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ABSTRACT

Learning predictive models for unlabeled spatiotemporal data is challenging in part
because visual dynamics can be highly entangled in real scenes, making existing
approaches prone to overfit partial modes of physical processes while neglecting to
reason about others. We name this phenomenon spatiotemporal mode collapse and
explore it for the first time in predictive learning. The key is to provide the model
with a strong inductive bias to discover the compositional structures of latent modes.
To this end, we propose ModeRNN, which introduces a novel method to learn
structured hidden representations between recurrent states. The core idea of this
framework is to first extract various components of visual dynamics using a set of
spatiotemporal slots with independent parameters. Considering that multiple space-
time patterns may co-exist in a sequence, we leverage learnable importance weights
to adaptively aggregate slot features into a unified hidden representation, which is
then used to update the recurrent states. Across the entire dataset, different modes
result in different responses on the mixtures of slots, which enhances the ability of
ModeRNN to build structured representations and thus prevents the so-called mode
collapse. Unlike existing models, ModeRNN is shown to prevent spatiotemporal
mode collapse and further benefit from learning mixed visual dynamics.

1 INTRODUCTION

Predictive learning is an unsupervised learning method that has shown the ability to discover latent
structures of unlabeled spatiotemporal data. However, in practice, the spatiotemporal data often
contains a variety of visual dynamics, which are mainly reflected in the richness of spatial correlations
and movement trends, as well as the diversity of interactions between multiple objects (see Figure 1).
It remains a challenge for existing predictive models to fully capture these spatiotemporal modes in
a completely unsupervised manner using regular forward modeling mechanisms, such as recurrent
update (Shi et al., 2015), autoregression (Kalchbrenner et al., 2017), and 3D convolutions (Wang
et al., 2019a), while ignoring the inherent differences in dynamics among data samples. For clarity,
in the following discussion, spatiotemporal modes are considered to have the following properties:

1. Multiple spatiotemporal modes naturally exist in the dataset and are unknown before model
training. They can be viewed as prototypes of space-time representations. For simplicity,
each sequence corresponds to a single spatiotemporal mode.

2. Multiple modes share a set of hidden representation subspaces (referred to as “spatiotemporal
slots”) and have different compositional structures over the spatiotemporal slots.

We observe that if the predictive model experiences multiple complex modes in spacetime during
training, the learning processes of different modes may affect each other, resulting in ambiguous
prediction results. Figure 1(a) provides an example that the predictive model responds effectively
only to certain visual dynamics, from which it learns biased prior knowledge (e.g., collision-free),
and generates future frames arbitrarily based on these priors while neglecting to reason about other
possibilities of latent modes. We name this phenomenon spatiotemporal mode collapse.
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(a) Learning RNNs under highly mixed modes of visual dynamics (e.g., collision-free vs. collision) may lead to
spatiotemporal mode collapse, i.e., the predictions of some modes are severely affected by the presence of others.
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(b) ModeRNN tackles mode collapse by learning the compositional structures of visual dynamics through a set of
spatiotemporal slots. The three modules in each recurrent unit of ModeRNN will be discussed later.

Figure 1: Illustration of spatiotemporal mode collapse and our approach.

Unlike the widely concerned mode collapse problem in generative adversarial networks, the above
issue is previously considered to be less likely to occur in the generation of future frames conditioned
on sequential observations, because the training process is often constrained by the image recon-
struction loss. If, for some reason, the predictive model decided to concentrate on a single mode,
fitting this mode with a large number of model parameters, then the training examples of other modes
would have poor recovery. However, due to the limited number of parameters, it is possible when the
model cannot effectively infer the latent structures of various spatiotemporal modes that are highly
mixed across the dataset; As a result, its responses to different modes in the feature space tend to lose
diversity and collapse to certain neighborhoods that may be close to the features of some modes (as
shown in Figure 1(a)) or may be the average of feature ranges of multiple modes.

