function to reduce
hash collisions.

Algorithm 1: Efficient Residual Points Probing

Input: current points P, previous points P,
voxel size s, load factor «, hash function &
Output: Residual points of current frame AP,,,,

ﬁcw <+ Quantize(Puyr, s);
ﬁpre < Quantize(Ppy, s);
Initialize empty hash table T" of length | P,.|/c;
Initialize empty residual point set AFP.,,;
foreach p; in ﬁpre do

slot; < probe(T, h(D;));

if slot; is not occupied then

slot; < occupied flag;

foreach p; in Iscur do

slot; « probe(T, h(D;));

if slot; is not occupied then

Add p; to AP..;
return AP,
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Fig. 5. lllustration of temporal point manipulations. Different colors indicate points from different time steps. Gray points are the sampled skeleton
points. Red cross X means the observation is too weak to be recognized as foreground objects (not really, just for illustration). Green check mark v/
means the observation is strong enough. (a) Points from a single frame are too weak. (b) After multi-frame point aggregation, the detector generates
true positives from time step 73 . (c) Single-frame residual points suffer from change blindness. Since the detector cannot generate a true positive in
Ty for skeleton point sampling, we still only have the weak residual points in T3. In this way, the detector outputs false negatives all the time. (d)
Detector makes the right prediction in 77 with residual points from two frames (max age is 2). So in the T, the detector could leverage the prediction

in Ty for skeleton point sampling, alleviating the change blindness.

Residual Point Probing is efficient in terms of both
memory and speed. For instance, we assume there are N
unique quantized coordinates in a point cloud clip. If we
expect the collision rate less than «, the length of the hash
table should be N/a. Empirically, N is around 500,000 in a
5-frame point cloud in WOD. A slot state can be represented
as a single bit, and let v equal to 0.1. We have that the
memory cost of this hash table is around 0.6MB. Moreover,
the probing of each point is independent with each other,
allowing for high parallelism in GPU.

Formally, we denote the RPP process as follows:

B
AP, =P — ] P, 4)
=1

where AP, is the detected residual points in time step ¢
and P, is the raw points in time step ¢. The notation “X —
Y” means removing the intersection of X and Y from X,
equivalent to X \ (X NY"). And the union means point cloud
concatenation. B is the number of previous frames used in
RPP, which we term as base frames.

4.2 Skeleton Point Sampling

Since residual points contain only new observations of the
current time step, detectors require additional information
from previous frames for sufficient input. To incorporate
this historical data, we use previously predicted boxes to
crop previous foreground points, while discarding others
outside of the boxes. The cropped points are placed into
the current frame after ego-motion compensation. However,
the foreground points from multiple previous frames are
still essentially redundant. Especially, the quite many points
on short-range objects from multiple frames could lead to
unnecessary overhead.

To reduce the redundancy from multi-frame foreground
points, we further sample within these cropped points.
Intuitively, we expect the sampled points contain the minimal
information models need to make proper predictions. In this
sense, we refer to such a minimal subset of cropped points
as skeleton points, because they depict the basic structure
or “skeleton” of objects. Specifically, we try three kinds of
sampling methods: random sampling, farthest points sampling,
and voxel sampling. All the sampling methods are applied
inside the previously predicted bounding boxes. For random
sampling and farthest points sampling, we adopt a prede-
fined maximal point threshold Nr. We sample Nt points
inside the bounding boxes which contain points more than
Nr. For voxel sampling, we adopt dynamic voxelization [14]
to voxelize points. All the points falling into a voxel are
reduced to a single point by average pooling.

4.3 Treatment to Change Blindness

Theoretically, by combining the skeleton points and residual
points, a model is able to make predictions in current frames.
However, a phenomenon known as “change blindness”
can hinder performance. Change blindness refers to the
human visual system’s tendency to overlook progressive
small changes in a scene, even if the aggregated changes of
multiple time steps are significant. A similar issue can occur
in our case. Thinking of a vehicle nearly entering into the
sensing range of LiDARs in time step ¢, only a small part of
the vehicle can be observed. The detector is very likely to
recognize it as background, so RPP will remove these points
in time step ¢ + 1 and only keep a small number of new
points of the vehicle as residual points. In this way, if the
vehicle appears slowly, the detector might never recognize it.
Fig. 5 demonstrates the change blindness.
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To remedy the change blindness, we introduce a max age
M for residual points. In other words, the detector takes
residual points from at most M steps as input. Formally, the
detector takes Uﬁal AP,_; as accumulated residual points
for input in time step t.

4.4 Integrated Super Sparse Input

The input point clouds consist of two parts: previous skeleton
points and residual points from multiple time steps. Formally,
for an N-frame FSD++ detector, we have the final input
points in time step ¢ as follows:

) N M—-1
P = (U Pf_i> U ( U APH) : )
i=1 =0

where P is the skeleton points at time step ¢. P/" is much
more sparse than the raw point clouds and directly sent into
the FSD detector. Fig. 7 shows examples of P*, AP and P'".

4.5 Training and Inference Pipeline

The training and inference pipeline for FSD++ differs from
the standard approach due to its use of history predictions
and temporal information. Fig. 6 summarizes the overall
pipeline.

4.5.1 Training

To utilize history predictions, the input point cloud stream
must be arranged in the temporal order. However, the
ordered input stream affects the model training due to a
lack of data shuffling. Another problem is that the history
predictions are not reliable in the early training stages.
Considering these two issues, we use a well-trained FSD
detector to generate offline predictions of the entire training
set. During training, for every sample, we load it along with
its previous offline predictions to sample skeleton points.
Ground truth boxes seem to be an alternative to the offline
predictions. However, the distribution gap between ground
truth used in training and predicted boxes used in inference
is considerable. Thus we adopt the offline predictions instead
of ground-truth boxes.

