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TAKDE: Temporal Adaptive Kernel Density
Estimator for Real-Time Dynamic Density

Estimation
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Abstract—Real-time density estimation is ubiquitous in many applications, including computer vision and signal processing. Kernel
density estimation is arguably one of the most commonly used density estimation techniques, and the use of “sliding window” mechanism
adapts kernel density estimators to dynamic processes. In this paper, we derive the asymptotic mean integrated squared error (AMISE)
upper bound for the “sliding window” kernel density estimator. This upper bound provides a principled guide to devise a novel estimator,
which we name the temporal adaptive kernel density estimator (TAKDE). Compared to heuristic approaches for “sliding window” kernel
density estimator, TAKDE is theoretically optimal in terms of the worst-case AMISE. We provide numerical experiments using synthetic
and real-world datasets, showing that TAKDE outperforms other state-of-the-art dynamic density estimators (including those outside of
kernel family). In particular, TAKDE achieves a superior test log-likelihood with a smaller run-time.

Index Terms—Real-time Density Estimation, Kernel Density Estimation, Adaptive Estimation, Asymptotic Mean Integrated Squared Error.
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1 INTRODUCTION

THis work is concerned with estimation and tracking
of dynamic probability density functions in real time,

motivated by a nanoscience application. The introduction of
in situ transmission electron microscope (TEM) technology
[1] allows the growth of nanoparticles to be captured in
real time and has the potential to enable precise control in
nanoparticle self-assembly processes. Part of the underlying
nanoscience problem is framed into a learning problem
with the following characteristics [2]: (1) Estimation and
tracking of a time-varying probability density function that
reflects the collective changes across ensembles of the nano
objects. (2) It seems inevitable to adopt a non-parametric
approach in the density tracking, because there is no settled
parametric density function that can adequately describe
growth mechanisms in a multi-stage nanoparticle growth
process [1], [3]. (3) In order to be useful for in-process decision
making, the density estimation and tracking needs to be
conducted in real time. By "real-time" we mean that the
learning and computation speed ought to be fast enough
relative to the imaging rate (or the data arrival rate in
general), which is 15 frames per second (fps) in [1]. While
the research is motivated by the dynamic nano imaging, we
believe that the aforementioned characteristics are rather
common in many types of dynamic streaming data, brought
forth in various applications by fast-pace data collection
capability. The objective of this research is to present one
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competitive solution for dynamic density estimation and
tracking.

On the subject of density estimation, kernel density
estimator has had great success (in terms of accuracy) for
static datasets [4]. The direct adaptation of kernel density
estimator to dynamic density estimation [5] is infeasible as
the memory and computation cost constantly scale with the
total number of incoming data points. [6] further shows that
even with unlimited computation and storage resources, a
traditional kernel density estimator will only be a consistent
estimator for a few specific dynamic systems. [2] also shows
that traditional kernel density estimation falls short in
practice in dynamic density estimation due to limited data
availability.

To address the disadvantages of traditional kernel density
estimator in dynamic density estimation, most researchers
resort to the "sliding window" mechanism [7], [8], [9]. For
example, [7] proposed the M-kernel algorithm, where the
contribution of each data point in the "sliding window" is
approximated as an additional weight added to the kernel
density at the closest grid point. This approach manages
to keep the memory and computation costs within budget
despite the growth of the total number of data points.
However, with a poor choice of grid points, it can suffer
from either over-fitting or under-fitting. [8] employed cluster
kernel and resampling technique to improve the merger
performance. This approach uses the exponentially decaying
weight scheme to capture the dynamic of the true density.
[10] proposed the local region kernel density estimator
(LRKDE), where the kernel bandwidth varies in different
regions. The regions are divided such that the sum of data
variances in each region is minimized. LRKDE also uses a
"sliding window" to capture the dynamic of the true density.
[9] further improved upon the previous works by using
linear interpolation with kernel densities at grid points to
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approximate the kernel density estimator and then updating
the kernel densities at the grid points with data points within
a "sliding window".

The "sliding window" kernel density estimators do not
only use the data points at the current time stamp, and
they take into account older data points for inferring the
current distribution. Intuitively, this mechanism provides
two improvements that allow the kernel density estimator
to work well in dynamic density estimation. First, defining
a window size according to the computation and memory
limit of the learning machine can alleviate the scalability
issue of the kernel density estimator as old data points that
are irrelevant to the current distribution can be discarded.
Second, including older data points in the window can
help alleviate the low data volume issue for most streaming
data applications. However, to the best of our knowledge,
all "sliding window" kernel density estimators proposed
so far focus on modifying the kernel density estimator
itself, and less attention has been given to the "sliding
window" mechanism. As the only component that addresses
the "dynamic" part of dynamic density estimation, there
is no answer regarding how this mechanism affects the
performance of the estimation.

We note that there also exists another line of works that
model the dynamic density transition using a dynamical
system with a fixed number of parameters. One class of
frameworks is based on Bayesian learning [11], [12], [13],
which models the prior with an evolving Dirichlet process
called dependent Dirichlet process, where the dependence be-
tween a class of Dirichlet processes is defined by a covariate.
When using the covariate to describe time, the dependent
Dirichlet process can be used to model the evolution of
the dynamic distribution. The computation and memory
costs are also maintained at a constant level. Another
approach [2] couples B-spline with Kalman filter to capture
the density evolution with a state space model. It imposes
space continuity with B-spline smoothing and time continuity
with Kalman filter to develop a fast density estimator for real-
time process control. However, these estimators always need
a normalization process with numerical operations to return
a proper density function. For real-time density estimation
tasks that require a model update cycle in the order of sub-
second, these methods may not be ideal as we will later show
in simulations.

