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Counterfactual Samples Synthesizing and
Training for Robust Visual Question Answering

Long Chen∗, Yuhang Zheng∗, Yulei Niu, Hanwang Zhang, and Jun Xiao†

Abstract—Today’s VQA models still tend to capture superficial linguistic correlations in the training set and fail to generalize to the test
set with different QA distributions. To reduce these language biases, recent VQA works introduce an auxiliary question-only model to
regularize the training of targeted VQA model, and achieve dominating performance on diagnostic benchmarks for out-of-distribution
testing. However, due to the complex model design, ensemble-based methods are unable to equip themselves with two indispensable
characteristics of an ideal VQA model: 1) Visual-explainable: The model should rely on the right visual regions when making decisions.
2) Question-sensitive: The model should be sensitive to the linguistic variations in questions. To this end, we propose a novel model-
agnostic Counterfactual Samples Synthesizing and Training (CSST) strategy. After training with CSST, VQA models are forced to focus
on all critical objects and words, which significantly improves both visual-explainable and question-sensitive abilities. Specifically, CSST
is composed of two parts: Counterfactual Samples Synthesizing (CSS) and Counterfactual Samples Training (CST). CSS generates
counterfactual samples by carefully masking critical objects in images or words in questions and assigning pseudo ground-truth answers.
CST not only trains the VQA models with both complementary samples to predict respective ground-truth answers, but also urges the
VQA models to further distinguish the original samples and superficially similar counterfactual ones. To facilitate the CST training, we
propose two variants of supervised contrastive loss for VQA, and design an effective positive and negative sample selection mechanism
based on CSS. Extensive experiments have shown the effectiveness of CSST. Particularly, by building on top of model LMH+SAR [1],
[2], we achieve record-breaking performance on all out-of-distribution benchmarks (e.g., VQA-CP v2, VQA-CP v1, and GQA-OOD).

Index Terms—Visual Question Answering, Counterfactual Thinking, Language Biases, Data Augmentation, Contrastive Learning.

✦

1 INTRODUCTION

V ISUAL Question Answering (VQA), i.e., answering nat-
ural language questions about the given visual content,

is one of the essential abilities of advanced AI agents. With
the release of multiple large-scale VQA datasets, VQA has
received unprecedented attention and hundreds of VQA
models have been developed. However, since the inevitable
annotation artifacts in the real image datasets, today’s VQA
models always over-rely on superficial linguistic correla-
tions between the questions and answers (a.k.a., language
biases) [3], [4], [5], [6]. For example, a model naively an-
swering “2” for all “How many X?” questions can still get
satisfactory performance regardless of “X”. To disentangle
the bias factors and clearly monitor the progress of VQA re-
search, several diagnostic benchmarks have been proposed,
such as VQA-CP [7] and GQA-OOD [8]. These benchmarks
deliberately keep different question-answer distributions in
training and test sets. Moreover, the performance of many
state-of-the-art VQA models [9], [10], [11], [12], [13] all con-
sistently drop significantly on these diagnostic benchmarks
compared to their counterparts (i.e., VQA v2/v1 and GQA).

Currently, the most prevalent solutions to mitigate these
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Fig. 1: Two indispensable characteristics of an ideal VQA
model. (a) Visual-explainable ability: The model can not only
predict the correct answer (e.g., “surfing”), but also rely on
the right visual reference regions when making this prediction.
(b) Question-sensitive ability: The model should be sensitive
to linguistic variations. For example, after replacing the critical
word “luggage” with “bus”, the predicted answers of the two
questions should be different. LMH [1] is a SOTA VQA model.

language bias issues are ensemble-based methods: they
introduce an auxiliary question-only model to regularize the
training of targeted VQA model. Specifically, these methods
can further be categorized into two sub-types: 1) Adversary-
based models [15], [16], [17]: They train two models (i.e., the
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Fig. 2: Comparisons on three different VQA frameworks, and the weights of all VQA models are shared in each framework. (a)
The most common VQA framework, i.e., a plain VQA model with XE loss using original samples. (b) The framework of previous
CSS work [14]: Using CSS to generate counterfactual samples, and training the VQA model using XE loss for both original samples
and counterfactual samples. (c) The framework of the proposed CSST: Besides the XE training objectives, we use CSS to further
generate positive-negative sample pairs, and train the VQA model with an extra contrastive loss. For conciseness, we only show
one (type of) counterfactual sample and negative sample in each figure, and we skip the answer sets for all samples in each figure.

question-only and targeted VQA model) in an adversarial
manner [18], [19], i.e., minimizing the loss of VQA model
while maximizing the loss of the question-only model. Since
these two models are typically designed to share the same
question encoder, these adversary-based methods aim to re-
duce language biases by learning bias-neutral question rep-
resentations. Unfortunately, this adversarial training scheme
brings significant noise into gradient calculations, which
results in an unstable training process [16]. 2) Fusion-based
models [1], [20], [21], [22], [23]: They late fuse the predicted
answer distributions of the two models, and derive training
gradients based on fused answer distribution. The design
philosophy of these fusion-based models, is to let the tar-
geted VQA model focuses more on samples, which can’t be
easily answered correctly by the question-only model.

Although the ensemble-based methods have dominated
the performance on these diagnostic benchmarks, it is worth
noting that current methods fail to equip themselves with
two indispensable characteristics of an ideal VQA model: 1)
Visual-explainable ability: The VQA model should rely on
the right visual regions when making decisions, i.e., right
for the right reasons [24]. As shown in Fig. 1 (a), although
both two models can predict the correct answer “surfing”,
they actually refer to different visual reference regions when
making their respective answer predictions. 2) Question-
sensitive ability: The VQA model should be sensitive to
the linguistic variations in questions. As shown in Fig. 1 (b),
for two questions with a similar sentence structure (e.g., only
replacing the word “luggage” with “bus”), if the meanings
of the two questions are different, the model should perceive
the discrepancy and make corresponding predictions.

In this paper, we propose a novel model-agnostic Coun-
terfactual Samples Synthesizing and Training (CSST) strategy.
CSST serves as a plug-and-play component to improve VQA
models’ visual-explainable and question-sensitive abilities,
even for complex ensemble-based models. Specifically, CSST
is composed of two parts: Counterfactual Samples Synthe-
sizing (CSS) and Counterfactual Samples Training (CST).
CSS. For each original VQA training sample, CSS can gen-
erate a corresponding counterfactual sample. As shown in
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Image Question Answer
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What color is the man's [MASK] NOT green

V-CSS

Q-CSS

Original (a)

(b)
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Fig. 3: (a): A training sample from VQA-CP. (b): The synthesized
training sample by V-CSS. It masks critical objects in image
and assigns different GT answers (e.g., “not green”). (c): The
synthesized training sample by Q-CSS. It replaces critical words
(e.g., “tie”) with special token “[MASK]” in the question and
assigns different GT answers (e.g., “not green”).

Fig. 3, CSS consists of two different types of sample syn-
thesizing mechanisms: V-CSS and Q-CSS. For V-CSS, it syn-
thesizes counterfactual images by masking critical objects in
the original image. By “critical”, we mean that these objects
are important for answering a certain question. For example,
object (i.e., green tie) is a critical object for question “What
color is the man’s tie?”. Then, the counterfactual
image and original question compose a new image-question
(VQ) pair. For Q-CSS, it synthesizes counterfactual questions
by replacing critical words in original question with a spe-
cial token “[MASK]”. Similarly, the counterfactual question
and original image compose a new VQ pair. Meanwhile, to
avoid expensive manual annotations, we design a dynamic
answer assigning mechanism to approximate ground-truth
answers for all synthesized VQ pairs (e.g., “not green”).
CST. Based on our general sample synthesizing mechanism
CSS, we also propose a new CST training strategy for VQA,
which helps the VQA models to focus on the critical objects
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and words, i.e., improving VQA models’ visual-explainable
and question-sensitive abilities. Specifically, the CST consists
of two different training objectives: cross-entropy (XE) loss
and contrastive loss (cf. Fig. 2 (c)). For the XE training, we
use CSS to generate a counterfactual sample for each origi-
nal sample, and feed both two samples into the same VQA
model. After training with these complementary samples
simultaneously, VQA models are forced to focus on masked
critical objects and words. For the contrastive training, we
sample (or generate) a set of positive/negative samples for
each original (anchor) sample, and propose two variants of
supervised contrastive loss [25] for optimization. After training
with the contrastive objective, the VQA models can further
distinguish the original samples and superficially similar
counterfactual ones.

For more effective contrastive training, we further design
a novel positive and negative sample selection mechanism
based on CSS. For each original training sample, we regard
all samples with the same question type and ground-truth
answers as positive samples, and utilize CSS to generate cor-
responding counterfactual samples of each positive sample
as negative samples. Since CSS can effectively find the critical
objects in the images or critical words in the questions, these
positive and negative samples are superficially similar but
semantically different, which is very effective for contrastive
training.

Contributions. This paper is a substantial and system-
atic extension of our CVPR work [14]. Compared to the
conference version, we have made several improvements:
1) We propose an effective Counterfactual Samples Training

(CST) strategy to train VQA models effectively. Specifi-
cally, we propose two variants of supervised contrastive
loss for VQA, and designed a novel positive and negative
sample selection mechanism based on CSS.

2) We make two important modifications and improve-
ments over the initial CSS [26], which is denoted as CSS+.
Meanwhile, we have conducted a number of ablative
studies to verify the effectiveness of these improvements.

