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Abstract—In this paper, we develop upon the emerging topic of loss function learning, which aims to learn loss functions that
significantly improve the performance of the models trained under them. Specifically, we propose a new meta-learning framework for
learning model-agnostic loss functions via a hybrid neuro-symbolic search approach. The framework first uses evolution-based
methods to search the space of primitive mathematical operations to find a set of symbolic loss functions. Second, the set of learned
loss functions are subsequently parameterized and optimized via an end-to-end gradient-based training procedure. The versatility of
the proposed framework is empirically validated on a diverse set of supervised learning tasks. Results show that the meta-learned loss
functions discovered by the newly proposed method outperform both the cross-entropy loss and state-of-the-art loss function learning
methods on a diverse range of neural network architectures and datasets. We make our code available at *retracted*.

Index Terms—Loss Function Learning, Meta-Learning, Evolutionary Computation, Neuro-Symbolic
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1 INTRODUCTION

T HE field of learning-to-learn or meta-learning has been an
area of increasing interest to the machine learning community

in recent years [1], [2]. In contrast to conventional learning
approaches, which learn from scratch using a static learning
algorithm, meta-learning aims to provide an alternative paradigm
whereby intelligent systems leverage their past experiences on
related tasks to improve future learning performances [3]. This
paradigm has provided an opportunity to utilize the shared struc-
ture between problems to tackle several traditionally very chal-
lenging deep learning problems in domains where both data and
computational resources are limited [4], [5].

Many meta-learning approaches have been proposed for opti-
mizing various components of deep neural networks. For example,
early research on the topic explored using meta learning for
generating learning rules [6], [7], [8], [9]. More recent research
has extended itself to learning everything from activation functions
[10], shared parameter/weight initializations [11], [12], [13], [14],
and neural network architectures [15], [16], [17], [18] to whole
learning algorithms from scratch [19], [20] and many more.

However, one component that has been overlooked until very
recently is the loss function [21]. Typically in deep learning, neural
networks are trained through the backpropagation of gradients
originating from a handcrafted and manually selected loss function
[22]. One significant drawback of this approach is that traditionally
loss functions have been designed with task-generality in mind,
i.e. large classes of tasks in mind, but the system itself is only
concerned with a single instantiation or small subset of that class.
However, as shown by the No Free Lunch Theorems [23] no
algorithm is able to do better than a random strategy in expectation
— this suggests that specialization to a subclass of tasks is in fact
the only way that performance can be improved in general.

Given this importance, the prototypical approach of selecting
a loss function heuristically from a modest set of handcrafted loss
functions should be reconsidered in favor of a more principled
data-informed approach. The new and emerging subfield of loss
function learning offers an alternative to this, which instead aims
to leverage task-specific information and past experiences to infer

and discover highly performant loss functions directly from the
data. Initial approaches to loss function learning have shown
promise in improving various aspects of deep neural networks
training. However, they have several key issues and limitations
which must be addressed for meta-learned loss functions to be-
come a more desirable alternative than handcrafted loss functions.

In particular, many loss function learning approaches use a
parametric loss representation such as a neural network [24] or
Taylor polynomial [25], [26], [27], which is limited as it imposes
unnecessary assumptions and constraints on the structure of the
learned loss function. However, the current non-parametric alter-
native to this is to use a two-stage discovery and optimization pro-
cess, which infers both the loss function structure and parameters
simultaneously using genetic programming and covariance matrix
adaptation [28], and quickly become intractable for large-scale
optimization problems. Subsequent work [29], [30] has attempted
to address this issue; however, they crucially omit the optimization
stage, which is known to produce sub-optimal performance.

This paper aims to resolve these issues through a newly
proposed framework called Evolved Model-Agnostic Loss (Evo-
MAL), which meta-learns non-parametric symbolic loss functions
via a hybrid neuro-symbolic search approach. The newly proposed
framework aims to resolve the limitations of past approaches to
loss function learning by combining genetic programming [31]
with an efficient gradient-based local-search procedure [32], [33].
This unifies two previously divergent lines of research on loss
function learning, which prior to this method, exclusively used
either a gradient-based or an evolution-based approach.

This work innovates on the prior loss function learning ap-
proaches by introducing the first computationally tractable ap-
proach to optimizing symbolic loss functions. Consequently, im-
proving the scalability and performance of symbolic loss function
learning algorithm. Furthermore, unlike prior approaches, the
proposed framework is both task and model-agnostic, as it can be
applied to learning algorithm trained with a gradient descent style
procedure and is compatible with different model architectures.
This branch of general-purpose loss function learning algorithms
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provides a new powerful avenue for improving a neural network’s
performance, which has until recently not been explored.

The performance of EvoMAL is assessed on a diverse range
of datasets and neural network architectures in the direct learning
and transfer learning settings, where the empirical performance
is compared with the ubiquitous cross-entropy loss and other
state-of-the-art loss function learning methods. Finally, an anal-
ysis of the meta-learned loss functions produced by EvoMAL is
presented, where several reoccurring trends are identified in both
the shape and structure. Further analysis is also given to show
why meta-learned loss functions are so performant through 1)
examining the loss landscapes of the meta-learned loss functions
and 2) investigating the relationship between the base learning rate
and the meta-learned loss functions.

1.1 Contributions:
The key contributions of this work are as follows:
• We propose a new task and model-agnostic search space and a

corresponding search algorithm for meta-learning interpretable
symbolic loss functions.

• We demonstrate a simple transition procedure for converting
expression tree-based symbolic loss functions into gradient
trainable loss networks.

• We utilize the new loss function representation to integrate the
first computationally tractable approach to optimizing symbolic
loss functions into the framework.

• We evaluate the proposed framework by performing the first-
ever comparison of existing loss function learning techniques in
both direct learning and transfer learning settings.

• We analyze the meta-learned loss functions to highlight key
trends and explore why meta-learned loss functions are so
performant.

2 BACKGROUND AND RELATED WORK

The goal of loss function learning in the meta-learning context is
to learn a loss function Mφ with parameters φ, at meta-training
time over a distribution of tasks p(T ). A task is defined as a set of
input-output pairs T = {(x1, y1), . . . , (xN , yN )}, and multiple
tasks compose a meta-dataset D = {T1, . . . , TM}. Then, at meta-
testing time the learned loss function Mφ is used in place of a
traditional loss function to train a base learner, e.g. a classifier or
regressor, denoted by fθ(x) with parameters θ on a new unseen
task from p(T ). In this paper, we constrain the selection of base
learners to models trainable via a gradient descent style procedures
such that we can optimize weights θ as follows:

θnew = θ − α∇θMφ(y, fθ(x)) (1)

Several approaches have recently been proposed to accomplish
this task, and an observable trend is that most of these methods
fall into one of the following two key categories.

2.1 Gradient-Based Approaches
Gradient-based approaches predominantly aim to learn a loss
function M through the use of a meta-level neural network to
improve on various aspects of the training. For example, in [34],
[35], differentiable surrogates of non-differentiable performance
metrics are learned to reduce the misalignment problem between
the performance metric and the loss function. Alternatively, in
[24], [36], [37], [38], [39], [40], [41], [42], loss functions are

learned to improve sample efficiency and asymptotic performance
in supervised and reinforcement learning, while in [27], [43], [44],
[45], they improved on the robustness of a model.

While the aforementioned approaches have achieved some
success, they have notable limitations. The most salient limitation
is that they a priori assume a parametric form for the loss
functions. For example, in [24] and [46], it is assumed that the loss
functions take on the parametric form of a two hidden layer feed-
forward neural network with 50 nodes in each layer and ReLU
activations. However, such an assumption imposes a bias on the
search, often leading to an over parameterized and sub-optimal
loss function. Another limitation is that these approaches often
learn black-box (sub-symbolic) loss functions, which is not ideal,
especially in the meta-learning context where post hoc analysis of
the learned component is crucial, before transferring the learned
loss function to new unseen problems at meta-testing time.

2.2 Evolution-Based Approaches
A promising alternative paradigm is to use evolution-based meth-
ods to learn Mφ, favoring their inherent ability to avoid local
optima via maintaining a population of solutions, their ease of
parallelization of computation across multiple processors, and
their ability to optimize for non-differentiable functions directly.
Examples of such work include [25] and [26], which both rep-
resent Mφ as parameterized Taylor polynomials optimized with
covariance matrix adaptation evolutionary strategies (CMA-ES).
These approaches successfully derive interpretable loss functions,
but similar to previously, they also assume the parametric form via
the degree of the polynomial.

To resolve the issue of having to assume the parametric form of
Mφ, another avenue of research first presented in [28] investigated
the use of genetic programming (GP) to learn the structure of
Mφ in a symbolic form before applying CMA-ES to optimize
the parameterized loss. The proposed method was effective at
learning performant loss functions and clearly demonstrated the
importance of local-search. However, the method had intractable
computational costs as using a population-based method (GP)
with another population-based method (CMA-ES) resulted in a
significant expansion in the number of evaluations at meta-training
time, hence it needing to be run on a supercomputer in addition to
using a truncated number of training steps.