4.5.2 Inference

In the online inference phase, the input point cloud stream is
naturally in the temporal order. For a point cloud sequence,
the predictions of its first frame are from the well-trained
FSD detector. These predictions are regarded as the “previous
predictions” of the first frame, which are called the seed
predictions of a sequence. We maintain several queues to
cache some historical data that could be used more than
once. For example, in a N-frame FSD++ pipeline, the raw
points and skeleton points of time step ¢ could be reused
from timestept +1tot + N — 1.

5 EXPERIMENTS
5.1 Setup
5.1.1 Dataset

Waymo Open Dataset (WOD) In our experiments, we use
WOD [1] as the primary dataset to evaluate the performance

7

of our proposed method. WOD is the most trustworthy
benchmark for LiDAR-based 3D object detection. With 1150
sequences and more than 200,000 frames, WOD is currently
the largest dataset of its kind. Among them, 798 sequences
are used for training, 202 for validation, and 150 for testing.
The detection range in WOD is 75 meters (cover area of
150m x 150m).

Argoverse 2 (AV2) We further conduct long-range experi-
ments on the recently released Argoverse 2 dataset [4] to
demonstrate the superiority of FSD in long-range detection.
AV2 has a similar scale to WOD, and it contains 1000
sequences in total, 700 for training, 150 for validation, and
150 for testing. In addition to average precision (AP), AV2
adopts a composite score as an evaluation metric, which takes
both AP and localization errors into account. The perception
range in AV2 is 200 meters (cover area of 400m x 400m),
which is much larger than WOD. Such a large perception
range leads to a huge memory footprint for dense detectors.

5.1.2 Model Configuration

To demonstrate the generality of SIR, we build two FSD vari-
ants. FSD,,; adopts the emerging single stride sparse trans-
former [6] as the sparse voxel feature extractor. FSDgpcony is
built upon sparse convolution based U-Net in PartA2 [7]. In
the experiments of FSD, we use FSD;,; in the experiments
unless otherwise specified. In the experiments of FSD++, we
use FSDgy,cony as our detector since the highly optimized
engineering of SpConv makes it more efficient than the SST
backbone with multi-frame input.

5.1.3 Implementation Details

Our implementation is based on popular MMDetec-
tion3D(v0.15) [44]. In FSDgs, we use 4 sparse regional
attention blocks [6] as our voxel feature extractor. The SIR
module and SIR2 module consist of 3 and 6 SIR layers,
respectively. A SIR layer is defined by Eqn. 1 and Eqn. 2. Our
SST-based model converges much faster than SST, so we train
our models for 6 epochs for ablation study, instead of the 2x
schedule (24 epochs) in SST. For FSDpcon, in addition to the
6-epoch schedule, we adopt a longer schedule (12 epochs)
for better performance. Different from the default setting in
MMDetection3D, we decrease the number of pasted instances
in the CopyPaste augmentation. In FSD, some scarce classes
like cyclist prone to be over-fitted with too many pasted
instances. All experiments in Argoverse 2 dataset adopt a
12-epoch schedule. The models for performance analysis
(Sec. 5.3 ~ Sec. 5.6) are trained on 8 RTX 2080Ti GPUs with
batch-size 2. And the models in Table. 1 are trained on 8 RTX
3090 GPUs with batch-size 2. More details can be found in
our released code.

5.2 Main Results of FSD and FSD++

We first compare FSD with state-of-the-art detectors and
our baseline in Table 1 and Table 2. In the validation split,
FSD/FSD++ achieves state-of-the-art average performance
(L2 mAPH) in single-frame/multi-frame settings, respec-
tively. In test split, FSD achieves the best performance on all
classes among all single-frame detectors. Meanwhile, FSD++
with 7-frame input surpasses all detectors with up to 100-
frame input, in terms of average metric.
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Fig. 6. The overall architecture of FSD++. In training, we adopt offline predictions to approximate history predictions. During inference, the detector
uses previous online predictions for skeleton point sampling. When the max age is larger than one, there will be some other AP;_; from time step

t — 4. For simplicity, we only present AP; here.

(a) Moving cars with static ego-vehicle

(b) Moving cars with moving ego-vehicle

(c) Static cars and moving pedestrian

Fig. 7. Examples of super sparse input point clouds. Residual points are colored in red. Previous foreground points are in blue. Gray points will not be
sent into the detector. (a) Moving cars cause apparent residual points. And some occluded points in the ground plane become visible due to car
movement. (b) The ego-vehicle is moving, which causes some points in the ground plane to be detected as residual points. (c) Residual points are

detected on the moving pedestrian instead of the static cars.

It is also noteworthy that FSD and FSD++ are much more
efficient than most of the previous arts, especially in the
multi-frame setting and long-range setting. We elaborate this
in Sec. 5.4 and Sec. 5.7.

5.3 Study of Treatments to Center Feature Missing
5.3.1

In what follows, we conduct experiments on WOD to inves-
tigate the issue of Center Feature Missing (CFM). We first
develop several models with different characteristics. Note
that all the following models adopt the same voxelization
resolution, so they face the same degree of CFM at the
beginning.

Quantitative Experiments

o FSD iy After the sparse voxel encoder, FSD, 4y, directly
predicts the box from each voxel. The voxels inside ground-
truth boxes are assigned as positive. Although FSD,,;;, uses
the most straightforward solution for CEM, it suffers from
the large variance of regression targets and low-quality
predictions from informative voxels.

e SST cpier: It replaces the anchor-based head in SST with
CenterHead [9], [28]. Based on the sparse voxel encoder,

SSTcenter converts sparse voxels into dense feature maps
and applies several convolutions to diffuse features to the
empty object centers as in Fig. 2. Then it makes predictions
from the diffused center feature.

o FSD, 4. It removes the group correction and SIR2 module
in FSD.

e CenterPoint-PP: It does not resort to any sparse voxel
encoders. Instead, it applies multiple dense convolutions
soon after voxelization for feature diffusion, greatly elimi-
nating CFM. It is also equipped with CenterHead to avoid
large variance of regression targets.