3) For more comprehensive evaluations, we evaluated CSST
on three challenging datasets: VQA-CP v2, VQA-CP v1,
and GQA-OOD. We achieve a new state-of-the-art perfor-
mance on all benchmarks. Meanwhile, more experiments
are conducted to further verify the generalization and
superiority of CSST, including more datasets, backbones,
ablation studies, and visualizations.
Extensive ablations on VQA-CP and GQA-OOD bench-

marks have demonstrated the effectiveness of CSST. Mean-
while, CSST can be seamlessly incorporated into any VQA
architecture, which can not only improve their both visual-
explainable and question-sensitive abilities, but also consis-
tently boost their VQA performance. Particularly, by build-
ing on top of the model LMH+SAR [1], [2], we achieve new
record-breaking results on all three benchmarks.

CSST vs. Existing Contrastive Traning Works in VQA:
To the best of our knowledge, there are a few works that
utilize contrastive training in VQA [27], [28], [29]. Especially
for [27], which is also built on top of CSS. Specifically,
they directly regard the counterfactual samples of an anchor
sample in CSS as its negative samples, and compose critical
objects/questions with original questions/images as corre-
sponding positive samples. As shown in our experiments

(cf. TABLE 2), this naive extension based on CSS extremely
limits the diversity of training samples. In contrast, CSST
can significantly improve the diversity of visual content
and question in both positive and negative samples at
contrastive training, which is empirically important (More
details are discussed in Sec. 3.3.2). Meanwhile, we propose
two variants of supervised contrastive loss for robust VQA.

2 RELATED WORK

Visual Question Answering (VQA). VQA, i.e., understand-
ing both the visual content and natural language question,
and making the answer prediction, is an important research
task in both computer vision and natural language process-
ing. Benefits from the deep learning techniques and large-
scale VQA datasets [5], [6], [30], [31], VQA has realized im-
pressive progress and achieved good results in real images.
With the advance in large-scale multimodal representation
pretraining, today’s VQA performance is mainly dominated
by pretrained multimodal BERT models [13], [32], [33], [34].
Language Biases in VQA. Despite VQA is a typical mul-
timodal task, a large body of research [3], [4], [6], [35], [36]
has shown the existence of language biases in VQA. There
are two main solutions to reduce language biases:

1. Balancing Datasets to Reduce Biases. The most straight-
forward solution is to create more balanced datasets. For
example, Zhang et.al. [4] and Goyal et.al. [6] collected com-
plementary images with opposite answers for all questions.
Although these “balanced” datasets have reduced biases to
some extent, the statistical biases from questions still can
be leveraged [7]. As shown in VQA-CP, the performance
of numerous models drop significantly compared to these
“balanced” datasets. In this paper, CSST follows the same
spirit of dataset balancing and trains VQA models with
more complementary samples. Especially, we don’t need
any extra manual annotations.

2. Designing Models to Reduce Biases. Another solution is
to design specific debiasing models. So far, the most effective
debiasing models for VQA are ensemble-based methods [1],
[15], [16], [17], [20], [21], [23]. In this paper, we propose a
novel CSST strategy, which can be seamlessly incorporated
into the ensemble-based models to further reduce the biases.
Visual-Explainable Ability in VQA Models. To improve
visual-explainable ability, early works [37], [38], [39] directly
apply human attention as supervision to guide the models’
attention maps. However, since the existence of strong bi-
ases, even with appropriate attention maps, the remaining
layers of network may still disregard the visual signal [40].
Thus, some recent works [40], [41] utilize Grad-CAM [42]
to obtain the private contribution of each object to correct
answers, and encourage the rank of all object contributions
to be consistent with human annotations. Unfortunately,
these models have two inherent drawbacks: 1) They need
extra human annotations. 2) The training is not end-to-end.
Question-Sensitive Ability in VQA Models. If VQA sys-
tems really “understand” the question, they should be sen-
sitive to the linguistic variations in question. Surprisingly,
to the best of our knowledge, there is only a few works [43]
that have studied the influence of linguistic variations in
VQA. Specifically, it designs a cycle-consistent loss between
two dual tasks, and utilizes sampled noises to generate
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diverse questions. However, Shah et.al. [43] only consider
the robustness of different rephrasings of the same ques-
tion. In contrast, we also encourage models to perceive the
difference in questions when changing some critical words.
Data Augmentation in VQA. Some concurrent works and
following works after our CSS [14] also utilize data aug-
mentation to improve VQA performance. Specifically, there
are two directions: 1) Images Augmentation. Almost all other
image augmentation works [44], [45], [46] resort to GAN [18]
to generate corresponding counterfactual images, which is
notorious for unstable training. Meanwhile, photo-realistic
image generation itself is still an open challenge. 2) Questions
Augmentation. The most straightforward question augmen-
tation strategy in VQA [28] is back-translation [47], which
translating a sentence from one language to another and
then translating it back using a pair of translation models. It
is worth noting that some recent data augmentation works
compose new training samples by directly pairing pristine
images and questions from other samples [48], [49].

In contrast, in this paper, our proposed CSST only masks
critical objects or words, which is easier and more adoptable.
Contrastive Training in VQA. Contrastive learning tech-
niques have achieved unprecedented success in vision com-
munity, especially for self-supervised representation learn-
ing [50], [51], [52]. The core idea of contrastive learning
is to maximize the mutual information between the input
samples and positive samples, and minimize the one be-
tween negative samples. Currently, there are several VQA
works [27], [28], [29] that also utilize contrastive training to
distinguish the original training samples and superficially
similar counterparts. Different from all existing works, we
equip our CSS mechanism with positive and negative selec-
tion for contrastive training, which not only increases the
sample diversity, but also meets the semantic requirements.

3 APPROACH

We follow the common formulation and regard the VQA
task as a multi-label classification problem. Without loss of
generality, given a dataset D = {Ii, Qi, ai}Ni consisting of
triplets of images Ii ∈ I , questions Qi ∈ Q and answer sets
ai ∈ {aji |a

j
i ∈ A}, the VQA task learns a mapping fvqa : I×

Q → [0, 1]|A|, which produces an answer distribution given
image-question pair. I , Q, and A denote the set of images
questions, and answers, respectively. For each ground-truth
answer aji ∈ ai, it has a soft target score tji , and we use the
same ground-truth soft target scores as in prior works [12].
For simplicity, we omit subscript i in the following sections.

In this section, we first introduce the UpDn baseline [12]
and a typical ensemble-based framework in Sec. 3.1. Then,
we introduce the details of Counterfactual Samples Synthe-
sizing (CSS) in Sec. 3.2. Last, we introduce the details of
Counterfactual Samples Training (CST) in Sec. 3.3.

3.1 Preliminaries

Bottom-Up Top-Down (UpDn) Model [12]. For each image
I , the UpDn uses an image encoder ev to output a set of
object features: V = {v1, ...,vnv}, where vi is i-th object fea-
ture. For each question Q, the UpDn uses a question encoder
eq to output a set of word features: Q = {w1, ...,wnq},

Algorithm 1 Ensemble-based Model (fusion-based)
Inputs: original training sample (I , Q, a), update cond is a
control condition for parameter updates.
Outputs: images features V , question features Q, and pre-
dicted answer distribution Pvqa(a).

1: function VQA(I,Q, a, update cond)
2: V ← ev(I)
3: Q← eq(Q)
4: Pvqa(a)← fvqa(V ,Q)
5: if update cond then
6: Pq(a)← fq(Q) ▷ question-only model
7: P̂vqa(a)←M (Pvqa(a), Pq(a))
8: LXE ← XE(P̂vqa(a), a) ▷ update parameters
9: end if

10: return V ,Q, Pvqa(a)
11: end function

where wj is j-th word feature. Then, both V and Q are fed
into the model fvqa to predict answer distributions:

Pvqa(a|I,Q) = fvqa(V ,Q). (1)

Typically, model fvqa contains a soft attention mechanism,
and it is trained with a (binary) cross-entropy (XE) loss.
Ensemble-Based Models. As we discussed in Sec. 1, the
ensemble-based models can be grouped into two sub-types:
adversary-based and fusion-based. Since adversary-based mod-
els [15], [16], [17] always suffer severe unstable training and
relatively worse performance, in this section, we only intro-
duce the typical fusion-based framework [1], [20], [21]. As
shown in Algorithm 1, they introduce an auxiliary question-
only model fq which takes Q as input and predicts answers:

Pq(a|Q) = fq(Q). (2)

Then, they combine these two answer distributions and
obtain a new answer distribution P̂vqa(a) by a function M :

P̂vqa(a|I,Q) = M (Pvqa(a|I,Q), Pq(a|Q)) . (3)

In the training stage, the XE loss is computed based
on the fused answer distribution P̂vqa(a) and the training
gradients are backpropagated through fvqa and fq . In the
test stage, only the model fvqa is used as plain VQA models.

3.2 Counterfactual Samples Synthesizing (CSS)
The overall structure of the CSS training scheme is shown
in Algorithm 2. Specifically, for any VQA model, given an
original training sample (I,Q, a), CSS can generate two
types of counterfactual samples: (I−, Q, a−) by V-CSS or
(I,Q−, a−) by Q-CSS. In the following, we mainly introduce
the details of V-CSS and Q-CSS. As shown in Algorithm 2,
for each specific training sample, we only use one certain
synthesizing mechanism, and δ is the trade-off weight (see
Fig. 5 (c) for more details about the influence of different δ).