In this paper, we propose the temporal adaptive kernel
density estimator (TAKDE), a novel kernel density estimator
for real-time dynamic density estimation that is theoreti-
cally optimal in terms of the worst-case asymptotic mean
integrated squared error (AMISE). For the first time, we
derive the AMISE upper bound for the "sliding window"
kernel density estimator in a dynamic density estimation
context. The minimizer of the upper bound entails a novel
sequence for bandwidth selection and data weighting, which
forms the basis of TAKDE. We provide numerical exper-
iments on synthetic datasets to support our theoretical
claim, and we then use several real-world datasets to show
that TAKDE outperforms other state-of-the-art fast dynamic
density estimators, such as the B-spline Kalman Filter [2]
and KDEtrack [9] in terms of mean test log-likelihood metric.
Interestingly, TAKDE also dominates these algorithms in
terms of achieving a smaller run-time.

The organization of the paper is as follows. We present
in Section 2 the preliminaries, including definitions and
notations used throughout the paper. In Section 3, we
present the details for TAKDE design, which addresses
three important questions, i.e., the selection of window size,
bandwidth and the data weights. We provide in Section 4
numerical experiments with synthetic and real datasets to
demonstrate the performance of TAKDE. Finally, we draw
conclusions and discuss the potential and limitations of
TAKDE in Section 5.

2 PRELIMINARIES

2.1 Kernel Density Estimation: A Brief Overview
The kernel density estimator for a given set of data points
{xi}ni=1 is as follows

p̂(x ;σ) =
1

n

n∑
i=1

Kσ(x− xi), (1)

where Kσ(·) is the kernel function with the bandwidth
σ. Throughout this paper, K(·) denotes a standard ker-
nel function with a unit kernel bandwidth. We have that
Kσ(x) = 1

σK( xσ ). We further impose the following mild
assumptions on the kernel function K(·).

Assumption 1. [14] The bandwidth sequence σn (the subscript
n shows the dependence of σ to the number of data points) has the
following properties

lim
n→∞

σn = 0

lim
n→∞

nσn = ∞,
(2)

which implies that the bandwidth σn decays slower than n−1 and
converges to 0. The standard kernel function K(·) is a bounded,
symmetric probability density function with a zero first moment
and a finite second moment. That is, the following properties hold∫

K(x)dx = 1∫
xK(x)dx = 0∫
x2K(x)dx < ∞.

(3)

The convergence to 0 for bandwidth is rather intuitive,
in that when we have infinitely many data points at hand,
our estimator can be as flexible as possible without having
to be concerned about over-fitting. It is also easy to verify
that many commonly used kernels (e.g., the Gaussian kernel
K(x) = 1√

2π
e−x2

) satisfy (3).

2.2 Problem Formulation
In dynamic estimation, the density evolves over time. The
evolution might be continuous in nature, but we only observe
samples from time to time. Here, we consider the case where
the streaming data comes in batches. We first define the
dynamic streaming dataset, where we observe one new
batch of data points x(t) = {x(t)

i ∈ R}nt
i=1 at a new time

stamp t. This data structure applies to most real-world
streaming datasets. An important example is estimating
density information in video datasets [2] like the dynamic
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nano imaging problem mentioned in the introduction. An
image processing tool extracts the sizes of nanoparticles as
the sample points for estimating the normalized particle size
distribution (NSPD), which is an indicator to anticipate and
detect phase changes in the nanoparticle growth. This data
structure further applies to many time-series datasets [15].
For the cases where streaming data comes in on a per point
basis, one can convert those types of data into our defined
structure through combining consecutive data points into
batches.

We assume data points x(t) are generated independently
from pt(x), the true density at time stamp t. Also, the data
points x(t) and x(t′) in different time stamps (t ̸= t′) are
independent from each other. We impose the following
assumption on the true density function.

Assumption 2. The true density function pt(x) at any time
stamp t is twice differentiable, and its second derivative p′′t (x) is
continuous and square integrable.

Assumption 2 is commonly used for continuous density
functions [14]. The square integrable condition is necessary
as the integrated second order Taylor expansion appears later
in the error bound derivation.

Following (1), we write the traditional kernel density
estimator of the density pt(x) as follows

p̂t(x ;σ) =
1

nt

nt∑
i=1

Kσ(x− x
(t)
i ). (4)

The "sliding window" kernel density estimator, popularly
used in dynamic density estimation [7], [8], [9], takes the
following form

ĥt(x) =
∑
j∈Tt

α
(t)
j p̂j(x ;σ

(t)
j ), (5)

where Tt represents the set of batches within the moving
window (memory), p̂j is defined following (4), and α

(t)
j is a

non-negative weight sequence that satisfies
∑

j∈Tt
α
(t)
j = 1,

to ensure that the output is a proper density function. The
window size is Tt, i.e. |Tt| = Tt, so that Tt can be naturally
written as Tt = {t− Tt + 1, . . . , t}. The superscripts (t) on α
and σ are omitted hereafter for the presentation clarity.

In order to develop a fast real-time estimator, we need to
address the following three problems.

Problem 1. How do we choose the set Tt to have a good enough
"memory" for estimating the density at time t while maintaining
real-time processing?

Problem 2. How do we design the weight sequence in (5)?

Problem 3. How do we devise a kernel bandwidth selector in (4)?

3 ALGORITHM DESIGN

In this section, we derive the AMISE upper bound for the
general "sliding window" kernel density estimator in (5).
We then present a novel weight and bandwidth sequence,
entailed by the upper bound minimizer (Problems 2-3). We
use these sequences to design the TAKDE algorithm.