Subsequent work in [29] and [30] reduced the computa-
tional cost of GP-based loss function learning approaches by
proposing time saving mechanisms such as: rejection protocols,
gradient-equivalence-checking, convergence property verification
and model optimization simulation. These methods successfully
reduced the wall-time of GP-based approaches; however, both
papers omit the use of local-search strategies, which is known
to cause sub-optimal performance when using GP [47], [48], [49].
Furthermore, neither method is task and model-agnostic, limiting
their utility to a narrow set of domains and applications.

3 EVOLVED MODEL-AGNOSTIC LOSS

In this work, a novel hybrid neuro-symbolic search approach
named Evolved Model-Agnostic Loss (EvoMAL) is proposed,
which consolidates and extends past research on the topic of loss
function learning. The proposed method learns performant and in-
terpretable symbolic loss functions by inferring both the structure
and the weights/coefficients directly from the data. The evolution-
based technique GP [31] is used to solve the discrete problem
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of deriving the symbolic structure of the learned loss functions,
while unrolled differentiation [32], [50], [51], [52], a gradient-
based technique previously used in Meta-Learning via Learned
Loss (ML3) [24], and sometimes referred to as Generalized Inner
Loop Meta-Learning [33], is used to solve the continuous problem
of optimizing their weights/coefficients.

3.1 Offline Loss Function Learning Setup
EvoMAL is a new approach to offline loss function learning, a
meta-learning paradigm concerned with learning new and perfor-
mant loss functions that can be used as a drop-in replacement for
a prototypical handcrafted loss function such as the squared loss
for regression or cross-entropy loss for classification [53], [54].
Offline loss function learning follows a conventional offline meta-
learning setup, which partitions the learning into two sequential
phases: meta-training and meta-testing.

3.1.1 Meta-Training Phase
The meta-training phase in EvoMAL is formulated as a bilevel
optimization problem1, where the goal of the outer optimization
is to meta-learn a performant loss function Mφ minimizing
the average task loss LT (the meta-objective) across m related
tasks, where LT is selected based on the desired task. The inner
optimization uses Mφ as the base loss function to train the
base model parameters θ. Formally, the meta-training phase of
EvoMAL is defined as follows:

M∗φ = arg min
Mφ

1

m

m∑
i=1

LT (yi, fθ∗i (xi))

s.t. θ∗i (φ) = arg min
θi

[
Mφ(y, fθi(x))

] (2)

3.1.2 Meta-Testing Phase
In the meta-testing phase, the best-performing loss function
learned at meta-training time M∗φ is used directly to train and
optimize the base model parameters θ.

θ∗ = arg min
θ

[
M∗φ(y, fθ(x))

]
(3)

In contrast to online loss function learning [42], offline loss
function learning does not require any alterations to the existing
training pipelines to accommodate the meta-learned loss function,
this makes the loss functions easily transferable and straightfor-
ward to use in existing code bases.

3.2 Learning Symbolic Loss Functions
To learn the symbolic structure of the loss functions in EvoMAL,
we propose using GP, a powerful population-based technique
that employs an evolutionary search to directly search the set
of primitive mathematical operations [31]. In GP, solutions are
composed of terminal and function nodes in a variable-length hi-
erarchical expression tree-based structure. This symbolic structure
is a natural and convenient way to represent loss functions, due
to its high interpretability and trivial portability to new problems.
Transferring a learned loss function from one problem to another

1. For simplicity, EvoMAL is presented as a bilevel optimization problem;
however, since M and φ are learned using separate processes, EvoMAL
can be viewed as solving for a tri-level optimization problem with the outer
optimization from Equation (2) being split into two distinct phases, 1) learning
the symbolic loss functions structure, and 2) optimizing the loss functions
weights/coefficients.

TABLE 1: Set of searchable primitive mathematical operations.

Operator Expression Arity
Addition x1 + x2 2
Subtraction x1 − x2 2
Multiplication x1 ∗ x2 2
Division (AQ) x1/

√
1 + x22 2

Minimum min(x1, x2) 2
Maximum max(x1, x2) 2

Sign sign(x) 1
Square x2 1
Absolute |x| 1
Logarithm log(|x|+ ε) 1
Square Root

√
|x|+ ε 1

Hyperbolic Tangent tanh(x) 1

requires very little effort, typically only a line or two of additional
code. The task and model-agnostic loss functions produced by
EvoMAL can be used directly as a drop-in replacement for
handcrafted loss functions without requiring any new sophisticated
meta-learning pipelines to train the loss on a per-task basis.

3.2.1 Search Space Design
In order to utilize GP, a search space containing promising loss
functions must first be designed. When designing the desired
search space, four key considerations are made — first, the search
space should superset existing loss functions such as the squared
error in regression and the cross entropy loss in classification.
Second, the search space should be dense with promising new loss
functions while also containing sufficiently simple loss functions
such that cross task generalization can occur successfully at meta-
testing time. Third, ensuring that the search space satisfies the
key property of GP closure, i.e. loss functions will not cause
NaN, Inf, undefined, or complex output. Finally, ensuring that
the search space is both task and model-agnostic. With these
considerations in mind, we present the function set in Table 1.
Regarding the terminal set, the loss function arguments fθ(x)
and y are used, as well as (ephemeral random) constants +1 and
−1. Unlike previously proposed search spaces for loss function
learning, we have made several necessary amendments to ensure
proper GP closure, and sufficient task and model-generality. The
salient differences are as follows:
• Previous work in [28] uses unprotected operations: natural log

(log(x)), square root (
√
x), and division (x1/x2). Using these

unprotected operations can result in imaginary or undefined
output violating the GP closure property. To satisfy the closure
property, we replace both the natural log and square root with
protected alternatives, as well as replace the division operator
with the analytical quotient (AQ) operator, a smooth and
differentiable approximation to the division operator [55].

• The proposed search space for loss functions is both task and
model-agnostic in contrast to [29] and [30], which use multiple
aggregation-based and element-wise operations in the function
set. These operations are suitable for object detection (the
respective paper’s target domain) but are not compatible when
applied to other tasks such as tabulated and natural language
processing problems.
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Fig. 1: An overview of the EvoMAL framework, showing the
pipeline for learning loss functions at meta-training time.

3.2.2 Search Algorithm Design
The symbolic search algorithm used in EvoMAL follows a
prototypical implementation of GP; as shown in Fig. 1. First,
initialization is performed via randomly generating a population
of 25 expression trees, where the inner nodes are selected from the
function set and the leaf nodes from the terminal set. Subsequently,
the main loop begins by performing the loss function optimization
and evaluation stages to determine each loss function’s respective
fitness, discussed in Sections 3.3 and 3.4, respectively. Following
this, a new offspring population of equivalent size is constructed
via crossover, mutation, and elitism. For crossover, two loss func-
tions are selected via tournament selection and combined using a
one-point crossover with a crossover rate of 70%. For mutation,
a loss function is selected, and a uniform mutation is applied
with a mutation rate of 25%. Finally, to ensure performance
does not degrade, elitism is used to retain top-performing loss
functions with an elitism rate of 5%. The main loop is iteratively
repeated 50 times, and the loss function with the best fitness is
selected as the final learned loss function. Note, to reduce the
computational overhead of the meta-learning process, a number
of time-saving measures, which we further refer to as filters, have
been incorporated into the EvoMAL algorithm. This is discussed
in detail in Section 3.5.

3.2.3 Constraint Enforcement
When using GP, the evolved expressions often violate the con-
straint that a loss function must have as arguments fθ(x) and y.
Our preliminary investigation found that often over 50% of the
loss functions in the first few generations violated this constraint.
Thus far, existing methods for handling this issue have been inade-
quate; for example, in [28], violating loss functions were assigned
the worst-case fitness, such that selection pressure would phase
out those loss functions from the population. Unfortunately, this

(a) Example learned loss function M.

(b) Example meta-loss network MT
φ.

Fig. 2: Overview of the transitional procedure used to covert M
into a trainable meta-loss networkMT

φ .

approach degrades search efficiency, as a subset of the population
is persistently searching infeasible regions of the search space. To
resolve this, we propose a simple but effective corrections strategy
to violating loss functions, which randomly selects a terminal node
and replaces it with a random binary node, with arguments fθ(x)
and y in no predetermined order.

An additional optional constraint enforceable in the EvoMAL
algorithm is that the learned loss function can always return a
non-negative output M : R2 → R+

0 . This is achieved via the
loss function’s output being passed through an output activation
function ϕ, such as the smooth Softplus(x) = ln(1 + ex) acti-
vation. Note that this can be omitted by using an Identity(x) = x
activation if we choose not to enforce this constraint.