3.2.1 V-CSS
We sequentially introduce all steps of V-CSS following its
execution path (i.e., line 5 to 8 in Algorithm 2), which con-
sists of four main steps: initial objects selection (IO SEL), ob-
ject local contributions calculation, critical objects selection
(CO SEL), and dynamic soft answer assigning (DSA ASS).
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Algorithm 2 Counterfactual Samples Synthesizing (CSS)
Inputs: original training sample (I , Q, a), and a typical VQA
model VQA.
Outputs: counterfactual training sample (I−, Q, a−) from
V-CSS or (I , Q−, a−) from Q-CSS.

1: function CSS(I,Q, a)
2: V ,Q, Pvqa(a)← VQA(I,Q, a, False)
3: cond ∼ U [0, 1]
4: if cond ≥ δ then ▷ execute V-CSS
5: I ← IO SEL(I,Q)
6: s(a,vi)← S(Pvqa(a),vi)
7: I+, I− ← CO SEL(I, {s(a,vi)})
8: a− ← DSA ASS(I+, Q,VQA, a)
9: return (I−, Q, a−)

10: else ▷ execute Q-CSS
11: s(a,wi)← S(Pvqa(a),wi)
12: Q+, Q− ← CW SEL({s(a,wi)})
13: a− ← DSA ASS(I,Q+,VQA, a)
14: return (I , Q−, a−)
15: end if
16: end function

1. Initial Objects Selection (IO SEL). In general, for any
specific QA pair (Q, a), only a few objects in image I are re-
lated. To narrow the scope of critical object selection, we first
construct a smaller object set I , and assume all objects in I
are possibly important in answering this specific question.
Since we lack manual annotations about the critical objects
for each sample, we followed [41] to extract objects which
are highly related to the QA. Specifically, we first assign
POS tags to each word in the QA using the spaCy POS
tagger [53] and extract nouns in QA. Then, we calculate
the cosine similarity between the GloVe [54] embeddings
of object categories1 and the extracted nouns, the similarity
scores between all objects in I and the QA are denoted as
SIM. We select |I| objects with the highest SIM scores as
the initial object set I .

2. Object Local Contributions Calculation. After obtain-
ing the initial object set I , we start to calculate the local
contribution of each object to the predicted probability of
ground-truth answer. Following recent works [40], [41], [55]
which utilize modified Grad-CAM [42] to derive the local
contribution of each participant, we calculate the contribu-
tion of i-th object feature to the ground-truth answer a as:

s(a,vi) = S(Pvqa(a),vi) := (∇viPvqa(a))
T
1, (4)

where Pvqa(a) is the predicted answer probability of the
ground-truth answer a, vi is i-th object feature, and 1 is an
all-ones vector. Obviously, if the score s(a,vi) is higher, the
contributions of object vi to answer a is larger.

3. Critical Objects Selection (CO SEL). After obtaining
the private contribution scores s(a,vi) for all objects in I ,
we select the top-K objects with highest scores as the critical

1For the VQA-CP dataset, we followed prior works [41] to utilize
these object category annotations, and the influence of different sizes of
initial objects are also illustrated in Fig. 5 (a). For the GQA-OOD dataset,
for fair comparisons with others, we skip this step for all experiments.

Algorithm 3 Dynamic Soft Answer Assigning (DSA ASS)

Inputs: VQ pair (I+, Q+), a typical VQA model VQA, and
original ground-truth answer set a.
Outputs: automatically assigned pseudo gt answer set a−,
and corresponding ground-truth soft target scores {ti−}.

1: function DA ASS(I+, Q+,VQA, a)
2: , , P+

vqa(a)← VQA(I+, Q+, a, False)
3: a− := a ▷ same gt answer set
4: for ai− in a− do
5: ti− := 1− P+

vqa(a
i−) ▷ soft answer

6: end for
7: return a−

8: end function

𝐼 𝐼! 𝐼"

𝑄 𝑄! 𝑄"

What color is the 
kite?

What color [MASK] 
[MASK] kite?

What color is the 
[MASK]?

Fig. 4: An informal illustration example of the I+, I−, Q+, and
Q− in CSS. For I+ and I−, they are two mutual exclusive object
sets. For Q+ and Q−, we show the example when word “kite”
is selected as the critical word. For clarity, we omit some objects.

object set I+. The K is a dynamic number for each image,
which is the smallest number meets Eq. (5):∑

vi∈I+

exp(s(a,vi))/
∑
vj∈I

exp(s(a,vj)) > η, (5)

where η is a constant, we set η = 0.65 in all experiments
(See Fig. 5 for more details about the influence of dynamic
K setting). Since the visual features V = {vi} are extracted
from a pretrained Faster R-CNN, i.e., they always have a
lot of repetitions due to overlapped image regions. To avoid
visual clue leakage from the other object visual features [56],
we also regard the object that overlaps any critical objects by
60% IoU or more as critical objects. Then, the counterfactual
input I− is the absolute complement of set I+ in set I , i.e.,
I− = I\I+. We show an example of I , I+ and I− in Fig. 4.

4. Dynamic Soft Answer Assigning (DSA ASS). Given
the counterfactual visual input I− and original question Q,
we compose a new VQ pair (I−, Q). To assign ground-truth
answers for the VQ pair (I−, Q), we design a new dynamic
soft answer assigning (DSA ASS) mechanism. The details
of DSA ASS are shown in Algorithm 3. Specifically, we
first feed another VQ pair (I+, Q) into the VQA model,
and obtain the predicted answer distribution P+

vqa(a). We
directly use the same set of ground-truth answer categories
as the pseudo ground-truth for the corresponding counter-
factual sample. Meanwhile, we re-assign the ground-truth
probability for each answer category of a−, e.g., the i-th
answer category ai− is set to P gt(ai−) = 1−P+

vqa(a
i−). In an

extreme case, if the model predicts all ground-truth answers
correctly for the VQ pair (I+, Q) with 100% probabilities,
then a− is a ∅, i.e., zero for all answer candidates. The basic
motivation is that if the current model can predict ground-
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truth answers for (I+, Q) (i.e., I+ contains critical objects
and I− not), the ground-truth for (I−, Q) should not contain
original ground-truth answers anymore, e.g., “not green”
in Fig 2. Similarly, the higher confidence for (I+, Q), the less
probability for this answer to be a ground-truth for (I−, Q).

3.2.2 Q-CSS
All steps in Q-CSS are similar to V-CSS. Following its exe-
cution path (i.e., line 11 to 13 in Algorithm 2), it consists of
word local contribution calculation, critical words selection
(CW SEL), and dynamic soft answer assigning (DSA ASS).

1. Word Local Contribution Calculation. Similar with
the V-CSS (cf. Eq. (4)), we calculate the contribution of i-th
word feature to the ground-truth answer a as:

s(a,wi) = S(Pvqa(a),wi) := (∇wiPvqa(a))
T1. (6)

2. Critical Words Selection (CW SEL). In this step, we
first extract question-type2 words for each question Q (e.g.,
“what color” in Fig. 4 is the question-type of question
“What color is the kite?”). Then, we select the top-
K words with the highest scores from the remaining sen-
tence (except question-type words) as the critical words. The
counterfactual question Q− is the sentence by replacing all
the critical words in Q with a special token “[MASK]”. Mean-
while, the Q+ is the sentence by replacing all other words
(except question-type and critical words) with “[MASK]”. We
show an example of Q, Q+, and Q− in Fig. 4.

3. Dynamic Soft Answer Assigning (DSA ASS.) This
step is identical to the DSA ASS in V-CSS, i.e., Algorithm 3.
For Q-CSS, the input for DSA ASS is the VQ pair (I,Q+).

3.2.3 Highlights of Two Improvements on CSS [14]
Compared to the initial CSS in the conference version [14],
we make two important modifications and improvements:

1) Object Overlapping in CO SEL. Different from the
word features in questions, which are relatively “inde-
pendent”, object features from the same image always
have a lot of repetitions due to their overlapped image
regions. We avoid this visual clue leakage by consider-
ing the IoU overlaps between all objects. This strategy
helps models rely more on the calculated critical objects.

2) “Soft” Answer Assigning in DSA ASS. In initial CSS
work [14], we select top-K predictions based on P+

vqa (cf.
Algorithm 3), and assign ground-truth answers based
on these top predictions. Compared to this “hard” an-
swer selection, DSA ASS is more robust to the selection
of hyperparameter K , and is more sensitive to perceive
the changes of answer predictions (i.e., P+

vqa).
To distinguish these two types of CSS, we denote the

current improved version as CSS+ in the following sections
(See results in Sec. 4 for comparisons between CSS & CSS+).

3.3 Counterfactual Samples Training (CST)
To further benefit from the counterfactual samples gener-
ated by CSS, we propose a CST strategy for model training
(cf. Algorithm 4). Specifically, it consists of a cross-entropy
(XE) training loss and a contrastive (CR) training loss.

2We slightly abuse “question-type” here. For VQA-CP, the question-
type denotes the default question-type annotations in the original
dataset. For GQA-OOD, the question-type denotes the annotated local
groups, which can be easily mapped back to each question.

Algorithm 4 Counterfactual Samples Training (CST)
Inputs: original training sample (I , Q, a), and a typical VQA
model VQA, and CSS.

