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Abstract—With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years.
However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously
challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of
small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we
first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale
Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively.
SODA-D includes 24828 high-quality traffic images and 278433 instances of nine categories. For SODA-A, we harvest 2513 high
resolution aerial images and annotate 872069 instances over nine classes. The proposed datasets, as we know, are the first-ever
attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally,
we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development
of SOD and spawn more breakthroughs in this field. Datasets and codes are available at: https:/shaunyuan22.github.io/SODA.

Index Terms—Object detection, Small object detection, Deep learning, Convolutional neural networks, Benchmark.

1 INTRODUCTION

BJECT detection is an essential task which aims at
Ocategorizing and locating the objects of interest in
images/videos. Thanks to the enormous volume of data
and powerful learning ability of deep Convolutional Neural
Networks (CNNs), object detection has scored remarkable
achievements in recent years [1], [2], [3], [4], [5]. Small
Object Detection (SOD), as a sub-field of generic object de-
tection, which concentrates on detecting those objects with
small size, is of great theoretical and practical significance in
various scenarios such as surveillance, drone scene analysis,
pedestrian detection, traffic sign detection in autonomous
driving, efc.

Albeit the substantial progresses have been made in
generic object detection, the research of SOD proceeded at
a relatively slow pace. To be more specific, there remains
a huge performance gap in detecting small and normal
sized objects even for leading detectors. Taking DyHead
[9], one of the state-of-the-art detectors, as an example, the
mean Average Precision (mAP) metric of small objects on
COCO [6] test-dev set obtained by DyHead is only 28.3%,
significantly lag behind that of objects with medium and
large sizes (50.3% and 57.5% respectively). We posit such
performance degradation originates the following two-fold:
1) the intrinsic difficulty of learning proper representation
from limited and distorted information of small objects; 2)
the scarcity of large-scale dataset for small object detection.
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1. Here by “small” we mean the size of the object is relatively limited
and often determined by an area [6] or length [7], [8] threshold.

The low-quality feature representation of small objects
can be attributed to their limited sizes and the generic fea-
ture extraction paradigm. Concretely, the current prevailing
feature extractors [10], [11], [12] usually down-sample the
feature maps to diminish the spatial redundancy and learn
high dimensional features, which unavoidably extinguishes
the representation of tiny objects. Moreover, the features of
small objects are inclined to be contaminated by background
and other instances after the convolution process, making
the network can hardly capture the discriminative infor-
mation that is pivotal for the subsequent tasks. To tackle
this problem, researchers have proposed a series of work,
which can be categorized into six groups: sample-oriented
methods, scale-aware methods, attention-based methods,
feature-imitation methods, context-modeling methods, and
focus-and-detect methods. We will discuss these approaches
exhaustively in the review part and in-depth analyses will
be provided too.

To alleviate the data scarcity, some datasets tailored for
small object detection have been proposed, e.g., SOD [28]
and TinyPerson [7]. However, these small-scale datasets
cannot meet the needs of training supervised CNN-based
algorithms, which are “hungry” for a substantial amount
of labeled data. In addition, several public datasets contain
a considerable number of small objects, such as WiderFace
[8], SeaPerson [29] and DOTA" [30], etc. Unfortunately, these
datasets are either designed for single-category detection
task (face detection or pedestrian detection) which usually
follows a relatively certain pattern, or among which tiny
objects merely distribute in a few categories (small-vehicle
in DOTA dataset). In a nutshell, the currently available

2. The term DOTA in our paper represents its 2.0 version, i.e., DOTA-
v2.0.
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TABLE 1
Summary of several surveys related to object detection. The top are the surveys focusing on the generic object detection and specific tasks, and
the bottom are the existing reviews of small object detection.

Title | Publication | Descriptions

Deep Learning for Generic Object Detection: A Survey [13] | TCV2020 | A comprehensive survey of the recent progresses driven by deep learning techniques in generic object detection
Object Detection With Deep Learning: A Review [14] | TNNLS2019 | A systematic review on deep learning-based detection frameworks for generic object detection and other subtasks
Survey of Pedestrian Detection for Advanced Driver Assistance Systems [15] | TPAMI2009 | A survey focuses on pedestrian detection in advanced driver assistance systems

Pedestrian detection: an evaluation of the state of the art [16] | TPAMI2011 | A detailed evaluation of pedestrian detectors in monocular images

From Handcrafted to Deep Features for Pedestrian Detection: A Survey [17] | TPAMI2021 | A through survey for pedestrian detection approaches based on handcrafted features and deep features

Text Detection and Recognition in Imagery: A Survey [18] | TPAMI2014 | A systematic survey related to automatic text detection and recognition in color images

A survey on object detection in optical remote sensing images [19] | JPRS 2016 | A review of recent progress about object detection in optical remote sensing images

Object detection in optical remote sensing images: A survey and a new benchmark [20] | JPRS2020 | A thorough review of deep learning based methods for object detection in aerial images

Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives [21] | TITS2016 | Anoverview of traffic light recognition research in relation to driver assistance systems

Object Detection Using Deep Learning Methods in Traffic Scenarios [22] ‘ CS 2021 ‘ A survey dedicated to object detection in traffic scenarios based on deep learning methods

Imbalance Problems in Object Detection: A Review [23] ‘ TPAMI 2020 ‘ A comprehensive review of the imbalance problems in object detection

Weakly Supervised Object Localization and Detection: A Survey [24] | TPAMI2021 | A systematic survey on weakly supervised object localization and detection

Deep learning-based detection from the perspective of small or tiny objects: A survey [25] | 1ve202 | A review of existing deep learning-based detection methods which can be utilized for small or tiny objects

A survey and performance evaluation of deep learning methods for small object detection [26] | ESWA 2021 | A survey of recently developed deep learning methods for small object detection

A Survey of the Four Pillars for Small Object Detection: Multiscale Representation, Contextual A review of small object detection based on four genres of techniques: multiscale representation, contextual information,

TSMCS 2022
Information, Super-Resolution, and Region Proposal [27]

super-resolution, and region-proposal

datasets could not support the training of deep learning-
based models customized for small object detection, as
well as serve as an impartial benchmark for evaluating
multi-category SOD algorithms. Whilst, as a foundation for
building data-driven deep CNN models, the accessibility of
large-scale datasets such as PASCAL VOC [31], ImageNet
[32], COCO [6], and DOTA [30] is of great significance for
both the academic and industrial communities, and each of
which noticeably boosts the development of object detection
in related fields. This inspires us to think: can we build a
large-scale dataset, where the objects of multiple categories
have very limited sizes, to serve as a benchmark that can
be adopted to verify the design of small object detection
framework and facilitate the further research of SOD?

Taking the aforementioned problems into account, we
construct two large-scale Small Object Detection dAtasets
(SODA), SODA-D and SODA-A, which focus on the Driving
and Aerial scenarios respectively. The proposed SODA-
D is built on top of MVD [33] and our data, where the
former is a dataset dedicated to pixel-level understanding
of street scenes, and the latter is mainly captured by on-
board cameras and mobile phones. With 24828 well-chosen
and high-quality images of driving scenarios, we annotate
278433 instances of nine categories with horizontal bound-
ing boxes. SODA-A is the benchmark specialized for small
object detection task under aerial scenes, which has 872069
instances with oriented rectangle box annotation across nine
classes. It contains 2513 high-resolution images extracted
from Google Earth.

1.1

Quite a number of surveys about object detection have been
published in recent years [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], and our review differs from the
existing ones mainly in two aspects.

1. A comprehensive and timely review dedicated to
small object detection task across multiple domains. Most
of the previous reviews (as in Tab. 1) concentrate on either
generic object detection [13], [14] or specific object detection
task such as pedestrian detection [15], [16], [17], text detec-
tion [18], detection in remote sensing images [19], [20], and

Comparisons with Previous Reviews

detection under traffic scenarios [21], [22], etc. Furthermore,
there already exist several reviews paying their attention
to small object detection [25], [26], [27], however, they either
fail to the comprehensiveness and in-depth analysis because
only partial reviews on limited areas were conducted, or
categorize considerable algorithms belonging to generic de-
tection as small object detection methods, which is indeed
not rigorous for a SOD-oriented survey. By narrowly cast-
ing our sight to small/tiny objects, we extensively review
hundreds of literature related to SOD task which covers a
broad spectrum of research fields, including face detection,
pedestrian detection, traffic sign detection, vehicle detection,
object detection in aerial images, to name a few. As a result,
we provide a systematic survey of small object detection
and an understandable and highly structured taxonomy,
which organizes SOD approaches into six major categories
based on the techniques involved and is radically differ-
ent from previous ones.

2. Two large-scale benchmarks customized for small
object detection were proposed, on which in-depth eval-
uation and analysis of several representative detection
algorithms were performed. Previous reviews mainly resort
to general detection datasets such as PASCAL VOC [31]
and COCO [6] to conduct evaluation, which is dominated
by the medium-sized and large-sized instances and thereby
failing to embody the authentic performance of related
methods when it comes to small objects. Instead, we present
the large-scale benchmark SODA and on top of which, a
thorough evaluation of several representative generic object
detection methods and newly published SOD approaches
was provided.

1.2 Scope

Object detection in early period usually integrated hand-
crafted features [34], [35], [36] and machine learning ap-
proaches [37], [38] to recognize the objects of interest. The
methods following this sophisticated philosophy perform
catastrophically poorly in small objects due to their lim-
ited capability of scale variation. After 2012, the powerful
learning ability of deep convolutional network [39] brings
a glimmer of hope to the whole detection community,
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Fig. 1. Low tolerance of small objects for bounding box perturbation.
Top-left, bottom-left and right represent small object (20 x 20 pixels,
a grid denotes two pixels), medium object (40 x 40 pixels) and large
object (70 x 70 pixels), respectively. A denotes the Ground Truth (GT)
box, B and C stand for predicted boxes with slight deviations along the
diagonal direction (6 pixels and 12 pixels, respectively). loU indicates
the Intersection-over-Union value between the GT box and the related
predicted box.

especially considering that object detection had reached a
plateau after 2010 [40]. The seminal work [40] broken the ice
and since then, an increasing number of detection methods
based on deep neural networks were proposed, whereafter,
object detection entering the deep learning era. Thanks to
the outstanding modeling ability of deep networks for scale
variation and powerful abstraction of information, small
object detection obtains an unprecedented improvement.
Therefore, our review focuses on the major development of
deep learning-based SOD methods.

To sum up, the main contributions of this paper are in
three folds:

1. Reviewing the development of small object detec-
tion in the deep-learning era and providing a systematic
survey of the recent progress in this field, which can be
grouped into six categories: sample-oriented methods, scale-
aware methods, attention-based methods, feature-imitation
methods, context-modeling methods, and focus-and-detect
approaches. Except for the taxonomies, in-depth analysis
about the pros and cons of these methods were also pro-
vided. Meanwhile, we review dozens of datasets that span
over multiple areas which relate to small object detection.

2. Releasing two large-scale benchmarks for small object
detection, where the first one was dedicated to driving
scenarios and the other was specialized for aerial scenes.
The proposed datasets are the first-ever attempt to large-
scale benchmarks tailored for SOD. We hope these two ex-
haustively annotated benchmarks could help the researchers
to develop and verify effective frameworks for SOD and
facilitate more breakthroughs in this field.

3. Investigating the performance of several representa-
tive object detection methods on our datasets, and providing
in-depth analyses according to the quantitative and quali-
tative results, which could benefit the algorithm design of
small object detection afterwards.

The remainder of this paper is organized as follows.
In Section 2, we conduct a comprehensive survey of small
object detection. And a thorough review on several publicly
available benchmarks related to small object detection is
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given in Section 3. In Section 4, we elaborate the collection
and annotation process, as well as the data characteristics,
about the proposed benchmarks. In Section 5, the results and
analyses of several representative methods on our bench-
marks are provided. Finally, we conclude our work and
discuss the prospective research directions of small object
detection.

