
IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 1

TransVG++: End-to-End Visual Grounding with
Language Conditioned Vision Transformer

Jiajun Deng, Zhengyuan Yang, Daqing Liu, Tianlang Chen, Wengang Zhou, Senior Member, IEEE,
Yanyong Zhang, Fellow, IEEE, Houqiang Li, Fellow, IEEE, Wanli Ouyang, Senior Member, IEEE

Abstract—In this work, we explore neat yet effective Transformer-based frameworks for visual grounding. The previous methods
generally address the core problem of visual grounding, i.e., multi-modal fusion and reasoning, with manually-designed mechanisms.
Such heuristic designs are not only complicated but also make models easily overfit specific data distributions. To avoid this, we first
propose TransVG, which establishes multi-modal correspondences by Transformers and localizes referred regions by directly
regressing box coordinates. We empirically show that complicated fusion modules can be replaced by a simple stack of Transformer
encoder layers with higher performance. However, the core fusion Transformer in TransVG is stand-alone against uni-modal encoders,
and thus should be trained from scratch on limited visual grounding data, which makes it hard to be optimized and leads to sub-optimal
performance. To this end, we further introduce TransVG++ to make two-fold improvements. For one thing, we upgrade our framework to
a purely Transformer-based one by leveraging Vision Transformer (ViT) for vision feature encoding. For another, we devise Language
Conditioned Vision Transformer that removes external fusion modules and reuses the uni-modal ViT for vision-language fusion at the
intermediate layers. We conduct extensive experiments on five prevalent datasets, and report a series of state-of-the-art records.

Index Terms—Transformer Network, Visual Grounding, Vision and Language, Deep Learning

F

1 INTRODUCTION

V ISUAL grounding, which aims to localize a region re-
ferred to by a language expression in an image, is a core

technology to bridge the natural language expression deliv-
ered by human beings and visual contents in the physical
world. The evolution of this eachnique is of great potential
to promote vision-language understanding, and to provide
an intelligent interface for human-machine interaction. Ex-
isting methods addressing this task generally follow two-
stage or one-stage pipelines shown in Figure 1. Specifically,
two-stage approaches [1], [2] first generate a set of region
proposals, and then take visual grounding as a natural
language object retrieval problem [3], [4] to find the best
matching region given language expressions. Differently,
one-stage approaches [5], [6], [7] perform vision-language
fusion at the output of the vision backbone network and the
language model. Then, they make dense predictions with
a sliding window over pre-defined anchor boxes, and keep
the box with the maximum score as the final prediction.

Multi-modal fusion and reasoning is the primary prob-
lem in visual grounding. The early two-stage and one-stage
methods address multi-modal fusion in a simple way. Con-
cretely, the pioneer two-stage method, Embedding Net [9],

• J. Deng, W. Zhou, Y. Zhang and H. Li are with University of Science and
Technology of China. W. Zhou, Y. Zhang and H. Li are also with Institute
of Artificial Intelligence, Hefei Comprehensive National Science Center.
(email: dengjj@ustc.edu.cn, zhwg@ustc.edu.cn, yanyongz@ustc.edu.cn,
lihq@ustc.edu.cn)

• Z. Yang is with Microsoft. (email: zhengyuan.yang13@gmail.com)
• D.Liu is with JD Explore Academy. (email: liudq.ustc@gmail.com)
• T. Chen is with Amazon. (email: sunnychencool@gmail.com)
• W. Ouyang is with the University of Sydney and Shanghai Artificial

Intelligent Laboratory. (email: wanli.ouyang@sydney.edu.au)
• Corresponding authors: W. Zhou and H. Li.

measures the similarity between region embedding and
expression embedding by cosine distance. The early one-
stage approach, FAOA [7], encodes the language feature
vector to each spatial position of vision feature maps by
directly concatenating them. In general, these attempts are
efficient, but lead to sub-optimal results, especially when
it comes to complicated language expressions [10], [11].
Following studies have proposed diverse architectures to
ameliorate their performance. Among two-stage methods,
modular attention network [12], various scene graphs [13],
[14], [15], and multi-modal tree [10], [16] are designed
to improve multi-modal relationships modeling. The one-
stage method [11] also explores query decomposition and
proposes a multi-round fusion mechanism.

Despite their effectiveness, these sophisticated fusion or
matching modules are built on pre-assumed dependencies
of language expressions and visual scenes, making the mod-
els easily overfit specific scenarios, such as certain query
lengths or objects relationships. Meanwhile, these mecha-
nisms limit the plenitudinous interaction between vision
and language contexts, which also hurts the performance
of visual grounding algorithms. Besides, even though the
target is to localize the referred region, most of the previ-
ous methods achieve this target in an indirect way. They
generally define surrogate problems of language-guided
candidates matching, selection, and refinement, following
the common practice of image-text retrieval and object
detection. Therefore, extra efforts have to be devoted to
obtain candidates, including region proposals [2], [17], [18]
and pre-defined anchor boxes [7], [11]. Since these methods’
predictions are made out of candidates, their performance
is easily influenced by the step to generate such candidates
and by the heuristics to assign targets to candidates.

In this work, we explore an alternative approach in

ar
X

iv
:2

20
6.

06
61

9v
1

 [
cs

.C
V

]
 1

4
Ju

n
20

22

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 2

(a) Two-stage pipeline

(c) TransVG (preliminary version)

(b) One-stage pipeline

Direct Coordinates
Regression

Language
Transformer

Language Conditioned
Vision Transformer

Vision-Language
Transformer

Direct Coordinates
RegressionCNN

(d) TransVG++ (advanced version)

Region Proposals

Language Encoder

Region-Expression
Matching

Best matching
proposal

CNN
Vision-Language

Fusion

Dense
Predictions

Prediction with
max score

Language Encoder

CNN

Patch Embedding

Language
Transformer

Transformer
(Vision)

Language
Transformer

Transformer
(Vision)

A white cushion chair
with a grey pillow on it

A white cushion chair
with a grey pillow on it

A white cushion chair
with a grey pillow on it

A white cushion chair
with a grey pillow on it

Fig. 1: A comparison of (a) two-stage pipeline, (b) one-stage pipeline, (c) our preliminary TransVG framework, and (d) our
advanced TransVG++ framework. TransVG performs intra- and inter-modality relation reasoning with a stack of Transformer
layers in a homogeneous way, and grounds the referred region by directly regressing the box coordinates. TransVG++ takes
further steps that upgrade the hybrid architecture composed of convolutional neural networks and Transformer networks to
purely Transformer-based one and remove the stand-alone fusion Transformer by introducing Language Conditioned Vision
Transformer to enable fusion at the intermediate layers of a vision feature encoder. Particularly, we use Transformer (vision)
to represent a stack of Transformer encoder layers built on the top of a convolutional neural network (CNN), distinguished
from Vision Transformer [8], a specific model in the literature.

fusion module design, and re-formulate the prediction pro-
cessing back to a simple regression problem. We first present
TransVG, the preliminary version framework to address
the problem of visual grounding with Transformers. We
empirically show that the structurized fusion modules can
be replaced by a simple stack of Transformer encoder layers.
The insight behind our design is that the basic component
of Transformer, i.e., attention module, is ready to estab-
lish intra- and inter-modality correspondence for vision
and language inputs, despite we neither suppose any lan-
guage expression structure nor visual layout. The pipeline
of TransVG is illustrated in Figure 1(c). We first feed the
image and language expression into two sibling branches.
The Transformer built on the top of a convolutional neural
network and language Transformer built on word embed-
dings are applied in these two branches to model the global
cues in vision and language domains, respectively. Then,
the abstracted vision tokens and language tokens are fused
together, and a vision-langauge Transformer is leveraged to
perform cross-modal relation reasoning. Particularly, at the
prediction step, TransVG directly outputs 4-dim coordinates
of a bounding box to localize the referred region, instead of
making predictions based on a set of candidates.

Although Transformers have been leveraged to establish
multi-modal dependencies, TransVG shares the same meta-
architecture with previous two-stage and one-stage meth-
ods, which include two independent uni-modal feature en-
coders, a stand-alone multi-modal fusion or matching mod-
ule, and a prediction module. Within this meta-architecture,
the parameters of vision encoder and language encoder
can be initialized with well pre-trained models, while the
primary fusion module, i.e., vision-language Transformer, is
left to be trained from scratch with limited visual grounding
data. As a result, the stand-alone fusion Transformer is hard
to be optimized and leads to sub-optimal performance.

To this end, we further introduce an advanced version
framework, namely TransVG++, to remove the stand-alone
fusion Transformer, and instead performs vision-language
fusion by re-using the vision feature encoder. As shown
in Fig.1(d), we devise Language Conditioned Vision Trans-
former (LViT) to play the role of both vision feature en-
coding and vision-language reasoning. Technically, LViT is
obtained with minimal adaptation and extra parameters, by
integrating information of language expressions into inter-
mediate layers of the plain Vision Transformer (ViT) [8]. Two
novel alternative strategies, i.e., namely language prompter
and language adapter, are proposed to convert uni-modal
visual encoder layers of ViT into linguistic conditioned
visual encoder layers of LViT. Built on a fully Transformer
architecture and waiving the external fusion Transformer,
TransVG++ achieves consistently better performance with
even smaller model size and less computation costs when
compared with the preliminary version. Furthermore, pig-
gybacking on the successful ViT series allows TransVG++
to be scaling up with minimal efforts. We empirically
show that larger LViT models consistently lead to bet-
ter TransVG++ variants, and expect the trend to hold for
stronger Transformer based vision backbones.

We benchmark the proposed frameworks on five preva-
lent datasets, including RefCOCO [17], RefCOCO+ [17],
RefCOCOg [18], ReferItGame [19], Flickr30K Entities [20].
Our preliminary framework respectively achieves 83.38%,
59.24%, 68.71%, 70.73% and 79.10% accuracy on the test
set of these five datasets, consistently outperforming the
previous two-stage and one-stage approaches. Remarkably,
TransVG++ further achieves 4.99%, 8.04%, 8.32%, 3.97% and
2.39% absolute improvements over the preliminary one,
setting a series of state-of-the-art records.

In summary, we make three-fold contributions:
• We propose the first purely Transformer-based frame-

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 3

work to address the problem of visual grounding, and
re-formulate the prediction process to directly regress
the box coordinates of referred regions.