There is usually a quite large unoccupied area around
the centers of large vehicles. Thus the performance of large
vehicles is an appropriate indicator that reveals the effect of
CFM. So we build a customized evaluation tool, which breaks
down the object length following the COCO evaluation [59].
Then we use it to evaluate the performance of vehicles with
different lengths. Table 3 shows the results, and we list our
findings as follows.

o Comparing FSD,;4in With SSTcepter, they share the same
attention-based sparse voxel encoder. However, the trend
is totally opposite w.r.t vehicle size. With feature diffusion,
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Method #. mAP/mAPH Vehicle 3D AP/ APH Pedestrian 3D AP/APH Cyclist 3D AP/APH
ethods frames L2 L1 \ L2 L1 \ L2 L1 \ L2
SECOND [5] 1 61.0/57.2 72.3/71.7 63.9/63.3 68.7/58.2 60.7/51.3 60.6/59.3 58.3/57.0
MVE [14] 1 -/- 62.9/- -/- 65.3/- -/- -/- -/-
AFDet [45] 1 -/- 63.7/- -/- -/- -/- -/- -/-
Pillar-OD [46] 1 -/- 69.8/- -/- 72.5/- -/- -/- -/-
RangeDet [39] 1 65.0/63.2 72.9/72.3 64.0/63.6 75.9/71.9 67.6/63.9 65.7/64.4 63.3/62.1
PointPillars [19] 1 62.8/57.8 72.1/71.5 63.6/63.1 70.6/56.7 62.8/50.3 64.4/62.3 61.9/59.9
Voxel RCNN [32] 1 -/- 75.6/- 66.6/- -/- -/- -/- -/-
RCD [42] 1 -/- 69.0/68.5 -/- -/- -/- -/- -/-
VoTr-TSD [47] 1 -/- 74.9/74.3 65.9/65.3 -/- -/- -/- -/-
LiDAR-RCNN [43] 1 65.8/61.3 76.0/75.5 68.3/67.9 71.2/58.7 63.1/51.7 68.6/66.9 66.1/64.4
Pyramid RCNN [48] 1 -/- 76.3/75.7 67.2/66.7 -/- -/- -/- -/-
Voxel-to-Point [49] 1 -/- 77.2/- 69.8/- -/- -/- -/- -/-
3D-MAN [50] 16 -/- 74.5/74.0 67.6/67.1 71.7/67.7 62.6/59.0 -/- -/-
MB3DETR [51] 1 61.8/58.7 75.7/75.1 66.6/66.0 65.0/56.4 56.0/48.4 65.4/64.2 62.7/61.5
Part-A2-Net [7] 1 66.9/63.8 77.1/76.5 68.5/68.0 75.2/66.9 66.2/58.6 68.6/67.4 66.1/64.9
CenterPoint-Pillar [9] 1 -/- 76.1/75.5 68.0/67.5 76.1/65.1 68.1/57.9 -/- -/-
CenterPoint-Voxel [9] 1 69.8/67.6 76.6/76.0 68.9/68.4 79.0/73.4 71.0/65.8 72.1/71.0 69.5/68.5
IA-SSD [13] 1 62.3/58.1 70.5/69.7 61.6/61.0 69.4/58.5 60.3/50.7 67.7/65.3 65.0/62.7
PV-RCNN [8] 1 66.8/63.3 77.5/76.9 69.0/68.4 75.0/65.6 66.0/57.6 67.8/66.4 65.4/64.0
RSN [52] 1 -/- 75.1/74.6 66.0/65.5 77.8/72.7 68.3/63.7 -/- -/-
SST_TS [6] 1 -/- 76.2/75.8 68.0/67.6 81.4/74.0 72.8/65.9 -/- -/-
SST [6] 1 67.8/64.6 74.2/73.8 65.5/65.1 78.7/69.6 70.0/61.7 70.7/69.6 68.0/66.9
AFDetV2 [24] 1 71.0/68.8 77.6/77.1 69.7/69.2 80.2/74.6 72.2/67.0 73.7/72.7 71.0/70.1
PillarNet-34 [53] 1 71.0/68.5 79.1/78.6 70.9 / 70.5 80.6/74.0 72.3/66.2 72.3/71.2 69.7/68.7
PV-RCNN-++ [10] 1 68.4/64.9 78.8/78.2 70.3/69.7 76.7/67.2 68.5/59.7 69.0/67.6 66.5/65.2
PV-RCNN-++(center) [10] 1 71.7/69.5 79.3 / 78.8 70.6/70.2 81.3/76.3 73.2/68.0 73.7/72.7 71.2/70.2
CenterFormer [54] 8 75.1/73.7 78.8/78.3 74.3/73.8 82.1/79.3 77.8/75.0 75.2/74.4 73.2/72.3
INT [55] 10 -/73.6 -/- -/733 -/- -/71.9 -/- -/75.6
MPPNet [56] 16 75.6/74.9 827 / 823 | 754/ 75.0 84.7/82.3 77.4/75.1 77.3/76.7 75.1/745
FSDspeony (OUrs) 1 71.9/69.7 77.8/77.3 68.9/68.5 81.9/76.4 73.2/68.0 76.5/75.2 73.8/72.5
FSDs.: (ours) 1 71.5/69.2 76.8/76.3 67.9/67.5 81.3/75.3 72.5/67.0 77.2/76.0 74.4/73.2
FSDspeonw (ours)t 1 72.9 / 70.8 79.2/78.8 70.5/70.1 826 /773 | 739 /691 | 771/ 760 | 744 /733
FSD++ (ours)t 7 76.8 / 75.5 81.4/80.9 73.3/72.9 85.1 /822 | 782 /754 | 812/803 | 789 /781
TABLE 1

Performances on the Waymo Open Dataset validation split. All reported results are from single model without any test-time augmentations. t: Longer
schedule (12 epochs). We mark the best single-frame results and multi-frame results with gray boxes and cyan boxes, respectively.