3.1 Asymptotic Mean Integrated Squared Error Upper
Bound
AMISE is a popular metric used to theoretically evaluate
the performance of a density estimator [14]. For a given
density estimator ĥ(x) of a density function p(x), the mean
integrated squared error (MISE) is defined as follows

MISE(ĥ, p) ≜
∫

E[(ĥ(x)− p(x))2]dx

=

∫
MSE(ĥ, p)dx,

(6)

where the expectation is taken with respect to the distri-
butions of data points involved in estimator ĥ. MISE is the
integration of the mean squared error of the density estimator
over the support. [14] shows that the asymptotic expression
(with respect to the sample size n) of the MISE for a standard
kernel density estimator p̂(x ;σn) with kernel bandwidth σn

is
AMISE(p̂, p) =

R(K)

nσn
+

1

4
σ4
nµ

2
2(K)R(p′′), (7)

where
R(f) =

∫
f2(x)dx,

µ2(f) =

∫
x2f(x)dx.

(8)

We can see that the conditions in (2) guarantee that AMISE
converges to zero as n → ∞. The MISE and AMISE have
been popular measures for characterizing non-parametric
density estimators, including binned density estimator [16],
kernel density estimator [14], wavelet density estimator [17],
and diffusion estimator with a static limit [18]. The exact
expression for kernel density estimator can also be derived
in the case of specific distributions like Gaussian distribution
[14]. However, all these derivations assume that data points
in the non-parametric density estimator are samples from a
static target density function.

In the following theorem, we derive the theoretical upper
bound of AMISE for the "sliding window" kernel density
estimator given in (5) in the context of dynamic density
estimation. To the best of our knowledge, this is the first
AMISE bound for "sliding window" kernel density estimator
in estimating the evolving true density pt(x).

Theorem 1. Let Assumptions 1-2 hold. The AMISE of a "sliding
window" kernel density estimator ĥt at time t with window size
|Tt| = Tt, weight sequence {αi}Tt

i=1, and bandwidth sequence
{σi}Tt

i=1 has the following upper bound

AMISE(ĥt, pt) ≤
∑
i∈Tt

α2
i

niσi
R(K)

+ (2Tt − 1)
∑
i∈Tt

α2
iR(b

(t)
i )

+
2Tt − 1

4
µ2
2(K)

∑
i∈Tt

α2
iσ

4
iR(p′′i ),

(9)

where b
(j)
i (x) defines the difference between density functions

pi(x), pj(x)(j ≥ i)

b
(j)
i (x) ≜ pi(x)− pj(x). (10)
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Proof. We omit the superscript (t) for weight α and band-
width σ for the presentation clarity. First, recall the definition
of ĥt(x) from (4)-(5), where we have

ĥt(x) =
∑
i∈Tt

αip̂i(x ;σi) =
∑
i∈Tt

αi

ni

ni∑
j=1

Kσi(x− x
(i)
j ). (11)

The bias of the estimator can be written as

B(ĥt(x)) ≜ E[ĥt(x)− pt(x)]

= E
[ ∑
i∈Tt

αi

ni

ni∑
j=1

Kσi
(x− x

(i)
j )− pt(x)

]
=

∑
i∈Tt

αi

∫
Kσi(x− y)pi(y)dy − pt(x)

=
∑
i∈Tt

αi(Kσi
∗ pi)(x)− pt(x),

(12)

where ∗ denotes the convolution, and pi(·) is the true density
of batch i.

Using V (·) to denote the variance operator, the estimator
variance can be calculated as

V (ĥt(x)) =
∑
i∈Tt

α2
iV (p̂i(x ;σi)), (13)

due to the independence of batches, where

V (p̂i(x ;σi)) =
1

ni

(
(K2

σi
∗ pi)(x)− (Kσi

∗ pi)2(x)
)
. (14)

The decomposition of the MSE of the "sliding window"
estimator ĥt is as follows

MSE(ĥt, pt) = E[(ĥt(x)− pt(x))
2]

= V (ĥt(x)) +B2(ĥt(x)).
(15)

Integrating above over x, we have

MISE(ĥt, pt) =

∫
MSE(ĥt, pt)dx. (16)

Given the expressions of bias (12) and variance (14), to calcu-
late AMISE, we need to derive the Taylor approximations of
the following quantities

(K2
σi

∗ pi)(x)
(Kσi

∗ pi)(x).
(17)

First, we have

(K2
σi

∗ pi)(x) =
∫

K2
σi
(x− y)pi(y)dy

=
1

σi

∫
K2(z)pi(x− σiz)dz

=
pi(x)

σi
R(K) + o(1),

(18)

where we note that pi(x−σiz) = pi(x)+o(1) holds, because
σi → 0 as ni → ∞. We also have that

(Kσi
∗ pi)(x) =

∫
Kσi

(x− y)pi(y)dy

=

∫
K(z)pi(x− σiz)dz

=

∫
K(z)(pi(x)− σizp

′
i(x)

+
1

2
σ2
i z

2p′′i (x) + o(σ2
i ))dz

= pi(x) +
1

2
σ2
i p

′′
i (x)µ2(K) + o(σ2

i ).

(19)

where we used the assumptions that
∫
K(z)dz = 1 and∫

zK(z)dz = 0. Given the above asymptotic characterization
of the quantities, we can rewrite the bias term (12) as

B(ĥt(x)) =
∑
i∈Tt

(
αib

(t)
i (x) +

1

2
αiσ

2
i p

′′
i (x)µ2(K) + o(σ2

i )
)
.

(20)
We can also write the variance (14) as

V (ĥt(x)) =
∑
i∈Tt

( α2
i

niσi
R(K)pi(x) + o(

1

niσi
)
)
. (21)

We can now simplify the MSE (15) as

MSE(ĥt, pt) =
∑
i∈Tt

( α2
i

niσi
R(K)pi(x) + o(

1

niσi
)
)

+

( ∑
i∈Tt

αib
(t)
i (x) +

∑
i∈Tt

1

2
σ2
i αip

′′
i (x)µ2(K) +

∑
i∈Tt

o(σ2
i )

)2

.