2 REVIEW ON SMALL OBJECT DETECTION
2.1

Object detection aims to classify and locate instances. Small
object detection or tiny object detection, as the term sug-
gests, merely focus on detecting those objects with limited
sizes. In this task, the terms tiny and small are typically
defined by an area threshold [6] or length threshold [7], [8].
Take COCO [6] as an example, the objects occupying an area
less than and equal to 1024 pixels come to small category. In
this Section, we follow the expressions about those tiny and
small terms in the original papers, and the definition of Small
in our benchmark will be introduced in Sec.

Problem Definition

2.2 Main Challenges

In addition to some common challenges in generic object
detection such as intra-class variations, inaccurate local-
ization, occluded object detection, etc., typical issues exist
when it comes to SOD tasks, primarily including object
information loss, noisy feature representation, low tolerance
for bounding box perturbation and inadequate samples for
training.

Information loss. Current prevailing object detectors [1],
[2], [3], [4], [5], [9] usually include a backbone network and a
detection head, where the latter makes decision depends on
the representation output by the former. Such paradigm was
proven to be effective and gives rise to the unprecedented
success. However, the generic feature extractor [10], [11],
[12] usually leverage sub-sampling operations to filter noisy
activation [41] and reduce the spatial resolution of feature
maps, thus inevitably losing the information of objects. Such
information loss will scarcely impair the performance of
large or medium-sized objects to a certain extent, consid-
ering that the final features still retain enough information
of them. Unfortunately, this is fatal for small objects, because
the detection head can hardly give accurate predictions on
top of the highly structural representations, in which the
weak signals of small objects were almost wiped out.

Noisy feature representation. Discriminative features
are crucial for both the classification and localization tasks
[42], [43]. Small objects often have low-resolution and poor-
quality appearance, consequently it is intractable to learn
representations with discrimination from their distorted
structures. At the same time, the regional features of small
objects are inclined to be contaminated by the background
and other instances, introducing noise to the learned repre-
sentation further. To sum up, the feature representations of
small objects are apt to suffer from the noise, hindering the
subsequent detection.

Low tolerance for bounding box perturbation. Local-
ization, as one of the primary tasks of detection, is formu-
lated as a regression problem in most detection paradigms,
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Fig. 2. Structured taxonomy of the existing deep learning-based methods for small object detection, which includes six genres. Only several

representative methods of each category are demonstrated.

in which localization branch was designed to output the
bounding box offsets [1], [3], [44], [45], [46] or the object size
[4], [47], and generally the Intersection over Union (IoU)
metric was adopted to evaluate the accuracy. Nevertheless,
localizing small objects is tougher than larger ones. As
shown in Fig. 1, a slight deviation (6 pixels along the
diagonal direction) of predicted box for a small object causes
significant drop on IoU (from 100% to 32.5%) compared to
medium and large objects (56.6% and 71.8%). Meanwhile,
a greater variance (say, 12 pixels) further exacerbates the
situation, and the IoU drops to poorly 8.7% for small
objects. That is to say, small objects have a lower tolerance
for bounding box perturbation compared with larger ones,
aggravating the learning of regression branch.

Inadequate samples for training. Selecting positive and
negative samples is an indispensable step towards training
a high performance detector. However, things get tougher
when it comes to small objects. Concretely, small instances
occupy fairly small regions and have limited overlaps to
priors (anchors or points). This tremendously challenges
conventional label assignment strategies [1], [3], [4], [47],
[48], which collect pos/neg samples based on the overlaps of
boxes or center regions, leading insufficient positive samples
assigned for small instances during training.

2.3 Review of Small Object Detection Algorithms

General object detection methods based on deep learning
can be categorized into two groups: two-stage and one-stage
detection, where the former detects objects in a coarse-to-
fine routine while the later performs the detection at one
stroke. Two-stage detection methods [1], [46], [49] produce
high-quality proposals with a well-designed architecture
such as Region Proposal Network (RPN) [1] at first, then
the detection heads take regional features as input and per-
form subsequent classification and localization respectively.

Compared with two-stage algorithms, one-stage approaches
[3], [44], [50] tile dense anchors on feature maps and predict
the classification scores and coordinates directly. Benefiting
from proposal-free setting, one-stage detectors enjoy high
computational efficiency but often lag behind in accuracy.
In addition to the above two categories, several anchor-
free methods [4], [47], [48], [51] have emerged in recent
years, which discard the anchor paradigm. Moreover, query-
based detectors [5], [52], which formulate the detection as a
set prediction task, have shown great potential. We cannot
elaborate on the related frameworks in the light of space
restraints. Please refer to corresponding surveys [13], [14]
and original papers for more details.

To address the aforementioned challenging issues, exist-
ing small object detection methods usually introduce delib-
erate designs to current powerful paradigms which work
well in generic object detection. Next, we will briefly in-
troduce these approaches and an overview of the proposed
solutions is presented in Fig. 2.

2.3.1 Sample-oriented methods

One of the most critical procedures of training a learning-
based detector is the sampling (often coexists with assign-
ment), which has led to significant progress in generic
object detection [53], [54]. However, for SOD task, generic
sampling strategies usually fail to provide adequate positive
samples, thereby impairing the final performance. Such
predicament originates from two aspects: the targets with
limited sizes only occupy a small portion in current datasets
[6], [30], [31]; current overlap-based matching schemes [1],
[3], [4], [47], [48] are too rigorous to sample sufficient
positive anchors or points owing to the limited overlaps
between priors and the regions of small objects. In view
of the two observations, a series of efforts have been made



and can be split into two factions: increasing the number
of small objects by data augmentation or devising optimal
assignment strategy to enable adequate samples for network
learning.

Data-augmentation strategies. Kisantal et al. [55]
adopted an augmentation strategy by copying a small object
and pasting it with random transformation to different posi-
tions in the identical image. RRNet [56] introduces an adap-
tive augmentation strategy named AdaResampling, which
follows the same philosophy as [55], the major difference
lies in that a prior segmentation map was used to guide
the sampling process of valid positions to be pasted, and a
scale transformation for pasted objects reduces the scale dis-
crepancy further. Zhang et al. [57] and Wang et al. [58] both
employed divide-and-resize functionality-based operations
to obtain more training samples of small objects. On top
of the techniques of object segmentation, image inpainting
and image blending, DS-GAN [59] devises a novel data
augmentation pipeline to generate high-quality synthetic
data of small objects.

Optimized label assignment. Methods following this
philosophy intend to alleviate the sub-optimal sampling
result due to the overlap-based matching strategy and prior
designs. With the help of the devised scale compensation
anchor matching strategy, S*FD [60] increases the matched
anchors of tiny faces, thereby improving the recall rate. Zhu
et al. [61] proposed Expected Max Overlapping (EMO) score,
which takes anchor stride into account when computing the
overlaps and enlightens better anchor setups for small faces.
Xu et al. [62] employed the proposed DotD (defined as the
Normalized Euclidean Distance between the center points
of two bounding boxes) to replace the commonly used IoU.
Similarly, RFLA [63] measures the similarity between the
Gaussian receptive field of each feature point and ground
truth in label assignment, which boosts the performance of
mainstream detectors on tiny objects.

Samples matter in object detection, especially for SOD
task. Without enough positive samples, the regions of small
objects are under-optimized during training and thereby
hampering subsequent classification and regression. Either
augmentation-based methods or devised matching strate-
gies and appropriate prior settings intend to provide suf-
ficient positive samples. Nevertheless, the former line of
methods always suffers from inconsistent performance im-
provement and poor transferability. Meanwhile, current op-
timized label assignment schemes are prone to introduce
low-quality samples and still struggle on the objects with
extremely limited sizes.

2.3.2 Scale-aware methods

Objects in an image often vary in scale and such variation
could be particularly severe in traffic scenarios and remote
sensing images, leading disparate detection difficulties for
a single detector. Previous approaches [64], [65] usually
employ image pyramid [66] with sliding window scheme
to handle the scale-variance issue. However, hand-crafted
feature based methods, constrained by the limited repre-
sentation capacity, perform catastrophically poorly on small
objects. Early detection methods based on deep models
still struggle in detecting tiny objects because only high-
level features were used for recognition. To remedy the
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weakness of this paradigm and inspired by the success of
reasoning across multi-level in other vision fields [67], [68],
the following works mainly follow two paths. One refers to
construct scale-specific detectors by devising multi-branch
architecture or tailored training scheme, and the other line of
efforts intends to fuse the hierarchical features for powerful
representations of small objects.

Scale-specific detectors. The nature behind this line is
simple: the features at different depths or levels were re-
sponsible for detecting the objects of corresponding scales
only. Yang et al. [69] exploited scale-dependent pooling
(SDP) to select a proper feature layer for subsequent pool-
ing operation of small objects. MS-CNN [70] generates
object proposals at different intermediate layers, each of
which focuses on the objects within certain scale ranges,
enabling the optimal receptive field for small objects. Fol-
lowing this roadmap, DSFD [71] employs two-shot detector
connected by the feature enhancement module to detect
the faces of various scales. YOLOv3 [45] conducts multi-
scale predictions by adding parallel branches where high-
resolution features are responsible for small objects. Lin et
al. [2] proposed Feature Pyramid Network (FPN), where
the instances of various scales were assigned to different
pyramid levels according to their sizes. Meanwhile, the
interaction of features at different depths further guarantees
the proper representation of multi-scale objects. This simple
yet effective design has become an essential component
in feature extractor and inspires a series of remarkable
variants, e.g., NAS-FPN [72], Bi-FPN [73] , and Recursive-
FPN [74]. In addition, combining scale-wise detectors for
multi-scale detection has been extensively explored. Li ef al.
[75] built parallel subnetworks where small-size subnetwork
is learned specifically to detect small pedestrians. SSH [76]
combines scale-variant face detectors, each trained for a
certain scale range, to form a strong multi-scale detector
to handle the faces varying extremely in scales. TridentNet
[77] builds a parallel multi-branch architecture where each
branch possesses optimal receptive fields for the objects of
different scales. QueryDet [78] designs the cascade query
strategy to avoid the redundant computation on low-level
features, making it possible to detect small objects on high-
resolution feature maps efficiently.

Several approaches aim to develop tailored data prepa-
ration strategies to force the detector concentrate on the
instances with specific scales during training. On top of
generic multi-scale training scheme, Singh et al. [79] devised
a novel training paradigm, Scale Normalization for Image
Pyramids (SNIP), which only takes the instances whose
resolutions fall into the desired scale range for training
and the remainders are simply ignored. By this setting,
small instances could be tackled at the most reasonable
scales without compromising the detection performance
on medium-to-large objects. Later, Sniper [80] advises to
sample chips from a multi- scale image pyramid for efficient
training. Najibi ef al. [81] proposed a coarse-to-fine pipeline
for detecting small objects. Considering that the collabora-
tion between data preparation and model optimization is
under-explored by previous methods [2], [66], [77], Chen
et al. [82] designed a feedback-driven training paradigm
to dynamically direct data preparation and further balance
the training loss of small objects. Yu et al. [7] introduced a



statistic-based match strategy for scale consistency.