1: function CST(I,Q, a)
2: # XE training
3: (I−, Q, a−)← CSS(I,Q, a) ▷ V-CSS for example
4: , , Pa ← VQA(I,Q, a,True) ▷ original samples
5: , , ← VQA(I−, Q, a−,True) ▷ counter. samples
6:
7: # samples selection
8: (Ip, Qp, a)← POS SEL(I,Q, a) ▷ pos. samples
9: {(Iin, Qi

n, )} ← NEG SEL(I,Q, a) ▷ neg. samples
10:
11: # contrastive training
12: , , Pp ← VQA(Ip, Qp,, False) ▷ for pos. samples
13: , , P i

n ← VQA(Iin, Q
i
n,, False) ▷ for neg. samples

14: LCR ← CR(Pa, Pp, {P i
n}) ▷ CR training

15: end function

3.3.1 XE Training on Counterfactual Samples
For XE training, we directly follow other state-of-the-art
VQA models (e.g., UpDn [12]) and use binary cross-entropy
loss as training objective, i.e.,

LXE = −
M∑
i

[
ti log σ(P̂vqa(a|I,Q))+

+(1− ti) log(1− σ(P̂vqa(a|I,Q)))
]
,

(7)

where σ denotes the sigmoid activation function, and ti

is the soft target score of i-th ground-truth answer for
this training sample (cf. line 5 in Algorithm 3). Different
from the most prevalent VQA framework which only uses
original samples in the XE training (cf. Fig. 2 (a)), in our XE
training, we feed both original training samples and their
corresponding counterfactual samples into the same VQA
model (i.e., line 3 to 5 in Algorithm 4).

3.3.2 Contrastive Training on Counterfactual Samples
For contrastive training, we propose a novel and effective
positive and negative samples selection mechanism based
on our CSS, and two variants of contrastive loss for VQA.
Positive & Negative Samples Selection Strategies. Without
loss of generality, we regard each original training sample
as the anchor sample, and we regard all samples with the
same question-type2 and ground-truth answer categories
as the candidate positive set3. In each training step, we
randomly sample one sample from the candidate set as
the positive sample (i.e., POS SEL in Algorithm 4). For each
positive sample, we compose four different types of negative
samples, which can be categorized into two groups based
on their sampling strategies. The first group of negative
samples are the counterfactual samples of the positive sam-
ples corresponding to V-CSS and Q-CSS, respectively. The
second group of negative samples are randomly sampled
samples: including 1) a random sampled sample with the
same question-type2 but different ground-truth answer; and

3For those samples do not have any sample meets the two require-
ments, we directly regard the original sample as the candidate positive
set, and the proportions are quite small, e.g., ≈ 1% for VQA-CP v2.
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2) a composed sample by replacing the original image with
a randomly sampled image from the same batch. All four
types of negative sample selection strategies constitute the
NEG SEL step in Algorithm 4. Detailed quantitative results
of different samples are reported in TABLE 2.

Advantages over Existing Positive/Negative Sampling Solu-
tions. Currently, there are two types of positive and negative
sample selection strategies. The first type also builds on top
of our CSS [27]. For each sample (I,Q), they directly use the
(I−, Q) and (I,Q−) in our CSS (cf. Algorithm 2) as negative
samples. The second type is directly randomly replaced an
image or question [28] to compose negative samples (e.g.,
(Irand, Q) or (I,Qrand)). Instead, we benefit from the ability
of CSS, and generate counterfactual samples for positive
samples (our first group), i.e., negative samples consist of
(I−pos, Qpos) and (Ipos, Q

−
pos). Compared to the first solution,

our strategy significantly increases the diversity of visual
contents and questions in positive and negative samples,
i.e., in each training epoch, we can use totally different
counterfactual samples as negative samples. Compared to
the second solution, our strategy based on CSS can help
models to focus more on fine-grained differences (masked
critical objects and words) under contrastive training.
Two Variants of Contrastive Loss for VQA. In this paper,
we propose two different types of contrastive loss for VQA:
a global version which calculates the similarity (or distance)
between anchor samples and positive/negative samples on
the whole answer probabilities (dubbed as CR-G), and a
local version which calculates the distance based on only
ground-truth answer probabilities (dubbed as CR-L).

Global Contrastive Loss (CR-G). Given the predicted an-
swer distributions (before the sigmoid activation function)
of anchor sample, positive sample, and negative samples
(denoted as Pa, Pp and {P i

n} respectively), the CR-G loss is:

LCR-G = − log

(
es(Pa,Pp)/τ

es(Pa,Pp)/τ +
∑

i e
s(Pa,P i

n)/τ

)
, (8)

where s(Pi, Pj) is the cosine similarity of answer distribu-
tions Pi and Pj , and τ is the hyperparameter temperature.

Local Contrastive Loss (CR-L). Instead of calculating sim-
ilarity based on the whole answer distributions, there is
another alternative choice that only focuses on probabilities
of ground-truth answers. Thus, the CR-L loss is:

LCR-L = − log

(
eP̃a(m)/τ

eP̃a(m)/τ +
∑

i P̃
i
n(m)× eP̃

i
n(m)/τ

)
, (9)

where m is the answer index of ground-truth answer with
the highest target score, and P̃∗(·) is the answer probabilities
after sigmoid activation function (i.e., P̃∗(·) = σ(P∗(·))). In
addition, we add P̃ i

n(m) as weights which helps models to
focus more on hard negative samples with larger P̃ i

n(m).
Differences between CR-G and CR-L. For CR-L, since it only

optimizes the VQA models along the single ground-truth
answer direction (i.e., the m answer index in Eq. (9), it only
suppresses the predicted scores of negative samples on these
original ground-truth answers. However, for vanilla VQA
models without any debiasing techniques (e.g., UpDn), their
predicted scores of these negative samples (biased samples)
on the original ground-truth answers are over-high. Thus,
the CR-L training objectives can significantly improve the

performance of these vanilla VQA models. In contrast, for
debiasing VQA models (e.g., ensemble-based model LMH),
they always have somewhat debiasing ability, and their
predicted scores for these original ground-truth answers are
not so high. Thus, for these debiasing models, it would be
better to use CR-G, which directly calculates the sample
similarity based on the global answer distributions.

4 EXPERIMENTS

4.1 Datasets and Evaluation Metrics

Datasets. We evaluated CSST on three challenging diagnos-
tic VQA benchmarks: 1) VQA-CP [7]. It is a re-organization
of the training and test sets of widely-used VQA v1 [30] and
VQA v2 [6], where the answer distribution of each question
type in the training set is made explicitly different from the
one in the test set. There are two VQA-CP datasets: VQA-
CP v2 and VQA-CP v1. We followed the official splits [7] for
both two datasets. We also reported our results on the VQA
v2 validation set for more complete comparisons. 2) GQA-
OOD [8]. It is a fine-grained re-organization of GQA [31].
They share the same training set, but GQA-OOD introduces
fine-grained shifts into both the validation and test sets.
Evaluation Metrics. For evaluating the model accuracy on
VQA-CP v2/v1, we followed standard metric [30]. Simi-
larly, we reported accuracy on all test samples (All) and
three different categories separately: Yes/No (Y/N), number
counting (Num), and other (Other) categories. Particularly,
the “Y/N”, “Num”, and “Other” types denote the set of
questions that are answered “yes/no”, “number”, and all
other types of answers (neither answered “yes/no” nor
“number”), respectively. For evaluating the model accuracy
on GQA-OOD, there are four metrics: 1) Acc-A (all): overall
accuracy over all test samples. 2) Acc-T (tail): the accuracy
on OOD samples (i.e., samples of the tail of the answer class
distribution). 3) Acc-H (head): the accuracy on in-domain
samples (i.e., samples of the head of each local group). 4) ∆
= (Acc-H - Acc-T) / Acc-T: the error prediction imbalance
between frequent (in-domain) and rare (OOD) answers.

4.2 Experimental Settings

Data Preprocessing Details. For fair comparisons, we did
all the same data preprocessing steps with the widely-used
UpDn model [12] using the publicly available reimplemen-
tation4. Specifically, for image feature extraction, we used
Faster R-CNN [57] pretrained on Visual Genome to extract
the top-K objects. Following the convention of prior works,
we set K = 36 for VQA-CP (and VQA v2), and K = 100
for GQA-OOD. For question feature extraction, there are
slight differences for the models with different backbones.
For UpDn-based models, we set the maximum length of
questions as 14, and the word embeddings are initialized
with GloVe [54] vectors with a dimension of 300. A single-
layer GRU is used to obtain question embedding vectors
with a dimension of 1,024. For LXMERT-based models, we
used the official tokenizer in LXMERT to segment each
question into word tokens. A pre-trained LXMERT model
is used to obtain question features with a dimension of 768.

4https://github.com/hengyuan-hu/bottom-up-attention-vqa

https://github.com/hengyuan-hu/bottom-up-attention-vqa
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Fig. 5: Ablations. Accuracies (%) on VQA-CP v2 test set of different hyperparameters settings of V-CSS+ or Q-CSS+. (a) The
results of different sizes of I and critical objects in V-CSS+. All results come from model LMH+V-CSS+. (b) The results of different
sizes of critical words in Q-CSS+. All results come from model LMH+Q-CSS+. (c) The results of different proportions δ between
V-CSS+ and Q-CSS+. All results come from model LMH+V-CSS++Q-CSS+. LMH denotes a prevalent debiasing VQA model [1].