(22)
Disregarding the terms that converge to zero and taking
integral over x, we can derive an upper bound for AMISE as

AMISE(ĥt, pt) ≤
∑
i∈Tt

α2
i

niσi
R(K)

+ (2|Tt| − 1)
∑
i∈Tt

α2
iR(b

(t)
i )

+
2|Tt| − 1

4
µ2
2(K)

∑
i∈Tt

α2
iσ

4
iR(p′′i ),

(23)

where the last two lines follow from the Cauchy-Schwarz
inequality for the 2|Tt| − 1 terms in the square. Note that
b
(t)
t = 0 by definition. Observing that |Tt| = Tt completes

the proof of Theorem 1.

Let us call the three lines in the right hand side of (9) as
term 1, term 2, and term 3, respectively. Term 1 is due to
the variance of the estimator, and terms 2 and 3 are the
bias terms. Terms 1 and 3 are asymptotically vanishing
in the sense that when ni → ∞, they both go to zero
per condition (2). We can make several observations about
the upper bound expression (9). First, the dynamic density
estimation with "sliding window" kernel density estimators
will have a non-vanishing error term 2, induced by keeping
densities of various time stamps in the memory. We will later
see in Corollary 3 that under optimal weight design, this
term can also go to zero when ni → ∞. Second, when the
distribution evolution is mild (i.e., R(b

(t)
i ) is small), there can

be a theoretical advantage in including previous samples in
the memory to reduce the variance term 1. Later simulations
will show this advantage can be significant in practice. Third,
when the previous distributions are very different from the
current distribution, it is desirable to only keep one batch
(the current batch) in the memory, i.e., Tt = {t} and Tt = 1.
In this case, R(b

(t)
t ) = 0 by definition (10) and the upper

bound (9) exactly recovers the AMISE for the traditional
kernel density estimator in (7).

3.2 Window Generator
In the existing literature, kernel density estimators are
modified using arbitrary "sliding windows" to adapt to the
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dynamic estimation. This approach performs better than the
traditional kernel density estimator, as a static kernel density
estimator works poorly for dynamic density estimation
[2]. However, this heuristic approach lacks a theoretical
justification. In fact, based on the theoretical upper bound
of AMISE (9), it is intuitive that the window size should
depend on the density evolution to keep the AMISE small.
For example, when the true density changes drastically, it is
ideal to decrease the window size to adapt to the fast density
change. Therefore, we propose a histogram-based window
size generator that will allow the kernel density estimator to
be adaptive to dynamic changes.

We observe in (9) that compared to the static AMISE, the
worst-case AMISE for dynamic density estimation depends
on one more quantity, namely the difference function b

(t)
i . In

principle, we can use this quantity as an indicator to adapt
the dynamic kernel density estimator to the changes in the
underlying density function.

We define a cutoff threshold to determine the number of
batches (sliding window size) to be kept in the memory of the
dynamic kernel density estimator. In doing so, we first define
the temporal adaptive (TA) distance between two density
functions. Here, we use histograms to approximate the
density functions as true density functions are unavailable.
We denote the number of bins in the histograms by m, set
using the Sturges’ rule [19]

m = 1 + 3.322 log n, (24)

where n is the smallest batch size among all batches in the
current memory. Sturges’ rule is a widely adopted, simple
binning algorithm in the literature. It is derived for normally
distributed data. The user can choose other binning rules,
such as Doane’s rule [20], Scott’s rule [21], or Freedman and
Diaconis’s rule [22] as appropriate. However, we note that all
existing binning guidelines provide bins similar to Sturges’
rule under low data volume (less than 200) [4].

The temporal adaptive distance between two histograms
histi and histj is expressed as

∥histi, histj∥TA ≜ ∥yi − yj∥22, (25)

where ∥ · ∥2 denotes the ℓ2 norm and yi is the probability
mass vector on bins in batch i, i.e., ∥yi∥1 = 1. This TA
distance serves as a measure proportional to R̂(b

(t)
i ), the

approximation of R(b
(t)
i ) in (9), i.e.,

R̂(b
(t)
i ) ∝ ∥histi, histt∥TA. (26)

To control the bias, one can set a cutoff threshold s for the
TA distance. Upon receiving batch t, the number of batches
to be kept in the memory can be set as Tt that satisfies the
following two inequalities

t−1∑
j=t−Tt

∥histj , histt∥TA > s,
t−1∑

j=t−Tt+1

∥histj , histt∥TA ≤ s.

(27)
Note that from a practical standpoint, the cutoff threshold
s should not be the only criterion for window selection,
because when the true density goes through a long static
period, it is possible that (27) will induce a large memory
window that exceeds the computational limit for real-time
density estimation. Therefore, there should exist a hard

cap w to account for computational limits. Combining both
considerations, the actual number of batches in the memory
should be set as min(Tt, w).

Remark 1. Note that the main purpose of cutoff value s is to
reduce the window size (and computation cost) when dealing
with rapidly changing densities. The bias-variance decomposition
suggests that including more batches in TAKDE can induce a
lower variance (first term in equation (21)) at the cost of increasing
the bias (first term in equation (20)). Moreover, we will show in
Corollary 3 that TAKDE is consistent regardless of window size
Tt. Later, synthetic data simulation also suggests the empirical
performance difference is not too sensitive to the cutoff value, so
one can heuristically choose it in favor of fast processing rather
than through intensive cross-validation.

3.3 Bandwidth and Weight Generator
The dynamic nature of the underlying true density makes
it practically impossible to understand the actual difference
functions and the second derivative of the true densities.
However, using the AMISE upper bound in Theorem 1, we
can find theoretically optimal sequences for kernel band-
widths and weights, which in turn helps in the algorithm
design. In view of Theorem 1, we present the following
corollary.