Hierarchical feature fusion. Deep CNN architecture
produces hierarchical feature maps at different spatial res-
olutions, in which low-level features describe finer details
along with more localization cues, while high-level features
capture richer semantic information [13], [43], [77], [83], [84],
[85]. For SOD task, deep features may struggle with the
disappeared response of small objects, and the feature maps
at early stages are susceptible to variations such as illumina-
tion, deformation and object pose, making the classification
task more challenging. To overcome this dilemma, extensive
approaches leverage feature fusion, which integrates the
features at different depths, to obtain better feature repre-
sentation for small objects. Enlightened by the simple-yet-
effective interaction design in FPN [2], PANet [83] enriches
the feature hierarchy with bidirectional paths, enhancing
deeper features with accurate localization signals. Zhang
et al. [86] concatenated the pooled features of an Rol at
multiple depths with global feature to obtain more robust
and discriminative representation for small traffic objects.
Woo et al. [87] proposed StairNet where deconvolution was
exploited to enlarge the feature map, such learning-based
up-sampling function can achieve a more refined feature
than naive kernel-based up-sampling and allows that the
information of different pyramid levels propagates more
efficiently [88]. Liu et al. [89] introduced IPG-Net, where
a set of images at different resolutions obtained by the
image pyramid [66] were input to the designed IPG transfor-
mation module to extract shallow features to complement
spatial information and details. Gong et al. [90] devised a
statistic-based fusion factor to control the information flow
of adjacent layers. Noting that the gradient inconsistency
encountered in FPN-based approaches deteriorates the rep-
resentation ability of low-level features [91], SSPNet [92]
highlights the features of specific scales at different layers
and employs the relationship of adjacent layers in FPN to
accomplish proper feature sharing.

Scale-specific architectures are committed to processing
small objects at most reasonable scale, and fusion-based
approaches aim to bridge the spatial and semantic gaps
between lower pyramidal levels and higher ones, both of
them strive for the consistent performance gains of both
small-scale objects and medium-to-large ones. However, the
former maps the objects of different sizes to correspond-
ing scale levels in a heuristic manner which may confuse
the detectors, because the information of a single layer
is inadequate to make accurate prediction. On the other
hand, in-network information flow is not always conducive
to the representations of small objects. Our goal is to not
only endow the low-level features with more semantics, but
also prevent the original responses of small objects from
overwhelmed by deeper signals. Unfortunately, you cannot
have your cake and eat it, hence this dilemma needs to be
addressed carefully.

2.3.3 Attention-based methods

Human can quickly focus and distinguish objects while
ignoring those unnecessary parts by a sequence of partial
glimpses at the whole scene [93], and this astonishing capac-
ity in our perception system is generally referred as visual
attention mechanism, which plays a crucial role in our visual
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system [94]. Not surprisingly, this powerful mechanism has
been extensively investigated in the previous literature [95],
[96], [97], [98], [99] and shows great potential in many vision
fields [5], [9], [100], [101]. By allocating different weights
to different parts of feature maps, the attention modeling
indeed emphasizes the valuable regions while suppressing
those dispensable ones. Naturally, one can deploy this supe-
rior scheme to highlight the small objects that are inclined
to dominated by the background and noisy patterns in an
image.

SCRDet [102] designs an oriented object detector, in
which pixel attention and channel attention were trained
in a supervised manner to highlight small object regions
while eliminating the interference of noise. Extending the
anchor-free detector FCOS [4] with the proposed level-based
attention, FBR-Net [103] equilibrates the features at different
pyramid levels and enhances the learning of small object
under complicated situations. Enlightened by the human
cognition, KB-RANN [104] exploits long-term and short-
term attention neural networks to focus on the particular
parts of image features, enhancing the detection of small ob-
jects. Lu et al. [105] designed a dual path module to highlight
the key feature of small objects and suppress the non-object
information. By replacing the complex convolution compo-
nents with the proposed enhanced channel attention (ECA)
blocks, MSCCA [106] constructs a lightweight detector with
balanced channel features and less parameters. Li et al. [107]
designed a cross-layer attention module to obtain stronger
responses of small objects.

Drawing on the cognitive mechanism of mankind, visual
attention plays an important role in nowadays vision fields,
and it enables high-quality representations by screening
the key parts while restraining noisy ones. Attention-series
methods are highly claimed for their flexible embedding
designs and can be plugged into almost all the SOD architec-
tures, however, the performance improvement comes at the
cost of heavy computation overhead owing to the correla-
tion operations and moreover, current attention paradigms
are lacking supervised signals and optimized implicitly.

2.3.4 Feature-imitation methods

One of the most significant challenges of SOD is the low-
quality representations caused by the little information of
small instances. This situation will likely get worse for
those objects with extremely limited sizes [108]. At the same
time, larger instances often embody clear visual structures
and better discrimination. Hence, a straightforward way
to alleviate this low-quality issue is enriching the regional
features of small objects by mimicking that of larger ones
[109]. To this end, several tentative methods have been
proposed and can be categorized into two genres: feature
imitation by similarity learning and super-resolution-based
frameworks.

Similarity learning-based methods. The principle of
this line is simple: imposing additional similarity constraints
on the training of generic detectors, thereby bridging the
representation gap between small objects and large ones.
Wueet al. [109] proposed Self-Mimic Learning method, where
the representations of small-scale pedestrians were enforced
to approach to the local average Rol features of large-scale
ones. Inspired by the memory process of human visual



understanding mechanism, Kim et al. [110] devised a large-
scale embedding learning with the large-scale pedestrian re-
calling memory (LPR Memory), and the overall architecture
was optimized under the recalling loss which intends to
guide the small- and large-scale pedestrian features to be
similar.

Super-resolution-based frameworks. Methods follow-
ing this roadmap aim at restoring the distorted structures of
small objects instead of simply amplifying the ambiguous
appearance of them. With the help of deconvolution and
sub-pixel convolution [111], Zhou et al. [84] and Deng et al.
[112] obtained high-resolution features specialized for small
object detection. With self-supervised learning paradigm,
Pan et al. [113] proposed a guided feature upsampling mod-
ule to learn upscaled feature representations with detailed
information. Generative Adversarial Network (GAN) [114]
has remarkable capability to generate visually authentic
data by following a two-player minimax game between the
generator and the discriminator, which, unsurprisingly, en-
lightens the researchers to explore this powerful paradigm
for generating high-quality representations of small objects.
Rabbi ef al. [115] and Bashir et al. [116] both use GAN to
super-resolve low-resolution remote sensing images, where
the former screens the edge details to avoid high-frequency
information loss during reconstructing, and the latter in-
corporates the cyclic GAN and residual feature aggregation
to capture complex features. Deeming that directly operat-
ing the whole images incurs non-negligible computational
cost at feature extraction stage [112], MTGAN [117] super-
resolves the patches of Rols with the generator network.
Bai et al. [118] extended this paradigm to face detection
task and Na et al. [119] applied super-resolution method
to small candidate regions for better performance. Though
super-resolving target patches could partly reconstruct the
blurry appearance of small objects, this scheme neglects the
contextual cues which play an important role for network
prediction [120], [121]. To deal with this issue, Li et al. [122]
devised PerceptualGAN to mine and exploit the intrinsic
correlations between small-scale and large-scale objects, in
which the generator learns to map the weak representations
of small objects to super-resolved ones to deceive the dis-
criminator. To go a step further, Noh et al. [120] introduced
direct supervision to the super-resolution procedure.

By adding additional similarity loss or super-resolution
architectures to prevailing detectors, feature imitation meth-
ods empower the model to mine the intrinsic correlations
between small-scale objects and large-scale ones, thereby
enhancing the semantic representation of small objects.
Nevertheless, either similarity learning-based methods or
super-resolution-based approaches have to avoid the col-
lapse problem and sustain the feature diversity. Moreover,
GAN-based methods are inclined to fabricate spurious tex-
tures and artifacts, imposing negative impacts on detection.
Worse still, the existence of super-resolution architecture
complicates the end-to-end optimization.

2.3.5 Context-modeling methods

We human can effectively utilize the relationship between
the environment and the objects or the relation of objects
to facilitate the recognition of objects and scenes [123],
[124]. Such prior knowledge that captures the sematic or
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spatial associations is known as context, which conveys the
evidence or cues beyond the object regions. The contextual
information is of critical importance not only in visual sys-
tems of human [121], [123], but also in scene understanding
tasks such as object recognition [125], semantic segmenta-
tion [126] and instance segmentation [127], efc. Interestingly,
informative context sometimes can provide more decision
support than the object itself, especially when it comes to
recognizing the objects with poor viewing quality [123].
To this end, several methods exploit the contextual cues to
boost the detection of small objects.

Chen et al. [28] employed the representations of con-
text regions which encompass the proposal patches for
subsequent recognition. Hu et al. [128] investigated how
to effectively encode the regions beyond the object extent
and model the local context information in a scale-invariant
manner to detect tiny faces. PyramidBox [124] makes full
use of contextual cues to find small and blur faces that
are indistinguishable from background. The intrinsic cor-
relations of objects in an image can be regarded as context
likewise. FS-SSD [129] exploits the implicit spatial context
information, the distances between intra-class and inter-
class instances, to redetect the objects with low confidences.
Assuming that the original Rol pooling operation would
break up the structures of small objects, SINet [130] intro-
duces a context-aware Rol pooling layer to maintain the con-
textual information. IONet [131] computes global contextual
features by two four-directional IRNN structures [132] for
better detection of small and heavily occluded objects. R?-
CNN [133] employs a global attention block to suppress
false alarms and efficiently detect small objects in large-scale
remote sensing images. Zhang et al. [134] captured the corre-
lations between objects and global scene (global context), as
well as that between objects and their neighboring instances
(local context) to improve the performance of small objects.

From the information theory perspective, the more types
of features are considered, the more likely higher detection
accuracy can be obtained [86]. Inspired by the consensus,
context priming has been extensively studied to generate
more discriminative features, especially for small objects
who have inadequate cues, enabling precise recognition.
Unfortunately, both holistic context modeling or local con-
text priming confuse about which regions should be en-
coded as context. In other words, current context mod-
eling mechanisms determine the contextual regions in a
heuristic and empirical fashion, which cannot guarantee
the constructed representations are interpretable enough for
detection.

2.3.6 Focus-and-detect methods

Small objects in high-resolution images tend to distribute
non-uniformly and sparsely [135], and the general divide-
and-detect scheme consumes too much computation on
those empty patches, leading the inefficiency during infer-
ence. Can we filter out those regions with no object thereby
reducing the useless operations to boost the detection? The
answer is YES! Efforts in this area break the chain of generic
pipeline for processing high-resolution images. They first
abstract the regions contain targets, on which the detection
performs subsequently.



Yang et al. [135] proposed a Clustered Detection net-
work (ClusDet) that fully exploits the semantic and spatial
information between objects to generate cluster chips and
then performs the detection. Following this paradigm, Duan
et al. [136] and Li et al. [137] both exploited pixel-wise
supervision to density estimation, achieving more accu-
rate density maps which characterize the distribution of
objects well. CRENet [138] designs a clustering algorithm
to adaptively search cluster regions. With tiling technique,
Wang et al. [139] developed EdgeDuet to enhance small
object detection on edge devices. F&S [140] introduces a
Focus&Detect framework, where Focusing Network detects
candidate regions which then were cropped and resized
to higher resolution, enabling the accurate detection of
small objects. Deeming that the fixed-size input processing
pipeline usually incurs missing detection of small objects,
[141] exploits tilling method to detect pedestrians and vehi-
cles in high-resolution aerial images in real time.

Compared to generic sliding window mechanism, focus-
and-detect methods empower adaptive crops and flexible
zoom-in operation, i.e., smaller objects can be processed
at higher resolutions while larger ones can be detected
in a relatively lower resolution, which significantly saves
memory footprint at inference and reduces the interference
of background. Methods following this roadmap have to
answer the key question: where to focus? Current approaches
resort to either manually additional annotations or auxiliary
architectures like segmentation network or Gaussian Mix-
ture Model, yet the former requires laborious labeling while
the latter complicates the end-to-end optimization.