Training Details and Hyperparameters. We trained UpDn-
based models or LXMERT-based models for 30 epochs with
batch size 512 on all datasets. We used the Adamax algo-
rithm as the optimizer following the public reimplementa-
tion4. All parameters were initialized from scratch and the
random seed was set to 0. Loss weights of LXE, LCR-G, and
LCR-L were set to 1, 1, and 8 in most of experiments. τ in the
contrastive loss was set to 1 in all experiments. Results about
the influence of hyperparameters are reported in Sec. 4.3.1
Adapting Ensemble-based Methods to GQA-OOD Bench-
mark. In original GQA-OOD paper [8], the authors claim
none of the typical ensemble-based models (e.g., RUBi [20]
and LMH [1]) can improve the Acc-T performance on GQA-
OOD, and they even deteriorate Acc-H performance. In this
paper, we argue that it is not suitable to apply these debias-
ing methods on all samples, because “biases” only reside in
imbalanced local groups [8]. Therefore, in our experiments, we
only utilized these debiasing methods on imbalanced local
groups. Since the local groups of samples are different in the
training and test sets, in the training stage, we only selected
the imbalanced local groups from the training set based on
the same Shannon entropy and threshold, i.e., we don’t use
any extra information about the test set in advance.
Adapting LXMERT Backbone for VQA. LXMERT [13] itself
is a multimodal BERT model, which can be easily used
for VQA. Similar to other multimodal BERT models, after
pretraining, it typically utilizes the output of the [CLS] token
as a multimodal fused feature, and trains a linear classifier
for answer prediction. Unfortunately, this setting is slightly
different from the UpDn backbone, whose inputs are both
visual and question features. To benefit from the pretrained
weights and seamlessly equipped LXMERT into other ex-
isting ensemble-based methods with UpDn backbone, in
this paper, we utilized the outputs of visual and language
embedding tokens as the visual and question features, re-
spectively (i.e., replacing original inputs of ensemble-based
methods). Pretrained weights of LXMERT are kept fixed.
(See results of models with LXMERT in following sections.)
Adapting SAR [2] strategy to LMH-CSST. In our experi-
ments, we also equipped the model-agnostic SAR [2] to our
LMH-CSST to further improve performance. Specifically, for
the Select And Rerank (SAR) module, we used SAR to refer
to SAR+LMH (i.e., incorporate LMH into SAR). We chose
LMH-CSST as Candidate Answer Selector (CAS), and used
top-20 answers as candidates. We utilized the “R→ C” strat-

egy to combine question and answer into a synthetic dense
caption. We trained SAR for 10 epochs, and batch size was
set to 32. For Question Type Discriminator, we selected 1 or 2
candidates for Y/N questions and 12 candidate answers for
non-Y/N questions when testing on VQA-CP. Meanwhile,
Since we lack manual question type annotations for samples
on GQA-OOD, we removed Question Type Discriminator
when testing on GQA-OOD, and selected 12 candidates for
all questions. We refer readers to SAR [2] for more details.

4.3 Ablation Studies

In this subsection, we mainly focus on the ablation stud-
ies to verify the robustness and generalization ability of
our proposed CSST. Specifically, firstly, we conducted a
set of ablations on different hyperparameters of CSS in
Sec. 4.3.1. Secondly, we incorporated CSST into different
VQA baselines to show its architecture generalization ability
in Sec. 4.3.2. Third, we conducted ablation studies on the
influence of positive and negative sample selection to show
the importance of the sample selection in CST in Sec. 4.3.3.

4.3.1 Influence of Different Hyperparameters of CSS
We run a number of ablation studies to analyze the influence
of different hyperparameters of CSS+ (i.e., V-CSS+ and Q-
CSS+5). Specifically, we conducted all ablations by building
on top of a typical ensemble-based VQA model LMH [1].
To disentangle the influence of our contrastive training, we
only use the XE loss as training objective and both original
samples and counterfactual samples as the inputs (cf. Fig. 2
(b), similar with [14]). All results are illustrated in Fig. 5.
Size of I in V-CSS+. The influence of different size of I
is shown in Fig. 5 (a). We can observe that the model’s
performance gradually decreases with the increase of |I|.
Size of critical objects in V-CSS+. The influence of masking
different numbers of critical objects is shown in Fig. 5 (a). We
compared dynamic K (cf. Eq. (5)) with some fixed constants
(e.g., 1, 3, 5). From the results, we can observe that the model
with dynamic K achieves the best performance.
Size of critical words in Q-CSS+. The influence of replacing
different sizes of critical words is shown in Fig. 5 (b). From
the results, we can observe that replacing only one word
(i.e., top-1) achieves the best performance. Of course, we can

5V-CSS+ and Q-CSS+ denote the improved version of V-CSS and
Q-CSS, respectively (cf. Sec. 3.2.3).
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TABLE 1: Accuracies (%) of different VQA architectures on VQA-CP v2 test set and GQA-OOD testdev set. Results are shown for
“all” (All) questions, “yes/no” (Y/N) questions, “number” (Num) questions, and “other” (Other) questions. CSST-G and CSST-L
denote the CSST with CR-G and CR-L losses, respectively. ∗ denotes the results from our reimplementation using official codes.
Q-CSS+/V-CSS+/CSS+ denote the results of this improved version of CSS, and Q-CSS/V-CSS/CSS denote the results from [14].

(a) Ablation studies of different CSST variants
and components on UpDn [12] base model.

Models VQA-CP v2
All Y/N Num Other

UpDn [12] 39.74 42.27 11.93 46.05
Baseline∗ 39.68 41.93 12.68 45.91
+Q-CSS 40.05 42.16 12.30 46.56
+V-CSS 40.98 43.12 12.28 46.86
+CSS 41.16 43.96 12.78 47.48
+CSS+ 40.84 43.09 12.74 47.37
+CSST-G 41.68 45.70 14.01 47.16
+CSST-L 56.55 80.45 36.29 49.58

Models GQA-OOD
Acc-A Acc-T Acc-H ∆↓

UpDn [12] 46.4 42.1 49.1 16.6
Baseline∗ 46.96 42.90 49.45 15.3
+Q-CSS+ 46.42 43.37 48.30 11.4
+V-CSS+ 46.64 43.56 48.53 11.4
+CSS 47.03 43.27 49.34 14.0
+CSS+ 46.17 44.40 47.26 6.4
+CSST-G 47.78 44.21 49.97 13.0
+CSST-L 47.25 43.37 49.62 14.4

(b) Ablation studies of different CSST variants
and components on RUBi [20] base model.

Models VQA-CP v2
All Y/N Num Other

RUBi [20] 44.23 — — —
Baseline∗ 45.23 64.85 11.83 44.11
+Q-CSS 46.31 68.70 12.15 43.95
+V-CSS 46.00 62.08 11.84 46.95
+CSS 46.67 67.26 11.62 45.13
+CSS+ 47.46 69.42 12.18 45.63
+CSST-G 47.06 65.91 12.61 46.64
+CSST-L 47.65 62.06 33.46 43.98

Models GQA-OOD
Acc-A Acc-T Acc-H ∆↓

RUBi [20] 38.8 35.7 40.8 14.3
Baseline∗ 45.85 43.37 47.37 9.2
+Q-CSS+ 47.32 43.18 49.86 15.5
+V-CSS+ 45.46 41.86 47.66 13.9
+CSS 46.39 42.05 49.05 16.6
+CSS+ 46.75 42.90 49.11 14.5
+CSST-G 47.64 43.18 50.38 16.7
+CSST-L 48.39 44.31 50.89 14.8

(c) Ablation studies of different CSST variants
and components on LMH [1] base model.

Models VQA-CP v2
All Y/N Num Other

LMH [1] 52.05 — — —
Baseline∗ 52.45 69.81 44.46 45.54
+Q-CSS 56.66 80.82 45.83 46.98
+V-CSS 58.23 80.53 52.48 48.13
+CSS 58.95 84.37 49.42 48.21
+CSS+ 59.54 83.37 52.57 48.97
+CSST-G 61.66 90.20 54.42 48.69
+CSST-L 55.38 68.01 52.89 49.45

Models GQA-OOD
Acc-A Acc-T Acc-H ∆↓

LMH [1] — — — —
Baseline∗ 43.96 40.73 45.93 12.8
+Q-CSS+ 43.45 41.20 44.84 8.8
+V-CSS+ 42.63 41.02 43.62 6.3
+CSS 43.10 41.49 44.09 6.3
+CSS+ 44.24 41.20 46.11 11.9
+CSST-G 45.42 42.90 46.97 9.5
+CSST-L 47.93 44.31 50.14 13.2

TABLE 2: Ablation (%) studies of the influence of different
positive and negative samples selection strategies on VQA-CP
v2. Results are shown for “all” (All) questions, “yes/no” (Y/N)
questions, “number” (Num) questions, and “other” (Other)
questions. “CSS” denotes the model using only two negative
samples from V-CSS+ and Q-CSS+ in contrastive (CR) training.
“Rand” denotes the model using only the last two randomly
composed negative samples in the CR training. ∗ denotes the
results from our reimplementation.

Models CSS Rand All Y/N Num Other
Baseline (LMH) 52.45 69.81 44.46 45.54
LMH-CSS 58.95 84.37 49.42 48.21
+CL [27] 59.18 86.99 49.89 47.16

LMH-CSS+ 59.54 83.37 52.57 48.97
+CL∗ [27] 59.78 83.85 53.12 49.00
+CR ✓ 60.74 89.49 52.05 48.06
+CR ✓ 61.13 90.09 53.48 48.06
+CR (CSST-G) ✓ ✓ 61.66 90.20 54.42 48.69
+CL∗+CR ✓ ✓ 61.36 89.03 53.65 48.98

also use the same dynamic way as V-CSS+ to choose the
top-k critical words in Q-CSS+. However, in our earlier ex-
ploration experiments, we found that the dynamic method
achieves slightly worse results than these fixed settings.
Proportion δ between V-CSS+ and Q-CSS+. The influence
of different δ is shown in Fig. 5 (c). From the results, we can
observe that the performance is best when δ = 0.5.