Corollary 2. The optimal sequences of weights and bandwidths
that minimize the AMISE upper bound of the dynamic kernel
density estimator are as follows

σi =

[
R(K)

niµ2
2(K)R(p′′i )(2Tt − 1)

] 1
5

,

αi =
1/Si∑

j∈Tt
1/Sj

,

(28)

where the sequence Si (with superscript (t) omitted) is such that

Si =
5R(K)

4niσi
+ (2Tt − 1)R(b

(t)
i ). (29)

Proof. Equation (23) shows that the upper bound on AMISE
depends on the weight sequence αi and the bandwidth
sequence σi. Therefore, we can minimize the upper bound
with respect to both of these parameters.

Differentiating with respect to σi yields the following
(optimal) sequence

σi =

[
R(K)

niµ2
2(K)R(p′′i )(2Tt − 1)

] 1
5

. (30)

We can find the optimal sequence of weights by simply
solving the minimization of Lagrangian of (23) with the
constraint

∑
αi = 1 and incorporating (30). This will result

in the following expression for the sequence αi

Si =
5R(K)

4niσi
+ (2Tt − 1)R(b

(t)
i )

αi =
1/Si∑

j∈Tt
1/Sj

,
(31)

which completes the proof of Corollary 2.

Remark 2. Corollary 2 provides some insights concerning the
bandwidth and weight choices.
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Generator Width Generator Weight 
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…… ……⍺1 ⍺i ⍺T

R(bi)

Incoming Batch

Fig. 1. TAKDE framework.

1) The bandwidth sequence suggests that we should make
the kernel more flexible as more batches of data points are
included in the estimation. This aligns with the intuition
from the traditional kernel density estimator, where the
estimator can be more flexible with more sample points.

2) The weight sequence provides the following insights. First,
when the number of data points at a particular batch is
considerably large, we should assign more weight to that
batch with the hope of extracting more information to
infer the current density. Second, the R(b

(t)
i ) quantity

provides a countermeasure to prevent us from assigning a
large weight to data points coming from a very different
distribution compared to the current batch. Third, we
should assign more weights to the batches with larger
kernel bandwidths, which means we are favoring smoother
estimators in principle.

Corollary 3. Under Assumptions 1-2, the optimal weight se-
quence and kernel bandwidth sequence in Corollary 2 will ensure
that for any ϵ > 0,

Pr(|ĥt − pt|2 > ϵ) → 0, (32)

as ni → ∞.

Proof. First, notice that following Corollary 2, we have σi →
0 and αi → 0 for every batch except the last batch where
αt → 1 (since R(b

(t)
t ) = 0) as ni → ∞. It is easy to verify

that E[|ĥt − pt|2] → 0 under this bandwidth and weight
sequence, based on the expression of the mean squared error
in (22). Then, by Markov inequality, we have

Pr(|ĥt − pt|2 > ϵ) ≤ E[|ĥt − pt|2]
ϵ

→ 0. (33)

The proof is complete.

Corollary 3 shows that TAKDE is weakly consistent as
ni → ∞ regardless of Tt. This is rather intuitive as TAKDE
can precisely recover the traditional KDE in this extreme case.

3.4 Kernel Bandwidth Selector
The bandwidth sequence in Corollary 2 presents a principle
for choosing the kernel bandwidth. However, the quantity
R(p′′i ) is unknown in practice, and we still need to find
a kernel bandwidth selector to calculate the actual kernel
bandwidth values. There exist extensive studies for the choice
of bandwidth in traditional kernel density estimation. One
popular choice is the cross-validation approach [23], [24], [25],
[26]. However, the computational cost of cross-validation
prohibits its application in high-frequency density estimation
as every new batch of data points needs to be cross-validated
for a new kernel bandwidth.

Minimizing AMISE in (7) reveals a simple expression for
the optimal kernel bandwidth. [14] characterized the optimal
kernel bandwidth based on (7) as follows

σAMISE =

[
R(K)

nµ2
2(K)R(p′′)

] 1
5

. (34)

We notice that (34) coincides with the optimal kernel band-
width sequence we derived in Corollary 2 except for a factor
of (2Tt − 1)1/5. This relationship allows us to directly adopt
existing kernel bandwidth selection methods for optimal
AMISE.

Expression (34) is still dependent on the unknown R(p′′),
but there exist a number of studies that explore different
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methods for estimating R(p′′). For example, [27] approxi-
mates the AMISE objective function assuming the density
is Poisson and then proceeds to find the minimizer as the
optimal kernel bandwidth. However, this method is not
applicable in real-time dynamic density estimation as the
optimization process is expensive. [9] provides an iterative
update framework by estimating R(p′′) through R(p̂′′),
which is the numerical square integration of the second
derivative of the density estimator. This approach does not
impose any strict assumption on the underlying distribution,
which offers a robust estimation of R(p′′). However, the
iterative algorithm still requires numerical operations like
numerical derivatives and numerical integration, which may
not be efficient enough for real-time density estimation.

In TAKDE, we adopt the normal rule introduced in [28].
Assuming the true density is Gaussian, the optimal kernel
bandwidth can be approximated as follows

σAMISE ≈ cσ̂n− 1
5 , (35)

where c is the smoothness parameter depending on the kernel
function and the underlying true density, and σ̂ is the sample
standard deviation of the data points. The normal rule is
particularly appealing for the design of TAKDE due to its
simple structure, which allows a direct plug-in of smoothness
parameter c and enables fast real-time processing.

There are two commonly used recommendations for the
smoothness parameter c in (35). The first choice given in [14]
is as follows

σAMISE ≈
[
8π1/2R(K)

3µ2
2(K)n

] 1
5

σ̂, (36)

where σ̂ is the estimated standard deviation assuming the
true density is normal. The smoothness parameter c of
Gaussian Kernel in this setting is (32/3)1/5.