• We present an elegant view of how to capture intra- and
inter-modality context homogeneously with Transform-
ers, and further investigate how to remove stand-alone
fusion modules by integrating language information
into intermediate layers of a vision encoder.

• We conduct extensive experiments to validate the mer-
its of our method, and show significantly improved
results on several prevalent benchmarks.

The preliminary version of this work is published in [21].
We have made significant improvements and extensions to
our preliminary work. The major technical improvements
can be concluded in two aspects. For the most impor-
tant point, we remove the stand-alone fusion module, and
enable the vision encoder to be re-used for multi-modal
fusion at the intermediate layers. Besides, we upgrade the
hybrid architecture composed of convolutional neural net-
works and Transformer networks to a purely Transformer-
based one. To the best of our knowledge, this is the first
fully Transformer-based framework in this field, without
introducing any inductive bias. As demonstrated by ex-
periemental results, the advanced framework outperforms
the preliminary one by a large margin, and meanwhile
achieves better efficiency on model size and computation
costs. To facilitate further investigation, we build a bench-
mark of Transformer-based visual grounding frameworks
at https://github.com/djiajunustc/TransVG, and will make
our codes and models available.

2 RELATED WORK

2.1 Visual Grounding
Visual grounding aims to ground a natural language de-
scription onto the referred region in an image. Most ex-
isting approaches consist of a vision feature encoder, a
language feature encoder, and an external vision-language
fusion module. According to the differences in the fusion
module, current visual grounding methods can be broadly
categorized into two directions, i.e., two-stage methods [2],
[10], [12], [13], [14], [16], [22], [23], [24] and one-stage meth-
ods [5], [6], [7], [11], [25]. Two-stage methods match the
language feature to the vision content at the region level,
thus requiring the vision encoder to first generate a set
of region proposals. One-stage methods densely perform
multi-modal feature fusion at all spatial locations, waiving
the requirements of region proposals. In the following, we
deliver a literature review on both of them.
Two-stage Methods. Inspired by the success of region based
object detectors [26], [27], [28], two-stage methods are char-
acterized by first generating region proposals and then se-
lecting the best matching one corresponding to the language
expression. At the first stage, region proposals can be either
generated with external modules based on super-pixels
grouping [2], [29], [30], or predicted with pre-trained object
detectors [10], [12], [23], [31]. The main efforts of approaches
in this direction are devoted to the second stage, addressing
visual grounding as text-region matching. The pioneer stud-
ies [1], [9], [18] obtain good results by optimizing the feature
embedding networks with maximum-margin ranking loss

to maximize the similarity between the positive object-query
pairs. The following work DBNet [32] and Similarity Net [2]
show that the similarity and dissimilarity of text-region
pairs can be predicted by directly performing binary clas-
sification. The comprehensive region proposals provided
by the vision encoder make it easy for two-stage methods
to reason the relationships among objects. MMI [17] first
proposes to incorporate visual comparison based context
into referring expression models, which demonstrates the
significance of involving out-of-object information for visual
grounding. MattNet [12] introduces the modular design and
improves the grounding accuracy by better modeling the
subject, location, and relation-related language description.
Recent studies further improve the two-stage methods by
better modeling the object relationships [10], [13], [14], [15],
[33], enforcing correspondence learning [34], or making use
of phrase co-occurrences [35], [36], [37].
One-stage Methods. One-stage approaches [5], [6], [7], [11],
[25] get rid of the region proposals and fuse the linguistic
context with visual features densely at each spatial position
of feature maps. The fused image-text feature maps are then
leveraged to perform bounding box prediction in a sliding-
window manner. The early work FAOA [7] encodes the lan-
guage expression into a language vector, and fuses the lan-
guage vector into the YOLOv3 detector [38] to ground the
referred region. RCCF [6] formulates the visual grounding
problem as a correlation filtering process [39], [40], and picks
the peak value of the correlation heatmap as the center of
target objects. The recent work ReSC [11] devises a recursive
sub-query construction module to address the limitations of
FAOA [7] on grounding complex queries by multi-round
fusion. LSPN [41] further improves the reasoning ability of
the one-stage grounding methods.
Fusion in the Vision Encoder. Abstracting away the dis-
tinctions in the fusion module, one- and two-stage visual
grounding approaches share the same meta-framework,
i.e., single-modal feature encoders followed by an external
multi-modal feature fusion or matching module. In this
study, we alternatively explore how to remove the stand-
alone fusion module, and re-use the vision feature encoder
(i.e., a plain ViT [8] in our TransVG++) to perform vision-
language fusion. We vision two major advantages of the pro-
posed novel paradigm. First, removing the explicit fusion
layers makes the framework efficient and light-weighted,
thus also performing better with the same amount of com-
putations. Second, the unified vision encoder design facili-
tates the model to benefit from the advances in computer
vision studies, such as stronger image classification and
object detection models pretrained on large scale datasets.

2.2 Transformer
Transformer is first introduced in [42] to tackle the problem
of neural machine translation (NMT). Compared with re-
current units in RNNs [43], [44] and LSTMs [45], the core
component of Transformer, i.e., attention modules, show
remarkable superiority in long-term sequence modeling.
Transformer attracts increasing interests in the computer
vision community, and has made unnegligible impacts on
vision and vision-language tasks.
Transformers in Vision Tasks. Inspired by the great success
in NMT, a series of Transformers [8], [46], [47], [48], [49],

https://github.com/djiajunustc/TransVG

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 4

[REG]

CNNResNet

Transformer (vision)

Linear Projection

......

Vision Branch Language Branch

Vision-Language Fusion Module

Linear Projection

...

Prediction Head

Regression MLP

(b) TransVG++

[CLS] [SEP]

Language EmbeddingLanguage Embedding

Language Transformer

...

“The banana under two

oranges.”

[CLS] [SEP]

Language EmbeddingLanguage Embedding

Language Transformer

... ...

“The banana under two

oranges.”

......

[REG]

Prediction Head

 Vision Branch
(Language Cond. Vision Transformer) Language Branch

Regression MLP

Patch Embedding

x4

Vision Encoder Layer

Language Conditioned
Vision Encoder Layer

Vision Encoder Layer

(a) TransVG

[CLS] [SEP]

Language EmbeddingLanguage Embedding

Language Transformer

...

“The banana under two

oranges.”

[CLS] [SEP]

Language EmbeddingLanguage Embedding

Language Transformer

... ...

“The banana under two

oranges.”

Linear Projection

......

......

Vision-Language Transformer

Fig. 2: An overview of our proposed TransVG and TransVG++ frameworks. TransVG includes four components: a vision
branch, a language branch, a vision-language fusion module and a prediction head. Vision tokens, language tokens and a
learnable [REG] token are put together as the inputs of vision-language Transformer for multi-modal reasoning. The output
state of [REG] token is fed into the prediction head for box cooridnates regression. To extend the preliminary framework,
TransVG++ removes the stand-alone fusion module, and introduce Langauge Conditioned Vision Transformer, which enables
vision-langauge fusion at the intermediate layers of a vision feature encoder.

[50], [51], [52] applied to vision tasks have been proposed.
The infusive work DETR [46] formulates object detection
as a set prediction problem. It introduces a set of learnable
object queries, reasons global context and object relations
with attention mechanism, and outputs the final set of
instance predictions. ViT [8] and DeiT [50] show that a
pure Transformer can achieve excellent accuracy for image
classification. The following work Swin Transformer [51] re-
introduces inductive bias into vision Transformers by devis-
ing shifted-window attention. The recent works UViT [53]
and ViTDet [54] demonstrate the non-hierarchical ViT can be
directly applied as the backbone network of object detectors.
Our TransVG++ also explores the usage of plain ViT in
downstream tasks. Distinguishly, we investigate how to
adapt the uni-modal ViT for the multimodal visual ground-
ing task, while best preserving its power and architecture
for vision feature extraction.

Transformer in Vision-Language Tasks. Motivated by the
powerful pre-trained model of BERT [55], some researchers
start to investigate visual-linguistic pre-training (VLP) [56],
[57], [58], [59], [60] to jointly represent images and texts.
In general, the early works take region proposals and text
as inputs, and devise several transformer encoder lay-
ers for joint representation learning. Plenty of pre-training
tasks are introduced, including image-text matching (ITM),
word-region alignment (WRA), masked language modeling
(MLM), masked region modeling (MRM), etc. Some recent
works [61], [62], [63], [64] further improve the model to
make use of raw image patches. Besides following the
pretext tasks of BERT, MDETR [65] explores using object de-
tection as the pretext task to help improve the performance

of some downstream vision-language tasks.
Despite with similar base units, the goal of VLP is to

learn a generalizable vision-language representation with
large-scale data. In contrast, we focus on exploring novel
Transformer-based visual grounding frameworks. Besides,
ViT has has also shown its power in other vision-language
tasks, while mainly as the backbone of vision encoder [63],
[64]. They still build stand-alone blocks for multi-modal
fusion. We alternatively explore having the plain ViT do
more work and removing the stand-alone fusion layers.

3 OUR APPROACH

In this work, we present two versions of novel architecture
for visual grounding by leveraging the glamorous Trans-
former neural networks. An overview of our proposed
frameworks are illustrated in Fig. 2. The preliminary version
framework, namely TransVG, performs vision-language fea-
ture fusion with a simply stack of Transformer encoder
layers, getting rid of manually designed mechanisms. The
advanced version framework, i.e., TransVG++, is featured
by removing the stand-alone fusion module and introducing
Language Conditioned Vision Transformer (LViT), which
play the roles of both vision feature encoding and multi-
modal fusion. Particulary, LViT is converted from the uni-
modal ViT [8] model with minimal adaptation and extra
costs. Moreover, different from previous methods that rely
on candidate boxes selection or refinement, both of our
proposed frameworks introduce a learnable [REG] token,
and localize the referred region by directly regressing the
box coordiantes with the output state of [REG] token.

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 5

(a) Post-nomarlization (b) Pre-normalization

+

+

Q K V

+

+

Q K V
Multi-Head

Self-Attention

Layer Norm

FFN

Layer Norm

Multi-Head
Self-Attention

Layer Norm

Layer Norm

FFN

Fig. 3: An illustration of two varieties of Transformer encoder
layers, including (a) a post-normalization encoder layer and
(b) a pre-normalization encoder layer.