3.3 Loss Function Optimization
Numerous empirical results have shown that local-search is
imperative when using GP to get state-of-the-art results [28],
[56]. Therefore, unrolled differentiation [57], [58], [59], [60],
an efficient gradient-based local search approach is integrated
into the proposed method. To utilize unrolled differentiation in
the EvoMAL framework, we must first transform the expression
tree-based representation of M into a compatible representation.
In preparation for this, a transitional procedure takes each loss
function M, represented as a GP expression and converts it into
a trainable network, as shown in Fig. 2. First, a graph transpose
operationMT is applied to reverse the edges such that they now
go from the terminal (leaf) nodes to the root node. Following this,
the edges ofMT are parameterized by φ, givingMT

φ , which we
further refer to as a meta-loss network to delineate it clearly from
its prior state. Finally, to initialize MT

φ , the weights are sampled
from φ ∼ N (1, 1e−3), such thatMT

φ is initialized from its (near)
original unit form, where the small amount of variance is to break
any network symmetry.
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Algorithm 1: Loss Function Optimization

In: M← Loss function learned by GP
Smeta ← Number of meta gradient steps
Sbase ← Number of base gradient steps

MT
φ ← Transpose and parameterize edges ofM

φ0 ← Initialize meta-loss network weightsMT
φ

for i ∈ {0, ...,Smeta} do
for j ∈ {0, ..., |DTrain|} do

θ0 ← Initialize parameters of base learner
for k ∈ {0, ...,Sbase} do

X , y ← Sample task Tj ∼ p(T )
Mlearned ←MT

φ(y, fθ(X))
θk+1 ← θk − α∇θMlearned

Ltaskj ← LT (y, fθnew(X))
φi+1 ← φi − η∇φ

∑
j Ltaskj

3.3.1 Unrolled Differentiation
For simplicity, we constrain the description of loss function
optimization to the vanilla backpropagation case where the meta-
training setDTrain contains one task, i.e. |DTrain| = 1; however,
the full process where |DTrain| > 1 is given in Algorithm 1.

To learn the weights φ of the meta-loss networkMT
φ at meta-

training time with respect to base learner fθ(x), we first use the
initial values of φ to produce a base loss value Mlearned based
on the forward pass of fθ(x).

Mlearned =MT
φ(y, fθ(x)) (4)

Using Mlearned, the weights θ are optimized by taking a pre-
determined number of inner base gradient steps Sbase, where at
each step a new batch is sampled and a new base loss value is
computed. Similar to the findings in [24], we find Sbase = 1 is
usually sufficient to obtain good results. Each step is computed by
taking the gradient of the loss value with respect to θ, where α is
the base learning rate.

θnew = θ − α∇θMT
φ(y, fθ(x))

= θ − α∇θEX,y
[
MT

φ(y, fθ(x))
] (5)

where the gradient computation can be decomposed via the chain
rule into the gradient ofMT

φ with respect to the product of the base
learner predictions fθ(x) and the gradient of f with parameters θ.

θnew = θ − α∇fMT
φ(y, fθ(x))∇θfθ(x) (6)

Following this, θ has been updated to θnew based on the current
meta-loss network weights; φ now needs to be updated to φnew
based on how much learning progress has been made. Using the
new base learner weights θnew as a function of φ, we utilize the
concept of a task loss LT to produce a meta loss value Ltask to
optimize φ through θnew.

Ltask = LT (y, fθnew(x)) (7)

where LT is selected based on the respective application — for
example, the mean squared error loss for the task of regression
or the categorical cross-entropy loss for multi-class classification.
Optimization of the meta-loss network loss weights φ now occurs

Algorithm 2: Loss Function Evaluation

In: MT
φ ← Loss function learned by EvoMAL

Stesting ← Number of base testing gradient steps

for i ∈ {0, ..., |D|} do
θi ← Initialize parameters of base learner fθi
Xi, yi ← Sample task Ti ∼ p(T )
for j ∈ {0, ..., Stesting} do
Llearned ←MT

φ(yi, fθi(Xi))
θi ← θi − α∇θiLlearned

F ← 1
|D|
∑
i LP(yi, fθi(Xi))

by taking the gradient of LT with respect to φ, where η is the
meta learning rate.

φnew = φ− η∇φLT (y, fθnew(x))

= φ− η∇φEX,y
[
LT (y, fθnew(x))

] (8)

where the gradient computation can be decomposed by applying
the chain rule as shown in Equation (9) where the gradient with
respect to the meta-loss network weights φ requires the new model
parameters θnew.

φnew = φ− η∇fLT∇θnewfθnew∇φθnew (9)

This process is repeated for a predetermined number of meta
gradient steps Smeta = 250, which was selected via cross-
validation. Following each meta gradient step, the base learner
weights θ is reset. Note that Equations (5)–(6) and (8)–(9) can
alternatively be performed via automatic differentiation.

3.4 Loss Function Evaluation
To derive the fitness F ofMT

φ , a conventional training procedure
is used as summarized in Algorithm 2, whereMT

φ is used in place
of a traditional loss function to train fθ(x) over a predetermined
number of base gradient steps Stesting . This training process is
identical to training at meta-testing time as shown in Fig. 3. The
final inference performance of MT

φ is assigned to F , where any
differentiable or non-differentiable performance metric LP can be
used. For our experiments we use the error rate to compute F .

3.5 Time Saving Measures (Filters)
Optimizing and evaluating a large number of candidate loss
functions can become prohibitively expensive. Fortunately, in the
case of loss function learning, a number of techniques can be
employed to reduce significantly the computational overhead of
the otherwise very costly meta-learning process.

3.5.1 Symbolic Equivalence Filter
For the GP-based symbolic search, a loss archival strategy based
on a key-value pair structure with Θ(1) lookup is used to ensure
that symbolically equivalent loss functions are not reevaluated.
Two expression trees are said to be symbolically equivalent
when they contain identical operations (nodes) in an identical
configuration [61], [62], [63]. Loss functions that are identified
by the symbolic equivalence filter skip both the loss function
optimization and evaluation stage and are placed directly in the
offspring population with their fitness cached.
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Fig. 3: Overview of the EvoMAL algorithm at meta-testing time, where the base network fθ(x), shown (left) as the popular LeNet-5
architecture, is trained using the meta-loss networkMT

φ (right) found at meta-training time as the loss function.

3.5.2 Pre-Evaluation Filter - Poor Training Dynamics
Following loss function optimization, the candidate solution’s fit-
nesses are evaluated. This costly fitness evaluation can be obviated
in many cases since many of the loss functions found, especially
in the early generations, are non-convergent and produce poor
training dynamics. We use the loss rejection protocol employed in
[30] as a filter to identify candidate loss functions that should skip
evaluation and be assigned the worst-case fitness automatically.

The loss rejection protocol takes a batch of B randomly
sampled instances from DTrain and using an untrained network
fθ0(x) produces a set of predictions and their corresponding
true target values {(ŷb, yb)}Bb=1. As minimizing the proper loss
function MT

φ should correspond closely with optimizing the
performance metric LP , a correlation g between MT

φ and LP
can be calculated.

g(MT
φ) =

B∑
b=1

[
LP(ŷb, yb)− LP(ŷ∗b (MT

φ), yb)
]
, (10)

where ŷ∗b is the network predictions optimized with the candidate
loss functionMT

φ . Importantly, optimization is performed directly
to ŷ∗b , as opposed to the network parameters θ, thus omitting any
base network computation (i.e. no training of the base network).

ŷ∗b (MT
φ) = arg min

ŷ∗b

MT
φ(ŷ∗b , yb) (11)

A large positive correlation indicates that minimizingMT
φ corre-

sponds to minimizing the given performance metric LP (assuming
both MT

φ and LP are for minimization). In contrast to this, if
g ≤ 0, thenMT

φ is regarded as being unpromising and should be
assigned the worst-case fitness and not evaluated. The underlying
assumption here is that if a loss function cannot directly optimize
the labels, it is unlikely to be able to optimize the labels through
the model weights θ successfully.

3.5.3 Pre-Evaluation Filter - Gradient Equivalence
Many of the candidate loss functions found in the later gener-
ations, as convergence is approached, have near-identical gradi-
ent behavior (i.e. functionally equivalence). To address this, the
gradient equivalence checking strategy from [30] is employed as
another filter to identify loss functions that have near-identical
behavior to those seen previously. Using the prediction from
previously, the gradient norms are computed.

{‖ ∇ŷbMT
φ ‖2}Bb=1 (12)

If, for all of the B samples, two-loss functions have the same
gradient norms within two significant digits, they are considered
functionally equivalent, and their fitness is cached.

3.5.4 Partial Training Sessions
For the remaining loss functions whose fitness evaluation cannot
be fully obviated, we compute the fitness F using a truncated
number of gradient steps Stesting = 500. As noted in [64], [65],
performance at the beginning of training is correlated with the
performance at the end of training; consequently, we can obtain
an estimate of what F would be by performing a partial training
session of the base model. Preliminary experiments with EvoMAL
showed minimal short-horizon bias [66], and the ablation study
found in [25] indicated that 500 gradient steps during loss function
evaluation is a good trade-off between final base-inference perfor-
mance and meta-training time. In addition to significantly reducing
the run-time of EvoMAL, reducing the value of Stesting has the
effect of implicitly optimizing for the base-training convergence
and sample-efficiency, as mentioned in [3].