We explore this issue for the first time in predictive learning. The core idea is to provide a strong
inductive bias for the predictive model to discover the compositional structures of latent modes. To
this end, we propose ModeRNN, a new modular RNN architecture that learns structured hidden
representations simply from unlabeled spatiotemporal data. Specifically, ModeRNN is built upon
a set of spatiotemporal slots1 that respond to different components of mixed visual dynamics. As
shown in Figure 1(b), they are processed in three stages in each ModeRNN unit, following a
decoupling-aggregation framework based on slot features, which is completely different from the
existing predictive networks with modular architectures (Goyal et al., 2021; Xu et al., 2019). The
first stage is recurrent state interaction and slot binding. We use the multi-head attention mechanism
to enable the memory state to interact with the input state and previous hidden state of RNNs. We
name the memory state “slot bus”, because for each sequence, it is initialized from a multi-variate
Gaussian distribution with learnable parameters, and thereafter refined using the slot features at each
time step. By using the slot bus as the queries, multi-head attention can naturally decouple modular
components from hidden representations and bind them to particular spatiotemporal slots. Features in
each slot are then independently modeled using per-slot convolutional parameters. The second stage
in each ModeRNN unit is slot fusion, motivated by the assumptions that, first, there can be multiple
patterns of visual dynamics in a single sequence; Second, different spatiotemporal modes have
different compositional structures over the spatiotemporal slots. Therefore, we assign slot features
with learnable importance weights and aggregate them into a unified hidden representation, which is
then used in the third stage to update the slot bus and generate the output state of the ModeRNN unit.

We show the existence of spatiotemporal mode collapse on three datasets that are commonly used
by previous literature. The mixed Moving MNIST dataset contains diverse space-time deformations

1The concept of “slot” was initially introduced by Locatello et al. (2020) to denote the object-centric
representation in static scene understanding. We borrow this term here to refer to the subspaces of spatiotemporal
features in dynamic visual scenes.
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due to different numbers of flying digits. The KTH dataset naturally contains multiple modes
of visual structures in six action categories. The radar echo dataset for precipitation forecasting
contains various modes that are reflected in a seasonal climate. Through a series of quantitative and
visualization results, we demonstrate the effectiveness of ModeRNN in learning from highly mixed
visual dynamics.

2 RELATED WORK

RNN-based predictive models. Many deep learning models based on RNNs have been proposed
for spatiotemporal prediction (Ranzato et al., 2014; Srivastava et al., 2015; Shi et al., 2015; Oh
et al., 2015; De Brabandere et al., 2016; Villegas et al., 2018; Oliu et al., 2018; Wang et al., 2019b;a;
Castrejon et al., 2019; Yao et al., 2020; Guen & Thome, 2020; Yu et al., 2019). Shi et al. (2015)
integrated 2D convolutions into the recurrent state transitions of standard LSTM and proposed the
convolutional LSTM network, which can model the spatial correlations and temporal dynamics in
a unified recurrent unit. Wang et al. (2017) extended convolutional LSTMs with pairwise memory
cells to capture both long-term dependencies and short-term variations to improve the prediction
quality. Su et al. (2020) introduced a high-order convolutional tensor-train decomposition model
named Conv-TT-LSTM to combine convolutional features across time for long-term prediction. In
addition to the deterministic models, recent literature (Mathieu et al., 2016; Vondrick et al., 2016;
Tulyakov et al., 2018; Xu et al., 2018; Wang et al., 2018; Denton & Fergus, 2018; Kwon & Park,
2019; Bhagat et al., 2020) also proposed probabilistic models that explicitly consider the uncertainty
in predicting future sequences. For example, Denton & Fergus (2018) introduced a stochastic video
generation framework based on the conditional VAE architecture. Different from above models, our
approach is more focused on finding solutions to spatiotemporal mode collapse.

Unsupervised predictive learning for spatiotemporal disentanglement. Previous work has fo-
cused on learning to disentangle the spatial and temporal features from visual dynamics (Denton et al.,
2017; Guen & Thome, 2020; Hsieh et al., 2018). These methods assume that the spatial information
is temporally invariant, and factorize spatiotemporal data into two feature subspaces with strong
semantic priors. Another line of work is to learn predictive models for unsupervised scene decomposi-
tion such as (Xu et al., 2019; Hsieh et al., 2018). Unlike the above models, our approach uses a set of
modular architectures in the recurrent unit to represent the mixed spatiotemporal dynamics. The most
relevant work to our method is the Recurrent Independent Mechanism (RIM) (Goyal et al., 2021),
which consists of largely independent recurrent modules that are sparsely activated and interact via
soft attention. ModeRNN is different from RIM in three aspects. First, it mainly tackles the problem
of spatiotemporal mode collapse in a real-world environment. Second, ModeRNN learns modular
features by incorporating multi-head attention in the recurrent unit, and performs state transitions on
compositional features with learnable importance weights. Third, the modular structures (i.e., slots)
in ModeRNN are frequently activated responding to the mixed visual dynamics.