In the Sec. 3.1, we first review the background knowl-
edge of Transformer networks. Then, we elaborate our
model design of the preliminary version (Sec. 3.2) and
advanced version (Sec. 3.3) frameworks. Finally, in Sec. 3.4,
we introduce the training objectives of our frameworks.

3.1 Background: Transformer

Before detailing our proposed frameworks, we first deliver
a background overview of attention modules and encoder
layers of Transformer neural networks [42].
Attention Module. The core component of Transformer
encoder layer is the attention module. Here, we take single-
head attention as an example for explanation. The input
of single-head attention module is a sequence of feature
tokens. Given the query tokens xq and support tokens xs,
three independent fully connected (FC) layers are applied
on them to generate the query embedding fQ, key embed-
ding fK and value embedding fV as follows:

fQ = FC(xq), fK = FC(xs), fV = FC(xs). (1)

When support token set is the same as query token set,
the attention module is named as a self-attention module.
Otherwise, it is named as a cross-attention module. After
obtaining query, key and value embedding, the output of a
single-head attention layer is computed as:

Attn(fQ,fK ,fV) = FC(Softmax(
fQfK

√
dK

) · fV), (2)

where dK is the channel dimension of fK , Softmax(·) is the
softmax function applied across the key/value embedding.
Encoder Layer. In Fig. 3, we illustrate two kinds of Trans-
former encoder layers, distinguished by the position to
perform layer normalization (LN) [66]. Concretely, a Trans-
former encoder layer has two main sub-layers, i.e., a multi-
head self-attention (MHSA) layer and a feed forward net-
work (FFN). Multi-head attention is a variant of single-head
attention by splitting embedding channels into multiple
groups. FFN is an multi-layer perceptron (MLP) composed
of FC layers and non-linear activation layers.

In Transformer encoder layers, each sub-layer is put into
a residual structure. Let us denote the input as xn, a post-
normalization Transformer encoder layer computes:

x′n = LN(xn + FMHSA(xn)), (3)
xn+1 = LN(x′n + FFFN(x

′
n)), (4)

while the computation procedure in a pre-normalization
Transformer encoder layer is:

x′n = xn + FMHSA(LN(xn)), (5)
xn+1 = x′n + FFFN(LN(x′n)). (6)

3.2 Preliminary Version: TransVG Framework
In this subsection, we present TransVG, the preliminary
version framework based on a stack of Transformer encoder
layers with direct box coordinates prediction. As shown in
Figure 2(a), given an image and a language expression as
inputs, we first separate them into two sibling branches,
i.e., a vision branch and a language branch, to generate
corresponding feature embedding. Then, we consturct the
inputs of vision-language fusion module by putting the
vision and langauge feature embedding together, and ap-
pend a learnable token (i.e., [REG] token). The vision-
language Transformer homogeneously embeds the input
tokens from different modalities into a common semantic
space by modeling intra- and inter-modality context with
the self-attention layers. Finally, the output state of [REG]
token is leveraged to directly predict 4-dim coordinates of a
referred region in the prediction head.
Vision Branch. The vision branch includes a convolutional
network and a following Transformer encoder. We exploit
the commonly used ResNet [67] as the convolutional back-
bone network, and build the Transformer encoder with a
stack of 6 post-normalization Transformer encoder layers. In
each encoder layer, There are 8 heads in the MHSA module,
and 2 FC layers followed by ReLU activation layers in the
FFN. The output channel dimensions of these 2 FC layers in
the FFN are 2048 and 256, respectively.

Given an image z0 ∈ R3×H0×W0 as the input, we ex-
ploit the backbone network to generate a 2D feature map
z ∈ RC×H×W . Typically, the channel dimension C is 2048,
and the width and height of z are 1

32 of the original image
size (H = H0

32 , W = W0

32). Then, we leverage a 1 × 1
convolutional layer to reduce the channel dimension of z
to Cv = 256 and obtain z′ ∈ RCv×H×W . Since the input of
a Transformer encoder layer is supposed to be a sequence of
1D vectors, we further flatten z′ into zv ∈ RCv×Nv , where
Nv = H × W is the number of input vision tokens. To
make the visual Transformer sensitive to the original 2D
positions of input tokens, we follow [46], [68] to utilize sine
position embedding as the supplementary of visual feature.
Concretely, the position encodings are added with the query
and key embedding at each Transformer encoder layer. The
visual Transformer conducts global context reasoning in
parallel, and outputs visual embedding fv , which shares
the same shape as input zv .
Language Branch. The language branch is a sibling to the
vision branch, and it includes a language embedding layer
and a language Transformer. To make the best of pre-trained
language models, the architecture of this branch follows

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 6

BERTBASE [55]. Typically, there are 12 pre-normalization
Transformer encoder layers. The output channel dimension
of language Transformer is Cl = 768.

Given a language expression, we first represent each
word ID as a one-hot vector. Then, in the language embed-
ding layer, we convert each one-hot vector into a language
token by looking up the token table. We follow the common
practice in NMT [42], [55], [69], [70] to append a [CLS]
token and a [SEP] token at the beginning and end posi-
tions of language tokens. Different from the sine position
embedding leveraged in the vision branch, we make use of
learnable position embedding in the language branch, and
directly add them to language tokens. After that, we take
these language tokens as inputs of linguistic Transformer to
obtain the output language feature embedding fl ∈ RCl×Nl ,
where Nl is the number of language tokens.
Vision-Language Fusion Module. As the core component in
our model to fuse multi-modal information, the architecture
of the vision-language fusion module (abbreviated as V-L
module) is extremely simple and elegant. Specifically, the V-
L module includes two linear projection layers (one for each
modality) and a vision-language Transformer (also with a
stack of 6 post-normalization Transformer encoder layers).

Given vision tokens fv ∈ R256×Nv out of the vision
branch and language tokens fl ∈ R768×Nl out of the lan-
guage branch, we apply a linear projection layer on each of
them to project them into embedding with the same channel
dimension. We denote the projected visual embedding and
linguistic embedding as gv ∈ RCp×Nv and gl ∈ RCp×Nl ,
where the projected feature dimension Cp = 256. Then, we
pre-append a learnable embedding (namely a [REG] token)
to gv and gl, and formulate the joint input tokens of the
visual-linguistic Transformer as:

x0 = [gr, g
1
v , g

2
v , · · · , gNv

v︸ ︷︷ ︸
vision tokens gv

,

language tokens gl︷ ︸︸ ︷
g1l , g

2
l , · · · , g

Nl

l], (7)

where gr ∈ RCp×1 represents the [REG] token. The [REG]
token is randomly initialized at the beginning of the training
stage and optimized with the whole model. After obtaining
the input x0 ∈ RCp×(1+Nv+Nl) in the joint embedding
space as described above, we apply the vision-language
Transformer to embed x0 into a common semantic space
by performing intra- and inter-modality relation reasoning
in a homogeneous way. To retain the positional and modal
information, we add learnable position embedding to the
input of each Transformer encoder layer.

Thanks to the attention mechanism, the correspondence
can be freely established between each pair of tokens from
the joint entities, regardless of their modality. For example,
a vision token can attend to a vision token, and it can also
freely attend to a language token. Typically, the output state
of the [REG] token develops a consolidated representation
enriched by both vision and language context, and is further
leveraged for box coordinates prediction.
Prediction Head. We leverage the output state of [REG]
token from the V-L module as the input of our prediction
head. To perform box coordinates prediction, we apply a
regression block to the [REG] token. The regression block is
implemented by an MLP with two ReLU activated hidden

+

+

Q K V

Multi-Head
Self-Attention

Layer Norm

FFN

[REG] & Vision tokens

Q K V

Multi-Head
Cross-Attention

Layer Norm
Language tokens

+

+

+

Q K V

Multi-Head
Self-Attention

Layer Norm

Layer Norm

FFN

+

Layer Norm

FFN

Language tokens
Concatenate

[REG] & Vision tokens

(ii) Language Adapter

(i) Language Prompter

Language prompt tokens

Language adapt tokens

Split & Drop

Fig. 4: An illustration of our proposed language conditioned
vision encoder layers with (i) a language prompter and (ii) a
language adapter.

layers and a linear output layer. The output of the prediction
head is the 4-dim box coordinates.

3.3 Advanced Version: TransVG++ Framework
To further drive the evolution of Transformer-based visual
grounding, we introduce TransVG++, the advanced version
framework with fully Transformer-based architecture. We
depict the overview of TransVG++ framework in Fig. 2(b).
As illustrated, the main difference between TransVG++ and
TransVG is that we remove the stand-alone vision-language
fusion module, and capitalize on a novel vision feature
encoder, namely Language Contioned Vision Transformer
(LViT). On the one hand, LViT upgrades the hybrid vision
feature encoder composed of ResNet and 6 following Trans-
fomer encoder layers, and on the other hand LViT enable
multi-modal fusion at its intermediate layers. Besides, the
vision input of our TransVG++ is no longer the whole
images, but equally divided raw image patches.

Particularly, LViT is modified from a uni-modal ViT [8]
model with few efforts and negligible extra computation
costs. Specifically, a standard ViT model is composed of 12
pre-normalization Transformer encoder layers. We denote
them as vision encoder layers, since they are only leveraged
to extract vision feature embedding, and equally divide
them into 4 groups. Our core modification is that we convert

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 7

the last vision encoder layer of each group into a language
conditioned vision encoder layer, which integrates the lan-
guage feature of referring expressions into vision tokens.
Motivated by the success of prompt tuning [71] and network
adapter [72], [73] in transfer pre-trained models to down-
stream tasks, we propose two simple yet effective strategies
for language feature integration: (i) language prompter, and
(ii) language adapter.

Language Prompter. We illustrates the architecture of a
language conditioned vision encoder layer with language
prompter in Fig. 4(i). In this strategy, we first feed the
language tokens into a feed forward network (FFN) to gen-
erate language prompt tokens. After that, language prompt
tokens are concatenated with the [REG] token and vision
tokens to construct the input of a multi-head self-attention
(MHSA) module. The tokens out of MHSA module is split
into two groups, i.e. one group for vision tokens and [REG]
token, and another group for prompt tokens. The prompt
tokens are dropped, while the other group is fed into the
following FFN to obtain the input of next layers. Here,
the parameters of the FFN to generate prompt tokens are
randomly initialized, and those of other compnents make
use of parameters from the corresponding original vision
encoder layer of a pre-trained ViT backbone network.