In all the following experiments (including experiments
on different benchmarks, models with different backbones,
and models with contrastive training), we used the same
best hyperparameter settings for both V-CSS+ and Q-CSS+.

4.3.2 Architecture Generalization of CSST
Settings. Since our CSST is a model-agnostic training strat-
egy, which can be seamlessly incorporated into any different
VQA architecture. To evaluate the effectiveness of CSST to
boost the debiasing performance of different backbones, we
incorporated the CSST into multiple architectures including:

UpDn [12], RUBi [20], LMH [1]. Especially, RUBi and LMH
are ensemble-based methods. For VQA-CP v2, we followed
the same settings as prior works. For GQA-OOD, we used
the adapting strategies mentioned in Sec. 4.2. All results are
shown in TABLE 1. For more clear comparisons, we used su-
perscript + to distinguish this improved version of CSS (Q-
CSS/V-CSS) from their respective initial counterparts [14].
Results. Compared to these baseline models, our CSST (i.e.,
both CSST-G and CSST-L) can consistently improve the
performance for all architectures. For different architectures,
the behaviors of CSST-G and CSST-L are slightly differ-
ent: CSST-G is more suitable for complex ensemble-based
models (e.g., 9.21% absolute gains in LMH on VQA-CP v2),
and CSST-L is more suitable for vanilla VQA models (e.g.,
16.87% absolute gains in UpDN on VQA-CP v2). Mean-
while, when both two types of CSS are used (i.e., Q-CSS+

and V-CSS+), models often achieve better performance than
single type CSS. Compared to CSS [14], the new CSS+

achieves better performance on most datasets and baselines
(e.g., RUBi/LMH on VQA-CP v2 and GQA-OOD). Further-
more, the model with CSST (i.e., CSST-G or CSST-L) always
achieves the best performance.

4.3.3 Influence of Positive & Negative Sample Selection

Settings. To demonstrate the effectiveness of our proposed
sample selection strategy, we compared CSST with a strong
baseline CL [27], which has shown effectiveness under the
CSS mechanism. Since the contributions of our CR are
orthogonal to CL, we further reported the results by incor-
porating CR with CL, denoted as “CL+CR”. Meanwhile, to
further show the importance of counterfactual samples in the
sample selection, we separate these four negative samples
into two groups: 1) “CSS”: the first two negative samples
from V-CSS+ and Q-CSS+; 2) “Random” (Rand): the last
two randomly composed negative samples (cf. NEG SEL in
Algorithm 4). All results are reported in TABLE 2.
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TABLE 3: Accuracies (%) on VQA-CP v2 test set and VQA v2 val set of state-of-the-art models. Results are shown for “all” (All)
questions, “yes/no” (Y/N) questions, “number” (Num) questions, and “other” (Other) questions. The gap (Other) represents the
accuracy difference between the Other category of VQA v2 and VQA-CP v2. “Pre.” represents “Pretraining”, i.e., these models use
extra datasets at their pretraining stage (e.g., LXMERT backbone [13] or SAR [2]). “Ann.” represents “Annotation”, i.e., these models
rely on extra manual annotations. † represents the ensemble-based methods, ∗ indicates the results from our reimplementation using
official codes, ‡ denotes these models use the same adapting strategy for LXMERT backbone as in Sec. 4.2.

Models Base Pre. Ann. VQA-CP v2 test ↑ VQA v2 val ↑ Gap ↓
All Yes/No Num Other All Yes/No Num Other Other

UpDn [12]CVPR’18 UpDn 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66 9.61
AReg† [15]NeurIPS’18 UpDn 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16 19.58
MuRel [58]CVPR’19 UpDn 39.54 42.85 13.17 45.04 — — — — —
GRL† [16]ACL’19 UpDn 42.33 59.74 14.78 40.76 51.92 — — — —
RUBi†∗ [20]NeurIPS’19 UpDn 45.23 64.85 11.83 44.11 50.56 49.45 41.02 53.95 9.84
SCR [41]NeurIPS’19 UpDn 48.47 70.41 10.42 47.29 62.30 77.40 40.90 56.50 9.21
LMH†∗ [1]EMNLP’19 UpDn 52.45 69.81 44.46 45.54 61.64 77.85 40.03 55.04 9.50
CVL [59]CVPR’20 UpDn 42.12 45.72 12.45 48.34 — — — — —
Unshuffling [60]arXiv’20 UpDn 42.39 47.72 14.43 47.24 61.08 78.32 42.16 52.81 5.57
RandImg [61]NeurIPS’20 UpDn 55.37 83.89 41.60 44.20 57.24 76.53 33.87 48.57 4.37
SSL [29]IJCAI’20 UpDn 57.59 86.53 29.87 50.03 63.73 — — — —
CSS+CL† [27]EMNLP’20 UpDn 59.18 86.99 49.89 47.16 57.29 67.27 38.40 54.71 7.55
CF-VQA† [22]CVPR’21 UpDn 53.55 91.15 13.03 44.97 63.54 82.51 43.96 54.30 9.33
GGE-DQ† [23]ICCV’21 UpDn 57.32 87.04 27.75 49.59 59.11 73.27 39.99 54.39 4.80
LMH+SAR†∗ [2]ACL’21 UpDn ✓ 62.51 76.40 59.40 56.09 65.79 77.26 52.71 60.52 4.43
LMH-CSSCVPR’20 UpDn 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11 6.90
LMH-CSS+ UpDn 59.54 83.37 52.57 48.97 59.96 73.69 40.18 54.77 5.80
LMH-CSST UpDn 61.66 90.20 54.42 48.69 62.37 80.05 39.24 55.04 6.35
LMH-CSST+SAR UpDn ✓ 66.49 86.97 57.95 58.53 69.31 85.85 52.87 61.08 2.55
UpDn∗‡ [12]CVPR’18 LXMERT ✓ 44.14 43.12 17.07 51.66 67.69 83.83 50.80 59.89 8.23
LMH∗†‡ [1]EMNLP’19 LXMERT ✓ 59.66 73.41 57.72 52.99 59.57 64.17 47.51 59.27 6.28
LMH-CSS+‡ LXMERT ✓ 63.63 84.70 62.12 53.00 58.01 60.37 47.02 59.14 6.14
LMH-CSST‡ LXMERT ✓ 65.71 90.10 63.70 53.48 65.71 80.61 48.26 58.99 5.51
LMH-CSST+SAR‡ LXMERT ✓ 67.49 88.06 56.57 59.71 69.32 84.11 54.90 61.88 2.17
MUTANT [46]EMNLP’20 UpDn ✓ 61.72 88.90 49.68 50.78 62.56 82.07 42.52 53.28 2.50
MUTANT [46]EMNLP’20 LXMERT ✓ ✓ 69.52 93.15 67.17 57.78 70.24 89.01 54.21 59.96 2.18

TABLE 4: Accuracies (%) on VQA-CP v1 test set of state-of-
the-art models. Results are shown for “all” (All) questions,
“yes/no” (Y/N) questions, “number” (Num) questions, and
“other” (Other) questions. † denotes ensemble-based methods.
∗ indicates results from our reimplementation. ‡ denotes models
use the adapting strategy for LXMERT backbone, and SAR [2]
denotes models use an extra ranking stage (cf. Sec. 4.2).

Models Base All Y/N Num Other
GVQA [7]CVPR’18 SAN 39.23 64.72 11.87 24.86
UpDn [12]CVPR’18 UpDn 39.74 42.27 11.93 46.05
AReg† [15]NeurIPS’18 UpDn 41.17 65.49 15.48 35.48
GRL† [16]ACL’19 UpDn 45.69 77.64 13.21 26.97
RUBi†∗ [20]NeurIPS’19 UpDn 50.90 80.83 13.84 36.02
LMH†∗ [1]EMNLP’19 UpDn 55.27 76.47 26.66 45.68
LMH-CSSCVPR’20 UpDn 60.95 85.60 40.57 44.62
LMH-CSS+ UpDn 61.66 84.97 41.65 46.51
LMH-CSST UpDn 63.16 90.58 39.16 45.53
LMH-CSST+SAR UpDn 69.57 90.81 49.29 56.59
LMH-CSS+‡ LXMERT 66.13 88.89 42.74 52.88
LMH-CSST‡ LXMERT 67.27 92.04 43.23 52.30
LMH-CSST+SAR‡ LXMERT 69.75 92.27 44.05 57.69

Results. Compared to the CL baseline, model with CSST can
achieve much better performance (e.g., 61.66% vs. 59.78%),
which shows the importance of training sample diversity in
contrastive training. However, the performance of CL+CR is
even slightly worse than CR (61.36% in CL+CR vs. 61.66%
in CR), i.e., overmuch these naive positive/negative samples
from CL may even harm the diversity of samples and model
training. Compared to the model with “Rand” negative
samples, model with “CSS” negative samples also achieves

TABLE 5: Accuracies (%) on GQA-OOD testdev set of state-
of-the-art models. Results are shown for “all” (All) questions,
“yes/no” (Y/N) questions, “number” (Num) questions, and
“other” (Other) questions. ∗ indicates the results from our reim-
plementation using officially released codes. ‡ denotes models
use the adapting strategy for LXMERT backbone, and SAR [2]
denotes models use an extra ranking stage (cf. Sec. 4.2).