SST center attains much worse performance than FSD,;4ir,
on large vehicles. It suggests feature diffusion is a sub-
optimal solution for CFM in the case of large objects. For
those large objects, the features may not be diffused to
the centers or the diffused features are too weak to make
accurate predictions.

o However, FSD,4;, obtains the worst performance among
all detectors on vehicles with normal sizes. Note that the
CFM issue is minor for the normal-size vehicles. So, in this
case, the center-based assignment in SST ¢y ter Shows its
superiority to the assignment in FSD,;4;,,. It suggests the
solution for CFM in FSD,;qy, is also sub-optimal, even if it
achieves better performance in large objects.

o Comparing FSD,,o4c With SSTccpier, they share the same
sparse voxel encoder while FSD,,,4. replaces the dense
part in SST cpier With SIR. The huge improvements of
FSDj,04c On large vehicles fairly reveal that SIR effectively
resolves CFM and is better than feature diffusion.

o CenterPoint-PP suffers much less from CFM because it
leverages dense feature maps from the very beginning of
the network. It is also equipped with advanced center-
based assignment. Even so, FSD,, 4. and FSD still outper-
form CenterPoint-PP, especially on large vehicles.

5.3.2 Qualitative Analysis

In addition to the quantitative experiments, we demonstrate
the qualitative effect of CFM and our treatment, shown in
Fig. 8. Fig. 8 showcases the voted centers of FSD and the

= N

N

Fig. 8. An intuitive illustration of the center feature missing. Left: Voted
centers of FSD. Right: Predicted heatmap of SSTcenter-

predicted heatmap of center-based SST. Both of them yield
high-quality predictions for vehicles of normal size, but their
predictions (votes) are usually ambiguous for large vehicles.
Center-based dense detectors make predictions from such
ambiguous heatmaps, so they are prone to make flawed
final predictions. Although the center voting of FSD on large
vehicles is also mediocre, FSD only uses the votes to obtain
point groups (i.e., instance segmentation), which does not
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Method #. mAP/mAPH Vehicle 3D AP/ APH Pedestrian 3D AP/ APH Cyclist 3D AP/APH
ethods frames L2 L1 \ L2 L1 \ L2 L1 \ L2
CenterPoint [9] 1 -/69.0 -/- -/71.9 -/- -/67.0 -/- -/68.2
AFDetV2-lite [24] 1 72.2/70.0 80.5/80.0 73.0/72.6 79.8/74.3 73.7/68.6 72.4/71.2 69.8/69.7
PV-RCNN [8] 1 71.3/68.8 80.6/80.1 72.8/72.4 78.2/72.0 71.8/66.0 71.8/70.4 69.1/67.8
PV-RCNN++ [10] 1 72.4/70.2 81.6/81.2 73.9/73.5 80.4/75.0 74.1/69.0 71.9/70.8 69.3/68.2
Graph R-CNN [57] 1 73.8/71.6 83.6 / 83.1 76.0 / 75.6 81.9/76.5 75.6/70.5 72.5/71.3 69.8/68.7
AFDetV2 [24] 2 74.6/73.1 81.7/81.2 74.3/73.9 81.3/78.0 75.5/72.4 76.4/75.4 74.1/73.0
CenterPoint++ [9] 3 742/72.8 82.8/82.3 75.5/75.1 81.0/78.2 75.1/72.4 74.4/73.3 72.0/71.0
BEVFusion™ [58] 3 77.7/76.3 85.0 / 84.6 77.9/77.5 84.7 / 82.0 79.1/76.4 78.5/77.5 76.0/75.1
DeepFusion™ [25] 5 76.9/75.5 83.3/82.8 76.1/75.6 84.6/81.8 79.2/76.4 77.8/76.8 75.5/74.5
CenterFormer [54] 16 76.9/75.6 84.7/84.4 781/ 77.7 84.6/81.8 794 / 76.6 75.5/74.5 73.3/72.4
INT [55] 100 76.6/75.2 84.7/84.3 78.0/77.6 82.4/79.7 76.6/74.0 77.4/76.3 75.2/74.1
MPPNet [56] 16 76.9/75.7 84.3/83.9 77.3/76.9 84.1/81.5 78.4/75.9 77.1/76.4 74.9/74.2
FSDspcony (ours)t 1 744 / 72.4 82.7/82.3 74.4/74.1 829 /779 759 / 71.3 75.6 / 74.4 729 / 71.8
FSD++ (ours)t 784 / 771 84.5/84.1 77.1/76.7 84.5/81.7 79.0/76.2 81.4 / 80.5 79.2 / 78.3
TABLE 2

Performances on the Waymo Open Dataset test split. All results are in single-model setting without ensemble or test-time augmentations. *:

Multi-modal methods with camera information. We mark the best single-frame results and multi-frame results with gray boxes and cyan boxes,
respectively. : 12-epoch schedule.

Vehicle length (m)
[0,4)

Methods [4,8) 8, 12) [12, +00) ‘ Official*

CenterPoint-PP+ 343 69.3 420 436 66.2

FSDpiain 322 64.6 413 4022 623

SSTeenter [6] 36.0 69.4 337 305 663

FSDhoge 335025 68211.2 4771140 4791174 | 6521 1.1

FSD 367107 71.011.6 513117.6 537123.2 | 69.313.0
TABLE 3

Vehicle detection with vehicle length breakdown. t: re-implemented
ourselves. *: official Waymo L2 overall metric. Arrows indicate the
performance changes from SSTccnter-

necessitate perfect center voting. The final predictions of FSD
are derived from the complete point groups rather than the
weak center features, thereby sidestepping the issue of CFM.
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Fig. 9. Memory footprints and inference latency in different perception
ranges. Statistics are obtained on a single 3090 GPU with batch size
1. Inference latency is evaluated by the standard benchmark script in
MMDetection3D without any test-time optimization. CenterPoint-PP and
SSTcenter are defined in Sec. 5.3. Best viewed in color.