3 REVIEW OF DATASETS FOR SMALL OBJECT DE-
TECTION
3.1 Datasets for Small Object Detection

Datasets are the cornerstone of learning-based object de-
tection methods, especially for data-driven deep learning
approaches. In the past decades, various research institu-
tions have launched plenty of high-quality datasets [6], [30],
[31], [32], and these publicly available benchmarks provide
impartial platforms for validating the detection methods
and significantly boost the development of related fields.
Unfortunately, very few benchmarks are designed for small
object detection. For the sake of integrity, we still retrospect a
dozen datasets which contain considerable number of small
objects, and expect to provide a comprehensive review of
datasets. Instead of restricting our scope to specific tasks,
we investigate the related datasets which span over a wide
range of research areas, including face detection [8], pedes-
trian detection [7], [142], [143], object detection in aerial
images [20], [30], [144], [145], to name a few. The statistics
of these benchmarks are given in Tab. 2, and only the most
representative among them were introduced below in detail
due to the space restriction.

COCO. Pioneering works [31], [32], though push for-
ward the development of vision recognition tasks, have
been criticized for their ideal condition, where objects usu-
ally have large sizes and center on the images, bearing
little resemblance to the real-world scenarios. To bridge
this gap and foster fine level image understanding, COCO
[6] was launched in 2014, its trainval set annotates 886K
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objects distributed in 123K images with instance-level mask,
covering 80 common categories under complex everyday
scenes. Comparing to previous datasets for object detection,
COCO contains more small objects (about 30% instances
in COCO trainset have an area less than 1024 pixels) and
more densely packed instances, both of which challenge the
detectors. Moreover, the fully segmented annotation and
the reasonable evaluation metric encourage more accurate
localization. All these features help COCO be the de facto
standard for validating the effectiveness of object detection
methods in past years.

WiderFace. WiderFace [8] is a large-scale benchmark
towards accurate face detection, in which faces vary signifi-
cantly in scale, pose, occlusion, expression, appearance and
illumination. It contains 32203 images with a total of 393703
instances. Except common bounding box annotations, at-
tributes including occlusion, pose and event categories were
also provided, which allows thorough investigation for ex-
isting approaches. The faces in WiderFace are divided into
three subsets, namely small (between 10-50 pixels), medium
(between 50-300 pixels) and large (larger than 300 pixels),
where small subset accounts for half of all instances.

TinyPerson. TinyPerson [7] focuses on the seaside
pedestrian detection. TinyPerson annotates 72561 persons
in 1610 images which are categorized into two subsets: tiny
and small, according to their lengths. Due to the extremely
tiny size, an ignore label was assigned to those regions
that cannot be certainly recognized. As the first dataset
dedicated to tiny-scale pedestrian detection, TinyPerson is
a concrete step towards for tiny object detection. However,
its limited number of instances and single pattern restrict its
capacity to serve as a benchmark for SOD.

TT100K. TT100K [146] is a dataset for realistic traffic
sign detection which includes 30000 traffic sign instances
in 100000 images, covering 45 common Chinese traffic-
sign classes. Each sign in TT100K is annotated with pre-
cise bounding box and instance-level mask. The images in
TT100K are captured from Tencent Street Views, holding
a high degree of variability in weather conditions and
illumination. Moreover, TT100K contains considerable small
instances (80% of instances occupy less than 0.1% in the
whole image area) and the entire dataset follows a long-tail
distribution.

VisDrone. VisDrone [147] is a large-scale drone-captured
dataset which is collected over various urban/suburban
areas of 14 different cities across China. Concentrating on
two essential tasks in computer vision, VisDrone supports
four tracks: image object detection, video object detection,
single object tracking and multi-object tracking. For image
object detection track, there are 10209 images with a reso-
lution of 2000 x 1500 pixels and 542K instances covering
10 common object categories in traffic scenarios. The images
in VisDrone are captured with drones from various urban
scenes, thereby containing a mass of small objects due to
viewpoint variations and heavy occlusions.

DOTA. DOTA [30] is proposed to facilitate the object
detection in Earth Vision. It contains 18 common categories
and 1793658 instances in 11268 images. Each object has

3. The term AI-TOD in our paper denotes the latest version, i.e., Al-
TOD-v2.



TABLE 2
Statistics of some benchmarks available for small object detection. ODNI stands for object detection in natural images and ODAI denotes object
detection in aerial images. (1K = 1000, 1M = 1000K).

Dataset name | Task field | Publication | #Images | #Instances | Descriptions and Characteristics
COCO [6] | ODNI | BCCV 2014 | 123K | 886K | One of the most popular datasets for generic object detection
SOD [28] | ODNI | ACCV2016 | 4925 | 8393 | A small-scale dataset for small object detection
WiderFace [8] | Face detection | CVPR2016 | 32K | 393K | A large-scale benchmark with rich annotations for face detection
EuroCity Persons [142] | Pedestrian detection | TPAMI2019 | 47K | 219K | The largest dataset for pedestrian detection captured from dozens of Europe cities
WiderPerson [143] | Pedestrian detection | TMM 2020 | 13K | 39K | Pedestrian detection benchmark in traffic scenarios
TinyPerson [7] | Pedestrian detection | WACV 2020 | 1610 | 72K | The first dataset dedicated to tiny-scale pedestrian detection
STS Dataset [148] | Traffic sign detection | SCIA 2011 | 20000 | 3488 | The first publicly available traffic sign dataset for detection
LISA [149] | Traffic sign detection | TITS 2012 | 6610 | 7855 | A traffic sign dataset allowing for detection and tracking
GTSDB [150] | Traffic sign detection | IJCNN 2013 | 900 | 1206 | A benchmark for traffic sign detection collected under different scenarios
TT100K [146] | Traffic sign detection | CVPR2016 | 100K | 30K | A realistic and large-scale benchmark for traffic sign detection
BSTLD [151] | Traffic light detection | ICRA 2017 | 13427 | 24000 | A large dataset for detecting traffic lights whose sizes down to 1 pixel in width
UCAS-AOD [152] | ODAI | ICIP 2015 | 910 | 6029 | A aerial dataset collected from Google Earth for detection
VEDAI [153] | ODAI | JVC 2016 | 1268 | 2950 | A database dedicated to small vehicle detection in aerial images
xView [154] | ODAI | arXiv2018 | 1128 | 1M | One of the largest and most diverse available dataset of overhead imagery
DIOR [20] | ODAI | JPRS 2020 | 23K | 192K | One of the most frequently used benchmarks for object detection in aerial images
UAVDT [155] | ODAI | JJCV 2020 | 80K | 841K | A dataset collected by Unmanned Aerial Vehicles for object detection and tracking
VisDrone [147] | ODAI | TPAMI2021 | 189K | 25M | A large-scale drone-captured benchmark for detection and tracking
DOTA [30] | ODAI | TPAMI2021 | 11K | 1.79M | The largest remote sensing detection dataset including considerable small objects
AI-TOD' [144] ‘ ODAI ‘ JPRS 2022 ‘ 28K ‘ 700K ‘ A tiny object detection dataset based on previous available datasets
NWPU-Crowd [156] | Crowd counting | TPAMI2021 | 5109 | 213M | The largest dataset for crowd counting and localization to date
TABLE 3
Area subsets and corresponding area ranges of objects in SODA A new evaluation metric was introduced with the launch
benchmark. of COCO dataset after 2014, which averages AP across
Small multiple IoU thresholds between 0.5 and 0.95 (with an
Area Subset extremely Small  relatively Small ~ generally Small Normal interval of 005) Apart from merely Considering fixed IoU
Area Range (0, 144] (144, 400] (400,1024] (1024, 2000] threshold, this criterion also takes the higher IoU thresholds

been annotated with horizontal/oriented bounding box.
Owing to the high diversity of orientations in overhead view
images and large-scale variations among instances, DOTA
dataset has numerous small objects, but they only distribute
in a few categories (small-vehicle).

3.2 Evaluation Metrics

Before diving into the evaluation criteria of small object
detection, we first introduce related preliminary concepts.
Given a ground-truth bounding box b, and a predicted box
b, output by the detector, if the IoU between b, and b, is
greater than the predefined threshold, and the predicted
label is in accordance with the ground-truth, the current
detected box will be identified as a potential prediction to
this object, also known as True Positive (TP), otherwise it
will be regarded as a False Positive (FP). Once we obtain
the number of TP, FP and False Negative (FN, also known
as missed positives), the Average Precision (AP) can be
computed to evaluate the performance of detectors.

Average Precision. Average Precision (AP) is originally
introduced in VOC2007 Challenge [31] and usually adopted
in a category-wise manner. Concretely, given a confidence
threshold and an IoU threshold S8 (0.5 for VOC2007), the
Recall (R) and Precision (P) can be calculated afterwards. By
varying the confidence threshold «, one can obtain differ-
ent pairs (P, R) and ultimately, AP can be determined by
averaging the precision scores under different recalls. This
fixed IoU based AP metric once dominated the community
for years.

into account, encouraging more accurate localization. This
reasonable evaluation metric has been used as the “gold
standard” in detection community and widely adopted by
the following works [146], [157]. Noting that the overall
AP is computed by averaging the APs of all categories in
practice.

4 BENCHMARKS

In this section, we briefly introduce the data acquisition
and annotation process for building SODA-D and SODA-
A. Then, we shed light on the characteristics of our bench-
marks and the main differences between our datasets and
related existing ones. Moreover, other details such as scene
selection, data cleaning and annotation principles will be
discussed in the Sec. A of Appendix.

4.1

Our aim is to build datasets tailored for small object detec-
tion, hence the point is how to define a valuable object.
Definition about a valuable object. Generally, a bound-
ing box B can be represented as (x,y, w, h, ), where (z,y)
denotes the center location and (w, h) indicates the width
and height of the box respectively, the parameter § stands
for the orientation angle and is unused for horizontal an-
notation. Moreover, we use S = w X h to denote the
pixel area of an object. In line with the definition of small
or tiny objects in previous works [6], [7], [144], we adopt
the absolute area criterion and regard an instance who
has an area smaller than 1024 pixels, ie, S < 1024, as

Data Acquisition and Annotation
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rider

warning-cone

TABLE 4
Numbers of instances of each category and three splits of SODA-D
(Left) and SODA-A (Right).

Category #Instances | Category #Instances
people 35928 airplane 31622
rider 4636 helicopter 1395
bicycle 2560 small-vehicle 526047
motor 3896 large-vehicle 17006
vehicle 69197 ship 65690
traffic-sign 85905 container 138242
traffic-light 62729 storage-tank 35331
traffic-camera 7636 swimming-pool 29735
warning-cone 5946 windmill 27001
Train 134301 Train 344228
Validation 56050 Validation 231439
Test 88082 Test 296402
Total 278433 Total 872069

a Small object. Meanwhile, an object whose area between
1024 and 2000 pixels will be annotated as a Normal object.
Otherwise, the object comes to the ignore category and will
not influence the final evaluation results. Considering the
detection difficulty increases sharply when the object size
gets smaller, we further divide the Small objects into three
subsets: extremely Small (eS), relatively Small (rS) and generally
Small (gS), as demonstrated in Tab. 3.

Data source. The images in SODA-D are mainly from
MVD [33], self-shooting and the Internet. MVD is a large-
scale dataset for semantic understanding of street scenes,
of which 25000 high-quality images are captured from road
views, highways, rural areas and off-road. Thanks to the
high-quality and high-resolution property with MVD, we
can obtain a large set of valuable instances with clear
visual structure. For self-shooting part, we use on-board
cameras and mobile phones to collect images of typical
driving scenes in several Chinese cities, including Beijing,
Shenzhen, Shanghai, Xi’an, Qingdao, Guangzhou, etc. In
addition, we also crawl images by searching keywords on
the image search engines (Google, Bing, Baidu, etc.). Finally,

A

storage-tank || swimming-pool
ey ey % g

(Bottom).

we obtained 24828 images of traffic scene.

Enlightened by the pioneering works [20], [30], Google
Earth’ was leveraged to collect images for SODA-A, we
extract 2513 images from hundreds of cities around the
world suggested by the experts. It is noting that numerous
images with cluttered background and high density which
are closer to realistic challenges are captured. In addition,
the images in SODA-A have a relatively high resolution and
most of them enjoy a resolution larger than 4700 x 2700,
enabling the finer details and adequate context that are of
great significance to small object detection [123], [124].