The second recommendation [29] comes from the up-
per bound of the AMISE-optimal kernel bandwidth using
beta(4, 4) or triweight density function, that is,

σAMISE ≤
[
243R(K)

35µ2
2(K)n

] 1
5

σ̂. (44)

This bandwidth provides an oversmoothed density estimator
that might not perform well with respect to metrics like log-
likelihood or MSE. However, an oversmoothed density esti-
mator is often preferred for real-world applications, because
the results are visually plausible. In this case, the smoothness
parameter c of Gaussian Kernel is (972/35

√
π)1/5.

Remark 3. The only reason for adopting the normal rule in
TAKDE is its computation simplicity. We must note that the
weight sequence given in Corollary 2 is compatible with any
existing R(p′′) approximation method.

3.5 Algorithm Design
In this subsection, we present the final form of TAKDE.
The algorithm requires as input a cutoff value s, a hard
cap w, a smoothness parameter c, and a kernel function
K. Upon receiving the batch of data points at time t, the
window generator decides the set of batches Tt to be used
for the density estimation. The window generator will also
return the sequence of approximated R̂(b

(t)
j ) as in (26) for all

Algorithm 1 Temporal Adaptive Kernel Density Estimator
(TAKDE)
Input: Kernel function K(·), cutoff value s, hard cap w,
smoothness parameter c.
For t = 1, 2, . . .

1: Receive new batch of data x(t) at time t.
2: Window Generator: Generate and record histt and

forget histt−w. Set Distance = 0, Tt = 0, Tt = ∅.
While Tt < w:

Distance = Distance+ ∥histt, histt−Tt∥TA (37)

Break If:
Distance > s, (38)

Else:
Tt = Tt ∪ x(t−Tt) Tt = Tt + 1. (39)

Return: Tt and Tt and the sequence {R̂(b
(t)
j )}j∈Tt where

R̂(b
(t)
j ) = m∥histj , histt∥TA. (40)

3: Bandwidth Generator: Receive the batch set Tt.
For j ∈ {t− Tt + 1, . . . , t}:

σj =
cσ̂j

((2Tt − 1)nj)1/5
, (41)

where c is defined by the kernel bandwidth selector,
nj = |x(j)|, and σ̂j is the sample standard deviation of
data in batch j.
Return: Bandwidth sequence σj .

4: Weight Generator: Receive bandwidth sequence σj and
the approximated R̂(b

(t)
j ) sequence. Let

αj =
1/Sj∑

i∈Tt
1/Si

,

Sj =
5R(K)

4njσj
+ (2Tt − 1)R̂(b

(t)
j ).

(42)

Return: Weight sequence αj .
Output: The Temporal Adaptive Kernel Density Estimator
given as

ĥt(x) =
∑
j∈Tt

αj p̂j(x ;σj),

p̂j(x ;σj) =
1

nj

nj∑
i=1

Kσj
(x− x

(j)
i ).

(43)

batches in the memory. Then, all batches within the memory
will be fed into the bandwidth generator to generate the
sequence of kernel bandwidths σj as in Corollary 2. Then,
the approximated R̂(b

(t)
j ) and bandwidth sequence σj will

be fed into the weight generator to generate the sequence αj

as in Corollary 2. Finally, all parameters will be put together
to generate a proper kernel density estimator for estimating
the density at time t. Fig. 1 illustrates the workflow of
TAKDE. The algorithmic presentation of TAKDE is outlined
in Algorithm 1.
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4 EXPERIMENT

We now present numerical experiments to verify the effi-
ciency of TAKDE both on synthetic data and real-world data.
All experimental results established in this section are based
on Gaussian kernel function.

4.1 Algorithm Design Evaluation

Before we compare TAKDE with other established bench-
mark algorithms, we evaluate the design of TAKDE on
synthetic data. The specific question that we aim to address
is that whether our proposed weighting scheme, derived
from the AMISE upper bound, outperforms other heuristic
weight sequences such as uniform (or average) weighting
and exponentially decaying weighting.

4.1.1 Synthetic Dataset Design

We create a synthetic dataset to test the performance of
TAKDE in dynamic density estimation. We design the
synthetic dataset following some general principles.

1) The true densities involved in the generation of
the dataset need to have analytical forms and have
already been established in the literature.

2) Each batch of data points has a size in the range of
[5, 20], so that the batches do not differ too drastically
in terms of the data amount.

3) The number of testing points for all batches should
be the same for comparison purposes.

4) The dynamics of the underlying densities varies for
different batches.

Following the above principles, we adopt the 15 Gaussian
mixture densities, recommended by [30], as the baseline
densities for our synthetic dataset design. The 15 densities
are shown in Fig. 2.

To design the true density, we first consider 14 sections,
where each section consists of multiple batches. Let us denote
the 15 Gaussian mixtures with g1(x), . . . , g15(x) and repre-
sent the 14 sections with S1, . . . ,S14, where |S1|+ . . .+ |S14|
equals to the total number of batches in the dataset. To be
specific, section Si has |Si| consecutive batches of data points
in it, and the first batch of data in section Si+1 will start
after the last batch in section Si. For batch i in section j,
where 1 ≤ i ≤ |Sj |, the density function h

(j)
i (x) is defined

as follows

h
(j)
i (x) =

|Sj | − i+ 1

|Sj |
gj(x) +

i− 1

|Sj |
gj+1(x). (45)

To be consistent with our previous notation, h(j)
i (x) = ptij (x)

for tij = |S1|+. . .+|Sj−1|+i. Notice that in section j, the j-th
Gaussian mixture linearly transforms to the j+1-th Gaussian
mixture. After we move on to section j+1, none of previous
Gaussian mixtures g1(x), . . . , gj(x) will appear in the section.
Given the density of batch i in section j, we sample a random
number between 5 to 20 as the number of training points
and 500 for testing points to perform the comparison. To
account for the randomness in partitioning the batches into
14 sections and the randomness in samples, we generate 300
synthetic datasets for Monte-Carlo simulations.