5.4 Long-range Detection

Several widely adopted 3D detection benchmarks [1], [2], [3]
have relatively short perception range. To unleash the poten-
tial of FSD, we conduct long-range detection experiments

on the recently released Argoverse 2 dataset (AV2). AV2
has a perception range up to 200 meters, making it an ideal
testbed for our method. In addition, AV2 contains objects in
30 classes, exhibiting the long-tail distribution, which is also
another challenge for FSD.

5.4.1 Main results

We first list the main results of FSD on AV2 in Table 4.
The authors of AV2 provide a baseline CenterPoint model,
but the results are mediocre. To make a fair comparison,
we re-implement a stronger CenterPoint model on the
AV2 dataset. The re-implemented CenterPoint adopts the
same training scheme with FSD, including ground-truth
sampling to alleviate the long-tail issue. FSD outperforms
CenterPoint in the average metric. It is noteworthy that FSD
significantly outperforms CenterPoint in some tiny objects
(e.g., Pedestrian, Construction Cone) as well as some objects
with extremely large sizes (e.g., Articulated Bus, School
Bus). We owe this to the virtue of instance-level fine-grained
feature extraction in SIR.

5.4.2 Range Scaling

To demonstrate the efficiency of FSD in long-range detection,
we depict the trend of training memory and inference latency
of three detectors when the perception range increases in
Fig. 9. Fig. 9 shows that dense detectors experience a dramatic
increase in latency and memory footprint as the perception
range grows. Designed to be fully sparse, the resource needed
for FSD is roughly linear to the number of input points, so its
memory and latency only slightly increase as the perception
range extends.

5.5 Performance Inspection of FSD

5.5.1 Effectiveness of Components

In addition to FSDyqs, and FSDy4. (Sec. 5.3), we also
degrade FSD to FSD, 4, to gain insights into its mechanism.

In FSD, 4,4, we aggregate grouped point features by dynamic
pooling after Instance Point Grouping, and then directly
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Precision |
CenterPointt [9] | 135 610 360 330 280 260 250 225 160 160 125 9.5 8.5 75 8.0 8.0 7.0 6.5 3.0 2.0 14
CenterPoint* 220 676 389 465 169 374 401 322 286 274 334 245 8.7 258 226 295 224 6.3 3.9 0.5 20.1
FSD 240 671 398 574 213 383 383 381 300 236 381 255 156 300 201 389 239 79 5.1 5.7 27.0
FSDt 282 681 409 590 29.0 385 418 426 397 262 490 386 204 305 148 412 269 119 59 138 334
Composite Score |
CenterPoint* 176 572 320 357 132 31.0 289 256 222 191 282 196 6.8 225 174 224 172 4.8 3.0 04 16.7
FSD 191 560 33.0 457 167 316 277 304 238 164 319 205 120 256 159 292 181 6.4 3.8 45 221
FSDt 227 577 342 475 234 317 309 344 323 180 414 320 159 261 11.0 307 205 9.5 44 115 28.0
TABLE 4

Performance in Argoverse 2 validation split. 1: provided by authors of AV2 dataset. $: Weak CopyPaste augmentation for preventing overfitting (one
instance per class). x: re-implemented by ourselves. C-Barrel: construction barrel. MPC-Sign: mobile pedestrian crossing sign. A-Bus: articulated
bus. C-Cone: construction cone. V-Trailer: vehicular trailer. We omit the results of dog, wheelchair and message board trailer because these
categories contain very few instances. The average results take all categories into account, including the omitted categories. We mark the categories
attaining notable improvements in bold.

make predictions from the pooled features. FSD, 4, is similar v ) AP i
to the way in VoteNet [22] as we discussed in Sec. 3.5. Thus, oxel size | CC_ Bollard Bicyclist Stop Sign | Latency (ms)f
FSDg44 can explicitly leverage instance-level features other 3852 ggé ggg géi ;gg Z?
than the point-level features in FSD,,;4i,,, mitigating the issue 10em 389 383 270 213 45
of CFM. However, FSD, 4, cannot take advantage of further Point 393 386 27.1 21.5 6.3
point feature extraction in SIR. As can be seen in Table 5, the TABLE 6
improvement is limited if we only apply grouping without Performances with different representation granularity. t: Latency of SIR
SIR. The combination of grouping and SIR, on the other hand, module.
yields significant improvements.
Grouping  SIR GrouP ) 123D A_PH ) ‘ FSD ‘ CenterPoint
Correction | Vehicle Pedestrian  Cyclist Mem. Latency(ms) mAP Mem. Latency(ms) mAP
Dy | 22 63l ele yRort |32 s losn 252 | ssiiwi  mrisen 18
FSD;Z?C v v 65:20 67:39 67:78 w/oground | 2.3 | 61.0% 74| 25.8% 21.0 9.7 6.7% 217) 6.4% 19.8
FSD v v v 69.30 69.30 69.60 TABLE 7
TABLE 5 Performance with different detection areas. t: Region of Interest is

Ablation of design factors in SIR. Performances are evaluated on Waymo
validation split.

5.5.2 Downsampling in SIR

The efficiency of SIR makes it feasible to extract fine-grained
point features without any point downsampling. This is
another notable difference between FSD and VoteNet. To
demonstrate the superiority, we apply voxelization on the
raw points before the SIR module and treat the centroids of
voxels as downsampled points. We conduct experiments on
the AV2 dataset because it contains a couple of categories
in a tiny size, which may be sensitive to downsampling. As
expected, small objects have notable performance loss when
adopting downsampling, and we list some of them in Table
6. We also evaluate the inference latency of the SIR module
on a 3090 GPU, which is highly efficient.