Dataset split. Following the pioneering works [6], [33],
we split the full image-set into three subsets: train-set,
validation-set and test-set, and each subset occupies approx-
imately 50% : 20% : 30% for SODA-D and 40% : 25% : 35%
for SODA-A.

Category selection. Take the realistic value for applica-
tions and the intrinsic size into consideration, we select nine
valuable categories for SODA-D: people, rider, bicycle, motor,
vehicle, traffic-sign, traffic-light, traffic-camera, and warning-
cone. For SODA-A, we also annotate nine object classes:
airplane, helicopter, small-vehicle, large-vehicle, ship, container,
storage-tank, swimming-pool, and windmill.

Instance-level annotation. The general principle to an-
notate SODA resembles that of general detection bench-
marks [6], [20], [30], [31], [32], and the only difference lies
in the ignore regions. Enlightened by the previous works [7],
[8], [155], we assign ignore label to the two datasets when:
1) the instances belonging to the preset categories but with
an area greater than 2000; 2) the objects that are excessively
small and heavily occluded thus cannot be distinguished.
In addition, we merge the ignore regions as possible while
avoiding surround valuable foreground instances.

4.2 Statistical Analysis

We annotate 278433 instances for SODA-D and 872069 ob-
jects for SODA-A, and the number of instances for each

4. https:/ /earth.google.com/
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TABLE 5
Comparisons between SODA-D and several related detection datasets under driving scene (Top), likewise for SODA-A and some detection
datasets under aerial scenario (Bottom). Note that eS, rS and gS stand for extremely Small, relatively Small and generally Small according to our
definition (see Tab. 3). And for each dataset, we only count the subsets whose annotations are available, see Split column. Avg. Res. denotes the
average image resolution of the dataset. HBB/OBB denotes horizontal/oriented bounding box.

#Instances
Dataset #Images  #Categories oS S S Split Avg. Res. (W x H)  Year
TT100K [146] 8876 45 71 2800 6430 train/test 2048 x 2048 2016
EuroCity Persons [142] 32605 18 5318 28048 59190 train/val 1920 x 1024 2019
TJU-DHD Traffic [157] 50266 5 82 1189 20366 train/val 1624 x 1200 2021
SODA-10M [158] 10000 6 33 3061 10056 train/val 1920 x 1080 2021
SODA-D 24828 9 25834 71064 102066  train/val/test 3407 x 2470 2022
#Instances
Dataset Annotation  #Images  #Categories oS S g5 Split Avg. Res. (W x H)  Year
CARPK [159] HBB 1448 1 220 1716 1378 train/test 1280 x 720 2017
VisDrone [147] HBB 8629 10 78999 97251 108793  train/val/test-dev 1490 x 957 2021
AI-TOD [144] HBB 28036 8 193200 135566 17200 train/val 800 x 800 2021
DOTA [30] OBB 2423 18 114045 94867 69934 train/val 2217 x 2074 2021
DIOR-R [145] OBB 23463 20 30938 37471 39697 train/val/test 800 x 800 2022
SODA-A OBB 2513 9 304900 363738 168874 train/val/test 4761 x 2777 2022
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Fig. 4. Category-wise area distribution of instances in SODA-D (a) and SODA-A (b), and overall scale distribution of instances in SODA-D (c) and

SODA-A (d).

category and that for three subsets are shown in Tab. 4. Also
the example instances of each category are shown in Fig.

Next we highlight the most prominent feature of our
dataset: small size. From Tab. 5, SODA-D and SODA-A both
far exceed the existing mainstream object detection datasets
under traffic and aerial scenarios on the amount of Small
objects, especially for extremely Small ones. Moreover, we
also show the category-wise area distribution and overall
scale distribution of instances in SODA-D and SODA-A in
Fig. 4. As can be seen from (a) and (b), the area of objects in
our benchmarks falls into a relatively tight range (especially
for traffic-camera in SODA-D and small-vehicle and ship in
SODA-A). Moreover, from (c) and (d) in Fig. 4, the size
range of objects in SODA-D mainly comes to [10,30] and
for SODA-A, it is strikingly [5, 15]. If we shed our light on
the Small objects, the average absolute size of SODA-D and
SODA-A is 20.31 pixels and 14.75 pixels, respectively.

Except the small size and large volume, our SODA-
D and SODA-A also exhibit several unique characters, as
discussed next.

4.2.1 Data properties of SODA-D

Rich diversity. Our SODA-D dataset inherits one of the
most preeminent virtues of MVD: the rich diversity in terms
of locations, weathers, period, shooting views and scenarios.
Fig. 5 shows some examples of our dataset covering various
weather, view and illumination conditions. We believe that

our diverse data could empower the model with the ability
to generalize to different situations.

High spatial resolution. The images in SODA-D enjoy
very high resolution and high quality, which is entailed for
small or tiny object detection. In Fig. 6, we demonstrate the
distribution of image resolution in SODA-D, and the aver-
age resolution at 3407 x 2470 shows a clear predominance
in comparison with previous datasets who focus on object
detection under traffic scenes, as illustrated in Tab.

Ignore regions. Our benchmark contains a mass of ig-
nore annotations (especially for SODA-D which has 153976
well-annotated ignore regions), which is one of the most
highlighted features. The ignore definitions of Instance -
level annotation part in Sec. could maintain the stability
of training and evaluation. Concretely, we deem that the
prevailing detectors [1], [3], [4], [5], [9], [45], [47], [48], [51],
[52], [160] can handle the first situation well, hence it is
not our concern. For the latter condition, our well-trained
annotators are called for cautiously labeling the regions as
ignore, when they cannot make confident judgment even
at highest zoom-in level. And it will only bring error and
instability if we insist on annotating these regions as fore-
ground objects. To put it in another way, can we expect current
algorithms to outperform human’s eyes? Therefore, categorizing
these regions into ignore will not impose negative impact
during evaluation process, and can guarantee the models
concentrate on the authentic and valuable small objects.
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Fig. 6. The distribution of image resolution in SODA-D (a) and SODA-A
(b). Note that we randomly sample 2000 images to obtain the size profile
for clear illustration.

4.2.2 Data properties of SODA-A

We show an example image of SODA-A in Fig. 7 and the
local zoom-in windows exhibit the details of annotated
instances.

Large density variation. As demonstrated in Fig. 8, the
number of instances per image in SODA-A varies signifi-
cantly from 1 to 11134, which implies that our benchmark
not only contains sparse condition but also includes numer-
ous images where the objects positioned in extremely close
proximity. Moreover, the average number of instances per
image in SODA-A is 347.02, which is more than twice the
number of DOTA (159.18). Such distribution literally calls
for a robust model with the capacity of handling excessively
clustered situation.

Various orientations. The instances in SODA-A can ap-
pear in an arbitrary-rotated fashion. We indicate the orien-
tation distribution of SODA-A in Fig. &, and the tilt angle
of annotated instances distributes from —7/2 to 7/2. Note
that we do not follow the orientation definition in DOTA,
because most objects with tiny size cannot convey sufficient
visual cues to determine their head or tail.

Diverse locations. The images in SODA-A are collected
from hundreds of cities around the world, which substan-
tially enhances the data diversity in fact (e.g., the appearance
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area: Urban

of airplane objects in our SODA-A can vary considerably).
Furthermore, the concomitant intra-class variation and com-
plicated background bring more challenges.

4.3 Comparisons with Previous Benchmarks

Although there have been tremendous datasets for object
detection, few of them dedicated to SOD task. Even so,
we compare several related benchmarks with SODA to
highlight its uniqueness.

4.3.1 SODA-D

MVD: Despite the SODA-D dataset is constructed on top
of MVD, our intention is completely different from MVD.
To be more specific, MVD concentrates on the pixel-level
understanding of street scenes, while the proposed SODA-
D highlights the detection of those objects with extremely
small size under complicated driving scenarios.

4.3.2 SODA-A

AI-TOD: AI-TOD is built on several publicly available
datasets, including DIOR [20], DOTA [30], VisDrone [147],
xView [154], and Airbus-Ship”. However, the above datasets
were not designed for SOD task, hence more than 88%
instances of AI-TOD come from the category vehicle, leading
to a non-negligible imbalance issue as shown in Fig. 9.
Meanwhile, each category in our SODA-A contains ade-
quate instances, except helicopter class, and this advantage
becomes more pronounced when considering the data vol-
ume (our SODA-A contains 837512 instances belonging to
Small object subset). In addition, the images in AI-TOD are
cropped from existing datasets and the image resolution is
fixed to 800 x 800. More importantly, AI-TOD only provides
horizontal annotations, which severely limits its capacity
to approach objects accurately and to handle the densely-
packed situation that is common and challenging for SOD in
aerial images. In contrast, from Tab. 5 and Fig. 6, our SODA-
A possesses an average image resolution of 4761 x 2777, and

5. https:/ /www.kaggle.com/c/airbus-ship-detection


https://www.kaggle.com/c/airbus-ship-detection

1 ship

- container

13

- storage-tank

swimming-pool

Fig. 7. An example image in SODA-A. The instances of different categories are best viewed in color and zoom-in windows, where masked areas

denote the ignore regions.
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Fig. 8. Density distribution per image (a) and the orientation profile (b)
of instances in SODA-A. Note that the number of images with more than
3000 instances were accumulated for clear demonstration of (a).

the well-annotated oriented boxes allow for large density
cases and encourage more accurate localization.

DOTA: DOTA is the largest dataset for object detection
in aerial images to date. Compared to DOTA, who puts
emphasis on scale variation issue, we mainly focus on the
small-scale objects which obstruct current detectors. More-
over, though DOTA contains substantial amounts of small
objects, most of them centralized at small-vehicle, as in Fig. 9.

5 EXPERIMENTS
5.1 Evaluation Protocol

Following the evaluation protocols in COCO [6], we use
the Average Precision (AP) to evaluate the performance of
detectors. Concretely, as the paramount metric, the overall
AP is obtained by averaging the AP over 10 IoU thresholds
between 0.5 and 0.95 (with an interval of 0.05) on Small
objects. AP5y and APr; are computed at the single IoU

storage-tank storage-tank windmill swimming-pool

person

ship ﬂﬂ

large-vehicle airplane large-vehicle

storage-tank

&

(@) (b) (©
Fig. 9. Class distribution of Small instances in AlI-TOD (a), DOTA (b)
and SODA-A (c). Those categories with instances less than 2000 are
not included.

container

16%

thresholds of 0.5 and 0.75, respectively. Moreover, to high-
light our concern for size-limited objects, the AP of four area
subsets also are demonstrated, namely, AP.g, AP,g, AP;s
and APy.