Language Adapter. The architecture of a language con-
ditioned vision encoder layer with language adapter is il-
lustrated in Fig. 4(ii). In this strategy, we inject the language
expression information by adding an extra multi-head cross-
attention (MHCA) module between the MHSA module
and FFN of the original vision encoder layer. The query
embedding of this MHCA module is the output of MHSA
module, and both the key and value embedding are from the
language tokens. By this way, the outputs of MHCA mod-
ule, namely language adapt tokens, are the aggregation of
language features with adaptive weights against each vision
token. The language adapt tokens are then elementwisely
added to the vision tokens for vision-language feature fu-
sion. Similar to the language prompter, the parameters of
the MHCA module are randomly initialized, and those of
other parts are initialized with corresponding parameters
from a pre-trained ViT backbone network.

By capitalizing on either a language prompter or a lan-
guage adapter, the vision encoder layer can be converted
to language conditioned vision encoder layers, and thus
enables it to be re-used for absorbing text expression infor-
mation from language tokens. The proposed LViT maintains
the original architecture of a ViT model, so that we can
naturally take advantage of pre-trained ViT model to ease
the optimization for the whole framework. Particularly,
both of these two strategies introduce negligible model pa-
rameters and computation costs compared with the whole
model, while achieving infusive performance improvements
against our preliminary version with stand-alone fusion
Transformers. In our experiments, we conduct extensive
ablative studies and analyses on these two strategies, and
empirically show that using language adapter can achieve a
slightly better accuracy among these two strategies.

3.4 Training Objective
Unlike many previous methods that ground referred objects
based on a set of candidates (i.e., region proposals in two-

stage methods and anchor boxes in one-stage methods),
we directly predict a 4-dim vector as the coordinates of
the box to be grounded. This simplifies the process of
target assignment and positive/negative examples mining
at the training stage, but it also involves the scale problem.
Specifically, the widely used smooth L1 loss tends to be a
large number when we try to predict a large box, while
tends to be small when we try to predict a small one, even
if their predictions have similar relative errors.

To address this problem, we normalize the coordinates
of the ground-truth box by the scale of the image, and
involve the generalized IoU loss [74] (GIoU loss), which is
not affected by the scales. Let us denote the prediction as
b = (x, y, w, h), and the normalized ground-truth box as
b̂ = (x̂, ŷ, ŵ, ĥ). The training objective of our method is:

L = Lsmooth-l1(b, b̂) + Lgiou(b, b̂), (8)

where Lsmooth-l1(·) and Lgiou(·) are the smooth L1 loss and
GIoU loss, respectively.

4 EXPERIMENTS

In this section, we present extensive experiments to validate
the merits of our proposed TransVG/TransVG++ frame-
work. In Sec. 4.1 and Sec. 4.2, we first give a brief intro-
duction to the datasets and experimental setup. In Sec 4.3,
we conduct extensive ablative experiments to investigate
the effectiveness of each component in our preliminary and
advanced frameworks. Then, in Sec. 4.4, we present the
main results of our models, and compare them with other
state-of-the-art methods. After that, in Sec. 4.5, we discuss
the model size and computation costs of TransVG++, and
point out future directions to make it more applicable on
resource-limited devices. Finally, in Sec. 4.6, we show some
qualitative results to help validation and analysis.

4.1 Datasets and Evaluation Metric
We conduct experiments on five prevalent datasets and
follow the standard protocol to evaluate our framework
in terms of accuracy. Specifically, only when the Jaccard
overlap between the predicted region and the ground-truth
region is above 0.5, the prediction is regarded as a correct
one. These five datasets are detailed as follows:

RefCOCO [17] includes 19,994 images with 50,000 re-
ferred objects. In each image, there are multiple instances
belonging to the same categories. Each referred instance has
more than one referring expression, and there are 142,210
referring expressions in total. The samples in RefCOCO are
officially split into a train set with 120,624 expressions, a
validation set with 10,834 expressions, a testA set with 5,657
expressions and a testB set with 5,095 expressions.

RefCOCO+ [17] contains 19,992 images with 49,856 re-
ferred objects and 141,564 referring expressions. Compared
with RefCOCO, the words indicate the absolute position,
like ’left’ and ’right’, are not included in the language
expressions from this dataset. It is also officially split into
a train set with 120,191 expressions, a validation set with
10,758 expressions, a testA set with 5,726 expressions and a
testB set with 4,889 expressions.

RefCOCOg [18] has 25,799 images with 49,856 referred
objects and expressions. In this dataset, each image contains

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 8

2 to 4 instances for the referred categories, and each instance
are with an area more than 5% of the whole image. There
are two commonly used split protocols for this dataset.
One is RefCOCOg-google [18], and the other is RefCOCOg-
umd [1]. We report our performance on both RefCOCOg-
google (val-g) and RefCOCOg-umd (val-u and test-u) to
make comprehensive comparisons.

ReferItGame [19] includes 20,000 images collected from
the SAIAPR-12 dataset [75], and each image has one or a
few regions with corresponding referring expressions. This
dataset is divided into three subsets, i.e., a train set with
54,127 referring expressions, a validation set with 5,842
referring expressions and a test set with 60,103 referring
expressions. We use the validation set for ablation studies
and compare our method with others on the test set.

Flickr30K Entities [20] is built on the original Flickr30K
[76], through introducing short region phrase correspon-
dence annotations. It contains 31,783 images with 427K
referred entities. We follow the previous works [2], [11], [20],
[30] to separate the these images into 29,783 for training,
1000 for validation, and 1000 for testing.

4.2 Experimental Setup
Inputs. The input image size is set as 640 × 640. When
performing image resizing, we keep the original aspect ratio
of each image. The longer edge of an image is resized to
640, while the shorter one is padded to 640 with the mean
value of RGB channels. The maximum length of language
expressions is set as 40 for RefCOCOg, and set as 20 for
other datasets. We cut off the language query if its length
is longer than maximum length (leaving one position for
the [CLS] token and one position for the [SEP] token).
Otherwise, we pad empty tokens after [SEP] token to make
the input length consistent in each batch. The padded tokens
are recorded with a mask, and will not influence the output.
Network Architecture. In our preliminary framework, we
use ResNet-50 or ResNet-101 [67] as the convolutional back-
bone network. The output of ResNet is 32 times downsam-
pling against the input image. Transformer encoder layers
in the preliminary framework follow the post-normalization
structure. The embedding dimension is set as 256, the head
number of multi-head attention modules is set as 8, and the
hidden dimension in FFN is set as 2048.

In our advanced framework, the patch embedding layer
divides a 640 × 640 image into patches of equal size, each
with 16× 16 pixels. These patches are flattened into vectors
and fed into a fully connected layer to generate the initial
state of visual tokens. To encode position information into
visual tokens, learnable position embedding is added to
each visual token. Pariticularly, the resolution of position
embedding in the standard ViT model for image classifi-
cation is 14 × 14, as the input size is only 224 × 224. To
make the position embedding matches the input size of
our method, we follow [53] to resize it to 40 × 40 with
bicubic interpolation. We experiment with three represen-
tative models of ViT series, i.e., ViT-tiny, ViT-small and ViT-
base, which is for vision feature encoding. The configuration
of LViT varies according to the ViT variety. The feature
dimension of our language adapter and language prompter
changes according to the ViT model. Specifically, for ViT-
tiny, the embedding dimension is 192, the head number

of multi-head attention module is 3, the hidden dimension
in FFN is 768. For ViT-small, the embedding dimension is
384, the head number of multi-head attention module is 6,
the hidden dimension in FFN is 1536. For ViT-small, the
embedding dimension is 768, the head number of multi-
head attention module is 12, the hidden dimension in FFN
is 3072. No matter what ViT model is leveraged, the hidden
dimension in regression MLP is kept unchanged (i.e., 256
as that in preliminary version) to eliminate the influence of
feature dimension in prediction head.
Training and Inference Details. Our model is end-to-end
optimized with AdamW optimizer, with batch size set as
32. We apply several widely adopted data augmentation
techniques [6], [7], [11], [21], [77] at the training stage. In
TransVG, we set the initial learning rate of fusion module
and prediction head to 10−4 and that of the vision branch
and language branch to 10−5. The weight decay is 10−4. On
RefCOCO, RefCOCOg and ReferItGame datasets, TransVG
is trained for 90 epochs with a learning rate dropped by a
factor of 10 after 60 epochs. On Flickr30K Entities, TransVG
is trained for 60 epochs, with a learning rate dropping
after 40 epochs. On RefCOCO+, TransVG is trained for
180 epochs, with a learning rate drops after 120 epochs.
For TransVG++, we set the initial learning rate of language
branch and the parameters initialized from the pre-trained
ViT model to 10−5, and that of other parameters to 10−4.
Thanks to removing the stand-alone fusion Transformer, the
total training epochs of TransVG++ is reduced to 60 epochs.
The learning rate drops by 10 times since the 45-th epoch.
We follow the common practice [7], [11], [21], [77], [78] to ini-
tialize the parameters of language branch with a pre-trained
BERTBASE model [55], and to initialize the parameters of vi-
sion branch with models trained on MSCOCO [79] (the over-
lapping images between the training set of MSCOCO and
validation/test sets of RefCOCO/RefCOCO+/RefCOCOg
datasets are removed when performing pre-training). We
use DETR model [46] for vision branch initialization in
TransVG, and instead use Mask R-CNN [80] in TransVG++,
since these two initialization options achieve comparable
performance, while the training epochs of Mask R-CNN is
remarkably less than DETR.

Since our proposed frameworks directly output the box
coordinates, there is no post-processing during inference.

4.3 Ablative Experiments
4.3.1 Ablation Studies on TransVG
In this section, we conduct ablative experiments to inves-
tigate the effectiveness of each component in our TransVG
framework. We exploit ResNet-50 as the backbone network
of the vision branch. All of the compared models are trained
for 90 epochs on ReferItGame [19] for fair comparison.
Design of [REG] Token’s Initial State. In Table 1, we report
the abation study on how to obtain the initial state of [REG]
token. Specifically, we compare our learnable embedding
with five other options to generate the initial state of [REG]
token (i.e., the embedding gr appended to vision embedding
and language embedding as in Equation (7)). We detail these
designs and analysis as follows:
— Average pooled vision tokens. We perform average pooling

over the tokens out of vision branch, and exploit the
average-pooled embedding as the initial state.