Models Base Acc-A Acc-T Acc-H ∆↓
MCAN [62]CVPR’19 MCAN 50.8 46.5 53.4 14.8
BAN4 [63]NeurIPS’18 BAN4 50.2 47.2 51.9 9.9
UpDn∗‡ [12]CVPR’18 LXMERT 49.61 46.10 51.76 12.3
LMH∗‡ [1]EMNLP’19 LXMERT 47.78 45.44 49.22 8.3
LMH-CSS‡

CVPR’20 LXMERT 48.10 44.59 50.26 12.7
LMH-CSS+‡ LXMERT 49.21 46.28 51.01 10.2
LMH-CSST‡ LXMERT 49.75 46.38 51.82 11.7
LMH-CSST+SAR‡ LXMERT 51.36 48.07 53.38 11.0
UpDn∗ [12]CVPR’18 UpDn 46.96 42.90 49.45 15.3
RUBi∗ [20]NeurIPS’19 UpDn 45.85 43.37 47.37 9.2
LMH∗ [1]EMNLP’19 UpDn 43.96 40.73 45.93 12.8
LMH-CSS‡

CVPR’20 UpDn 43.10 41.49 44.09 6.3
LMH-CSS+ UpDn 44.24 41.20 46.11 11.9
LMH-CSST UpDn 45.42 42.90 46.97 9.5
LMH-CSST+SAR UpDn 51.07 47.98 52.97 10.4

better performance (e.g., 61.13% vs. 60.74%), which shows
the importance of fine-grained differences in the samples for
contrastive training. Meanwhile, when all negative samples
are used, the model achieves the best performance.

4.4 Comparisons with State-of-the-Arts Models
In this subsection, we incorporated the CSST-G into model
LMH [1], which is dubbed as LMH-CSST. Then, we com-
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TABLE 6: Quantitative (%) results about the evaluation of the VQA models’ visual-explainable and question-sensitive abilities.
Results are shown for “all” (All) questions, “yes/no” (Y/N) questions, “number” (Num) questions, and “other” (Other) questions.

(a) Accuracies (%) on VQA-CP v2 test set.

Models All Y/N Num Other
Models with UpDn backbone
SCR 48.47 70.41 10.42 47.29
LMH 52.45 69.81 44.46 45.54
+SCR continued decrease
+CSS 58.95 84.37 49.42 48.21
+CSS+ 59.54 83.37 52.57 48.97
+CSST 61.66 90.20 54.42 48.69

Models with LXMERT backbone
LMH 59.66 73.41 57.72 52.99
+CSS 63.08 85.80 58.76 52.35
+CSS+ 63.63 84.70 62.12 53.00
+CSST 65.71 90.10 63.70 53.48

(b) AI score (%) on VQA-CP v2 test
set.

Models Top-1 Top-2 Top-3
Models with UpDn backbone
SCR 15.55 13.40 11.97
LMH 17.81 15.19 13.52
+V-CSS 18.14 14.91 13.06
+V-CSS+ 20.66 16.71 14.34
+CSS 16.54 14.08 12.62
+CSS+ 18.81 15.73 13.84
+CSST 19.54 16.37 14.41

Models with LXMERT backbone
LMH 17.16 15.06 13.60
+CSS 18.71 16.15 14.35
+CSS+ 18.90 16.28 14.43
+CSST 22.68 18.99 16.48

(c) Left: CS(k) (%) on VQA-CP-Rephrasing;
Right: CI score (%) on VQA-CP v2 test set.

Models K=1 K=2 K=3 K=4 CI
Models with UpDn backbone
UpDn 49.94 38.80 31.55 28.08 33.70
LMH 51.68 39.84 33.38 29.11 40.26
+Q-CSS 55.50 43.79 37.09 32.60 55.76
+Q-CSS+ 55.69 43.95 37.22 32.68 57.08
+CSS 54.98 42.09 34.74 29.98 54.28
+CSS+ 56.31 44.08 37.00 32.29 51.87
+CSST 59.97 49.49 43.37 39.24 58.45

Models with LXMERT backbone
LMH 61.21 50.33 43.94 39.52 55.42
+CSS 61.68 50.94 44.60 40.23 55.18
+CSS+ 61.75 50.62 43.92 39.27 55.44
+CSST 63.87 53.72 47.70 43.58 58.22

pared LMH-CSST with state-of-the-art methods.

4.4.1 Performance on VQA-CP v2 and VQA v2

Settings. We compared LMH-CSST with the state-of-the-art
models on both VQA-CP v2 and VQA v2. According to
the model framework, we group them into: 1) AReg [15],
GRL [16], RUBi [20], LMH [1], CSS+CL [27], CF-VQA [22],
GGE-DQ [23], and LMH+SAR [2]. They are all ensemble-
based models. 2) UpDn [12], MuRel [58], SCR [41], CVL [59],
Unshuffling [60], RandImg [61], and SSL [29]. These mod-
els are vanilla VQA models. For complete comparisons,
we reported results on two backbones: UpDn [12] and
LXMERT [13]. For the UpDn backbone, we followed the
same settings as prior works [1]. For the LXMERT backbone,
we used adapting strategies mentioned in Sec. 4.2. Since
SAR [2] is another model-agnostic model, which is orthogo-
nal to our contributions, i.e., we can also equip LMH-CSST
with SAR (dubbed as LMH-CSST+SAR) to further boost
performance. Moreover, following suggestions from [61], we
also reported the performance gap in the Other category.
Results. The results are reported in TABLE 3. When trained
and tested on the VQA-CP v2 dataset (i.e., the left side of
TABLE 3), LMH-CSST+SAR achieves a new SOTA perfor-
mance on both UpDn and LXMERT backbones, with 66.49%
and 67.49% accuracies, respectively. Compared to all models
without extra pretraining or annotations (i.e., “Pre.” and
“Ann.” in TABLE 3), LMH-CSST still achieves SOTA perfor-
mance with 61.66% accuracies. Particularly, CSST improves
the performance of LMH with 9.21% (61.66% vs. 52.45%)
and 6.05% (65.71% vs. 59.66%) absolute gains on UpDn and
LXMERT backbones, respectively. When trained and tested
on the VQA v2 dataset (i.e., the right side of TABLE 3),
CSST consistently improves the performance of LMH with
0.73% (62.37% vs. 61.64%) and 6.14% (65.71% vs. 59.57%)
absolute gains on UnDn and LXMERT backbones, respec-
tively. Different from previous SOTA models that suffer
severe performance drops between VQA-CP v2 and VQA
v2 (e.g., 9.50% and 6.28% on LMH), LMH-CSST+SAR can
significantly decrease the performance gap into 2.55% and
2.17%, which demonstrates that the effectiveness of CSST to
reduce language biases.

4.4.2 Performance on VQA-CP v1
Settings. We also compared the LMH-CSST with state-of-
the-art models on the VQA-CP v1. Similarly, we group these
models into: 1) AReg [15], GRL [16], RUBi [20] and LMH [1]
are all ensemble-based models. 2) GVQA [7] and UpDn are
vanilla VQA models, and GVQA is with SAN [11] backbone.
All settings are same as the ones on VQA-CP v2.
Results. The results are reported in TABLE 4. Compared
to baseline models, both LMH-CSST and LMH-CSST+SAR
achieve new state-of-the-art performance on two different
backbones over all metrics. Particularly, the CSST improves
the performance of LMH with a 7.89% (63.16% vs. 55.27%)
absolution performance gains on UpDn backbones.

4.4.3 Performance on GQA-OOD
Settings. We further compared LMH-CSST with state-of-
the-art models on GQA-OOD. Similarly, we group these
models into 1) RUBi [20] and LMH [1] are ensemble-based
models. 2) MCAN [62], BAN4 [63], and UpDn are vanilla
VQA models. All settings are same as experiments on VQA-
CP. To adapt these ensemble-based methods to GQA-OOD,
we used the adapting strategy mentioned in Sec. 4.2.
Results. The results are reported in TABLE 5. For fair com-
parisons, the baselines (UpDn and LMH) with the LXMERT
backbones were reimplemented by using the same adapting
strategy. Compared to baselines, LMH-CSST+SAR achieves
new state-of-the-art performance on most of the metrics
on both two backbones. Especially for the most important
metrics Acc-T [8], our method achieves the best performance
over others (e.g., 47.98% vs. 43.37% and 48.07% vs. 47.2%).

4.5 Improving Visual-Explainable Ability

We will validate the effectiveness of CSST to improve visual-
explainable ability by answering the following questions:
Q1: Can existing visual-explainable models be incorporated
into the ensemble-based framework? Q2: How does CSST
improve the model’s visual-explainable ability?

4.5.1 CSST vs. SCR (Q1)
Settings. We equipped the existing state-of-the-art visual-
explainable model SCR [41] into the LMH framework, and
compared it with CSST. Results are reported in TABLE 6 (a).
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Q: What color is the tail of the 
plane?

gray gray blue

Q: How many buses are 
there?