4.1.2 TAKDE Evaluation
We now compare the weight generator in TAKDE with
two heuristic approaches in the literature. One approach
is to assign uniform weights to the batches, assuming
older data points are of the same importance as the new
data points, and the other one is to assign exponentially
decaying weights, assuming the new points are much more
important [8], [9]. To ensure a fair comparison, we only
change the weight generator of TAKDE to uniform and
exponential weighting, and we keep the other components
of the algorithm unchanged. The uniform weight sequence
is set as follows

αj =
1

Tt
,∀j ∈ {t− Tt + 1, . . . , t}. (46)

The exponential weight sequence is set as follows

αj = (1− e)et−j ,∀j ∈ {t− Tt + 2, . . . , t}, (47)

and αt−Tt+1 = eTt−1, where e is the decay ratio. We compare
the above to αj corresponding to the expression in (42). In
our simulation, e = 0.9 in general yields the best result under
different settings; therefore, the decay ratio for exponential
weight sequence is set to e = 0.9.

Our comparison is performed under several kernel
bandwidth selectors, including the normal selector and
oversmooth selector mentioned in Section 3.4 and under
various cutoff values.

First, we consider normal bandwidth selector (36) and
oversmooth bandwidth selector (44). For each bandwidth
selector, we conduct the comparison with datasets having
from 100 to 500 batches of data to reflect different underlying
dynamics. Notice that for the data with 100 batches, the
dynamic change is more drastic than that of the data with
500 batches.

The simulation result is shown in Fig. 3. We can observe
that TAKDE with AMISE-based weight sequence dominates
the uniform and exponential weight sequences in terms of
the test log-likelihood. We also see that when using the
heuristic weight sequences, increasing the memory (i.e.,
larger cutoff value) mostly exacerbates the density estima-
tion performance. The results show that the performance
difference between TAKDE and other two methods is larger
when the total number of batches is smaller. This suggests
that TAKDE with AMISE-based weight sequence is better
at adapting to more drastic dynamic changes. The smaller
differences in 500-batch simulations are consistent with our
theoretical results, where the weighting sequence in Corollary
2 gets closer to uniform weighting as R(b

(t)
i ) converges to

0, equivalent to a static density estimation. We observe that
changes in the cutoff value do not have a significant effect on
TAKDE performance compared to others. This verifies our
discussion in Remark 1.

Second, we conduct the comparison using a synthetic
dataset with 100 batches of data for different bandwidth
selectors, i.e., varying the smoothness parameter c in (35).
The simulation results are shown in Fig. 4. Again, we
observe the same performance trend for the algorithms.
These simulations empirically verify that the performance
advantage of our proposed weight sequence against the
heuristic weight sequences is robust to different kernel
bandwidths and different window sizes.
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Gaussian Skewed Unimodal Strongly Skewed Kurtotic Unimodal Outlier

Bimodal Separated Bimodal Skewed Bimodal Trimodal Claw

Double Claw Asymmetric Claw Asymmetric Double Claw Smooth Comb Discrete Comb

Fig. 2. The 15 Gaussian mixture densities used in the synthetic dataset design.

Fig. 3. The test log-likelihood comparison between TAKDE vs. the heuristic approaches. The x-axis represents the cutoff value and the y-
axis represents the test log-likelihood. The first row shows the result under normal bandwidth selector and the second row shows the result
under oversmooth bandwidth selector. In each row, the plots from left to right represent the simulation results using synthetic datasets with
100, 200, 300, 400, 500 batches of data.

4.2 Comparison with Benchmark Algorithms

Next, we compare TAKDE with three density estimation
methods on real-world datasets. We consider both the mean
test log-likelihood and the run-time to show the advantages
of TAKDE.

4.2.1 Benchmark Algorithms

1) Kernel Density Estimator (KDE): The first bench-
mark algorithm is the traditional kernel density
estimator. The main reason to include kernel density
estimator in the comparison is to show why a
traditional density estimator is not ideal for dynamic
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Fig. 4. The test log-likelihood comparison between TAKDE vs. the heuristic approaches over different bandwidth selectors. The x-axis represents the
value of the smoothness parameter c. The y-axis represents the test log-likelihood. Each plot from left to right represents the simulation conducted
with cutoff values from 1 to 5.

TABLE 1
The best experimental settings for different benchmark algorithms in different datasets.

Algorithm Noise Parameter α1 Noise Parameter α2 Smoothness Parameter c Cutoff Value (Window Size)
TEM

KDE - - 1.34 -
B-spline 0.66 0.04 - -

KDEtrack - - 0.45 1(16)
TAKDE - - 0.15 1(16)

ECG
KDE - - 0.98 -

B-spline 0.82 0.05 - -
KDEtrack - - 0.1 1(60)
TAKDE - - 0.7 1(60)

Wafer
KDE - - 0.22 -

B-spline 0.96 0.06 - -
KDEtrack - - 1.05 1(20)
TAKDE - - 0.15 1(20)

Earth
KDE - - 0.4 -

B-spline 0.81 0.05 - -
KDEtrack - - 0.8 0.2(15)
TAKDE - - 0.05 1.4(90)

Star
KDE - - 0.9 -

B-spline 0.30 0.02 - -
KDEtrack - - 1 0.3(20)
TAKDE - - 0.35 1.8(38)

density estimation. The kernel density estimator is
formulated as (1). The bandwidth selector is

σ = cσ̂n− 1
5 , (48)

where we use cross-validation to choose c (rather
than the actual bandwidth) for easy comparison with
TAKDE.