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 9

TABLE 1: Ablative experiments on the design of [REG]
token’s initial state in TransVG. The evaluation metric is
the accuracy (%) on ReferItGame validation and test set. We
compare our default strategy to exploit learnable embedding
as the initial state of [REG] token with other options that
generate the initial state from vision/language tokens out of
the corresponding branch.

Initial State of [REG] Token Acc@val Acc@test

Average pooled vision tokens 71.37 69.27
Max pooled vision tokens 70.91 69.11
Average pooled language tokens 69.96 68.15
Max pooled language tokens 70.37 68.46
Sharing with [CLS] token 70.84 69.01
Learnable embedding∗ 72.50 69.76

TABLE 2: Ablative experiments on the vision branch and lan-
guage branch in our TransVG. The performance is evaluated
on the test set of ReferItGame in terms of accuracy (%). “Tr.”
represents Transformer.

Vision Branch Language Branch Accuracy (%)w/o Tr. w/ Tr. w/o Tr. w/ Tr.

X X 64.24
X X 66.78 (+3.54)

X X 68.48 (+4.24)
X X 69.76 (+5.52)

— Max pooled vision tokens. We perform max pooling over
the tokens out of vision branch, and exploit the max-
pooled embedding as the initial state.

— Average pooled language tokens. Similar to the first option,
but using the language tokens.

— Average pooled language tokens. Similar to the second
choice, but using the language tokens.

— Sharing with [CLS] token. We use the [CLS] token of
language embedding to play the role of [REG] token.
In this setting, the [CLS] token out of the V-L module
is fed into the prediction head.

— Learnable embedding*. This is our default setting by ran-
domly initializing the [REG] token embedding at the
beginning of the training stage. And the parameters of
this embedding are optimized with the whole model.

Our proposed design to exploit a learnable embedding
achieves 72.50% and 69.76% on the validation test set of
ReferItGame, which is the best performance among all the
designs. Typically, the initial [REG] token of other designs
is either generated from vision or language tokens, which
involves biases to the specific prior context of the corre-
sponding modality. In contrast, the learnable embedding
tends to be more equitable and flexible when performing
relation reasoning in the vision-language Transformer.
Design of Transformers in Each Branch. We study the role
of the Transformers in the vision branch and the language
branch, and report the comparison in Table 2. The baseline
model without the uni-modal Transformer in both branch
reports an accuracy of 64.24%. When we only attach Trans-
former to each vision branch or language branch, an im-
provement of 68.48% and 66.78% are achieved, respectively.
With the complete architecture, the performance is further
boosted to 69.76% on the ReferIt test set. This result demon-
strates the essential of Transformers in the vision branch and
language branch to capture intra-modality global context

TABLE 3: Performance comparison between different strate-
gies to perform vision-languge fusion. Two representative
datasets, i.e., ReferItGame and RefCOCOg-google, are ex-
ploited for evaluation. We report the accuracy (%) on vali-
dation sets of these two datasets.

Fusion Strategies ReferIt RefCOCOg-g

Preliminary:
6 encoder layers 71.00 67.24

Language Prompter:
MHSA 71.39 68.46
Encoder layer 71.38 69.07
Linear 71.62 69.09
FFN 71.42 69.44

Language Adapter:
Average pooling 72.01 69.49
Max pooling 72.26 68.96
[CLS] only 72.79 69.54
MHCA∗ 73.17 70.60

before performing multi-modal fusion.

4.3.2 Ablation Studies on TransVG++

In this section, we conduct ablation studies on TransVG++.
Since the language branch remains unchanged, these studies
focus on analysing LViT. All of the compared models exploit
ViT-tiny as the backbone network of LViT, and are trained
for 60 epochs for fair comparison.
Degisn of Fusion Strategies. In Table 3, We present ablation
studies on the effectiveness of different vision-language
fusion strategies. These models are compared on the vali-
dation set of representative ReferItGame and RefCOCOg-
google datasets. Our preliminary fusion strategy is to con-
catenate vision tokens and language tokens together, and
fed them into 6 stand-alone Transformer encoder layers. By
leveraging this preliminary strategies, the model achieves
71.00% accuracy and 67.24% accuracy on ReferItGame and
RefCOCOg-google, respectively.

Generally speaking, models capitalizing on language
prompters and language adapters, no matter what internal
structure is used, achieve better accuracy than the stand-
alone Transformer encoder layers, which demonstrates the
advantage of fusion in backbone against fusion with exter-
nal modules. We experiment with four different types of
language prompters to generate language prompt tokens,
including a simple linear layer, a feed forward network
(FFN), a Transformer encoder layer, and a multi-head self-
attention (MHSA) module. Language prompters with these
four structures work comparably on ReferItGame dataset,
and the model with an FFN works the best on RefCOCOg-
google, achieving 69.44% accuracy. In experiments with
language adapters, we evaluate four alternative designs to
obtain language adapt tokens, i.e., average pooling over
language tokens, max pooling over language tokens, taking
linear transformation over [CLS] token, and our default
setting with a multi-head cross-attention (MHCA) module.
The former three designs can be regarded as the degener-
ation of language adapters with MHCA. Specifically, avg
pooling sets all the attention weights equally, max pooling
select one token for each channel to set its weight as 1 and
that of others as 0, and [CLS] only sets attention weights
of [CLS] token as 1 and that of others as 0. These three

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 10

TABLE 4: Ablative experiments on the location of language
conditioned visual encoder layers. The performance is evalu-
ated on RefCOCOg-google dataset in terms of accuracy (%).
We use ViT-tiny backbone by default.

Location Accuracy (%)

First 4 layers 68.26
Last 4 layers 70.53
Evenly 4 layers∗ 70.60

TABLE 5: Ablative experiments on the number of language
conditioned vision encoder layers. We use ViT-tiny backbone
by default, and evaluate these models on RefCOCOg-google.

Number Accuracy (%)

2 70.13
3 70.34

4∗ 70.60
6 70.58
12 70.30

designs achieve similar performance with using MHCA
module when processing language expressions with simple
phrases like that in ReferItGame, while lags behind using
MHCA module when it comes to complicated sentences as
collected in RefCOCOg-google.

As empirically shown in the table, the best choice is to
use language adapters with MHCA for language adapt to-
ken generation, which achieves 73.17% on ReferItGame and
70.60% on RefCOCOg-google, outperforming the prelimi-
nary strategy by 2.17% and 3.36%, respectively. We leverage
this setting as our default one, and report the performance
of models with this setting in our main results.
Location of Language Conditioned Vision Encoder Layers.
In Table 4, we study where language conditioned vision
encoder layers should be located (i.e., applying language
adapters to which vision encoder layers). The results are
evaluated on RefCOCOg-google dataset. Our default config-
uration is to evenly place the language adapters at the 3rd,
6th, 9th and 12th vision encoder layers. We compare two
different configurations to place the language adapters at
the first 4 encoder layers or the last 4 encoder layers, which
attempts to perform multi-modal fusion at the early stage
or at the late stage, respectively. As shown in the table, our
default setting ranks the first among these configurations.
Number of Language Conditioned Vision Encoder Layers.
Table 5 presents our ablation studies on how many language
conditioned vision encoder layers should be exploited.
When increasing the number of language conditioned vision
encoder layers from 2 to 4, the accuracy is consistently
improved from 70.13% to 70.60%. The performance is not
shown to benefit from more language conditioned vision
encoder layers once the number achieves 4. Therefore, we
empirically set the default number as 4.

4.3.3 Improvements from TransVG to TransVG++
In this section, we verify the improvements from TransVG
to TransVG++, i.e., upgrading the vision branch to a fully
Transformer-based architecture and removing the stand-
alone V-L fusion module. Table 6 details five varieties of
architecture configures, together with the model size and

TABLE 6: Ablative experiments on improvements from
TransVG to TransVG++. Both accuracy on validation set of
RefCOCOg-google and model size are compared.

Vision Feature V-L Fusion
Model Size (M) Acc.
Vision Fusion (%)

(a) R-50 + 6 enc. layers 6 enc. layers 30.18 7.52 66.35
(b) ViT-tiny 6 enc. layers 5.53 7.52 67.24
(c) R-50-DC5+ 6 enc. layers 6 enc. layers 30.18 7.52 65.96
(d) R-50 + 6 enc. layers language adapter 31.87 1.50 68.72
(e) ViT-tiny language adapter 5.53 0.57 70.60

accuracy. Since the language branch of all the models follow
the same configuration, it is omitted in this table. For clearer
comparison, we split LViT into ViT and language adapters
in this table. These models are evaluated on the validation
set of RefCOCOg-google [18] dataset.

Model (a) is the preliminary baseline, i.e., TransVG. It
exploits ResNet-50 and 6 following Transformer encoder
layers for vision feature extraction and 6 stand-alone Trans-
former encoder layers for multi-modal fusion. In this model,
the vision branch has 30.18M parameters and the vision-
language fusion module has 7.52M parameters. It achieves
66.35% accuracy on the validation set of RefCOCOg-google.

Model (b) replaces ResNet-50 and following Transformer
encoder layers in model (a) with ViT-tiny, reducing the
parameters of vision feature extraction model to 5.53M.
The model size of (b) is more than 5 times smaller than
that of (a), while the accuracy of (a) achieves 67.24%, out-
performing (a) by 0.89%. Note that ViT-tiny’s capability
for image classification and object detection lags behind
ResNet-50, which shows the inconsistency between vision
perception and vision-language understanding. Besides, the
better performance of (b) demonstrates the advantage of
fully Transformer-based framework.

Model (c) leverages dilation convolution [82] in the last
stage of ResNet-50 backbone. By setting the dilation ratio
as 2, the downsampling rate of ResNet-50 reduces from 32
to 16. Therefore, the input vision tokens to the following
Transformer encoder layers are with the same number as
that of patches for a ViT backbone (i.e., 1600). As observed,
the performances drops to 65.96%, which demonstrates that
the performance difference between model (a) and model
(b) is not caused by token numbers, but due to the powerful
ViT backbone and fully Transformer-based architecture.