3 MODERNN

We propose ModeRNN to reduce spatiotemporal mode collapse in unsupervised predictive learning.
The key idea is that different latent modes in the same data domain should share a set of hidden
representation subspaces which we call spatiotemporal slots, and can be represented by different
compositional structures based on the slot features. In this section, we first discuss the basic network
components in ModeRNN and then describe the detailed architectures in each recurrent unit.

3.1 SPATIOTEMPORAL SLOTS & SLOT BUS

As described earlier, the term spatiotemporal slot is in part borrowed from previous work for
unsupervised scene decomposition (Locatello et al., 2020), and we use it here to denote hidden
representation subspaces of spatiotemporal data. We aim to bind each slot to a particular component
in mixed visual dynamics. Note that each slot does not directly correspond to a spatiotemporal
mode one-to-one. Instead, slot features can be viewed as latent factors that can explicitly improve
the unsupervised decoupling of mixed dynamics across the dataset. When adapted to a specific
sequence, all slots dynamically respond with different importance weights to form compositional
representations, which are then used to update the long-term memory state in ModeRNN, termed the
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Figure 2: The internal architecture of ModeCell, which is the basic unit in the proposed ModeRNN.

slot bus. Specifically, the slot bus is initialized from a learnable, multi-variate Gaussian distribution,
whose mean and variance encode the global priors for the entire dataset.

The spatiotemporal slots and the corresponding slot bus are organized in a hierarchical structure,
which leads to a better understanding of the complex and highly mixed dynamic patterns without
mode annotations, thus providing a way to prevent spatiotemporal mode collapse. In other words,
based on the slot features, the model is allowed to learn similar representation structures from similar
data samples. In contrast, it shows significant differences in the learned importance weights as well
as the states of slot bus in response to distinct visual dynamics. The next question is how to extract
and separate the slot features from rather chaotic visual sequences. Furthermore, another question is
how to build compositional representations based on the slots that can largely differentiate a variety
of spatiotemporal modes in a fully unsupervised way.

3.2 MODECELL

To answer the above questions, we introduce a novel recurrent unit named ModeCell. It follows a
decoupling-aggregation framework (see Figure 2) to learn structured hidden representations based on
the spatiotemporal slots. Notably, such a framework in the spatiotemporal slot space is completely
different from the existing predictive networks with modular architectures (Goyal et al., 2021; Xu
et al., 2019). In ModeCell, the spatiotemporal slots are processed in three stages:

• State interaction and slot binding: We first enable the slot bus to interact with the input
state and the previous hidden state of ModeRNN through multi-head attention, which
naturally improves the decoupling of mixed visual dynamics by dividing output subspaces.
To further improves the feature diversity over slots, we then use a feed-forward network
(FFN) for each slot to bind the features to independent parameters per slot.

• Adaptive slot fusion: We learn to generate importance weights for the decoupled features in
each slot, and obtain compositional representations that explicitly consider the co-existence
of multiple patterns in a single sequence. The design of this module meets our key argument:
on one hand, different modes from the same data domain should share the same set of key
factors of spatiotemporal variations; On the other hand, they are encouraged to differ greatly
in the combination of these key factors (corresponding to the slots/patterns above).

• Slot bus transition: We finally update the slot bus using the compositional representations
based on spatiotemporal slots, and then generate the output state of ModeCell. Specifically,
we use the LSTM-style gated architectures for the slot bus transitions.

Next, we give formalized descriptions of each processing stage in ModeCell.

State interaction and slot binding. Multi-head attention (Vaswani et al., 2017) is widely used in
neural language and image processing, and in this work, it is incorporated in the state transitions of
ModeRNN. This mechanism allows interactions between the previous slot bus Bt−1, the current input
state Xt, and the previous hidden stateHt−1 (see Figure 2). Formally, at each time step, we first apply

4



2D convolution projections to Bt−1. We then flatten the result to 1D and split it intoN spatiotemporal
slots along the channel dimension, such that {slot1t−1, · · · , slotNt−1} = Split (Reshape (Wq ∗ Bt−1)).
Note that Bt−1 ∈ RH×W×(dx+dh) and slotnt−1 ∈ RHW (dx+dh)/N , where dx is the channel number
of input state, dh is that of hidden state, and H ×W indicates the spatial resolution of the slot bus
tensor. To improve efficiency, we use two 3× 3 depth-wise separable convolutions (Chollet, 2017)
for Wq. We use {slot1t−1, · · · , slotNt−1} as the queries of multi-head attention, and apply similar
operations to obtain keys {K1

t , · · · ,KN
t } and values {V1

t , · · · ,VN
t } based on the concatenation of

input state and hidden state, It = [Xt,Ht−1]. We then perform multi-head attention and reshape the
N output slot features back to 3D tensors:

slotnt = Reshape

(
softmax

(
slotnt−1 · Kn

t
T

√
dk

)
Vn
t

)
, n ∈ {1, · · · , N}, (1)

where dk is the dimensionality of the key vectors used as a scaling factor.