4 EXPERIMENTAL SETUP

In this section, the performance of EvoMAL is evaluated. A
wide range of experiments are conducted across four datasets and
numerous popular network architectures, with the performance
contrasted against a representative set of benchmark methods
implemented in DEAP [67], PyTorch [68] and Higher [33].

4.1 Benchmark Methods
The selection of benchmark methods is intended to showcase the
performance of the newly proposed algorithm against the current
state-of-the-art. Additionally, the selected methods enable direct
comparison between EvoMAL and its derivative methods, which
aids in validating the effectiveness of hybridizing the approaches
into one unified framework.
• Baseline – Directly using LT as the loss function, i.e. using the

squared error loss (regression) or cross-entropy loss (classifica-
tion) and a prototypical training loop (i.e. no meta-learning).

• ML3 Supervised – Gradient-based method proposed in [24],
which uses a parametric loss function defined by a two hidden
layer feed-forward network trained with generalized inner loop
meta-learning, i.e. the method shown in Section 3.3.

• TaylorGLO — Evolution-based method proposed by [25],
which uses a third-order Taylor-polynomial representation for
the meta-learned loss functions, optimized via covariance matrix
adaptation evolution strategy.

• GP-LFL – A proxy method used to aggregate previous GP-
based approaches for loss function learning without any local-
search mechanisms, using an identical setup to EvoMAL ex-
cluding Section 3.3.
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TABLE 2: Classification results reporting the mean ± standard deviation final inference error rate across 5 independent executions of
each algorithm on each task + model pair. Loss functions are directly meta-learned and applied to the same respective task.

Task and Model Baseline ML3 TaylorGLO GP-LFL EvoMAL (Ours)

MNIST
Logistic 1 0.0787±0.0009 0.0768±0.0061 0.0725±0.0013 0.0781±0.0052 0.0721±0.0017
MLP 2 0.0247±0.0005 0.0201±0.0081 0.0151±0.0013 0.0156±0.0012 0.0152±0.0012
LeNet-5 3 0.0203±0.0025 0.0135±0.0039 0.0137±0.0038 0.0115±0.0015 0.0100±0.0010
CIFAR-10
AlexNet 4 0.1544±0.0012 0.1450±0.0028 0.1499±0.0075 0.1506±0.0047 0.1437±0.0033
VGG-16 5 0.0771±0.0023 0.0700±0.0006 0.0700±0.0022 0.0686±0.0014 0.0687±0.0016
AllCNN-C 6 0.0761±0.0015 0.0712±0.0043 0.0735±0.0030 0.0701±0.0022 0.0697±0.0010
ResNet-18 7 0.0658±0.0019 0.0584±0.0022 0.0546±0.0033 0.0818±0.0391 0.0528±0.0015
PreResNet 8 0.0661±0.0015 0.0660±0.0016 0.0660±0.0027 0.0658±0.0023 0.0655±0.0018
WideResNet 9 0.0548±0.0016 0.0549±0.0040 0.0493±0.0023 0.0489±0.0014 0.0484±0.0018
SqueezeNet 10 0.0838±0.0013 0.0800±0.0012 0.0800±0.0025 0.0810±0.0016 0.0796±0.0017

CIFAR-100
WideResNet 9 0.2293±0.0017 0.2299±0.0027 0.2347±0.0077 0.3382±0.1406 0.2276±0.0033
PyramidNet 11 0.2527±0.0028 0.2792±0.0226 0.3064±0.0549 0.2747±0.0087 0.2664±0.0063

SVHN
WideResNet 9 0.0340±0.0005 0.0335±0.0003 0.0343±0.0016 0.0340±0.0015 0.0329±0.0013

Network architecture references: 1 McCullagh et al. (2019) 2 Baydin et al. (2018) 3 LeCun et al. (1998) 4 Krizhevsky et al. (2012) 5 Simonyan and Zisserman (2015)
6 Springenberg et al. (2015) 7 He et al. (2015) 8 He et al. (2016) 9 Zagoruyko and Komodakis (2016) 10 N. Iandola et al. (2016) 11 Han et al. (2017)

Where possible, hyper-parameter selection has been standardized
across the benchmark methods to allow for a fair comparison.
For example, in TaylorGLO, GP-LFL, and EvoMAL we use an
identical population size = 25 and number of generations =
50. For unique hyper-parameters, the suggested values from the
respective publications are utilized.

4.2 Benchmark Problems
Regarding the problem domains, seven datasets have been se-
lected. Three tabulated regression tasks are initially used: Dia-
betes, Boston Housing, and California Housing, all taken from
the UCI’s dataset repository [69]. Following this, analogous to the
prior literature [24], [25], [28], both MNIST [70] and CIFAR-10
[71] are employed to evaluate the benchmark methods. Finally,
experiments are conducted on the more challenging but related
domains of SVHN [72] and CIFAR-100 [71], respectively.

For the three tabulated regression tasks, the datasets are parti-
tioned 60:20:20 for training, validation, and testing. Furthermore,
to improve the training dynamics, both the features and labels
are normalized. For the remaining datasets, the original training-
testing partitioning is used, with 10% of the training instances
allocated for validation. In addition, data augmentation techniques
consisting of normalization, random horizontal flips, and cropping
are applied to the training data during meta and base training.

Regarding the base models, a diverse set of neural network
architectures are utilized to evaluate the selected benchmark meth-
ods. For Diabetes, Boston Housing, and California Housing, a
simple Multi-Layer Perceptron (MLP) taken from [73] with 1000
hidden nodes and ReLU activations are employed. For MNIST,
Logistic Regression [74], MLP, and the well-known LeNet-5
architecture [70] are used. While on CIFAR-10 AlexNet [75],
VGG-16 [76], AllCNN-C [77], ResNet-18 [78], Preactivation
ResNet-101 [79], WideResNet 28-10 [80] and SqueezeNet [81]
are used. For the remaining datasets, WideResNet 28-10 is again
used, as well as PyramidNet [82] on CIFAR-100. All models are

trained using stochastic gradient descent (SGD) with momentum.
The model hyper-parameters are selected using their respective
values from the literature in an identical setup to [24], [25].

Finally, due to the stochastic nature of the benchmark methods,
we perform five independent executions of each method on each
dataset + model pair. Furthermore, we control for the base ini-
tializations such that each method gets identical initial conditions
across the same random seed; thus, any difference in variance
between the methods can be attributed to the respective algorithms.

5 RESULTS AND ANALYSIS

The results and analysis are approached from three distinct angles.
First, the experimental results reporting the final inference meta-
testing performance when using meta-learned loss functions for
base-training are presented in Section 5.1. Following this, the
performance of the loss function learning algorithms themselves at
meta-training time is compared in Section 5.2. The focus is turned
towards an analysis of the meta-learned loss functions themselves
to highlight some of the loss functions developed by EvoMAL on
both classification and regression tasks in Section 5.3. Finally, an
analysis is given in Sections 5.4 and 5.5, which explore two of
the central hypotheses for why meta-learned loss functions are so
performant compared to their handcrafted counterparts.

5.1 Meta-Testing Performance
A summary of the final inference testing results reporting the
average error rate (classification) or mean squared error (regres-
sion) across the seven tested datasets is shown in Tables 2 and 3
respectively, where the same dataset and model pair are used for
both meta-training and meta-testing. The results show that meta-
learned loss functions consistently produce superior performance
compared to the baseline handcrafted squared error loss and cross-
entropy loss. Large performance gains are made on the California
Housing, MNIST, and CIFAR-10 datasets, while more modest
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TABLE 3: Regression results reporting the mean ± standard deviation final inference testing mean squared error across 5 executions
of each algorithm on each task + model pair. Loss functions are directly meta-learned and applied to the same respective task.

Task and Model Baseline ML3 TaylorGLO GP-LFL EvoMAL (Ours)

Diabetes
MLP 1 0.3829±0.0065 0.4278±0.1080 0.3620±0.0096 0.3746±0.0577 0.3573±0.0198
Boston
MLP 1 0.1304±0.0057 0.2474±0.0526 0.1349±0.0074 0.1341±0.0082 0.1314±0.0131

California
MLP 1 0.2326±0.0019 0.2438±0.0189 0.1794±0.0156 0.2071±0.0609 0.1723±0.0048

Network architecture references: 1 Baydin et al. (2018)

TABLE 4: Loss function transfer results reporting the mean ± standard deviation final inference testing mean squared error
(regression) or error rate (classification) across 5 independent executions of each algorithm on each task + model pair. Loss

functions are meta-learned on CIFAR-10 with the respective model, and then transferred to CIFAR-100 using that same model.