5.2

To conduct fair comparisons of several benchmarking base-
lines, all the experiments on SODA-D and SODA-A are
implemented on top of the open source object detection tool-
box mmdetection® [165] and mmrotate’ [166], respectively.
Directly feeding the high-resolution images in SODA to
deep model is infeasible due to the GPU memory limitation,
hence we crop original images into a series of 800 x 800
patches with a stride of 650. These patches will be resized
to 1200 x 1200 during training and testing, which could
partly alleviate the information loss caused in the feature
extraction stage. Noting the patch-wise detection results
will be first mapped to the original images, on which Non
Maximum Suppression (NMS) was performed to prune out

Implementation Details

6. https:// github.com/open-mmlab/mmdetection
7. https:/ / github.com/open-mmlab/mmrotate
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TABLE 6
Baseline results on SODA-D test-set. All the models are trained with a ResNet-50 [10] as the backbone except YOLOX (CSP-Darknet) [161] and
CornerNet (HourglassNet-104) [51]. Schedule denotes the epoch setting during training, where ’1 x’ refers to 12 epochs and '50€’ represents 50

epochs.
| Method | Publication | Schedule | AP APs9g AP;s | AP.g  AP.s APys APy | #Param. | FLOPs |
Faster RCNN [1] TPAMI 2017 1x 28.9 59.7 24.2 13.9 25.6 343 43.2 41.16M 292.28G
Cascade RCNN [160] TPAMI 2021 1x 31.2 59.9 27.8 14.1 27.5 37.1 46.9 68.95M 320.07G
RetianNet [3] TPAMI 2020 1x 28.2 57.6 23.7 11.9 25.2 34.1 442 35.68M 299.50G
CornerNet [51] ECCV 2018 2X 24.6 49.5 21.7 6.5 20.5 322 43.8 200.96M 1104.06G
CenterNet [47] ArXiv 2019 70e 215 48.8 15.6 5.1 16.2 29.6 424 70.75M 137.21G
FCOS [4] TPAMI 2022 1x 23.9 49.5 19.9 6.9 19.4 30.9 40.9 31.86M 284.53G
RepPoints [162] ICCV 2019 1x 28.0 55.6 24.7 10.1 23.8 35.1 45.3 36.60M 273.96G
ATSS [163] CVPR 2020 1x 26.8 55.6 22.1 11.7 23.9 32.2 41.3 31.32M 290.79G
Deformable-DETR [52] ICLR 2020 50e 19.2 44.8 13.7 6.3 15.4 249 34.2 35.17M 739.11G
Sparse RCNN [164] CVPR 2021 1x 242 50.3 20.3 8.8 20.4 30.2 39.4 105.96M 213.00G
YOLOX [161] ArXiv 2021 70e 26.7 53.4 23.0 13.6 25.1 309 30.4 8.94M 48.11G

RFLA [63] ECCV 2022 1x 29.7 60.2 25.2 13.2 26.9 354 44.6 41.16M 292.06G

TABLE 7

Category-wise AP of baseline detectors on SODA-D test-set.The training settings are consistent with Tab.

and the full names of class

abbreviation are as follows: t-sign (traffic-sign), t-light (traffic-light), t-camera (traffic-camera) and w-cone (warning-cone).

| Method | people rider bicycle motor  vehicle t-sign  tlight t-camera w-cone [ AP |
Faster RCNN [1] 35.8 16.5 12.5 23.1 441 45.8 37.8 14.3 30.5 28.9
Cascade RCNN [160] 39.2 18.0 14.5 24.2 47.4 48.1 39.8 15.2 33.4 31.2
RetianNet [3] 34.0 16.9 11.1 22.5 44.3 45.6 36.3 14.2 29.0 28.2
CornerNet [51] 30.5 15.7 11.3 22.8 37.3 40.3 31.8 8.0 24.3 24.6
CenterNet [47] 25.6 12.8 9.5 19.9 329 35.8 27.6 9.3 20.4 21.5
FCOS [4] 29.7 13.9 10.4 19.5 40.2 38.0 31.6 8.9 23.0 23.9
RepPoints [162] 36.0 159 10.8 21.6 44.8 45.6 37.3 12.7 27.7 28.0
ATSS [163] 33.3 16.0 10.6 21.3 42.7 43.3 34.8 11.6 27.8 26.8
Deformable-DETR [52] 23.0 10.2 7.6 16.4 30.2 33.8 249 75 19.6 19.2
Sparse RCNN [164] 314 12.4 8.5 19.0 39.9 42.1 33.1 8.5 23.0 24.2
YOLOX [161] 33.8 14.7 8.0 20.1 43.6 43.3 359 11.5 29.5 26.7
RFLA [63] 37.1 19.1 13.4 24.2 45.0 45.8 37.5 14.7 30.5 29.7

TABLE 8

The AP performance of baseline detectors with different backbone
networks. All the models were trained for ’1x’ schedule.

[ Method | ResNet-50 ResNet-101  Swin-T  ConvNext-T |
Faster RCNN [1] 28.9 28.7 30.3 319
Cascade RCNN [160] 31.2 30.6 32.8 34.3
RetianNet [3] 28.2 27.8 28.8 29.7
FCOS [4] 23.9 243 29.2 29.1
RepPoints [162] 28.0 28.2 28.4 30.2
ATSS [163] 26.8 26.7 27.2 27.9
Sparse RCNN [164] 24.2 25.3 24.9 252

redundant predictions. We use 4 NVIDIA GeForce RTX 3090
GPUs to train the models, and the batch size is set to 8
for the experiments of SODA-D and 4 for that of SODA-
A, where the angle ranges is [—7/2,7/2). Only random
flip was used for augmentation during training, and more
details and hyperparamter settings please refer to Sec.
and Sec. in Appendix.

5.3 Results Analysis on SODA-D

In this section, we perform a rigorous evaluation of several
representative methods on our SODA-D dataset, and pro-
vide in-depth analyses on top of the results. Moreover, we
conduct several experiments to investigate the effect of label
assignment and loss designs to SOD, details can be found in
Sec. B.2 and Sec. B.3 in Appendix.

5.3.1 Benchmarking Results

Tab. 6 reports the results of 12 representative methods on
SODA-D test-set. From the table, we can find that Faster

RCNN [1] scores 28.9% on AP, and benefiting from the
cascade structure, Cascade RCNN [160] attains the best
performance with an AP of 31.2% and an impressive APz5
of 27.8%, which steadily outperform other detectors. On top
of Faster RCNN, RFLA [63] achieves 29.7% AP, though
meanwhile, the AP,.g actually drops 0.7 points, showing
that the devised assignment might not be suitable for those
instances with excessively limited sizes. One-stage detector
RetinaNet [3] scores 28.2% AP which is close to Faster
RCNN, but there exists a huge gap (11.9% v.s. 13.9%) when
comes to the AP.g, and when the object size gets larger,
such difference becomes smaller, which reveals that the
misalignment issue imposes a significantly severe impact on
tiny objects. Similarly, though RepPoints [162] can obtain an
overall AP of 28.0%, but the AP, s metric (10.1%) is largely
behind Faster RCNN and RetinaNet. This phenomenon
indicates that point representation, in comparison to its box
counterpart, may not be a good choice for small objects,
but shows great potential for large ones. For anchor-free
detectors, ATSS [163] can achieve 26.8% AP on our SODA-
D test-set, which is superior to FCOS [4] (23.9%), and the
latter behaves badly on extremely Small objects (6.9%). This
may partly originates from the occlusion challenge of our
dataset, also known as the ambiguous sample problem.
CenterNet [47] and CornerNet [51] only obtain an AP of
21.5% and 24.6%, respectively. It can be noticed that even
with more training epochs, the performances of CenterNet
and CornerNet are remarkably inferior to that of anchor-
based methods, and the disparity becomes more staggering
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Fig. 10. Qualitative results of Cascade RCNN [160] on SODA-D test-set. Columns 1 and 3 denote the ground-truth annotations and columns 2 and
4 stand for the predictions. Best viewed in color and zoom-in windows, where masked bounding boxes represent ignore regions. Only predictions

with confidence scores larger than 0.3 are demonstrated.

for extremely Small and relatively Small objects. YOLOX [161]
can obtain competitive results (26.7%AP and 13.6%AP,s)
when compared to other anchor-free counterparts though
meanwhile struggles on the objects of large areas. For the
query-based detector, Sparse RCNN [164] achieves 24.2%
AP which is comparable to FCOS. Though exploiting multi-
scale deformable attention to reduce high computation in
encoder and enabling the access of high-resolution features,
Deformable DETR [52] only delivers 19.2% AP, lagging no-
ticeably behind other competitors even with more training
epochs. This performance gap may reveal that the sparse
query paradigm could not cover small objects adequately.

5.3.2 Category-Wise Results

We also list the category-wise results on Tab. 7, from which
we can see that the AP of rider, bicycle, motor and traffic-
camera are clearly inferior to other categories, we deem
that the root cause of this phenomenon comes from two-
fold. 1) Class-imbalance issue. These categories contain less
samples compared to other classes, e.g., only 2560 samples
included in bicycle category. 2) The limited area. For instance,
nearly half of the traffic-camera objects possess an area less
than 256 pixels, as demonstrated in Fig. 9. In other words,
this phenomenon corroborates previous findings, i.e., the
detection difficulty increases sharply when the object size
gets smaller.

5.3.3 Baseline Detectors with Different Backbones

Tab. 5 shows the performance of baseline detectors with dif-
ferent backbone networks. Compared to ResNet-50, ResNet-
101 only brings a slight improvement even degrades the
performance (see Cascade RCNN and RetinaNet). This
phenomenon substantiates previous hypothesis that deeper
models might not be better for the size-limited objects and
moreover, the highly structural representations in deeper
layers which hardly contain small object cues are sub-
optimal for detection. Swin-T [167] yields substantial im-
provements for all detectors, especially for FCOS (+5.3
points). This impressive performance reveals the powerful
representation ability of shifted-window scheme for small
objects, and could shed more light on the subsequent feature
extractor design of SOD. Not surprisingly, most detectors
with ConvNext-T [168] as the backbone achieve the best
performance, exhibiting good robustness and potential in
capturing the finer representations of small objects.

5.3.4 Qualitative Results

Fig. 10 demonstrates the visualization results of Cascade
RCNN on SODA-D test-set. The first pair shows the chal-
lenge under complicated background and heavy occlusion,
where the detector can hardly learn discriminative repre-
sentation from instances with limited sizes and is inclined
to lose those instances resembled the background. In addi-
tion, identifying those partly occluded objects is even more
challenging. The second pair represents the detections of
low illumination, in which the detector fails to recognize
those instances under the shadow, still less predicts accurate
bounding boxes. More qualitative results are exhibited in the
Supplementary material.

5.4 Results Analysis on SODA-A

Based on SODA-A, we investigate the performance of sev-
eral leading methods of oriented object detection. Also,
considering our SODA-A contains densely packed issue,
we explore the impact of proposal number for the final
performance, please refer to Sec. C.2 of Appendix.

5.4.1 Benchmarking Results

Tab. 9 shows the results of nine representative methods
on SODA-A test-set. Rol Transformer [169] achieves top
performance with 36.0% AP. This remarkable success can
be attributed to its powerful proposal generator, in which
rotated proposals produced by the RRol Learner can guar-
antee the high recall of small objects. By revising vanilla
Faster RCNN to output an additional angle prediction, Ro-
tated Faster RCNN [1] scores 32.5% on AP, which validates
the robustness of this prevailing method again. Oriented
RCNN [171] obtains a relatively high performance both at
overall AP (34.4%). Thanks to its efficient oriented RPN,
Oriented RCNN can generate high-quality proposals with
negligible parameter grow. From the results of Rol Trans-
former and Oriented RCNN, we can see that high-quality
proposals are of great significance to small object detection,
particularly for the densely packed objects. Gliding Vertex
[170] and DODet [173] both resort to novel representations
for oriented objects, the former learns four gliding offsets
to corresponding sides while the latter utilizes aspect ratio
and area to denote an object. Gliding Vertex achieves 31.7%
AP which is comparable to DODet (31.6%). For one-stage
detectors, Rotated RetinaNet [3] achieves 26.8% AP and
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TABLE 9
Baseline results on SODA-A test-set. All the models are trained with a ResNet-50 as the backbone. Schedule denotes the epoch setting during
training, where '1x’ refers to 12 epochs.