5.5.3 HD Map-assisted Detection

Argoverse 2 dataset provides a highly reliable HD map,
which could be utilized as a prior to remove uninterested
regions making the scene more sparse. Thus we proceed with
experiments removing some uninterested regions to show
the advantages of FSD in more sparse scenarios. The results
are summarized in Table 7. FSD has a significantly lower
memory footprint and latency with an acceptable precision

defined by the HD map in AV2 dataset.

loss after removing the uninterested regions. On the contrary,
the efficiency improvement of CenterPoint is minor. It reveals
that FSD benefits more from the increase of data sparsity,
which is another advantage of the fully sparse architecture.

5.6 Comprehensive Analysis of FSD++
5.6.1 Preliminary Settings for the Analysis of FSD++

In this section, we conduct extensive experiments to reveal
the inner workings of FSD++. Here we first present the
setting of our baseline model in this section, which is slightly
different from the best FSD++ model in Table. 1 and Table. 2.
Unless otherwise specified, the default hyper-parameters of
all the FSD++ models in Sec. 5.6 are listed in the first column
of Table 8.

The model latency reported in this section is measured on
a single RTX 3090 GPU with a mini-batch size of 1 in float32
precision. To ensure accuracy, we only consider the latency
of the model in all evaluations, excluding the latency of 1O,
which is potentially unstable in the multi-frame setting.

It is worth noting that we have observed run-to-run
variation in the performance of cyclist class, likely due to
its low number in the dataset. As a result, we mark the
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Baseline FSD++ Best FSD++ Multi-frame FSD # frames L2 3D AP/APH Latency
Schedul p o n N p N Mean Vehicle Pedestrian Cyclist |  (ms)
chedule epochs epochs epochs
Spst Raﬁdom Ranpdom P 2 73.39/71.83 69.54/69.12 74.68/71.35 75.94/7502 | 66.1
¥ frames p: 7 p 3 7520/73.74 7095/7052 76.13/73.09 7851/77.62 | 67.0
Max age ) 5 0 4 7544/7403  71.67/71.21  76.48/73.50 673
Backbonex SpUNetbase ~ SpUNetlarge  SpUNet-base > A A A 687
#. layers in SIR2 3 3 3 6 (FSD)t | 75.65/7428 71.54/71.07 78.04/75.22 1162
RPP size (0.25,0.25,0.4)  (0.25,0.25, 0.4) -
TABLE 10

TABLE 8
Basic hyper-parameter choice of models adopted in this section
(Sec. 5.6) t: SPS stands for skeleton point sampling. *: SpUNet-large
has one more stage than SpUNet-base [7] and the number of channels
of its first is doubled.

performance of this class in gray in some experiments to
indicate that it may not be reliable.

5.6.2 Skeleton Point Sampling

Table 9 shows the performance with different skeleton point
sampling strategies. We find that there are no significant
differences between the three strategies considered. However,
using random skeleton sampling considerably reduces the
latency of FSD++ without sacrificing performance. And
skeleton sampling consistently boosts the performance of
the cyclist class, which suggests that appropriate sampling
alleviates the overfitting for rare classes. The performance
of pedestrian is better without sampling, which reveals that
more points might be helpful for small objects. In practice,
although different sampling strategies could be adopted for
different classes, we use the random sampling for all classes
for simplicity and generality.

L2 3D AP/APH Latency
Mean Vehicle Pedestrian Cyclist |  (ms)
Random 76.10/74.73  72.20/71.74  76.93/74.11  79.20/78.33 68.7
Object FPS 7556/74.21  72.06/71.59  76.94/74.14  77.68/76.88 72.3
Voxel Sampling | 75.76/74.40  72.10/71.66  76.80/74.05  78.37/77.49 714
None 7523/73.91 71.93/71.50 77.54/74.72  76.33/75.51 739
TABLE 9

Effectiveness of different skeleton point sampling.

5.6.3 Different Number of Frames

FSD++ samples skeleton points from multiple previous
frames. Table 10 showcases how the number of used frames
affects its performance. There are two interesting findings.

o Performance becomes better as the number of frames
grows. In the meantime, the latency does not signif-
icantly increase. We owe the credit to residual point
probing, which removes most of the background. It
could offer even more clean residual points if more base
frames (Eqn. 4) are used.

o FSD++ outperforms FSD with the same number of
frames in vehicle and cyclist class. We also intuitively
owe it to RPP since it removes most background clutter
and eases the burden of the segmentation. The slightly
lower performance of pedestrian suggests it might be
better to retain all points for pedestrian. However, the
performance loss is acceptable since FSD++ achieves
better average performance and much lower latency.

Performance of FSD++ with the different number of frames. Since
FSD++ uses previous foreground points, it needs at least two frames. t:
multi-frame FSD model with simple point concatenation. Performance is

unstable in the scarce cyclist class, so we mark the numbers in gray.

5.6.4 Dirifting Analysis

It would be a major concern if FSD++ suffers from the drifting
error given its reliance on history predictions. In particular,
if the detector makes inaccurate predictions at time step ¢, it
is likely that the detector becomes worse at time step ¢ 4 1
since the predictions in ¢ + 1 rely on the predictions from ¢
(skeleton point sampling).

To prevent potential drifting, we insert some keyframes
at regular intervals during the inference of a sequence.
At keyframes, we use the predictions from standard FSD
for skeleton point sampling, which could be viewed as a
rectification of the potential drifting. Table. 11 shows that
FSD++ achieves competitive results without any keyframes.
And the minor gap between the first row and the last row
confirms that the drifting of FSD++ is negligible.