Task and Model Baseline ML3 TaylorGLO GP-LFL EvoMAL (Ours)

CIFAR-100
AlexNet 1 0.5262±0.0094 0.7735±0.0295 0.5543±0.0138 0.5329±0.0037 0.5324±0.0031
VGG-16 2 0.3025±0.0022 0.3171±0.0019 0.3155±0.0021 0.3171±0.0041 0.3115±0.0038
AllCNN-C 3 0.2830±0.0021 0.2817±0.0032 0.4191±0.0058 0.2849±0.0012 0.2807±0.0028
ResNet-18 4 0.2474±0.0018 0.6000±0.0173 0.2436±0.0032 0.2373±0.0013 0.2326±0.0014
PreResNet 5 0.2908±0.0065 0.2838±0.0019 0.2993±0.0030 0.2839±0.0025 0.2899±0.0024
WideResNet 6 0.2293±0.0017 0.2448±0.0063 0.2285±0.0031 0.2276±0.0028 0.2238±0.0017
SqueezeNet 7 0.3178±0.0015 0.3402±0.0057 0.3178±0.0012 0.3343±0.0054 0.3166±0.0026

Network architecture references: 1 Krizhevsky et al. (2012) 2 Simonyan and Zisserman (2015) 3 Springenberg et al. (2015) 4 He et al. (2015) 5 He et al. (2016)
6 Zagoruyko and Komodakis (2016) 7 N. Iandola et al. (2016)

gains are observed on Diabetes, WideResNet CIFAR-100 and
SVHN, and worse performance on Boston Housing MLP and
CIFAR-100 PyramidNet, a similar finding to that found in [25].

Contrasting the performance of EvoMAL to the benchmark
loss function learning methods, it is shown that EvoMAL con-
sistently meta-learns more performant loss functions, with better
performance on all task + model pairs except for on CIFAR-
10 VGG-16, where performance is comparable to the next best
method. Furthermore, compared to its derivative methods ML3

and GP-LFL, EvoMAL successfully meta-learns loss functions
on more complex tasks, i.e. CIFAR-100 and SVHN, whereas the
other techniques often struggle to improve upon the baseline.
These results empirically confirm the benefits of unifying existing
approaches to loss function learning into one unified framework.
Furthermore, the results clearly show the necessity for integrating
local-search techniques in GP-based loss function learning.

In general, it is observed that smaller performance gains across
all methods are made when using meta-learned loss functions rela-
tive to prior research into loss function learning. For example, prior
research has reported increasing the accuracy of a classification
model by up to 5% in some cases when using meta-learned loss
functions compared to the baseline cross-entropy loss. However,
with heavily tuned baselines, optimizing for both the learning rate
and the number of gradient steps, such performance gains were
not obtainable. This suggests that a proportion of the performance
gains reported previously by loss function learning methods likely
comes from an implicit tuning effect on the training dynamics as
opposed to a direct effect from using a different loss function.
Implicit tuning is not a drawback of loss function learning as a
paradigm; however, it is essential to disentangle the effects. In
Section 5.3, further experiments are given to isolate the effects.

5.1.1 Loss Function Transfer
To further validate the performance of EvoMAL, the much more
challenging task of loss function transfer is assessed, where the
meta-learned loss functions learned in one source domain are
transferred to a new but related target domain. In our experiments,
the meta-learned loss functions are taken directly from CIFAR-
10 (in the previous section) and then transferred to CIFAR-100
with no further computational overhead, using the same model as
the source. To ensure a fair comparison is made to the baseline,
only the best-performing loss function found across the 5 random
seeds from each method on each task + model pair are used. A
summary of the final inference testing error rates when performing
loss function transfer is given in Table 4.

The results show that even when using a single-task meta-
learning setup where cross-task generalization is not explicitly
optimized for, meta-learned loss functions can still be trans-
ferred with some success. In regards to meta-generalization, it
is observed that EvoMAL and GP-LFL transfer their relative
performance the most consistently to new tasks. In contrast, ML3,
which uses a neural network-based representation, often fails to
generalize to the new tasks, a finding similar to [3] which found
that symbolic representations often generalize better than sub-
symbolic representations. Another notable result is that on both
AlexNet and VGG-16 in the direct meta-learning setup, large
gains in performance compared to the baseline are observed, as
shown in Table 2. Conversely, when the learned loss functions are
transferred to CIFAR-100, all the loss function learning methods
perform worse than the baseline as shown in Table 4. These results
suggest that the learned loss functions have likely been meta-
overfitted to the source task and that meta-regularization is an
important aspect to consider for loss function transfer.
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Fig. 4: Mean meta-training learning curves across 5 independent executions of each algorithm, showing the fitness score (y-axis)
against generations (x-axis), where a generation is equivalent to 25 evaluations. Best viewed in color.

5.2 Meta-Training Performance
The meta-training learning curves are given in Fig. 4, where the
search performance of EvoMAL is compared to TaylorGLO and
GP-LFL at each iteration and the performance is quantified by
the fitness function using partial training sessions. Based on the
results, it is very evident that adding local-search mechanisms
into the EvoMAL framework dramatically increases the search
effectiveness of GP-based loss function learning techniques. Evo-
MAL is observed to consistently attain much better performance
than GP-LFL in a significantly shorter number of iterations. In
almost all tasks, EvoMAL is shown to find better performing loss
functions in the first 5 to 10 generations compared to those found
by GP-LFL after 50.

Contrasting EvoMAL to TaylorGLO, it is generally shown
again that for most tasks, EvoMAL produces better solutions in
a smaller number of iterations. Furthermore, performance does
not appear to prematurely converge on the more challenging
tasks of CIFAR-100 and SVHN compared to TaylorGLO and

GP-LFL. Interestingly, on both CIFAR-10 AlexNet and SVHN
WideResNet, TaylorGLO is able to achieve slightly better final
solutions compared to EvoMAL on average; however, as shown
by the final inference testing error rates in Tables 2 and 3, these
don’t necessarily correspond to better final inference performance.
This discrepancy between meta-training curves and final inference
is also observed in the inverse case, where EvoMAL is shown
to have much better learning curves than both TaylorGLO and
GP-LFL, e.g. in CIFAR-10 AllCNN-C and ResNet-18. However,
the final inference error rates of EvoMAL in Table 2 are only
marginally better than those of TaylorGLO and GP-LFL.

This phenomenon is likely due to some of the meta-learned
loss functions implicitly tuning the learning rate (discussed further
in 5.3). Implicit learning rate tuning can result in increased
convergence capabilities, i.e., faster learning which results in
better fitness when using partial training sessions, but does not
necessarily imply a strongly generalizing and robustly trained
model at meta-testing time when using full training sessions.
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TABLE 5: Average run-time of the meta-training process for each
of the benchmark methods. Each algorithm is run on a single
Nvidia RTX A5000, and the results are reported in hours.

Task and Model ML3 TaylorGLO GP-LFL EvoMAL

Diabetes
MLP 0.01 0.83 0.53 1.93

Boston
MLP 0.01 0.85 0.46 1.59

California
MLP 0.01 0.94 0.84 2.06

MNIST
Logistic 0.02 1.44 0.61 2.45
MLP 0.03 2.06 0.77 5.31
LeNet-5 0.03 2.30 0.82 3.29

CIFAR-10
AlexNet 0.03 3.75 1.04 5.90
VGG-16 0.12 4.67 0.89 9.12
AllCNN-C 0.12 4.55 0.90 8.77
ResNet-18 0.60 9.14 1.02 54.22
PreResNet 0.41 8.40 0.96 41.73
WideResNet 0.63 12.85 0.98 66.72
SqueezeNet 0.12 4.95 0.41 11.18

CIFAR-100
WideResNet 0.20 20.34 1.34 57.61
PyramidNet 0.20 24.83 1.32 49.89

SVHN
WideResNet 0.20 41.57 1.09 67.28

5.2.1 Meta-Training Run-Time
The use of a two-stage discovery process by EvoMAL enables the
development of highly effective loss functions, as shown by the
meta-training and meta-testing results. Producing on average mod-
els with superior inference performance compared to TaylorGLO
and ML3 which only optimize the coefficients/weights of fixed
parametric structures, and GP-LFL which uses no local-search
techniques. However, this bi-level optimization procedure where
both the model structure and parameters are inferred adversely
affects the computational efficiency of the meta-learning process,
as shown in Table 5, which reports the average run-time (in hours)
of meta-training for each loss function learning method.

The results show that EvoMAL is more computationally
expensive than ML3 and GP-LFL and approximately twice as
expensive as TaylorGLO on average. Although EvoMAL is com-
putationally expensive, it should be emphasized that this is still
dramatically more efficient than GLO [28], the bi-level predeces-
sor to TaylorGLO, whose costly meta-learning procedure required
a supercomputer for even very simple datasets such as MNIST.

The bi-level optimization process of EvoMAL is made compu-
tationally tractable by replacing the costly CMA-ES loss optimiza-
tion stage from GLO with a significantly more efficient gradient-
based procedure. On CIFAR-10, using the relatively small net-
work, PreResNet-20 GLO required 11,120 partial training sessions
and approximately 171 GPU days of computation [25], [28]
compared to EvoMAL, which only needed on average 1.7 GPU
days. In addition, the reduced run times of EvoMAL can also be
partially attributed to the application of time-saving filters, which
enables a subset of the loss optimizations and fitness evaluations
to be either cached or obviated entirely.
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Fig. 5: Frequencies of occurrence of the time saving filters, and
the corresponding frequencies of loss optimization and evaluation
throughout the symbolic search process. Reporting the average fre-
quencies across all task + model pairs and independent executions
of EvoMAL.