[ Method | Publication [ Schedule [ AP APsg AP | AP.g  AP,5 AP;s APy [ #Param. [ FLOPs |
Rotated Faster RCNN [1] | TPAMI 2017 1x 325 70.1 24.3 11.9 27.3 422 34.4 41.14M 292.25G
Rotated RetinaNet [3] TPAMI 2020 1x 26.8 63.4 16.2 9.1 22.0 354 28.2 36.16M 800.21G
Rol Transformer [169] CVPR 2019 1x 36.0 73.0 30.1 13.5 30.3 46.1 39.5 55.08M 306.20G
Gliding Vertex [170] TPAMI 2021 1x 31.7 70.8 22.6 11.7 27.0 41.1 33.8 41.14M 292.25G
Oriented RCNN [171] ICCV 2021 1x 34.4 70.7 28.6 12.5 28.6 445 36.7 41.13M 292.44G
S2A-Net [172] TGRS 2022 1x 28.3 69.6 13.1 10.2 22.8 35.8 29.5 38.64M 732.74G
DODet [173] TGRS 2022 1x 31.6 68.1 234 11.3 26.3 41.0 33.5 69.34M 555.49G
Oriented RepPoints [174] CVPR 2022 1x 26.3 58.8 19.0 9.4 22.6 324 28.5 55.66M 827.21G
DHRec [175] TPAMI 2022 1x 30.1 68.8 19.8 10.6 24.6 40.3 34.6 31.99M 792.76G

TABLE 10

Category-wise AP of baseline detectors on SODA-A test-set. The training settings are consistent with Tab.

and the full names of class

abbreviation are as follows: s-vehicle (small-vehicle), I-vehicle (large-vehicle), s-tank (storage-tank) and s-pool (swimming-pool).

[ Method [ airplane  helicopter  s-vehicle I-vehicle ship container s-tank s-pool windmill | AP |
Rotated Faster RCNN [1] 49.4 18.1 33.4 19.6 43.5 29.8 42.8 34.1 21.9 325
Rotated RetinaNet [3] 42.0 16.8 29.9 10.0 35.1 23.7 35.1 30.7 18.1 26.8
Rol Transformer [169] 53.2 21.4 36.1 259 46.4 35.7 44.6 36.9 23.5 36.0
Gliding Vertex [170] 46.7 12.8 33.3 21.9 43.4 29.8 43.3 31.2 22.7 31.7
Oriented RCNN [171] 52.2 20.2 34.4 24.4 45.2 32.1 43.1 36.3 22.2 34.4
S2A-Net [172] 41.5 20.4 31.2 14.0 36.7 26.1 29.6 33.8 21.6 28.3
DODet [173] 49.4 19.8 32.1 17.3 41.3 26.0 42.2 34.7 21.3 31.6
Oriented RepPoints [174] 51.7 8.5 30.3 2.6 28.0 19.6 40.3 33.2 21.9 26.3
DHRec [175] 45.5 17.2 31.0 15.6 38.5 28.5 38.8 34.5 20.9 30.1

TABLE 11

The AP performance of baseline detectors on SODA-A test-set with
different backbone networks. All the models were trained for 1 x’

schedule.
\ Method | ResNet-50 ResNet-101  Swin-T — ConvNext-T |
Rotated Faster RCNN [1] 325 327 33.6 343
Rotated RetinaNet [3] 26.8 26.8 233 21.7
Rol Transformer [169] 36.0 35.8 36.1 37.5
Gliding Vertex [170] 31.7 32.0 329 34.0
Oriented RCNN [171] 34.4 34.4 35.1 35.9
S2A-Net [172] 28.3 283 26.0 /

Oriented RepPoints [174] 26.3 26.7 26.2 25.7

lags largely behind two-stage ones. This is because SODA-
A contains considerable excessively small objects that one-
stage paradigm cannot handle well, as discussed in Sec.

. S?A-Net [172] designs feature alignment module to
alleviate the misalignment problem, and finally achieves
an AP with 28.3%. Though it can substantially increase
the score of AP50, the concomitant performance decline on
the AP75 metric can be non-negligible (-3.3 points) when
compared to Rotated RetinaNet, which indicates that the
performance gain of S?A-Net is likely to come at the cost of
subsequent regression accuracy. Oriented RepPoints [174]
achieves 26.3% points on AP metric which is slightly infe-
rior to Rotated RetinaNet, exhibiting such point set repre-
sentation is unamiable for small objects in aerial scenario,
especially for those with large aspect ratios which will
be discussed in next section. By exploiting two horizontal
rectangles to encode the multi-oriented object, DHRec [175]
disposes the discontinuity problem subtly and achieves
30.1% AP which is significantly superior to its one-stage
counterparts with least parameters.

5.4.2 Category-Wise Results

Category-wise results of baseline algorithms on SODA-A
test-set are shown in Tab. 10. The AP of helicopter category
is observably below that of other classes due to limited
instance numbers. The objects of large-vehicle and container
with elongated structure challenge the regression branch
especially for Oriented RepPoints, and moreover, Gliding

Vertex and DODet have comparable results yet perform
variably on different categories, which can be attributed to
the different representation about oriented objects.

5.4.3 Baseline Detectors with Different Backbones

Tab. 11 shows the performance of baseline detectors with
different backbone networks. Similar to the results on
SODA-D, we can see that ResNet-101 only brings slight
performance improvement even decline. However, when
Swin-T backbone was employed to extract the features, two
fundamentally distinct phenomena occur simultaneously.
For RPN-based detectors, Swin-T can yield varying levels
of performance gain (from 0.1 points to 1.2 points), but for
RPN-free detectors, Swin-T causes substantial performance
decline (-3.5 points for Rotated RetinaNet and -2.3 points
for S?2A-Net), which is completely different from the results
on SODA-D. We conjecture this disparity lies in the limited
ability of Swin-T to cope with dense distribution when the
detector suffers from misalignment issue, particularly for
those objects with extremely close proximity. When taking
ConvNext-T as the backbone network the general trend is
similar to Swin-T, those RPN-free detectors suffer from more
severe misalignment issue because there exists a huge gap
between the object regions and horizontal priors.

5.4.4 Qualitative Results

We visualize the detection results of Oriented RCNN on
SODA-D test-set in Fig. 11. The first pair shows the results
of tiny instances and only very few of them were detected,
demonstrating that detecting tiny objects is a massive chal-
lenge for current detectors, even with top performance.
The second pair exhibits the detections of low contrast, of
which airplane instances possess similar visual feature with
background and the model confuses them with helicopter.
Moreover, because the detailed information which is con-
ducive for identification is hardly retained, the model is
likely to utilize visual appearance for recognition instead,
which unavoidably results in false positives and incorrect
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Fig. 11. Qualitative results of Oriented RCNN [171] on SODA-A test-set. Columns 1 and 3 represent the ground-truth annotations and columns 2
and 4 denote the predictions. Best viewed in color. Only predictions with confidence scores larger than 0.3 are demonstrated.

predictions (see the container predictions). More qualitative
results are exhibited in the Supplementary material.

6 CONCLUSION AND OUTLOOK

We presented a systematic study on small object detection.
Concretely, we exhaustively reviewed hundreds of literature
for SOD from the perspective of algorithms and datasets.
Moreover, to catalyze the progress of SOD, we constructed
two large-scale benchmarks under driving scenario and
aerial scene, dubbed SODA-D and SODA-A. SODA-D com-
prises 278433 instances annotated with horizontal boxes,
while SODA-A includes 872069 objects with oriented boxes.
The well-annotated datasets, to the best of our knowledge,
are the first attempt to large-scale benchmarks tailored for
small object detection, and could serve as an impartial
platform for benchmarking various SOD methods. On top
of SODA, we performed a thorough evaluation and com-
parison of several representative algorithms. Based on the
results, we discuss several potential solutions and directions
for future development of SOD task.

Effective feature extractor for small objects. As alluded
to in the results, deeper backbone networks might not be
conducive to extract high-quality feature representations for
small objects. Designing an effective backbone, which enjoys
powerful feature extraction capability while avoiding high
computational cost and information loss, is of paramount
importance.

High-quality hierarchical representation. FPN is an
indispensable part in small object detection. Nevertheless,
current feature pyramid architecture is suboptimal for SOD,
owing to the heuristic pyramid level assignment strategy,
few samples were assigned to higher levels (actually only
P, feature is responsible to the detection during our bench-
mark experiments). Consequently, the high-level layers are
optimized in an implicit and indirect manner which may
hamper the fusion quality. Moreover, detecting on low-level
feature maps brings heavy computational burden. Thus, an
efficient hierarchical feature architecture tailored for SOD
task is in high demand.

Optimized label assignment strategy. As we discussed
in Sec. 2.3.1 and Sec. B.2 of Appendix, albeit the current label
assignment schemes perform well on generic object detec-
tion and large objects, they still struggle on the instances of
extremely small sizes, neither the overlap-based strategies
nor the distribution-based ones. Therefore, designing an

optimized strategy to assign sufficient positive samples for
size-limited instances can substantially stabilize the training
procedure and boost the performance further.

Proper evaluation metric for SOD. The multiple IoU
thresholds-based evaluation process has been the de facto
standard for validating the effectiveness of methods in
generic object detection. However, such ubiquitous metric
is too stringent for those instances with extremely sizes.
In other words, the top priority of small object detection
under some specific scenarios is to recognize the objects
and obtain their rough locations instead of obsessing how
accurate they are. Hence, it is impractical to pursue pre-
cise detections of small objects when the model cannot
find them. Consequently, borrowing the experience of other
fields such as crowd counting and devising a proper metric
to guide the training and inference of SOD architectures
under some specific scenes plays a significant role in future
development.
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APPENDIX A
BENCHMARKS

In this section, we first state the major considerations about
why we choose the driving and aerial scenarios to construct
our benchmark, and then the details about data cleaning
and instance-level annotation are demonstrated.

A.1 Scene Selection

To acquire a vast collection of small instances for training
robust deep models, we carefully choose the driving scene
and aerial scene to construct our datasets. Our prime moti-
vations come as follow:

1. To simulate the real environment and capture size-
limited objects, we need to increase the shooting distance,
even so, the objects in the aforementioned two scenarios can
still be identified due to their natural sizes and distribu-
tions. Moreover, the instances with similar sizes often occur
intensively, this promises that we can obtain sufficient and
valuable small instances.

2. The annotation types adopted in the two benchmarks
are Horizontal Bounding Box (HBB) and Oriented Bounding
Box (OBB), which actually correspond to two of the most
fundamental detection tasks, horizontal object detection and
oriented object detection. That is to say, our benchmarks are
amenable for most of the SOD algorithms to conduct the
evaluation and comparison.

3. These two scenes are both in high demand for SOD
task: autonomous driving requires decision making based
on the reliable and real-time understanding of complicated
surroundings, where the objects far from the vehicle or
occluded by other instances are with limited sizes, pos-
ing great challenges to the perceptron system. Meanwhile,
overhead-view image analysis has an urgency to handle
small objects in terms of the large flying altitude and various
shooting views.

A.2 Data Cleaning

For SODA-D, the images that are visibly affected by arti-
facts, lens flare, strong motion blur and other factors which
impede the subsequent annotation process were removed.
Moreover, duplicated images collected from different web-
sites were cleaned either. For SODA-A, we eliminate those
images with noticeable blur and artifacts.

A.3 License Declaration

Our two benchmarks are freely available under the CC-BY-
SA license agreement '.

A.4 Data Annotation

Annotation tools. As we alluded to in the text, the annota-
tion type for the two benchmarks is different. Specifically,
we annotate the objects of SODA-D with horizontal bound-
ing boxes, and the instances of SODA-A are annotated
with polygons which is in line with the pioneering works
[20], [30]. To precisely and efficiently annotate the instances
with limited sizes in our database, we use Labelimg * and

1. https:/ /creativecommons.org/licenses /by-nc/4.0/
2. https://github.com/tzutalin/labellmg
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Labelme * toolkits to conduct the annotations of SODA-D
and SODA-A, which both allow for high-degree zoom-in
operation, enabling the fine-grained annotations.

Instance-level annotation. The annotation procedure is
consistent with the general detection benchmarks [6], [20],
[30], [31], [32]. Concretely, for SODA-D, the annotators need
to find the instances belonging to the predefined categories
and then just draw tight bounding box enclosing the tar-
gets. Hence, here we put the emphasis on describing our
annotation of SODA-A.