2 1 1

Q: What are the people 
doing?

walking walking horseback riding

LMH LMH-CSS LMH-CSSTInput Image

✓

✓

✓✓

Q: What color shirt is the 
woman on the right wearing?

tan white white ✓✓✗

✗

✗ ✗

✗✗

Input Question

Fig. 6: Examples of visual-explainable ability from VQA-CP v2 test set. The green boxes denote their scores s(â,v)>0, i.e., positive
contributions to final predictions. The red boxes denote their scores s(â,v) <0, i.e., negative contributions to final predictions.
Only objects which are highly related to the QA pair are shown (i.e., SIM ≥ 0.6). LMH-CSS is the model with only XE loss [14]

Results. Since the training of all SOTA visual-explainable
models (e.g., SCR [41], HINT [40]) are not end-to-end, for
fair comparisons, we used a well-trained LMH (i.e., 52.45%
accuracies on VQA-CP v2) as the initial model. However, we
observe that its performance continues to decrease from the
start, which shows that the existing visual-explainable mod-
els can not be easily incorporated into the ensemble-based
framework. In contrast, the proposed CSST can consistently
improve performance on different backbones.

4.5.2 Evaluations of Visual-Explainable Ability (Q2)
Settings. We evaluated the effectiveness of CSS to improve
the visual-explainable ability on both quantitative and qual-
itative results. For quantitative results, since we lack human
annotations about the critical objects for each question, we
regard the SIM scores (cf. IO SEL in Sec. 3.2.1) as pseudo
ground-truths. Thus, we design a new metric Average Impor-
tance (AI): the average SIM score of the top-K objects with
highest |s(a,v)|. We formally define AI as:

AI =

∑
(I,Q)

[
1(a = â) ·

∑
k SIM

(I,Q)
k

]
∑

(I,Q) 1
, (9)

where k is the index of top-K objects, SIM(I,Q)
k is the

SIM score of k-th object for the sample (I,Q), and 1 is
an indicator function. The results are shown in TABLE 6 (b).
We further demonstrate some qualitative results in Fig. 6.

Results. From TABLE 6 (b), we can observe that CSST dra-
matically improves AI scores, which means the influential
objects for predictions are more related to the QA pairs.
From Fig. 6, we can find that both CSS (LMH vs. LMH-
CSS) and CST (LMH-CSS vs. LMH-CSST) help the model to
make predictions based on critical objects (i.e., green boxes)
and suppress the influence of irrelevant objects (red boxes).

4.6 Improving Question-Sensitive Ability

We will validate the effectiveness of our CSST to improve
the question-sensitive ability by answering the following
questions: Q3: Does CSST help to improve the robustness
to diverse rephrasings of questions? Q4: How does CSST
improve the model’s question-sensitive abilities?

4.6.1 Robustness to Rephrasings of Questions (Q3)

Settings. As discussed in previous work [43], being robust
to diverse rephrasing of questions is one of key behaviors
of a question-sensitive model. To more accurately evalu-
ate the robustness, we re-split the existing dataset VQA-
Rephrasings [43] with the same splits as VQA-CP, and
denoted it as VQA-CP-Rephrasings. For evaluation, we used
the standard metric Consensus Score CS(k). Results are
reported in TABLE 6 (c) (left). We refer readers to [43] for
more details about the VQA-Rephrasings and metric CS(k).
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LMH + CSSTLMH + CSS

LMH

Q: What is the name of the computer 
company?

Q: 
?

A: dell

Q: 
?

A: apple

Q: 
?

A: dell

Q: Is the rider a child or an adult? Q: ?
A: child

Q: ?
A: adult

Q: ?
A: child

Q: How many buses are shown? Q: ?
A: 2

Q: ?
A: 1

Q: ?
A: 1

Q: What is this object? Q: ?
A: laptop

Q: ?
A: book

Q: ?
A: book

✗

✗

✗

✗

✗

✗

✓

✓

✓✓

✓

LMH

LMH + CSSTLMH + CSS

LMH + CSSTLMH + CSS

LMH

LMH + CSSTLMH + CSS

LMH

✓
Fig. 7: Visualization examples of question-sensitive ability from VQA-CP v2 test set. Different shades of green color in the question
denote the relative values of s(â,w), i.e., the word with darker green denotes the word has larger contributions to final predictions.

Input Question

Input Image

Initial Objects

Is the woman using a 
flip phone?

What kind of headwear 
is the woman wearing?

How many lights on the 
train are turned on?

What is on the desk 
behind the mouse 
and keyboard?

Fig. 8: Failure examples about initial objects selection (IO SEL in Algorithm 2) of V-CSS. Samples are from the VQA-CP v2 test
set. The green boxes denote the selected top-9 proposals for the initial object set.

TABLE 7: Accuracy (%) of these question types that LMH-CSST
performs worsen than LMH, i.e., AccLMH > AccLMH-CSST.

Question Type AccLMH AccLMH-CSST
is the 39.13 38.97

how many people are 47.45 42.91
is it 73.33 67.66

are they 67.33 66.22
is the man 53.60 52.44

what number is 3.54 3.34

Results. From TABLE 6 (c), we can observe that Q-CSS+

dramatically improves the robustness to diverse rephrasings
of questions. Furthermore, V-CSS+ can help to further im-
prove the robustness, i.e., CSS+ achieves better performance.

4.6.2 Evaluations of Question-Sensitive Ability (Q4)

Settings. We evaluated the effectiveness of CSST to improve
the question-sensitive ability on quantitative and qualitative
results. For quantitative results, since there is no standard
evaluation metric, we design a new metric Confidence Im-
provement (CI): Given a test sample (I,Q, a), we remove a
critical noun in question Q, and obtain a new test sample
(I,Q∗, a)6. Then we fed both two samples into the evalu-

6We directly masked the first noun of each question, and the noun
is automatically detected by the POS tags using the spaCy POS tagger.
The test set is released at: https://github.com/yanxinzju/CSS-VQA.

https://github.com/yanxinzju/CSS-VQA
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Input Question

Input Image

Critical Objects

Is this area wired for 
electricity? Is this Big Ben? What color are his pants? What color is the 

front car of the train? 

Fig. 9: Failure examples about critical objects selection (CO SEL in Algorithm 2) of V-CSS. Samples are from the VQA-CP v2
test set. The red boxes denote the proposal with the highest Grad-CAM contribution for the ground-truth answer.

Fig. 10: Left: The VQA accuracy (%) results of model LMH-CSST (blue bar) and LMH baseline (orange bar) on each different
question type on VQA-CP v2 test set. The order is ranked by the performance improvements of our CSST on different question
types. Right: The performance differences (%) on each separate question type between LMH-CSST and baseline LMH.

ated model, and calculated the confidence decreases of the
ground-truth answer. We formally define CI as:

CI =

∑
(I,Q) 1(Pvqa(a|I,Q) > Pvqa(a|I,Q∗)) · 1(a = â)∑

(I,Q) 1
(9)

where â is the predicted answer for sample (I,Q), 1 is an
indicator function. The results are reported in TABLE 6 (c).
We further demonstrate some qualitative results in Fig. 7.
Results. From TABLE 6 (c), we can observe that CSST
helps the model to benefit more from the critical words, i.e.,
removing critical words results in more confidence drops for
the ground-truth answers. From Fig. 7, we can find that both
CSS (LMH vs. LMH-CSS) and CST (LMH-CSS vs. LMH-
CSST) help the model to make predictions based on critical
words (e.g., “ bus” or “objects”), i.e., forcing the model to
understand the whole question before making predictions.

4.7 Failure Cases in CSST

Visualization of Failure Cases in V-CSS. We further il-
lustrated some visualization examples of the failure cases
on both Fig. 8 and Fig. 9. Specifically, the errors in the V-
CSS mainly come from two aspects: wrong initial object
selection (cf. Fig. 8) and wrong critical object selection (cf.
Fig. 9). For the initial object selection, as shown in Fig. 8,
the initial object set is calculated by the cosine similarity

between the detected object categories and nouns in the
QA, thus, the initial object set may contain some irrelevant
objects (e.g., “man” or “traffic sign”). As for the critical
objects, we visualized the proposal with the highest Grad-
CAM contribution for the ground-truth answer. As shown in
Fig. 9, the object with the highest Grad-CAM contributions
may not be the critical object for the sample.

Failure Question Patterns in CSST. To further show the
failure patterns of our CSST method, we reported the VQA
accuracies over all the 65 question types on the VQA-CP v2
test set. The results are reported in Fig. 10. From Fig. 10, we
can observe that in most of question types, CSST achieves
better performance than the baseline model. Particularly,
LMH-CSST surpasses LMH on all “Other” category ques-
tions, and only achieves worse results on 6 question types.
We further listed the detailed performance of these types
in TABLE 7. From the table, we can find that CSST mainly
doesn’t help on some “Yes/No” and “Number” questions,
such as the questions starting with “how many people
are” or “is it. As for the main reasons, just as discussed
in the previous work [61], it is more reliable to evaluate the
results on the “other” categories, and the high performance
(accuracy) on “Y/N” and “Num” questions can be easily
obtained without any reasoning over text or images by
simply exploiting knowledge about the dataset (e.g., LMH).
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5 CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a model-agnostic Counterfac-
tual Samples Synthesizing and Training (CSST) strategy to
improve the VQA model’s visual-explainable and question-
sensitive abilities. The CSST is composed of two main com-
ponents: CSS and CST, where CSS generates counterfactual
training samples by masking critical objects or words, and
CST consists of a XE training loss and a contrastive training
loss. The CSST (i.e., CSS and CST) can consistently boost
the performance of different VQA models. We validate the
effectiveness of CSST through extensive comparative and
ablative studies on three benchmarks and multiple different
backbones. Moving forward, we are going to 1) extend CSST
to other visual-language tasks that suffer severe language
biases or other types of biases, e.g., captioning [64], ground-
ing [65]; 2) design better backbones that benefits from CSST.
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