To summarize the effects of the time-saving filters, a set of
histograms are presented in Fig. 5 showing the frequency of
occurrence throughout the evolutionary process. Examining the
symbolic equivalence filter results, it is observed that, on average,
∼10% of the loss functions are identified as being symbolically
equivalent at each generation; consequently, these loss functions
have their fitness cached, and∼90% of the loss functions progress
to the next stage and are optimized. Regarding the pre-evaluation
filters, the rejection protocol initially rejects the majority of the
optimized loss functions early in the search for being unpromising,
automatically assigning them the worst-case fitness. In contrast, in
the late stages of the symbolic search, this filter occurs incre-
mentally less frequently, suggesting that convergence is being ap-
proached, further supported by the frequency of occurrence of the
gradient equivalence filter, which caches few loss functions at the
start of the search, but many near the end. Due to this aggressive
filtering, only ∼25% of the population at each generation have
their fitness evaluated, which helps to reduce the run-time further.

Note that the run-time of EvoMAL can be further reduced for
large-scale optimization problems through parallelization to dis-
tribute loss function optimization and evaluation across multiple
GPUs or clusters.

5.3 Meta-Learned Loss Functions
To better understand why the meta-learned loss functions pro-
duced by EvoMAL are so performant, an analysis is conducted
on a subset of the interesting loss functions found throughout
the experiments. In Fig. 6, examples of the meta-learned loss
functions produced by EvoMAL are presented. The corresponding
loss functions are also given symbolically in Table 6.
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Fig. 6: Example loss functions meta-learned by EvoMAL. The left plot shows classification loss functions, and right shows
regression loss functions. Best viewed in color.

TABLE 6: Example loss functions meta-learned by EvoMAL,
where solutions have been numerically and algebraically simpli-
fied. Furthermore, the parameters φ have also been omitted for
improved clarity and parsimony.

a. | log(
√
y · fθ(x) + ε)|

b. log(y · fθ(x)) +
√

log(y · fθ(x))
2

c. ((y − fθ(x))/fθ(x))4

d. y3 + fθ(x)
3 + fθ(x) · y2 + fθ(x)

2 · y

e. | log((y · fθ(x))2 + ε)|

f. (fθ(x)−min(max(y,−1), 1))2

g. |y · (
√
|y/

√
1 + fθ(x)2|)|

h. |(y/(1 + log(|y − 1|)2))− fθ(x)|

i.
√
|y · (y − fθ(x))|

j.
√
|y − fθ(x)|

5.3.1 Learned Loss Functions for Classification Tasks
The classification loss functions meta-learned by EvoMAL appear
to converge upon three classes of loss functions. First are cross-
entropy loss variants such as loss functions a) and b), which
closely resemble the cross-entropy loss functionally and symbol-
ically. Second, are loss functions that have similar characteristics
to the parametric focal loss [83], such as loss functions c) and d).
These loss functions recalibrate how easy and hard samples are
prioritized; in most cases, very little or no loss is attributed to high-
confidence correct predictions, while significant loss is attributed
to high-confidence wrong predictions. Finally, loss functions such
as e) which demonstrate unintuitive behavior, such as assigning
more loss to confident and correct solutions relative to unconfident
and correct solutions, a characteristic which induces implicit label
smoothing regularization [84], [85], see analysis in Appendix A.

5.3.2 Learned Loss Functions for Regression Tasks
Analyzing the regression loss functions it is observed that there
are several unique behaviors particularly around incorporating
strategies for improving robustness to outliers. For example in
f) the loss function takes on the form of the squared loss; however,
it incorporates a thresholding operation via the max operator for
directly limiting the size of the ground truth label. Alternatively in
loss functions g), i), and j), there is frequent use of the square root
operator, which decreases the loss attributed to increasingly large
errors. Finally, we observe that many of the learned loss functions,

take on shapes similar to well-known handcrafted loss functions;
for example, h) appears to be a cross between the absolute loss
and the Cauchy (Lorentzian) loss [86].

5.3.3 General Observations
In addition to the trends identified for classification and regression,
respectively, there are several more noteworthy trends:
• Structurally complex loss functions typically perform worse rel-

ative to simpler loss functions, potentially due to the increased
meta or base optimization difficulties. This is a similar finding to
what was found when meta-learning activation functions [10].

• Many of the learned loss functions in classification are asym-
metric, producing different loss values for false positive and
false negative predictions, often caused by exploiting fθ(x)
softmax output activation, where the sum of the class-wise
outputs is required to equal to 1.

5.4 Loss Landscapes Analysis
Loss function learning as a paradigm has consistently shown to
be an effective way of improving performance; however, it is not
yet fully understood what exactly meta-learned loss functions are
learning and why they are so performant compared to their hand-
crafted counterparts. In [25] and [27], it was found that the loss
landscapes of models trained with learned loss functions produce
flatter landscapes relative to those trained with the cross-entropy
loss. The flatness of a loss landscape has been hypothesized to
correspond closely to a model’s generalization capabilities [87],
[88], [89], [90]; thus, they conclude that meta-learned loss func-
tions improve generalization. These findings are independently
reproduced and are shown in Fig. 7. The loss landscapes are
generated using the filter-wise normalization method [89], which
plots a normalized random direction of the weight space θ.

The loss landscapes visualizations show that the loss functions
developed by EvoMAL can produce flatter loss landscapes on
average in contrast to those produced by the cross-entropy, ML3,
TaylorGLO, and GP-LFL, as shown in the top figure which shows
the landscapes generated using AllCNN-C. In contrast to prior
findings, we also find that in some cases the meta-learned loss
functions produced in our experiments show relatively sharper loss
landscapes compared to those produced using the cross-entropy
loss, as shown in the bottom figure which shows loss landscapes
generated using the base model AlexNet. These findings suggest
that the relative flatness of the loss landscape does not fully
explain why meta-learned loss functions can produce improved
performance, especially since there is evidence that sharp minma
can generalize well i.e. “flat vs sharp” debate [91].
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Fig. 7: The average 1D loss landscapes generated on the CIFAR-
10 dataset, the top figure shows the loss landscapes generated
on AllCNN-C, and the bottom figure shows the loss landscapes
generated on AlexNet. The landscapes show the average (mean)
loss taken across the 5 independent executions of each algorithm
on each task+model pair. Best viewed in color.

5.5 Implicit Learning Rate Tuning
Another explanation for why meta-learned loss functions improve
performance over handcrafted loss functions is that they can
implicitly tune the (base) learning rate since for some suitably
expressive representation ofM, since

∃α∃φ : θ − α∇θLT ≈ θ −∇θMT
φ. (13)

Thus, performance improvement when using meta-learned loss
functions may be the indirect result of a change in the learning
rate, scaling the resulting gradient of the loss function. To validate
the implicit learning rate hypothesis, a grid search is performed
over the base-learning rate using the cross-entropy loss and Evo-
MAL on CIFAR-10 AllCNN-C. The results are shown in Fig. 8.

The results show that the base learning rate α is a crucial
hyper-parameter that influences the performance of both the base-
line and EvoMAL. However, in the case of EvoMAL, it is found
that when using a relatively small α value, the base learning
rate is implicitly tuned, and the loss function learning algorithm
achieves an artificially large performance margin compared to
the baseline. Implicit learning rate tuning of a similar magnitude
is also observed when using relatively large α values; however,
the algorithm’s stability is inconsistent, with some runs failing
to converge. Finally, when a near-optimal α value is used, per-
formance improvement is consistently better than the baseline.
These results indicate two key findings: (1) meta-learned loss
functions improve upon handcrafted loss functions and that the
performance improvement when using meta-learned loss functions
is not primarily a result of implicit learning rate tuning when α is
tuned. (2) The base learning rate α can be considered as part of
the initialization of the meta-learned loss function, as it determines
the initial scale of the loss function.
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Fig. 8: Grid search comparing the average error rate of the baseline
cross-entropy loss and EvoMAL on CIFAR-10 AllCNN-C across
a set of base learning rate values, where 5 executions of each
algorithm are performed on each learning rate value.

6 CONCLUSIONS AND FUTURE WORK

This work presents a new framework for meta-learning symbolic
loss function via a hybrid neuro-symbolic search approach called
Evolved Model-Agnostic Loss (EvoMAL). The proposed tech-
nique uses genetic programming to learn a set of expression
tree-based loss functions, which are subsequently transformed
into a new network-style representation using a newly proposed
transitional procedure. This new representation enables the inte-
gration of a computationally tractable gradient-based local-search
approach to enhance the search capabilities significantly. Unlike
previous approaches, which stack evolution-based techniques,
EvoMAL’s efficient local-search enables loss function learning on
commodity hardware.

The experimental results confirm that EvoMAL consistently
meta-learns loss functions which can produce more performant
models compared to those trained with conventional handcrafted
loss functions, as well as other state-of-the-art loss function learn-
ing techniques. Furthermore, analysis of some of the meta-learned
loss functions reveals several key findings regarding common loss
function structures and how they interact with the models trained
by them. Finally, automating the task of loss function selection
has shown to enable a diverse and creative set of loss functions to
be generated, which would not be replicable through a simple grid
search over handcrafted loss functions.