Multi-head attention brings two benefits to the forward modeling of spatiotemporal data. First, since
Bt−1 can be unrolled along the recurrent state transition path to be represented as the transformation
of slot features at the previous time step, using Bt−1 as attention queries allows the model to extract
features from Xt andHt−1 by jointly attending to prior information at different slots. Second, the
architecture with N attention heads can naturally help factorize the hidden representation into N
subspaces, corresponding to N slots.

After the attention module, each slot representation is then independently modeled using per-slot
convolutional layers. We update the slot features by

slotnt = FFNn
bind (slotnt ) , n ∈ {1, · · · , N}. (2)

Through random parameter initialization and stochastic gradient descent, the independent networks
{FFN1

bind, · · · ,FFNN
bind} would most likely be optimized into parameter subspaces far from each

other, thus forcing the slots to bind to various components of mixed visual dynamics.

Adaptive slot fusion. We are motivated by the assumption that different spatiotemporal modes
from the same data domain share the same set of slots, and their differences are mainly reflected in the
compositional representation based on slot features. Therefore, we propose to dynamically aggregate
{slot1t , · · · , slotNt } with learnable importance weights assigned to each slot. As shown in Figure 2,
we first use the global average pooling (GAP) to compress the contextual information in spacetime
from It to 1D, such that GAP (It) =

1
H×W

∑H
i=1

∑W
j=1 It(i, j). We then use a feed-forward network

with a simple fully-connected layer to reduce the dimensionality and get compact representations.
Next, we use another group of one-layer fully-connected networks {FFN1

fuse, · · · ,FFNN
fuse} with

independent parameters to generate N sets of importance weights, such that

ωn
t = FFNn

fuse (GAP (It)) , n ∈ {1, · · · , N}. (3)

We further use a residual connection from It to reduce gradient vanishing, and generate compositional
representations Ft based on the learned importance weights and corresponding slot features:

Ft = AdaFuse
(
It, slot1t , · · · , slotNt

)
= σ (It) ·

(
W 0

fuse ∗ It
)
+

N∑
n=1

σ(ωn
t · It) · (Wn

fuse ∗ slotnt ) ,
(4)

where σ denotes the Sigmoid activation function. W ∗fuse is a group of 3× 3 convolutional filters.

Slot bus transition. The compositional representation Ft controls the significance of each slot
subspace for a certain sequence at a certain time step. We use four sets of Ft to form the input gate it,
forget gate ft, output gate ot, and input modulation gate gt,2 following the gated recurrent transition
mechanism from the standard LSTM. For example, we have ft = σ (Wff ∗ Ft +Wfi ∗ It) . Finally,
we update the state of slot bus and the output state of ModeCell:

Bt = ft � Bt−1 + it � gt
Ht = ot � tanh(Bt).

(5)

2For simplicity, we leave out the gate index in the above discussion. Like standard LSTM, different gates
have independent parameters, which applies to all operations before gate generation.
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In terms of network architecture, there are multiple ModeCells stacking in ModeRNN. By analogy,
the proposed ModeCell is to ModeRNN what LSTM is to the stacked LSTM network.

4 EXPERIMENT

We use three datasets that are commonly used by previous literature to evaluate ModeRNN.

• Mixed Moving MNIST: It consists of three subsets with 1–3 flying digits, corresponding
to three spatiotemporal modes obviously reflected in different frequencies of occlusions.
Each subset contains 10,000 training sequences and 3,000 testing sequences. We randomly
mix each mode’s training sequences, validation sequences, and test sequences to form the
overall training, validation, and test sets. Each sequence consists of 20 consecutive frames,
10 for input, and 10 for prediction, in the resolution of 64× 64.

• KTH action: The KTH (Schuldt et al., 2004) contains 6 action categories and involves 25
subjects in 4 different scenarios. It thus naturally contains various modes responding to
similar action dynamics. We use person 1-16 for training and 17-25 for testing, resize each
frame to the resolution of 128× 128, and predict 20 frames from 10 observations.