To efficiently perform the labeling process, we tailor
optimal annotation strategies for different categories. For
airplane and helicopter category, we design a new type of
annotation method, crisscross annotation, which only re-
quires four extreme points and is more appropriate to the
objects with cruciform structures. In addition, we simply
adopt horizontal box for storage-tank and windmill category.
For remaining classes, the annotators use Labelme toolkit
to create enclosed polygons along the contours of instances.
Finally, the post-processing code was employed to convert
the above annotations to unified oriented bounding box an-
notations. The visualization of the three types of annotations
and converted oriented bounding boxes are shown in Fig.
Al.

Fig. A1. Three types of annotations used in SODA-A, i.e., crisscross
polygon (a), horizontal bounding box (b) and enclosed polygon (c). The
bottom (d, e, f) are the visualization results of oriented bounding boxes
converted from original annotations.

APPENDIX B
BENCHMARKING OF SODA-D

In this section, we elucidate the training details about
SODA-D, also, the effects of label assignment and loss
deigns to small object detection were also discussed.

B.1 Training Details

Training hyperparameters. Here we first illustrate some
common settings in the benchmarking experiments of
SODA-D. The default optimizer is Stochastic Gradient De-
scent (SGD) while except for Sparse RCNN [164] and De-
formable DETR [52] that are optimized with AdamW. Most
of model is trained for 1x schedule that comprises a budget

3. https://github.com/wkentaro/labelme


https://creativecommons.org/licenses/by-nc/4.0/
https://github.com/tzutalin/labelImg
https://github.com/wkentaro/labelme

of 12 epochs, and the learning rate is decayed by 10 at 9 and
12 epoch, respectively. The weight decay is set to 0.0001
for all baseline detectors, and we use Warmup technique to
stabilize the initial training process, specifically, the learning
rate will increase linearly to reach the predefined initial
learning rate at first several iterations. Moreover, the images
in SODA-D enjoy very high resolutions thereby directly
feeding them into deep model is infeasible due to the GPU
memory limitation. To overcome this issue we first crop the
high-resolution images into a series of patches to perform
detection, then the patch-wise results will be mapped to
original images and on which the (image-wise) NMS op-
eration was conducted. In the process, the IoU thresholds of
patch-wise NMS and image-wise NMS are both set to 0.5.

Model-wise settings. To illustrate the detailed settings of
the baseline detectors, we exhibit the learning rate and the
pyramidal features of training each model in Tab. B1. Noting
that CornerNet [51], CenterNet [47], Deformable-DETR [52]
and YOLOX [161] design tailored neck to obtain high-
quality multi-level representations, hence we do not include
them. Specific architecture designs of each model please
refer to the corresponding configurations in our codes which
are available at https:/ /shaunyuan22.github.io/SODA.

TABLE B1
Detailed settings of each baseline detector for SODA-D. Note that the
learning rate is set when the batch size is 8, and Ps, Ps, P4, Ps, Ps in
pyramidal levels correspond to the feature strides of 4, 8, 16, 32, 64.

[ Method | Learning Rate | Pyramidal Features |
Faster RCNN [1] 0.02 P>, P3, Py, Ps, Ps
Cascade RCNN [160] 0.02 PQ, P3, P4, P57 P6
RetianNet [3] 0.01 P3, Py, P5, Ps
CornerNet [51] 0.0000833 /
CenterNet [47] 0.025 /
FCOS [4] 0.005 Py, Py, Ps, Ps
RepPoints [162] 0.01 Py, Py, Ps, Ps
ATSS [163] 0.01 Py, Py, Ps, Ps
Deformable-DETR [52] 0.000025 /
Sparse RCNN [164] 0.0000125 P>, P3, Py, Ps, Ps
YOLOX [161] 0.0001563 /
RFLA [63] 0.02 P>, P3, Py, Ps, Ps

B.2 The Effect of Label Assignment

As we alluded to before, the label assignment strategy plays
a significant role in training a deep detector, hence we
will discuss the effect of label assignment to small object
detection in this section. Concretely, we take Faster RCNN
[1], RetinaNet [3] and FCOS [4] as baselines or reference
methods to investigate the performances of different strate-
gies.

From Tab. B2, RFLA [63] can boost the overall AP of
Faster RCNN [1] by 0.8% points but actually deteriorates
AP.s. We conjecture that the Gaussian Receptive Field-
based scheme cannot assign adequate samples for extremely
Small instances, because there is only one prior when calcu-
lating the distances between the gaussian prior and ground-
truth objects. By modeling the training procedure as a
maximum likelihood estimation (MLE) problem, FreeAn-
chor [176] frees the hand-crafted anchor matching strategy
and achieves comprehensive improvements compared to
RetinaNet. Moreover, FreeAnchor integrates the recall rate
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into the optimization process which guarantees those size-
limited objects could obtain at least one prediction. PAA [54]
considers classification and localization both in label assign-
ment, optimization and post-processing, which is different
from the previous works. Specifically, they formulate the an-
chor assignment as a probabilistic procedure by calculating
anchor scores from a detector model and maximizing the
likelihood of these scores for a probability distribution. If
we delve into the specific metrics, though the AP of PAA
is higher than that of RetinaNet, the AP,.s actually does
not grows and the AP of larger instances was improved
substantially. We deem that PAA struggles to capture the
distribution of small objects from the scores of limited priors
(single anchor box per location) and the intrinsic difficulty
of small objects. Moreover, thanks to the consideration of
location during the whole training process, the AP;5 of
PAA is much higher than its competitors, which, in other
words, reveals that the primary problem of small objects
lies in the missing detection. For anchor-free method FCOS,
ATSS [163] significantly improves the baseline performance
especially for AP,g, showing that the dynamic assignment
scheme is robust and conducive for objects of all scales in
SODA-D. AutoAssign [177] deems that the points inside the
object regions should not be treated as positive because only
a part of pixels in ground-truth box belong to foreground,
in view of this, they design a re-weighting strategy to
adjust the pos/neg assignment of each instance. AutoAssign
can achieve 26.8% AP, but when compared to ATSS, the
performance gain is limited (+1.6% v.s. +2.9%) and this
may caused by the blurred appearance of small objects.

In summary, it can be noticed from the aforementioned
results that the prevailing label assignment strategies seem
cannot handle the instances who have extremely limited
sizes well, but for large objects, these schemes can boost the
performance substantially. Moreover, the paradigms based
on densely arranged priors still have predominance in com-
parison to their competitors.

B.3 The Effect of Loss Function

In this section, we take RetinaNet and ATSS as the baseline
and reference model to investigate how the loss designs can
affect the performance of detectors on small objects. And
considering there have no tailored loss functions for SOD
task, we take GHM [178] and GFL [179], which have been
proven effective on generic object detection, to conduct the
experiments and the results are shown in Tab.

GHM assumes that the vanilla Focal Loss can alleviate
the imbalance issue but meanwhile may pay much attention
to fit the outliers, which are detrimental to the overall
training procedure. Hence they propose to decay the weight
of those samples that the model cannot deal with. GHM
obtains an overall AP with 28.4% points which is slightly
ahead of RetinaNet and surprisingly, it can outperform
RetinaNet with 0.6% points on AP.s. We speculate that
this is because the objects of extremely Small category are
usually with limited information and distorted structures
even cannot be recognized, as discussed in AdaFace [180].
GFL reconciles the optimization between classification and
centerness score during training, and furthermore, they
model the representation of a bounding box as General
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TABLE B2
The effect of label assignment strategies to SOD. All the approaches take ResNet-50 as the backbone and trained for ’1 x’ schedule.

[ Method [ AP APsy APy | AP.s  AP.s AP;s APy [ #Param. | FLOPs |

Faster RCNN [1] 28.9 59.7 24.2 13.9 25.6 34.3 43.2 41.16M 292.28G
RFLA [63] 29.7 60.2 25.2 13.2 26.9 35.4 44.6 41.16M 292.06G
RetianNet [3] 28.2 57.6 23.7 11.9 25.2 34.1 442 35.68M 299.5G
FreeAnchor [176] 29.6 58.4 25.6 133 26.7 35.5 45.5 35.68M 295.5G
PAA [54] 29.7 56.9 26.5 12.0 26.3 36.3 46.3 31.32M 290.79G
FCOS [4] 239 49.5 19.9 6.9 194 30.9 40.6 31.86M 284.53G

ATSS [163] 26.8 55.6 22.1 11.7 239 32.2 41.3 31.32M 290.79G
AutoAssign [177] 25.5 52.4 21.6 9.6 21.9 31.7 41.0 35.4M 285.48G

TABLE B3
The effect of loss designs to SOD. All the approaches take ResNet-50
as the backbone and trained for ’1 x’ schedule.

l Method [ AP APs5g APrs [ AP.g AP,s APgS APy l
RetianNet [3] | 28.2 57.6 23.7 119 25.2 34.1 442
GHM [178] 28.4 57.7 23.9 125 25.6 34.0 43.8
ATSS [163] 26.8 55.6 22.1 11.7 239 322 413
GFL [179] 29.0 57.3 252 12.8 254 35.1 442

distribution instead of common Dirac delta distribution to
dispose the detection under complex scenes. From Tab. B3,
GFL surpasses ATSS by a substantial margin at all metrics,
this can be largely attributed to the remarkable capability
about capturing the uncertain boundaries of small instances,
the remarkable APr5 offers further grounds.

APPENDIX C
BENCHMARKING OF SODA-A

In this section, we elucidate the training details about
SODA-A, and the settings about the proposal parameters
were also discussed.

C.1 Training Details

Training hyperparameters. The commonly used hyper-
paramteters when training the baseline approaches of
SODA-A are similar to that of SODA-D, the only difference
lies in that the IoU threshold of patch-wise NMS operation
is set to 0.1 which is in accordance with the default setting
of mmrotate [166].

Model-wise settings. To illustrate the detailed settings of
these baseline detectors of SODA-A, we exhibit the learning
rate as well as the pyramidal features of training each model
in Tab. C1. Specific architecture designs of each model please
refer to the corresponding configurations in our codes which
are available at https://shaunyuan22.github.io/SODA.

TABLE C1
Detailed settings of each baseline detector for SODA-A. Note that the

learning rate is set when the batch size is 4, and Ps, Ps, P4, P5, Ps in
pyramidal levels correspond to the feature strides of 4, 8, 16, 32, 64.

[ Method | Learning Rate | Pyramidal Features |

Rotated Faster RCNN [1] 0.01
Rotated RetinaNet [3] 0.005
Rol Transformer [169] 0.01
Gliding Vertex [170] 0.01

Oriented RCNN [171] 0.01 Py, P3, Py, Ps, Pg
S2A-Net [172] 0.005
DODet [173] 0.01
Oriented RepPoints [174] 0.016
DHRec [175] 0.005

C.2 Number of Proposals

As we alluded to before, the objects in our SODA-A may
distribute in a very dense fashion, which actually requires
deliberate settings about proposal parameters. Intuitively,
we have to strike a balance between proposal numbers
and detection accuracy, in other words, computational con-
sumption and accuracy. Excessive proposals could ensure
the recall rate, though, it involves massive computation
concurrently. While inadequate proposals hinder the overall
performance. To determine the optimal choice about patch-
level proposal numbers for best performance on SODA-
A, we train Oriented RCNN (with a ResNet-50 [10] as
backbone network) with train-set and test on the test-set.
Tab. C2 reports the results with different proposal number
settings. We can see that the AP and A Pr performance vary
slightly when the proposal numbers change from 2000 to
8000, whereas the detection speed decreases dramatically.
Hence we set the proposal number to 2000 for optimal
performance, both accuracy and speed, in our experiments.
TABLE C2
AP vs. Speed of Oriented RCNN [171] with different number of

proposals per patch on SODA-A test-set. FPS is tested on a single
RTX 2080Ti GPU.

[ Proposal Num. [ 1000 2000 3000 4000 5000 6000 7000 8000 ]
AP 339 344 345 344 344 346 342 341
Speed (FPS) 133 123 110 105 99 9.4 9.1 8.7
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