There are many promising future research directions as a
consequence of this work. Regarding algorithmic extensions, the
EvoMAL framework is general in its design. It would be inter-
esting to extend it to different meta-learning applications such
as gradient-based optimizers or activation functions. In terms of
loss function learning, a natural extension of the work would be
to meta-learn the loss function and other deep neural network
components simultaneously, similar to the methods presented in
[17], [92], [93], [94]. For example, the meta-learned loss functions
could consider additional arguments such as the timestep or model
weights, which would implicitly induce learning rate scheduling
or weight regularization, respectively. Another example would be
to combine neural architecture search with loss function learning,
as the experiments in this work use handcrafted neural network
architectures which are biased towards the squared error loss or
cross-entropy loss since they were designed to optimize for that
specific loss function. Larger performance gains may be achieved
using custom neural network architectures explicitly designed for
the meta-learned loss functions.
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APPENDIX A
THEORETICAL ANALYSIS

Inspired by the seminal analysis performed in [95], we analyze the
learned loss function from two different perspectives: (1) initial
learning behaviors at the null epoch when learning begins under
a random initialization, and (2) in the zero training error regime
where a loss functions regularization behaviors can be observed
when there is nothing new to learn from the training data. The
analysis reveals important connections to the cross-entropy loss
and label smoothing.

A.1 Learning Rule Decomposition
To begin, we first decompose our learning rule to isolate the
contribution of the loss function. For simplicity, we will consider
the simple case of using vanilla stochastic gradient descent (SGD).
Repeating the update rule shown in Equation (1) of the main
manuscript:

θ ← θ − α∇θ
[
L(y, fθ(x))

]
(14)

where α is the (base) learning rate and L is the loss function,
which takes as arguments the true label y and the base model
predictions fθ(x). Consequently, the update rule for a singular
weight θj based on the kth model output fθ(x)k and target yk
can be described as follows:

θj ← θj − α
∂

∂θj

[
L(yk, fθ(x)k)

]
= θj − α

[
∂

∂f
L(yk, fθ(x)k) · ∂

∂θj
fθ(x)k

]
= θj + α

[
−
(
∂

∂f
L(yk, fθ(x)k)

)
︸ ︷︷ ︸

γ

· ∂
∂θj

fθ(x)k

] (15)

Given this general form, we can now substitute any loss function
into Equation (15) to give a unique expression γ which describes
the behavior of the loss function.

A.2 Learned Loss Functions
In this section, we analyze the behavior of the handcrafted cross-
entropy loss LCE = y · log(fθ(x)) and contrast it to a loss
function meta-learned by EvoMAL. In particular, we analyze the
general form of loss functions a) and e) from Table 6 of the main
manuscript (where ε = 1e− 7 is a small constant):

Ma = | log(
√
y · fθ(x) + ε)| (16)

Me = | log((y · fθ(x) + ε)2)| (17)

WhereMa andMe are equivalent upto a scaling factor φ0, since

| log((y · fθ(x) + ε)φ0)| = φ0 · | log(y · fθ(x) + ε)|. (18)

Therefore, the general form of the loss function shown in Fig. 9
can be given as follows where the meta parameters φ0 and φ1
have been made explicit as they are crucial to understanding the
behavior of the loss function.

Mφ = φ0| log(φ1(y · fθ(x) + ε))| (19)
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Fig. 9: Visualizing the learned loss functionMφ (left) and its corresponding derivative (right).
The x-axis represents the model’s predictions fθ(x).
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Fig. 10: Visualizing the learned loss functionMφ, where the effect of varying φ0 (left) and φ1 (right) are shown.
The x-axis represents the model’s predictions fθ(x).

A.2.1 Rule Decomposition’s
Substituting the Cross-Entropy (LCE) loss into Equation 2:

θj ← θj + α

[(
∂

∂f
(yk · log(fθ(x)k)

)
︸ ︷︷ ︸

γLCE

∂

∂θj
fθ(x)k

]
(20)

where the behavior is defined as follows:

γLCE =
yk

fθ(x)k
(21)

Substituting the the learned loss functionMφ into Equation 2:

θj ← θj + α

[
−
(
∂

∂f
φ0| log(φ1(yk · fθ(x)k + ε))|

)
︸ ︷︷ ︸

γMφ

· ∂∂θj fθ(x)k

]

(22)
where the behavior is defined as follows:

γMφ
= −φ0 yk·log(φ1(yk·fθ(x)k+ε))

(yk·fθ(x)k+ε)| log(φ1(yk·fθ(x)k+ε))| (23)

A.3 Behavior at the Null Epoch
First, consider the case where the base model weights θ are
randomly initialized (i.e. the null epoch before any training has
happened) such that the expected value of the kth output of the
model (post softmax/sigmoid) is

∀k ∈ [1, C],where C ≥ 2 : E[fθ(x)k] = C−1 (24)

where C is the number of classes/output nodes. Behavior at the
null epoch can then be defined piecewise for target vs non-target
outputs for each loss function.

In the case of the Cross-Entropy Loss (LCE),

γLCE =

{
0, yk = 0

C, yk = 1
(25)

When yk = 1 the target output value is maximized, while the
non-target output values remain the same; however, due to the base
model’s softmax output activation function, the target output value
being maximized will in turn minimize the non-target outputs.

In the case of the Learned Loss (Mφ),

γMφ
=

{
−φ0 0

ε·log(φ1·ε) , yk = 0

−φ0 log(φ1(C−1+ε))
(C−1+ε)·| log(φ1(C−1+ε))| , yk = 1

(26)

For simplicity, consider the case where the meta-parameters φ are
not optimized and instead left as their default values (i.e. φ0, φ1 =
1) and let ε→ 0, then for C ≥ 2 we get the following expression:

γMφ
=

{
− 0
ε·log(ε) , yk = 0

− log(C−1+ε)
(C−1+ε)·| log(C−1+ε)| , yk = 1

−−−→
ε→0

{
0, yk = 0

C, yk = 1

(27)

As shown the learned loss function with a default parameterization
is approximately equivalent in learning behavior to that of the
cross-entropy loss shown in Equation 25. When yk = 1 the
target output value is maximized, see Fig. 11, while the non-target
value is minimized due to the base models softmax. This result
shows that at the null epoch, the learned loss function performs
approximately equivalently to the cross-entropy loss.
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(a) Behavior at the null epoch.
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(b) Behavior at zero training error.

Fig. 11: Visualizing the behavior γMφ
of the learned loss functionMφ where yk = 1. Plot (a) shows behavior at

the null epoch and (b) shows the behavior when approaching zero training error.

A.4 Behavior at Zero Training Error
Next, the zero training error regime is considered, which explores
what happens when there is nothing left to learn from the training
data. This regime is of interest as the regularization behavior (or
lack thereof) can be observed and contrasted. To analyze the zero
training error case fθ(x)k can be substituted yk. However, this
results in an indeterminate form (i.e. 0/0) for the cross-entropy
loss when fθ(x) = 0 for the non-target output. Therefore, we
instead consider the case where fθ(x) = ε where ε → 0. Since
all the outputs sum to 1, fθ(x) = 1 − ε(C − 1) for the target
output and fθ(x) = ε for the non-target output.

In the case of the Cross Entropy Loss (LCE):

γLCE =

{
yk/ε, yk = 0

yk/(1− ε(C − 1)), yk = 1

−−−→
ε→0

{
0, yk = 0

1, yk = 1

(28)

The target output value is again maximized, while the non-target
output values are minimized due to the softmax.

In the case of the Learned Loss (Mφ):

γMφ
=

{
−φ0 0

ε| log(φ1·ε)| , yk = 0

−φ0 log(φ1(1−ε(C−1)+ε))
(1−ε(C−1)+ε)| log(φ1(1−ε(C−1)+ε))| , yk = 1

(29)

For simplicity, again setting the meta-parameters φ0, φ1 = 1, and
ε→ 0, then for C ≥ 2 we get the following expression:

γMφ
=

{
− 0
ε| log(ε)| , yk = 0

− log(1−ε(C−1)+ε)
(1−ε(C−1)+ε)| log(1−ε(C−1)+ε)| , yk = 1

−−−→
ε→0

{
0, yk = 0

1, yk = 1

(30)

When the default parameters (i.e., φ0, φ1 = 1) are used in the
learned loss function, the target output value will be maximized,
and the non-target outputs will be minimized similar to the
cross-entropy loss, due to the softmax. This indicates that the
learned loss function has nearly identical training behavior to the
handcrafted cross-entropy loss when using the default parameter-
ization. However, in the following section, we examine the case
where the default parameterization is not employed.