• Radar echo: This dataset contains 30,000 sequences of radar echo maps for training, and
3,769 for testing. It naturally contains multiple spatiotemporal modes due to seasonal
climate (see Appendix A). Models are trained to predict the next 10 radar echoes based on
the previous 10 observations. All frames are resized to the resolution of 384× 384.

Notably, we do not use any labels in all experiments, because in real-world scenarios, the modes are
learned and cannot be pre-defined. In other words, the models are trained in a fully unsupervised way.
We train the models with the L2 loss, and use the ADAM optimizer (Kingma & Ba, 2015) with a
starting learning rate of 0.0003. The batch size is set to 8, and the training process is stopped after
80,000 iterations. All experiments are implemented in PyTorch (Paszke et al., 2019) and conducted
on NVIDIA TITAN-RTX GPUs. We run all experiments three times and use the average results for
quantitative evaluation. Typically, we use 4× 64-channel stacked recurrent units in most RNN-based
compared models, including ConvLSTM, PredRNN, Conv-TT-LSTM, and ModeRNN

4.1 DEMONSTRATION OF SPATIOTEMPORAL MODE COLLAPSE

We conduct four experiments to explain spatiotemporal mode collapse: (1) t-SNE visualization of
learned features, (2) A-distances of learned features corresponding to different modes, (3) quantitative
results of models trained on subsets of pre-defined modes, and (4) showcases of prediction results.

t-SNE In Figure 3(a), we visualize the memory state Ct of ConvLSTM using t-SNE (Van der
Maaten & Hinton, 2008)., and find that they are entangled under different digit modes in the Mixed
Moving MNIST dataset. It provides evidence that this widely used predictive model cannot learn
mode structures effectively. Training the model on a dataset with mixed dynamics leads to severe
mode collapse in feature learning, resulting in the entanglement of hidden representations.

A-distance. A-distance (Ben-David et al., 2010) is defined as dA = 2(1− 2ε) where ε is the error
rate of a domain classifier trained to discriminate two visual domains. In Figure 3(b), we use the
A-distance to quantify the spatiotemporal mode collapse in the real-world KTH action dataset. Note
that, in this experiment, we divide the KTH dataset into two modes according to the visual similarities
of human actions (see details in Appendix B.1). As shown by the blue bars (higher is better), the
lower A-distance between the two modes indicates that the learned representations from the two
modes are highly entangled. The red bars (lower is better) show the domain distance between features
taking as inputs the ground truth frames Xt and those taking the predictions X̂t. Spatiotemporal mode
collapse happens when the A-distance between predictions of different modes (in blue) becomes
much smaller than that between predictions and ground truth (in red). We here use the memory state
Ct in ConvLSTM and PredRNN, and the slot bus Bt in ModeRNN to calculate A-distance.

Quantitative comparisons of models trained on subset/entire dataset. To assess spatiotemporal
mode collapse, we separately train predictive models on the subsets of Mixed Moving MNIST (with
1, 2, and 3 digits respectively), and then compare the results with that of the model trained on the
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Figure 3: Demonstration of spatiotemporal mode collapse.

Table 1: Quantitative results of models for each pre-defined mode. We report results by models
learned on sub/entire dataset. Red text indicates improvement by training with entire modes. Green
text indicates performance degradation caused by mode collapse.

MODEL
MODE-1 (1 DIGIT) MODE-2 (2 DIGITS) MODE-3 (3 DIGITS)

SSIM (↑) MSE (↓) SSIM (↑) MSE (↓) SSIM (↑) MSE (↓)

CONVLSTM 0.937 / 0.922 26.6 / 33.4 0.848 / 0.839 63.2 / 65.6 0.764 / 0.748 120.5 / 137.1
RIM 0.943 / 0.939 23.4 / 25.3 0.871 / 0.880 53.3 / 52.1 0.814 / 0.803 88.6 / 95.1
MODERNN 0.946 / 0.951 21.9 / 17.1 0.880 / 0.902 51.0 / 42.1 0.821 / 0.842 83.1 / 74.8

mixed dataset. As shown in Table 1, previous methods degenerate drastically when using all training
samples with mixed visual dynamics. The quantitative results perfectly match the visualization in
Figure 3(a), where the features of Mode-2 and Mode-3 are especially entangled and may influence
the learning process of each other.