Model (d) uses the same structure as model (a) for vision
feature extraction, but capitalizes on language adapters for
multi-modal fusion. In this model, a language adapter is
added to each Transformer encoder layer, converting the
original 6 vision encoder layers for vision encoding to
language conditioned vision encoder layers. To match the
feature dimension of Transformers in model (a), in the
language adapter, the embedding dimension is set to 256,
and head number of cross-attention module is set to 8. The
performance of model (d) reaches 68.72%, outperforming
model (a) by 2.37% and involving significant less parame-
ters. This result demonstrates the significance of removing
stand-alone vision-language fusion blocks and instead en-
abling fusion in the vision encoder, which makes the model
easier for optimization.

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 11

TABLE 7: Performance comparisons of our preliminary version (TransVG) and advanced version (TransVG++) frameworks
with other state-of-the-art methods on RefCOCO [17], RefCOCO+ [17] and RefCOCOg [18] in terms of accuracy (%). For
comprehensive comparison, we evaluate the performance of TransVG with ResNet-50 and ResNet-101 as the backbone
network, and evaluate the performance of TransVG++ with ViT-tiny, ViT-small and ViT-base as the backbone network. We
add ”†” to Refformer [77] to indicate this method needs more annotations for training.

Models Backbone RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-g val-u test-u

Two-stage:
CMN [22] VGG16 - 71.03 65.77 - 54.32 47.76 57.47 - -
VC [23] VGG16 - 73.33 67.44 - 58.40 53.18 62.30 - -
ParalAttn [24] VGG16 - 75.31 65.52 - 61.34 50.86 58.03 - -
LGRANs [13] VGG16 - 76.60 66.40 - 64.00 53.40 61.78 - -
MAttNet [12] ResNet-101 76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27
DGA [14] ResNet-101 - 78.42 65.53 - 69.07 51.99 - - 63.28
RvG-Tree [16] ResNet-101 75.06 78.61 69.85 63.51 67.45 56.66 - 66.95 66.51
CMRE [33] ResNet-101 - 82.53 68.58 - 75.76 57.27 - - 67.38
NMTree [10] ResNet-101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44
CM-A-E [34] ResNet-101 78.35 83.14 71.32 68.09 73.65 58.03 - 67.99 68.67

One-stage:
SSG [5] DarkNet-53 - 76.51 67.50 - 62.14 49.27 47.47 58.80 -
FAOA [7] DarkNet-53 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36
RCCF [6] DLA-34 - 81.06 71.85 - 70.35 56.32 - - 65.73
ReSC-Large [11] DarkNet-53 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20

Transformer-based:
Refformer† [77] ResNet101 82.23 85.59 76.57 71.58 75.96 62.16 - 69.41 69.40
VGTR [81] ResNet101 79.30 82.16 74.38 64.40 70.85 55.84 64.05 66.83 67.28

Ours:
TransVG ResNet-50 80.49 83.28 75.24 66.39 70.55 57.66 66.35 67.93 67.44
TransVG ResNet-101 80.83 83.38 76.94 68.00 72.46 59.24 68.03 68.71 67.98
TransVG++ ViT-tiny 82.93 85.45 77.67 69.17 74.46 59.59 70.60 70.98 71.83
TransVG++ ViT-small 85.24 87.50 80.46 73.73 79.21 63.56 73.43 74.78 74.77
TransVG++ ViT-base 86.28 88.37 80.97 75.39 80.45 66.28 73.86 76.18 76.30

Model (e) is the default configuration of TransVG++ with
language adapter strategy. By removing the stand-alone V-L
fusion module composed of 6 Transformer encoder layers
and capitalizing on language adapters to fuse language ex-
pression information into the vision tokens at intermediate
layers of a ViT backbone network, (e) only introduces 0.57M
extra parameters. Besides, the computation costs of per-
forming multi-modal fusion is reduced from 7.38G FLOPs
in (b) to 0.92G FLOPs in (e). By making the best of fully
Transformer-based structure and the effective fusion-in-
vision-encoder strategy, model (e) boosts the performance
of baseline (a) from 66.35% to 70.60% accuracy.

4.4 Main Results and Comparisons

4.4.1 RefCOCO/RefCOCO+/RefCOCOg

Comparison with Two-stage and One-stage Methods. Ta-
ble 7 reports the performance of our proposed TransVG
(preliminary version) and TransVG++ (advanced version),
together with other competitive two-stage and one-stage
methods on the widely adopted RefCOCO, RefCOCO+
and RefCOCOg datasets. To make comprehensive compar-
ison, we present the results of TransVG with ResNet-50
and ResNet-101 backbone network, and that of TransVG++
with ViT-tiny, ViT-small and ViT-base. Here, our proposed
TransVG++ adopts language adapter strategy with the de-
fault MHCA setting to integrate language information into
vision tokens out of ViT’s intermediate layers. With ResNet-
101 backbone, our TransVG consistently outperforms all the
one-stage methods on all the subsets and splits. Besides,
TransVG outperforms the strongest two-stage competitor

(i.e., CM-A-E [34]) by a remarkable margin of 5.62% accuracy
on the testB set of RefCOCO, and achieves comparable
performance on other datasets.

In particular, we find the recurrent architecture in ReSC
shares the same spirit with our stacking architecture in
the visual-linguistic Transformer that fuses the multi-modal
context in multiple rounds. However, in ReSC, recurrent
learning is only performed to construct the language sub-
query, and this procedure is isolated from the sub-query at-
tended visual feature modulation. In contrast, our TransVG
embeds the visual and linguistic embedding into a common
semantic space by homogeneously performing intra- and
inter-modality context reasoning. The superiority of our
performance empirically demonstrates that the complicated
multi-modality fusion module can be replaced by a simple
stack of Transformer encoder layers.

Among all the methods, our advanced TransVG++ se-
ries achieve the best grounding accuracy on all the bench-
marks. Even with ViT-tiny backbone, which has only about
5.53M parameters, TransVG++ outperforms most of the
competitors by a remarkable margin. Such a result validates
the effectiveness of our proposed strategy to preserve the
power of ViT and fuse the language information into vision
features by injecting the language expression tokens into
the intermediate vision Transformer encoder layers. When
upgrading ViT-tiny to models with larger capacity, i.e., ViT-
small and ViT-base, we observe consistent performance
improvements, which shows the unified fully Transformer
design facilitates TransVG++ to benefit from the future ad-
vances in vision Transformers. Besides, the training process
of TransVG++ convergences much faster than TransVG. In

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 12

TABLE 8: Comparisons with state-of-the-art methods on the
test set of ReferItGame [19] and Flickr30K Entities [20]
datasets in terms of accuracy (%).

Models Backbone ReferItGame Flickr30K

Two-stage:
CMN [22] VGG16 28.33 -
VC [23] VGG16 31.13 -
MAttNet [12] ResNet-101 29.04 -
Similarity Net [2] ResNet-101 34.54 60.89
CITE [30] ResNet-101 35.07 61.33
PIRC [83] ResNet-101 59.13 72.83
DDPN [84] ResNet-101 63.00 73.30
LCMCG [78] ResNet-101 - 76.74

One-stage:
SSG [5] DarkNet-53 54.24 -
ZSGNet [25] ResNet-50 58.63 63.39
FAOA [7] DarkNet-53 60.67 68.71
RCCF [6] DLA-34 63.79 -
ReSC-Large [11] DarkNet-53 64.60 69.28

Ours:
TransVG ResNet-50 69.76 78.47
TransVG ResNet-101 70.73 79.10
TransVG++ ViT-tiny 70.85 78.19
TransVG++ ViT-small 73.55 80.36
TransVG++ ViT-base 74.70 81.49

TransVG, the core vision-language Transformer devised for
multi-modal fusion is trained from scratch, making it hard
to be optimized on the limited visual grounding data. On
the contrary, TransVG++ removes the stand-alone fusion
Transformer, avoiding this problem. Specifically, to achieve
the reported performance on the challenging RefCOCO+
dataset, the preliminary version model, i.e., TransVG, is
trained for 180 epochs, while we only optimize TransVG++
for 60 epochs on the same dataset.
Comparison Among Transformer-based Methods. In Ta-
ble 7, we also present a comparison between our framework
with other Transformer-based methods, i.e., Refformer [77]
and VGTR [81]. Compared with our TransVG, the follow-
ing work Refformer adds an query encoder and a visual
context decoder to the multi-modal fusion module, and
jointly optimizes the model with both annotations of refer-
ring expression comprehension (visual grounding) and that
of referring expression segmentation. Thanks to involving
extra annotations from referring expression segmentation
at the training stage, the problem of training the core core
multi-modal fusion module on limited data can be partially
alleviated. Alternatively, our TransVG++ waives the require-
ments of stand-alone fusion module, not only introducing
less parameters, but also addressing the aforementioned
problem in a simpler and more effective way. As shown
in the table, our TransVG++ outperforms Refformer on all
the subsets of the evaluated datasets.

4.4.2 ReferItGame
To further validate the merits of our proposed framework,
we also conduct experiments on ReferItGame dataset, and
report the performance on the test set. As shown in Ta-
ble 8, both the preliminary TransVG and the advanced
TransVG++ largely outperform previous two-stage and
one-stage methods. Specifically, with ResNet-50 backbone,
TransVG achieves 69.76% top-1 accuracy and outperforms
ZSGNet [25] with the same backbone network by 11.13%.

By replacing ResNet-50 with a stronger ResNet-101, the per-
formance boosts to 70.73%, which is 6.13% higher than the
strongest competitor ReSC-Large for one-stage methods and
7.73% higher than the strongest competitor DDPN for two-
stage methods, respectively. As the first fully-Transformer
model, TransVG++ capitalizing on ViT-base further outper-
forms TransVG with ResNet-101 by 3.97%, showing the
effectiveness of our proposed framework to integrate lan-
guage information into the vision encoders.