Gap between L2 3D AP/APH
key frames Mean Vehicle Pedestrian Cyclist
5 76.05/74.67 72.23/71.77 76.83/74.02 79.08/78.21
10 76.03/74.66  72.20/71.75  76.88/74.07  79.00/78.15
20 76.07/74.68 72.20/71.74 76.90/74.08 79.11/78.23
50 76.10/74.72  72.20/71.74 76.91/74.10 79.20/78.32
None 76.10/74.73  72.20/71.74 76.93/74.11 79.20/78.33
TABLE 11

The performance of different keyframe gaps. “None” means using only
initial predictions.

5.6.5 Change Blindness Ablation

Due to the change blindness we discussed in Sec. 4.3, newly
emerged objects might be ignored by the detector. Max age
is proposed to mitigate the issue of change blindness, and
Table 12 shows its effect. We find keep residual points for
two time steps (max age 2) is enough.

Max age L2 3D AP/APH Latency
8 Mean Vehicle Pedestrian Cyclist ‘ (ms)
1 75.17/73.82  71.38/70.94  76.74/73.97  77.40/76.56 65.3
2 76.10/74.73  72.20/71.74  76.93/7411  79.20, 68.7
3 76.14/74.74 72.22/71.75 77.06/74.20 79.13 70.2
TABLE 12

Different max ages of residual points. Performance is unstable in the
scarce cyclist class, so we mark the numbers in gray.

For a closer look at the issue of change blindness, we split
the objects in the original WOD validation set to emerging
objects and existing objects for further ablations. Emerging
objects mean those objects do not appear in the first frame of
a sequence, while emerging later. The results are shown in
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Table 13. The emerging objects recall of FSD++(1)" is inferior
to FSD_6f with the same number of frames. This suggests
that change blindness is indeed an issue for FSD++. However,
prolonging the max age makes FSD++ outperform FSD_6f
in all classes, which demonstrates the proposed max age
effectively mitigates change blindness.

Recall of emerging objects
Method Mean Vehicle Pedestrian Cyclist
FSD 73.05 66.01 72.62 80.53
FSD_6f* 77.54 69.74 78.34 84.53
FSD++(1) | 75.58 69.18 77.48 83.09
FSD++(2) | 77.82 70.56 78.10 84.79
FSD++(3) | 78.14 70.60 78.30 85.52
TABLE 13

Performance for emerging objects. +: FSD with 6-frame concatenated
input. In the WOD validation split, the number of emerging objects count
for around 42.4%/37.1%/52.6% in all objects for vehicle / pedestrian /
cyclist, respectively.

5.6.6 Robustness to Seed Quality

During inference of every point cloud sequence, FSD++
needs the predictions in the initial frame as a seed to start, as
we discussed in Sec. 4.5.2. Here we figure out how the quality
of seed predictions affects the performance. Concretely, we
add two typical kinds of random noise to seed predictions,
including random box drop and random box insertion. They
are designed to simulate false negatives and false positives.
All the experiments share a trained FSD++ detector. The
modifications above are applied during inference and are not
adopted for training-time augmentation.

Table 14 shows FSD++ is robust to both two types of
noises. Particularly, for box drop, there is only marginal
performance degradation even after dropping all the initial
seed boxes. We explain this surprising phenomenon in two
aspects: (1) FSD++ is born to be robust to the dropping
of moving objects. This is because moving objects create a
considerable amount of residual points and FSD++ is capable
of making predictions from these residual points. (2) There
is still a small number of residual points in the static objects
due to the change of viewpoint. Moreover, the mechanism
of max age also helps accumulate residual points on static
objects.

In the case of box insertion, FSD++ is almost unaffected
because they can be easily identified as background in the
segmentation stage of FSD.

Noise type L2 3D AP/APH
Mean Vehicle Pedestrian Cyclist
None 76.10/74.73  72.20/71.74  76.93/74.11  79.20/78.33
Drop (10%)+ 75.95/74.58 72.11/71.66 76.81/73.99  78.92/78.08
Drop (50%) 75.76/7439 71.86/71.41 76.63/73.82  78.78/77.95
Drop (100%) 74.69/73.35 70.47/70.02 75.41/72.69 78.20/77.33
Insertion (10%) 76.00/74.62 72.16/71.70  76.82/73.99  79.01/78.16
Insertion (50%) 76.02/74.64 72.14/71.69  76.86/74.04 79.05/78.19
Insertion (100%) | 75.98/74.61 72.16/71.71  76.84/74.02  78.95/78.10
TABLE 14

Robustness to the noisy seed predictions. t: the percentage in
parentheses denotes the ratio of dropped/inserted instances.

1. The numbers in the parenthesis denote the max ages.

13

5.6.7 Analysis of Residual Point Probing

Quantization size and the number of base frames are two
important hyper-parameters in RPP. Here we show how they
affect the output residual points and performance.
Quantization size makes RPP robust to small point distur-
bance. We list the results of different quantization sizes in
Table 15. It could be seen from the “residual point ratio”
that RPP with larger quantization sizes leads to less residual
points making the detector more efficient but leading to
slightly lower performance.

Quantization 12 3D AP/APH Residual Latency
size Vehicle Pedestrian Cyclist point ratiot (ms)
(0.15,0.15,0.4) | 72.06/71.60 77.19/74.43  77.53/76.67 17.4% 72.3
(0.25,0.25,0.4) | 72.20/71.74 76.93/7411 7 .33 9.6% 68.7
(0.35,0.35,0.4) | 72.04/71.58 76.88/74.03  78.54/77.68 6.0% 65.2
TABLE 15

The effectiveness of quantization size in Residual Point Probing. 1:
residual point ratio means the average ratio of the residual points to the
total points in a single frame.

Base frame (in Eqn. 4) also has a considerable effect on RPP.
The more base frames are incorporated, the less residual
points could be obtained, leading to higher efficiency. More-
over, the performance is hardly affected by the increase of
base frames.