Showcases of prediction results. As shown in Figure 4, we can see that even for the simple case
with only 1 digit, the predicted digit “5” from ConvLSTM is gradually twisted across time and
even turns into digit “6” at last. Note that the model is trained on the entire dataset with a variable
number of flying digits. The twisted prediction results are caused by the co-existence of the multiple
spatiotemporal modes and mode collapse. In the second showcase in Figure 4, the digit “5” is
even vanished in the predictions of ConvLSTM (indicated by the red box), showing that the 3-digit
prediction is collapse to the 2-digit mode.

Input
Frames

Inputs Ture future & Predicitions  

…

ConvLSTM

ModeRNN

RIM

(a) 1 digit.

…

Inputs Ture future & Predicitions  

ConvLSTM

ModeRNN

RIM

(b) 3 digits.

Figure 4: Prediction results on the Mixed Moving MNIST dataset.

4.2 VISUALIZATION OF REPRESENTATIONS LEARNED BY MODERNN

To testify the mode decoupling ability of our ModeRNN, we visualize the slot features in Figure 5(a).
Here, we use 4 spatiotemporal slots. We can see that these slot features are obviously clustered into
exact 4 groups, indicating that different slots of ModeRNN learn diverse dynamic patterns from highly
mixed spatiotemporal modes. In Figure 5(b), we further visualize the features in the slot bus, which
show 3 clusters with clear boundaries, corresponding to the three modes with different numbers of
digits. In Figure 5(c), we visualize the importance weights of samples in different modes. The above
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(b) Slot bus
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2 Digits
3 Digits
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(c) Importance weights

Figure 5: Visualization of representations learned by ModeRNN on the Mixed Moving MNIST.

Table 2: Quantitative results and parameter analysis on the Mixed Moving MNIST dataset. Here, we
report the training time for 1,000 sequences.

MODEL SSIM (↑) MSE (↓) PARAM (MB) TIME (S) MEM (GB)

CONVLSTM (SHI ET AL., 2015) 0.836 78.7 8.15 29 2.58
PREDRNN (WANG ET AL., 2017) 0.851 67.3 11.83 68 3.52
MIM (WANG ET AL., 2019B) 0.851 64.4 18.45 73 4.22
CONV-TT-LSTM (SU ET AL., 2020) 0.866 61.2 7.58 77 6.17
RIM (GOYAL ET AL., 2021) 0.874 57.5 7.91 71 5.88
MODERNN 0.898 44.7 6.35 59 3.15

results indicate that, first, the spatiotemporal slots are successfully bound to different components of
visual dynamics; Second, the compositional representations based on the slots, including the slot but,
successfully learn discriminative knowledge from different dynamic modes.

4.3 RESULS OF MODERNN ON MIXED MOVING MNIST

Main results. Table 1 gives the results on each subset of flying digit mode. We can see that only
ModeRNN achieves consistently better performance on each mode. It is also the only one that can
consistently benefit from training with mixed dynamics from the entire dataset. Besides, in Table 2,
we show the overall quantitative results as well as computational efficiency of the compared models
on the Mixed Moving MNIST dataset. As we can see, ModeRNN achieves state-of-the-art overall
performance (SSIM: 0.897, MSE: 44.7) with fewer parameters compared with existing approaches,
including the more recent work (Goyal et al., 2021) also with modular architectures. Furthermore,
as shown in Figure 4, ModeRNN is the only method that can capture the exact movement of each
digit, while other models predict the blurry results and the digit “5” is even vanished. All in all,
our ModeRNN could effectively overcome the spatiotemporal mode collapse to achieve competitive
performance on complex datasets.

Hyperparameters analysis on the number of slots. In Table 3, we gradually increase the number
of spatiotemporal slots from 1, finding that the performance of ModeRNN increases rapidly at the
early stage and achieves the best performance on N = 4. We have similar results on all benchmarks
and set N = 4 throughout this paper.

Ablation study on model components. We analyze the efficacy of each network component in
ModeRNN on the Mixed Moving MNIST dataset, as shown in Table 4. Without the adaptive slot
fusion module, the model can not work well by simply adding different slot features with equal
weights (MSE: 44.7 → 60.5), which strongly demonstrates that learning adaptive, compositional
representations over the slot features is crucial to modeling the underlying structure of visual dynamics
and can therefore better decouple the learned spatiotemporal modes.

4.4 RESULS OF MODERNN ON THE KTH ACTION DATASET

On this dataset, we use the frame-wise peak signal-to-noise ratio (PSNR) and learned perceptual
image patch similarity (LPIPS) (Zhang et al., 2018) as evaluation metrics. In the left column of
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Table 3: The ablation study of ModeRNN with respect to the number of spatiotemporal slots.