A.5 Implicit Label Smoothing
As shown in Fig. 10, when φ1 > 0 the behavior of the loss
function as the zero training error case is approached changes
significantly. Specifically, when φ1 > 0 the behavior γMφ

can be
characterized as follows:

γMφ
=

{
− 0
ε| log(φ1·ε)| , yk = 0

− log(φ1(1−ε(C−1)+ε))
(1−ε(C−1)+ε)| log(φ1(1−ε(C−1)+ε))| , yk = 1

−−−→
ε→0

{
0, yk = 0

−1, yk = 1

(31)

This shows that when φ1 > 0 the learned loss function switches
from maximizing the target output value to instead minimizing it.
Consequently, due to the softmax, this results in the non-target
outputs being maximized. This unintuitive learned behavior has
appeared previously in other loss functions meta-learned by GLO
[28] and TaylorGLO [25] and is a type of regularization strategy.
In particular, it has similar behavior to the cross-entropy loss with
label smoothing (LLS) [84], [85], which is a method for convert-
ing hard targets into soft targets, i.e., yk ← yk(1 − ψ) + ψ/C,
where 1 ≥ ψ > 0 and C ≥ 2, preventing the network from
becoming over-confident. To demonstrate this parity in behavior
the learning rule for the cross-entropy loss with label smoothing
is decomposed by substitution into Equation (15):

θj ← θj + α

[(
∂

∂f
(yk(1− ψ) +

ψ

C
) log(fθ(x)k)

)
︸ ︷︷ ︸

γLLS

∂
∂θj

fθ(x)k

]
(32)

where the behavior is defined as follows:

γLLS =
yk(1− ψ) + ψ/C

fθ(x)k
(33)

Consequently, we can then analyze the regularization behavior
γLS as the zero training error case is approached, where fθ(x) =
1−ε(C−1) for the target output and fθ(x) = ε for the non-target
output:

γLLS =

{
(yk(1− ψ) + ψ/C)/ε, yk = 0

(yk(1− ψ) + ψ/C)/(1− ε(C − 1)), yk = 1

−−−→
ε→0

{
ψ/(ε · C), yk = 0

((1− ψ) + ψ/C), yk = 1

(34)

Where the yk = 0 case is shown to dominate yk = 1 since

ψ

ε · C
> (1− ψ) +

ψ

C
. (35)



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MONTH 2023 18

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

80

(a) Cross-Entropy (CE) Loss – 15.66%.
75 50 25 0 25 50 75

80

60

40

20

0

20

40

60

80

(b) Learned Loss (φ1 = 1) – 15.43%.

75 50 25 0 25 50 75
100

75

50

25

0

25

50

75

100

(c) CE + Label Smoothing – 14.99%

100 75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

(d) Learned Loss (φ1 = 1.1) – 14.92%

Fig. 12: Visualization of the penultimate layer’s representation on AlexNet CIFAR-10 (testing set), using t-SNE for dimensionality
reduction. Color represents the class of an instance.

Hence the non-target output is maximized, while the target output
is minimized which is identical behavior to γMφ

when the zero
training error case is approached. This key finding suggests that
the learned loss functionMφ where φ1 > 1 has similar regular-
ization behavior to the cross entropy loss with label smoothing.

Although similar in behavior, it is interesting to note that the
learned loss function only needs to be computed on the target
output (i.e. 1 loss evaluation per instance), as it is 0 for all non-
target outputs, as shown in Equations (27) and (30). In contrast,
the cross-entropy loss with label smoothing must be applied to
both the target output and all non-target outputs (i.e. C loss
evaluation per instance) as shown in Equation (34). Hence, the
learned loss function can be computed significantly faster than the
cross-entropy with label smoothing.

A.6 Further Analysis
To further validate these theoretical findings, we analyze the
penultimate layer representation of AlexNet on CIFAR-10 when
trained with the cross entropy loss with and without label smooth-
ing, and the learned loss function with φ1 set to 1 and 1.1. The
results are shown in Fig. 12.

Analyzing the results it is shown that the representations
learned by (a) the cross-entropy loss and (b) the learned loss
function when φ = 1 are visually very similar, supporting the
findings in Sections A.3 and A.4. Furthermore, analyzing the
learned representations by (c) the cross-entropy loss with label
smoothing and (d) the learned loss function when φ1 = 1.1
it can be observed that both the learned representations have
better discriminative inter-class representations and tighter intra-
class representations. These findings support the finding in the

prior section which show similar regularization behavior between
the cross-entropy loss with label smoothing and the learned loss
function when φ1 > 1.

A.7 Summary of Findings
Summarizing the findings of this analysis we can conclude:
• With a default parameterization φ0, φ1 = 1 the behavior of

the learned loss function γMφ
at the null epoch and as the

zero error case is approached is identical to the behavior of
the cross entropy loss γCE .

• When φ1 > 1 the learned loss function behavior γMφ
when

approaching the zero training error case is identical to the
cross-entropy loss with label smoothing γLS .

• Further analysis is performed by visualizing the learned
representations on AlexNet CIFAR-10, which shows that the
theoretical findings are consistent with the empirical findings,
as similar behavior is observed in the learned representations.

APPENDIX B
HYPERPARAMETER SENSITIVITY ANALYSIS

B.1 Meta-Gradient Steps
The number of meta-gradient steps Smeta in EvoMAL was
determined via a grid search early into the development. We have
found that EvoMAL is not particularly sensitive to the choice of
Smeta, as shown by the results in Fig. 13, which contrasts the error
rate when increasing and decreasing the number of meta-gradient
steps on MNIST+LeNet-5. The results show that there are many
feasible values of Smeta and values greater than Smeta ≥ 250
produce strong performance compared to the benchmark methods.
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Fig. 13: Grid search comparing the average error rate of
EvoMAL on MNIST LeNet-5 across a set of meta-gradient step

values Smeta = {100, 250, 500, 750, 1000}, where 5 executions
are performed on each meta-gradient step value.

TABLE 7: Results reporting the mean ± standard deviation final
inference testing error rate across 5 independent executions of

EvoMAL on each of the testing-gradient step values.

Task and Model EvoMAL

MNIST
LeNet-5 (Stesting = 500) 0.0090 ± 0.0003
LeNet-5 (Stesting = 10, 000) 0.0098 ± 0.0010

B.2 Short-Horizon Bias and Partial Training Sessions
In EvoMAL the learned loss functions fitnesses are evaluated
using a partial training session (i.e. using a truncated number of
gradient steps Stesting). Partial training sessions can be used in
this context as performance at the beginning of training is highly
correlated with the performance at the end of training, as noted
in the ICLR2021 OpenReview version of [25], in Appendix D
entitled ”MNIST Evaluation Length Sensitivity”, which showed
empirically that in the context of loss function learning you could
reduce the evaluation length (i.e. Stesting) to 1% of the full train-
ing session and the final results would be near identical (99.46%
vs 99.45% accuracy using their custom CNN architecture).

We independently reproduce these results on MNIST + LeNet-
5 using EvoMAL with Stesting = 10, 000, extending the loss
function fitness evaluation to the full duration of the training
session taken at meta-testing time. The results reported in Table
7 show no significant degradation in performance when reducing
the evaluation length in EvoMAL to a partial training session of
Stesting = 500.

Evaluating the fitness F after a partial training session will
always result in some short-horizon bias [66]; however, it should
be noted that evolution-based loss function learning methods
such as EvoMAL do not suffer nearly as much short-horizon
bias as methods that exclusively rely on unrolled differentiation
for optimization (e.g., ML3) [24]. In unrolled differentiation, the
intermediate iterates (i.e., optimization path) need to be stored
in memory; thus, the number of base gradient steps is limited
to very few, typically in the low double digits [13]. In contrast,
evolution-based methods do not need to store the intermediate
iterates, thus, can take many more steps, typically in the hundreds
or low thousands, which is an order-of-magnitude longer horizon.

(a) (b) (c)

Fig. 14: Overview of the constraint enforcement procedure, where
(a) is a constraint violating expression, (b) demonstrates enforcing
the required arguments constraint, and (c) shows enforcing the
non-negative output constraint.
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Fig. 15: Frequencies of the primitive mathematical operations in
the symbolic loss functions discovered by EvoMAL across all
datasets and random seeds.

APPENDIX C
SUPPLEMENTARY CONTENT AND ANALYSIS

C.1 Constraint Enforcement
For clarity, both the required arguments constraint and non-
negative output constraint enforcement procedures presented in
Section 3.2.3 are summarized in Fig. 14.

C.2 Analysis of Search Space Design
To better understand the effects of the search space design on
the learned loss functions developed by EvoMAL, we analyze
the best-performing loss functions developed by EvoMAL. In
particular, the frequencies of occurrence of the function nodes of
the best-performing loss functions from all EvoMAL experiments
are presented in Fig. 15. Analyzing the results it is observed that
the most frequently recurring loss function sub-structure is the use
of the subtraction or multiplication operator, with arguments y and
fθ(x). This result is expected as these are commonly used building
blocks in loss functions for computing the error in regression and
classification, respectively. There is also high usage of the square
root and square operators, which are commonly used for scaling
the effects of large and small errors to either penalize or discount
different groups of predictions (i.e. inliers and outliers). Finally,
there is minimal usage of the sign, min, and tanh operators,
which empirically suggests that these function nodes are seldom
important to the design of learned loss functions, and that future
studies may wish to consider removing them from the function set
to increase the search efficiency.
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