Among the competitors, MAttNet [12] is the most rep-
resentative method that devises multi-modal fusion mod-
ules with re-defined structures (i.e, modular attention net-
works to separately model subject, location and relation-
ship). When we compare our model with MAttNet in
Table 8 and Table 7, we can find that MAttNet shows
comparable results to our preliminary version on Ref-
COCO/RefCOCO+/RefCOCOg, but lags behind ours on
RefeItGame. The reason is that the pre-defined relationship
in multi-modal fusion modules makes it easy to over-
fit to specific datasets (e.g., with specific scenarios, query
lengths, and relationships). Our proposed framework effec-
tively avoids this problem by establishing intra-modality
and inter-modality correspondence with the flexible and
adaptive attention mechanism.

4.4.3 Flickr30K Entities
Table 8 also reports the performance of our framework on
the Flickr30K Entities test set. On this dataset, our TransVG
achieves 79.10% top-1 accuracy with a ResNet-101 back-
bone network. Our TransVG++ with a ViT-base backbone
network further boosts the accuracy to 81.49%, surpass-
ing the recently proposed Similarity Net [2], CITE [30],
DDPN [84], ZSGNet [25], FAOA [7], and ReSC-Large [11]
by a remarkable margin (i.e., 4.75% absolute improvement
over the previous state-of-the-art record).

4.5 Discussion on Model Size and Computation Costs

In this section, we perform analysis on model size and
computation costs of our TransVG++ framework. As shown
in Table 9, the parameters in language branch make up the
major part of TransVG++, i.e., 94.4% in TransVG++ (tiny),
81.6% in TransVG++ (small) and 53.3% in TransVG++ (base).
Even with the largest ViT-base backbone, the number of
parameters in vision branch (i.e., LViT) is less than that in
the language branch. Note that we use language Trans-
former with the same configuration in language branch
and regression MLP with the same hidden dimension in
prediction head, no matter what vision backbone is lever-
aged. The trivial differences in model size of these two
components are due to the different embedding dimension
for matching different ViT models. Compared with the size
of the whole model, the number of parameters introduced
by our proposed language adapter is negligible. Specifically,
in TransVG++ (tiny), the language adapter only introduces
0.57M parameters, which only accounts for 0.49% of the total
number of parameters. This comparison demonstrates the
parameter efficiency of our proposed method.

We count computation costs (FLOPs) of each compo-
nent in TransVG++ by setting input size of images as
640 × 640 and padded length of language expressions

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 13

(b) A woman see the
sea water in back
position.

(c) Mother sitting on
a chair watching her
daughter play video
games.

(d) The donut on the
left side.

(e) The middle
giraffe in a group of
three that is looking
away from the
camera.

(a) The red cow
standing up.

TransVGTransVG

TransVG++TransVG++

Fig. 5: Qualitative results of our proposed TransVG and
TransVG++ frameworks on the RefCOCOg test set (better
viewed in color). We show both the predicted bounding box
and the [REG] token’s attention over vision tokens from the
last fusion block of each framework.

as 40, and report the statistic results in Table 10. Al-
though the language branch accounts for the majority of
parameters in TransVG++, the computation costs of vision
branch (i.e., LViT) are much higher than that of language
branch. Remarkably, in TransVG++ (base), the computa-
tion of LViT makes up 97.7% of the total costs, which
is 42.47 times higher than that of the language branch.
Particularly, the computation costs introduced by our lan-
guage adapters are negligible compared with the whole
model. Take TransVG++ (tiny) as an example, the language
adapters introduce 0.92G FLOPs, which is only 4.99% of the
language conditioned vision branch’s computation costs,
and only 3.64% of the whole model’s computation costs.
This comparison verifies the computation cost efficiency of
our proposed method.

One common concerned problem for to-date deep mod-
els is how to make them applicable to devices with lim-
ited resource (e.g., smartphone). As the language branch
accounts for the major part of parameters, to slim our
TransVG++, one potential direction is to replace BERTBASE
with a smaller variety of BERT model (like TinyBERT [85]).
Then, we can make use of network distillation techniques to
decrease the performance gap between the slimmed model
and the original TransVG++ model. To reduce the compu-
tation costs, two widely adopted strategies can be directly
applied. One is the online token pruning technique [86],
and the other is the sub-window attention strategy [53],
[54]. The above mentioned approaches are devoted to help
improve model efficiency in each uni-modality. How to
take multi-modal inputs to devise techniques to address the
problem of model efficiency, including parameters efficiency

TABLE 9: Analysis on model size (number of parame-
ters) of each component in our TransVG++ framework.
TransVG++ (tiny/small/base) represent the models with ViT-
tiny/small/base vision backbone networks, respectively.

Models Vision Branch Language Branch Prediction Head

TransVG++ (tiny) 6.39M (5.5%) 109.63M (94.4%) 0.12M (0.1%)
TransVG++ (small) 24.57M (18.3%) 109.78M (81.6%) 0.17M (0.1%)
TransVG++ (base) 96.33M (46.6%) 110.07M (53.3%) 0.26M (0.1%)

TABLE 10: Analysis on computation costs of each com-
ponent in our TransVG++ framework in terms of FLOPs.
TransVG++ (tiny/small/base) represent the models with ViT-
tiny/small/base vision backbone networks, respectively. The
FLOPs is obtained by setting the input image size as 640×640
and the padded query length as 40.

Models Vision Branch Language Branch Prediction Head

TransVG++ (tiny) 18.46G (73.1%) 6.80G (26.9%) 232.46K (0.0%)
TransVG++ (small) 72.86G (91.5%) 6.80G (8.5%) 330.76K (0.0%)
TransVG++ (base) 289.46G (97.7%) 6.80G (2.3%) 527.36K (0.0%)

and computation efficiency, is still not fully explored in
the literature. We raise this potential direction as an open
problem, and leave it for future investigation.

4.6 Qualitative Result

We showcase the qualitative results of five examples from
the RefCOCOg [18] test set in Figure 5. We observe that both
our preliminary and advanced version framework can suc-
cessfully model queries with complicated relationships, e.g.,
“A woman see the sea water in back position” in language
expression (b). We depict both the predicted bounding box
(with rectangles with blue line) and the [REG] token’s at-
tention over visual tokens of the last block. The visualization
results empirically show that our frameworks generate in-
terpretable attentions on the referred objct that corresponds
to the object shape and location. Particularly, compared
with the preliminary version, TransVG++ can generate more
focus and clear attention, and thus can predict more correct
coordinates given the referring expressions, as shown in
example (c), (d) and (e).

5 CONCLUSION

In this paper, we present our TransVG (preliminary version)
and TransVG++ (advanced version) frameworks to address
the problem of visual grounding with Transformers. Instead
of leveraging complex manually-designed fusion modules,
TransVG uses a simple stack of Transformer encoders to
perform the multi-modal fusion and reasoning for the visual
grounding task. The advanced version TransVG++ takes
a step further, upgrading to a purely Transformer-based
architecture and removing the stand-alone fusion modules
by integrating language referring information to the ViT
backbone. Our TransVG++ serves as a simple, efficient, and
accurate framework for visual grounding, and exhibits huge
potential for future investigation.

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 14

REFERENCES

[1] V. K. Nagaraja, V. I. Morariu, and L. S. Davis, “Modeling con-
text between objects for referring expression understanding,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2016, pp. 792–807.

[2] L. Wang, Y. Li, J. Huang, and S. Lazebnik, “Learning two-branch
neural networks for image-text matching tasks,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), vol. 41, pp.
394–407, 2018.

[3] R. Hu, H. Xu, M. Rohrbach, J. Feng, K. Saenko, and T. Darrell,
“Natural language object retrieval,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 4555–4564.

[4] J. Li, Y. Wei, X. Liang, F. Zhao, J. Li, T. Xu, and J. Feng, “Deep
attribute-preserving metric learning for natural language object
retrieval,” in Proceedings of the 28th ACM International Conference
on Multimedia (ACM MM). ACM, 2017, pp. 181–189.

[5] X. Chen, L. Ma, J. Chen, Z. Jie, W. Liu, and J. Luo, “Real-time
referring expression comprehension by single-stage grounding
network,” arXiv preprint arXiv:1812.03426, 2018.

[6] Y. Liao, S. Liu, G. Li, F. Wang, Y. Chen, C. Qian, and B. Li, “A
real-time cross-modality correlation filtering method for referring
expression comprehension,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 10 880–
10 889.

[7] Z. Yang, B. Gong, L. Wang, W. Huang, D. Yu, and J. Luo, “A
fast and accurate one-stage approach to visual grounding,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2019, pp. 4683–4693.

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly
et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” in International Conference on Learning Repre-
sentations (ICLR), 2021.

[9] L. Wang, Y. Li, and S. Lazebnik, “Learning deep structure-
preserving image-text embeddings,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 5005–5013.

[10] D. Liu, H. Zhang, F. Wu, and Z.-J. Zha, “Learning to assemble
neural module tree networks for visual grounding,” in Proceedings
of the IEEE International Conference on Computer Vision (ICCV), 2019,
pp. 4673–4682.

[11] Z. Yang, T. Chen, L. Wang, and J. Luo, “Improving one-stage visual
grounding by recursive sub-query construction,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2020.

[12] L. Yu, Z. Lin, X. Shen, J. Yang, X. Lu, M. Bansal, and T. L. Berg,
“Mattnet: Modular attention network for referring expression
comprehension,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 1307–1315.

[13] P. Wang, Q. Wu, J. Cao, C. Shen, L. Gao, and A. v. d. Hengel,
“Neighbourhood watch: Referring expression comprehension via
language-guided graph attention networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 1960–1968.

[14] S. Yang, G. Li, and Y. Yu, “Dynamic graph attention for referring
expression comprehension,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2019, pp. 4644–4653.

[15] ——, “Graph-structured referring expression reasoning in the
wild,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020, pp. 9952–9961.

[16] R. Hong, D. Liu, X. Mo, X. He, and H. Zhang, “Learning to
compose and reason with language tree structures for visual
grounding,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2019.

[17] L. Yu, P. Poirson, S. Yang, A. C. Berg, and T. L. Berg, “Modeling
context in referring expressions,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2016, pp. 69–85.

[18] J. Mao, J. Huang, A. Toshev, O. Camburu, A. L. Yuille, and
K. Murphy, “Generation and comprehension of unambiguous ob-
ject descriptions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 11–20.

[19] S. Kazemzadeh, V. Ordonez, M. Matten, and T. Berg, “Referitgame:
Referring to objects in photographs of natural scenes,” in Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP),
2014.