MODEL PER-FRAME MSE

MODERNN (N = 1) 69.3
MODERNN (N = 2) 59.4
MODERNN (N = 3) 48.2
MODERNN (N = 4, FINAL PROPOSED) 44.7
MODERNN (N = 5) 45.9

Table 4: The ablation study on the adaptive slot fusion module and the slot binding module on the
mixed Moving MNIST dataset.

MODEL PER-FRAME MSE

MODERNN 44.7
MODERNN W/O SLOT BINDING (N = 1) 69.3
MODERNN W/O ADAPTIVE SLOT FUSION 60.5

Table 5, we show the quantitative results of the KTH dataset and find that ModeRNN achieves better
overall performance among all compared methods. Impressively, ModeRNN overcomes the mode
collapse effectively and achieves better performance compared with the powerful probabilistic model
SVG (Denton & Fergus, 2018) (PSNR : 27.73 vs 28.22, LPIPS : 0.196 vs 0.183). We provide the
qualitative showcases in Figure 6 where we can see that ModeRNN can predict the precise position
of the moving person.

6 9 12 15 18 21 24 27 30
Input frames Ground truth & predicted future frames  

PredRNN

Conv-TT-LSTM

ModeRNN

t = 1 3

SVG

Figure 6: Prediction frames on the KTH action dataset.

4.5 RESULS OF MODERNN ON THE RADAR ECHO DATASET

Besides the frame-wise MSE, we use the Critical Success Index (CSI) metric, which is defined as
CSI = Hits

Hits+Misses+FalseAlarms , where hits correspond to the true positive, misses correspond to the false
positive, and false alarms correspond to the false negative. A higher CSI indicates better forecasting
performance, and it is particularly sensitive to high-intensity echoes. We set the alarm threshold to
30 dBZ for this radar benchmark. As shown in the right column of Table 5, ModeRNN achieves
the state-of-the-art overall performance and significantly outperforms the competitive precipitation
method, TrajGRU (Shi et al., 2017) (CSI: 0.428 vs 0.357, MSE: 65.1 vs 89.2).

As shown in Figure 7, we find that the compared models fail in predicting the edges of the cyclone,
and the predicted movement of the cloud even vanishes. On the contrary, ModeRNN provides more
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Table 5: Quantitative results on the KTH action dataset and the radar echo dataset. For the probabilistic
SVG model, we report the best results from 100 output samples per input sequence.

MODEL
KTH RADAR

PSNR (↑) LPIPS (↓) CSI30 (↑) MSE (↓)

CONVLSTM (SHI ET AL., 2015) 24.12 0.231 0.354 97.6
TRAJGRU (SHI ET AL., 2017) 26.97 0.219 0.357 89.2
PREDRNN (WANG ET AL., 2017) 27.47 0.212 0.359 84.2
SVG (DENTON & FERGUS, 2018) 27.73 0.196 - -
CONV-TT-LSTM (SU ET AL., 2020) 27.59 0.198 0.363 87.6
MODERNN 28.22 0.183 0.428 65.1

details for the cyclone and accurately predicts its center position indicated by the red box. Both the
quantitative and qualitative results show that our ModeRNN can effectively capture the dynamic
information from complex meteorological dynamic modes.

…

t = 8 10 12 14 16 18 20

ModeRNN  

PredRNN

t = 8 10 12 14 16 18 20

ModeRNN  

PredRNN

…

Figure 7: Prediction results on the radar echo dataset.

5 CONCLUSION

In this paper, we demonstrated a new experimental phenomenon of spatiotemporal mode collapse
when training unsupervised predictive models on a dataset with highly mixed visual dynamics.
Accordingly, we proposed a novel predictive network named ModeRNN, which can effectively
learn modular features from the mixed dataset using a set of spatiotemporal slots. To discover the
compositional structures in spatiotemporal modes, ModeRNN adaptively aggregates the slot features
with learnable importance weight. Compared with existing models, ModeRNN was shown to prevent
the mode collapse of future predictions in spacetime, improving qualitative and quantitative results
on three widely used datasets.
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A ILLUSTRATION OF MIXED MODES FOR PRECIPITATION FORECASTING

Real-world spatiotemporal datasets usually contain a variety of latent modes of visual dynamics
without human annotations. As discussed in Section 4.5, we take precipitation forecasting based on
radar echo observations as a practical application scenario of spatiotemporal prediction. Figure 8
gives an example of the mixed dynamics for the typical climate in Guangzhou, China. Obviously,
since the climate changes smoothly between seasons with fuzzy boundaries, it is inappropriate to
pre-assign mode labels before forecast.