#. RPP base L2 3D AP/APH Residual Latency
frames Vehicle Pedestrian Cyclist point ratiot (ms)
3 72.48/72.03 77.16/74.35 7 14.4% 70.2
4 72.24/71.79  77.04/74.20 10.8% 69.0
5 7220/71.74  76.93/74.11 9.6% 68.7
6 7222/71.77  77.41/74.59 9.4% 68.5
TABLE 16

The effectiveness of the number of base frames in Residual Point
Probing. t: residual point ratio means the average ratio of the residual
points to the total points in a single frame.

5.7 Detailed Runtime Evaluation

Here we elaborate on the efficiency of each component of FSD
and FSD++. All evaluated models use SpUNet-large as the
backbone. Evaluations are conducted on a single RTX 3090
in FP32 precision without any test-time optimizations. We
only record the single-sample forward latency of the detector
implemented with MMDetection3Dv0.15, ignoring the 10
of point clouds which is unstable in the multi-frame setting.
Fig. 10 shows the detailed results, which are average numbers
evaluated on the first ten sequences of validation split.

As can be seen from the figure, the latency of the
segmentor is greatly reduced, which consists of the sparse
voxel encode (i.e., backbone) and segmentation head. As
a results, FSD++ is as fast as the single-frame FSD, yet
achieves better performance than FSD_6f (Table 10). It is
worth emphasizing that the “others” part of latency is usually
brought by some serialized operations, such as class-wise
detection heads and class-wise NMS. This part of latency
could be greatly reduced in deployment.

6 CONCLUSION

This paper first proposes a LiDAR-based fully sparse 3D
object detection framework, namely FSD. FSD forsakes the
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Latency Breakdowns
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Fig. 10. Latency breakdowns of multi-frame FSD, single-frame FSD and
FSD++.

widely adopted dense BEV feature map in previous arts,
which is the hindrance to making detectors fully sparse.
Instead, FSD consists of a general sparse voxel encoder and a
highly-efficient sparse instance recognition (SIR) module. SIR
remedies the issue of the center feature missing, which is the
essential difficulty of fully sparse architecture. FSD not only
actualizes efficient long-range (up to 200 meters) detection
on Argoverse 2 dataset, but also achieves state-of-the-art
performance on the competitive Waymo Open Dataset.

To unleash the potential of FSD, we propose lever-
aging temporal information to remove data redundancy.
The proposed Skeleton Point Sampling and Residual Point
Probing offer FSD a super sparse input point cloud, which
constitutes the FSD++ framework. FSD++ achieves state-of-
the-art single-model performance on both validation and test
split Waymo Open Dataset, and maintains high efficiency.
We hope our work lightens future research direction for
LiDAR-based point cloud recognition.

APPENDIX A
EFFICIENT DYNAMIC POOLING

The proposed SIR consists of three basic operations: MLP,
dynamic broadcasting, and dynamic pooling. MLP is highly
optimized in mainstream deep learning frameworks. Dy-
namic broadcasting is essentially an indexing operation,
which is highly parallel in modern GPUs. The efficiency
bottleneck of SIR lies in dynamic pooling. Thus we provide
an efficient implementation of dynamic pooling in this
section.

AA

The dynamic pooling implemented by PyTorch is known
as scatter operation. In this implementation, each thread
manages one feature and performs simple atomic operations
for feature reduction. Intensive atomic operations in large
groups are detrimental to parallelism.

We optimize the dynamic pooling operator in three
aspects. (1) Partitioning large groups into small sub-groups
with fixed sizes to balance the workload. (2) Sorting the

Implementation
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Fig. 11. lllustration of dynamic pooling implementation in CUDA. Best
viewed in color. We take two groups with different sizes as examples.
Dynamic pooling reduces each group to a single feature.

features with the same group ID in adjacent positions to
enhance the memory locality. Note that the group IDs of
each element remain unchanged throughout the SIR module,
so the sort is only applied once. (3) Threads in a warp are
assigned to adjacent channels for coalesced memory access
without warp divergence.

In particular, each thread corresponds to a feature dimen-
sion and reduces features in a partitioned sub-group through
loops. Besides, the calls to atomic operators are reduced from
once per thread to once per block, which contributes to high
parallelism. Fig. 11 illustrates our efficient implementation.

A.2 Runtime Evaluation

We take dynamic max-pooling as an example and evaluate
the latency of our implementation and torch_scatter in differ-
ent cases, including multiple feature dimensions, multiple
group sizes, and whether the group size is balanced. The
total number of groups in the evaluation is 100. The results
are shown in Table 17 and Table 18. With different data sizes,
our implementation achieves 2.48x to 39.58 x speedup. And
we have a more significant speedup with imbalanced group
sizes.

Feature Latency (ms) with Different Group Sizes
dimension | [10°,10') [10',10%) [10%,10%)  [10%,10%)
64 0.06/0.16 0.06/0.16 0.08/1.49 0.24/14.05
256 0.06/0.18 0.06/0.33 0.14/3.52 0.72/20.53
1024 0.09/0.16 0.10/0.85 0.37/6.53 4.82/65.28
Speedup | 248x 5.56x 20.47 x 30.53

TABLE 17

Latency of dynamic max pooling on data with balanced group sizes.
Each item denotes the latency of ours/torch_scatter in milliseconds.
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Lat

Feature Latency (ms) with Different Group Sizes
dimension | [10°,10")* [10%,10%)* [10%,10%)* [10%,10%)*
64 0.06/0.16  0.06/0.32  0.09/2.60 0.36/20.87
256 0.06/0.15  0.08/0.78  0.20/5.44 1.19/32.75
1024 0.06/0.24  0.12/136  057/924 5.91/196.4
Speedup | 3.05x 8.81x 24.01x 39.58 x

TABLE 18

ency of dynamic max pooling on data with imbalanced group sizes.

Each item denotes the latency of ours/torch_scatter in milliseconds. *:
The sizes of one-tenth groups are enlarged by 10x to create imbalanced

data.
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