[20] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hock-
enmaier, and S. Lazebnik, “Flickr30k entities: Collecting region-
to-phrase correspondences for richer image-to-sentence models,”
International Journal of Computer Vision (IJCV), vol. 123, no. 1, p. 74,
2017.

[21] J. Deng, Z. Yang, T. Chen, W. Zhou, and H. Li, “Transvg: End-
to-end visual grounding with transformers,” in Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2021, pp.
1769–1779.

[22] R. Hu, M. Rohrbach, J. Andreas, T. Darrell, and K. Saenko, “Mod-
eling relationships in referential expressions with compositional
modular networks,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 1115–1124.

[23] H. Zhang, Y. Niu, and S.-F. Chang, “Grounding referring expres-
sions in images by variational context,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 4158–4166.

[24] B. Zhuang, Q. Wu, C. Shen, I. Reid, and A. van den Hengel, “Par-
allel attention: A unified framework for visual object discovery
through dialogs and queries,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4252–
4261.

[25] A. Sadhu, K. Chen, and R. Nevatia, “Zero-shot grounding of
objects from natural language queries,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2019, pp. 4694–
4703.

[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014, pp. 580–587.

[27] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 1440–1448.

[28] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks.” IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
vol. 39, no. 6, pp. 1137–1149, 2016.

[29] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” International Journal of
Computer Vision (IJCV), vol. 104, pp. 154–171, 2013.

[30] B. A. Plummer, P. Kordas, M. H. Kiapour, S. Zheng, R. Piramuthu,
and S. Lazebnik, “Conditional image-text embedding networks,”
in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 249–264.

[31] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould,
and L. Zhang, “Bottom-up and top-down attention for image
captioning and visual question answering,” in Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR),
2018, pp. 6077–6086.

[32] Y. Zhang, L. Yuan, Y. Guo, Z. He, I.-A. Huang, and H. Lee,
“Discriminative bimodal networks for visual localization and de-
tection with natural language queries,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 557–566.

[33] S. Yang, G. Li, and Y. Yu, “Relationship-embedded representation
learning for grounding referring expressions,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), vol. 43, no. 8,
pp. 2765–2779, 2020.

[34] X. Liu, Z. Wang, J. Shao, X. Wang, and H. Li, “Improving re-
ferring expression grounding with cross-modal attention-guided
erasing,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 1950–1959.

[35] M. Bajaj, L. Wang, and L. Sigal, “G3raphground: Graph-based
language grounding,” in Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), 2019, pp. 4281–4290.

[36] K. Chen, R. Kovvuri, and R. Nevatia, “Query-guided regression
network with context policy for phrase grounding,” in Proceedings
of the IEEE International Conference on Computer Vision (ICCV), 2017,
pp. 824–832.

[37] P. Dogan, L. Sigal, and M. Gross, “Neural sequential phrase
grounding (seqground),” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4175–
4184.

[38] J. Redmon and A. Farhadi, “Yolov3: An incremental improve-
ment,” arXiv:1804.02767, 2018.

[39] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in Proceedings

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 15

of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2010, pp. 2544–2550.

[40] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), vol. 37, pp. 583–
596, 2014.

[41] S. Yang, G. Li, and Y. Yu, “Propagating over phrase relations
for one-stage visual grounding,” in Proceedings of the European
Conference on Computer Vision (ECCV). Springer, 2020, pp. 589–
605.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in Neural Information Processing Systems (NeurIPS), 2017.

[43] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in InterSpeech,
2010.

[44] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic
representations from tree-structured long short-term memory net-
works,” arXiv:1503.00075, 2015.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, pp. 1735–1780, 1997.

[46] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2020, pp. 213–229.

[47] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and
I. Sutskever, “Generative pretraining from pixels,” in International
Conference on Machine Learning (ICML), 2020, pp. 1691–1703.

[48] F. Yang, H. Yang, J. Fu, H. Lu, and B. Guo, “Learning texture
transformer network for image super-resolution,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 5791–5800.

[49] Y. Zeng, J. Fu, and H. Chao, “Learning joint spatial-temporal trans-
formations for video inpainting,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2020, pp. 528–543.

[50] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distil-
lation through attention,” in International Conference on Machine
Learning (ICML), 2021, pp. 10 347–10 357.

[51] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2021, pp. 10 012–10 022.

[52] D. Meng, X. Chen, Z. Fan, G. Zeng, H. Li, Y. Yuan, L. Sun,
and J. Wang, “Conditional detr for fast training convergence,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2021, pp. 3651–3660.

[53] W. Chen, X. Du, F. Yang, L. Beyer, X. Zhai, T.-Y. Lin, H. Chen, J. Li,
X. Song, Z. Wang et al., “A simple single-scale vision transformer
for object localization and instance segmentation,” arXiv preprint
arXiv:2112.09747, 2021.

[54] Y. Li, H. Mao, R. Girshick, and K. He, “Exploring plain vi-
sion transformer backbones for object detection,” arXiv preprint
arXiv:2203.16527, 2022.

[55] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv:1810.04805, 2018.

[56] Y.-C. Chen, L. Li, L. Yu, A. El Kholy, F. Ahmed, Z. Gan, Y. Cheng,
and J. Liu, “Uniter: Universal image-text representation learning,”
in Proceedings of the European Conference on Computer Vision (ECCV),
2020, pp. 104–120.

[57] X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang, L. Wang, H. Hu,
L. Dong, F. Wei et al., “Oscar: Object-semantics aligned pre-training
for vision-language tasks,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2020, pp. 121–137.

[58] J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pretraining task-
agnostic visiolinguistic representations for vision-and-language
tasks,” in Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[59] W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai, “Vl-bert: Pre-
training of generic visual-linguistic representations,” arXiv preprint
arXiv:1908.08530, 2019.

[60] Z. Yang, Y. Lu, J. Wang, X. Yin, D. Florencio, L. Wang, C. Zhang,
L. Zhang, and J. Luo, “Tap: Text-aware pre-training for text-vqa
and text-caption,” arXiv:2012.04638, 2020.

[61] Z. Huang, Z. Zeng, B. Liu, D. Fu, and J. Fu, “Pixel-bert: Aligning
image pixels with text by deep multi-modal transformers,” arXiv
preprint arXiv:2004.00849, 2020.

[62] W. Kim, B. Son, and I. Kim, “Vilt: Vision-and-language transformer
without convolution or region supervision,” in International Con-
ference on Machine Learning (ICML), 2021.

[63] J. Li, R. R. Selvaraju, A. D. Gotmare, S. Joty, C. Xiong, and S. Hoi,
“Align before fuse: Vision and language representation learning
with momentum distillation,” in Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[64] Z. Wang, J. Yu, A. W. Yu, Z. Dai, Y. Tsvetkov, and Y. Cao,
“Simvlm: Simple visual language model pretraining with weak
supervision,” in International Conference on Learning Representations
(ICLR), 2022.

[65] A. Kamath, M. Singh, Y. LeCun, G. Synnaeve, I. Misra, and
N. Carion, “Mdetr-modulated detection for end-to-end multi-
modal understanding,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2021, pp. 1780–1790.

[66] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv:1607.06450, 2016.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[68] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku,
and D. Tran, “Image transformer,” in International Conference on
Machine Learning (ICML), 2018, pp. 4055–4064.

[69] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser,
“Universal transformers,” in International Conference on Learning
Representations (ICLR), 2018.

[70] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” arXiv:1910.10683,
2019.

[71] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang,
“Gpt understands, too,” arXiv preprint arXiv:2103.10385, 2021.

[72] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Larous-
silhe, A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-
efficient transfer learning for nlp,” in International Conference on
Machine Learning (ICML), 2019, pp. 2790–2799.

[73] J. Pfeiffer, A. Kamath, A. Rücklé, K. Cho, and I. Gurevych,
“Adapterfusion: Non-destructive task composition for transfer
learning,” arXiv preprint arXiv:2005.00247, 2020.

[74] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and
S. Savarese, “Generalized intersection over union: A metric and
a loss for bounding box regression,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 658–666.

[75] H. J. Escalante, C. A. Hernández, J. A. Gonzalez, A. López-López,
M. Montes, E. F. Morales, L. E. Sucar, L. Villaseñor, and M. Grub-
inger, “The segmented and annotated iapr tc-12 benchmark,”
Computer Vision and Image Understanding (CVIU), vol. 114, pp. 419–
428, 2010.

[76] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image
descriptions to visual denotations: New similarity metrics for
semantic inference over event descriptions,” Annual Meeting of the
Association for Computational Linguistics (ACL), vol. 2, pp. 67–78,
2014.

[77] M. Li and L. Sigal, “Referring transformer: A one-step approach
to multi-task visual grounding,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 34, 2021.

[78] Y. Liu, B. Wan, X. Zhu, and X. He, “Learning cross-modal context
graph for visual grounding,” in Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), vol. 34, no. 07, 2020, pp. 11 645–
11 652.

[79] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects
in context,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2014, pp. 740–755.

[80] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 2961–2969.

[81] Y. Du, Z. Fu, Q. Liu, and Y. Wang, “Visual grounding with
transformers,” in Proceedings of the IEEE International Conference
on Multimedia & Expo (ICME), 2022.

[82] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Semantic image segmentation with deep convolutional
nets and fully connected crfs,” arXiv preprint arXiv:1412.7062, 2014.

IEEE TRANS. ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 16

[83] R. Kovvuri and R. Nevatia, “Pirc net: Using proposal indexing,
relationships and context for phrase grounding,” in Proceedings of
the Asia Conference on Computer Vision (ACCV), 2018, pp. 451–467.

[84] Z. Yu, J. Yu, C. Xiang, Z. Zhao, Q. Tian, and D. Tao, “Rethink-
ing diversified and discriminative proposal generation for visual
grounding,” in International Joint Conference on Artificial Intelligence
(IJCAI), 2018.

[85] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and
Q. Liu, “Tinybert: Distilling bert for natural language understand-
ing,” arXiv preprint arXiv:1909.10351, 2019.

[86] Y. Rao, W. Zhao, B. Liu, J. Lu, J. Zhou, and C.-J. Hsieh, “Dynam-
icvit: Efficient vision transformers with dynamic token sparsifica-
tion,” Advances in neural information processing systems (NeurIPS),
vol. 34, 2021.