Cloud cover categories in Guangzhou
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Figure 8: Illustration of mixed spatiotemporal modes in the radar echo dataset. In practice, we cannot
pre-assign mode labels before forecast because of the fuzzy boundaries between seasonal climates.

B ADDITIONAL RESULTS AND DISCUSSION

B.1 TRAINING MODELS ON SUBSETS DIVIDED BY PRE-DEFINED MODE LABELS

Subsets in KTH based on pre-defined action categories. According to the scale of the actions,
we can simply group the existing six categories in the KTH dataset into two typical modes:

• The first mode corresponds to the global movement of the torso, including the categories of running,
walking, and jogging.

• The second mode corresponds to the local movement of hands, including the categories of hand
clapping, hand waving, and boxing.

Table 6: Quantitative results of models that are learned on the sub/entire KTH action dataset. For
the probabilistic SVG model (Denton & Fergus, 2018), we report the best results from 100 output
samples per input sequence.

MODEL
MODE-1 (TORSO MOVEMENT) MODE-2 (HAND MOVEMENT) OVERALL

PSNR (↑) LPIPS (↓) PSNR (↑) LPIPS (↓) PSNR (↑) LPIPS (↓)

SHI ET AL. (2015) 23.65 / 23.13 0.227 / 0.232 24.37 / 24.98 0.234 / 0.230 24.03 / 24.12 0.231 / 0.231
WANG ET AL. (2017) 27.45 / 26.92 0.218 / 0.226 27.52 / 27.94 0.203 / 0.199 27.49 / 27.47 0.210 / 0.212
DENTON & FERGUS (2018) 27.79 / 27.34 0.193 / 0.199 27.75 / 28.12 0.197 / 0.193 27.77 / 27.73 0.195 / 0.196
SU ET AL. (2020) 27.57 / 27.09 0.192 / 0.204 27.64 / 28.03 0.201 / 0.192 27.61 / 27.59 0.196 / 0.198
MODERNN 27.84 / 28.11 0.192 / 0.185 27.82 / 28.32 0.196 / 0.181 27.83 / 28.22 0.194 / 0.183

Subsets in the radar echo dataset based on pre-defined chronological climate modes. Consid-
ering the climate change between different seasons in Guangzhou, we can roughly divide the radar
echo dataset into two typical meteorology groups:

• The first mode: It corresponds to the windier part of the year, from March to May, with average
wind speeds of more than 7.5 miles per hour. There will be drizzles from time to time in these
months. We use the radar maps from 2016/3 to 2016/5 and from 2017/3 to 2017/4 for training,
and use those in 2017/5 for testing.
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• The second mode: It corresponds to the the summer in Guangzhou, which from Figure ??,
experiences heavier cloud cover, with the percentage of time that the sky is overcast or mostly
cloudy is around 80%. We use the radar maps from 2016/6 to 2016/8 and from 2017/6 to 2017/7
for training, and use those in 2017/8 for testing.

Table 7: Quantitative results of models that are learned on the sub/entire radar echo dataset. Red text
indicates improvement by joint training. Green text indicates performance degradation caused by
mode collapse.

MODEL
MODE-1 (MAR.–MAY) MODE-2 (JUN.–AUG.) OVERALL

CSI30 (↑) MSE (↓) CSI30 (↑) MSE (↓) CSI30 (↑) MSE (↓)

SHI ET AL. (2015) 0.341 / 0.337 63.5 / 71.3 0.372 / 0.366 102.4 / 116.7 0.359 / 0.354 86.0 / 97.6
SHI ET AL. (2017) 0.354 / 0.341 62.5 / 68.3 0.375 / 0.369 99.3 / 104.3 0.366 / 0.357 83.8 / 89.2
WANG ET AL. (2017) 0.357 / 0.342 57.1 / 60.8 0.384 / 0.371 97.5 / 101.2 0.373 / 0.359 80.5 / 84.2
SU ET AL. (2020) 0.359 / 0.347 61.5 / 65.8 0.381 / 0.374 99.1 / 103.5 0.372 / 0.363 83.3 / 87.6
MODERNN 0.373 / 0.408 54.3 / 46.2 0.392 / 0.442 92.0 / 78.8 0.384 / 0.428 76.1 / 65.1
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