2) B-spline Kalman Filter (BKF) [2]: B-spline Kalman
filter models the underlying density function as
a count measure defined on the partitions of the
density support. The density estimator is defined as

p̂(x) =
1

C
exp

m∑
i=1

βiBi(x), (49)

where C is the normalization constant calculated
with numerical integration, m is the number of
partitions, and Bi(x) are the B-spline bases. The
algorithm updates its states βi using a B-spline ma-
trix evaluated on the centers of the density support
partitions and the count vector at each batch.

3) KDEtrack [9]: KDEtrack partitions the support of the
density using a collection of grid points. The set of
grid points and the density values at the grid points
are updated after each new batch of data points is
received and evaluated. The density evaluation at a
test point will be the linear interpolation at the test
point using the closest grid points.

Remark 4. We do not include the M-kernel and LRKDE methods
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TABLE 2
Mean test log-likelihood on five real datasets.

Algorithm TEM ECG Wafer Earth Star
KDE −0.026± 0.0001 0.060± 0.00002 0.0229± 0.0007 0.048± 0.0002 0.0078± 0.00002

B-spline Kalman Filter 0.171± 0.0062 1.580± 0.0011 1.204± 0.0034 1.324± 0.0051 0.685± 0.0024
KDEtrack 0.245± 0.0057 1.095± 0.0009 0.866± 0.0018 0.915± 0.0012 0.640± 0.0007

TAKDE(normal) 0.130± 0.0016 1.639± 0.0004 1.530± 0.0015 1.247± 0.0017 0.696± 0.0007
TAKDE(cor) 0.246± 0.0022 1.625± 0.0010 1.627± 0.0017 1.331± 0.0026 0.705± 0.0008

TAKDE 0.362± 0.0036 1.648± 0.0009 1.848± 0.0025 1.504± 0.0026 0.710± 0.0012

TABLE 3
Run-time comparison (seconds) on five real datasets.

Algorithm TEM ECG Wafer Earth Star
B-spline Kalman Filter 7.08 4.099 0.379 0.907 1.752

KDEtrack 5.461 4.712 1.542 1.569 14.85
TAKDE 0.378 0.557 0.114 0.704 0.851

since [9] has showed that KDEtrack is superior to these two
methods.

4.2.2 Datasets

• In situ TEM video data: The first dataset we use is
in situ TEM dataset introduced in Section 1. It is the
76.6 second in situ TEM video published in [1]. It has
a total of 1149 frames of images and 5 − 20 particle
counts in each frame.

• CinCECGTorso (ECG) data: CinCECGTorso dataset is
an ECG dataset taken from multiple torso surface sites
of four patients from the Computers in Cardiology
challenges. This dataset is available on UCR time-
series data archive [15].
The dataset consists of ECG measurements of four pa-
tients. We use the ECG signal sequence of one person
to highlight the density dynamics over time. Note that
simulations on all four patients yield similar results.
There are 342 ECG signals (data points) available at
each batch, and there are a total of 1639 batches of
data points over time. The batches are collected at
2-kHz frequency, which requires the density estimator
to be updated 2000 times per second. For each batch
of data points at a certain time stamp, we randomly
sample 5 to 20 data points to train and use the
rest of the data points to evaluate the algorithms.
The number of training data points at each batch is
determined only once throughout all the Monte-Carlo
simulations. However, the set of training points are
sampled randomly in each Monte-Carlo simulation.

• Wafer data: Wafer dataset is a collection of sensor
readings in a semiconductor wafer manufacturing
process over time, available on UCR time-series data
archive [15]. Unlike the previous two datasets, a wafer
manufacturing process is a rather slow process that
could span over 10 weeks. However, this dataset
is still illustrative for evaluating the accuracy of
TAKDE. We use the readings in the normal state
wafer manufacturing process to conduct our analysis.
There are 600 readings (data points) available at each
batch, and there are a total of 152 batches of data
points over time. Again, we adopt the same train-test

split approach as in the ECG dataset.
• Earthquakes (Earth) data: The earthquake dataset is

a sensor reading dataset from Northern California
Earthquake Data Center available on UCR time-series
data archive [15]. It consists of 461 readings at each
batch with a total of 512 batches.

• StarLight Curves (Star) data: The starlight curves
dataset consists of time-series sensor readings on the
brightness of a collection of celestial objects. It is also
available on UCR time-series data archive [15]. This
dataset includes the readings of 1000 celestial objects
at each batch with a total of 1024 batches.

4.2.3 Experimental Settings
In comparing across different density estimators, we only
present the best performance of B-spline Kalman filter, where
the noise prior parameters are cross-validated using a grid
search with an interval size of 0.01. For the traditional
kernel density estimator, we report its best performance, but
even that is significantly inferior to other density estimators.
For KDEtrack and TAKDE, we report the best settings
performances (in terms of smoothness parameter c and cutoff
value s). Notice we do not adopt the iterative bandwidth
update in KDEtrack for the computation reason explained in
Section 3.4, but instead we use the same bandwidth generator
as in TAKDE. All the simulations are conducted over 100
Monte-Carlo simulations for random training-testing splits
to generate the standard errors of the performance. The
performance metric is the mean test log-likelihood of the test
points.

4.2.4 Performance
The parameter settings leading to respective best perfor-
mance for all benchmark algorithms are shown in Table 1.
These settings are cross-validated using the first 10% batches
of each dataset (20% for Wafer and Earth dataset).

The results are tabulated in Table 2. TAKDE tagged
with "(normal)" represents the performance achieved with
smoothness parameter recommended in equation (36) (nor-
mal bandwidth selector) and the optimal cutoff in Table
1. TAKDE tagged with "(cor)" represents the performance
achieved by TAKDE under KDEtrack best settings in terms of
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Fig. 5. Visualization of the density estimators on the TEM dataset. The first row shows TAKDE at its normal setting and optimal setting. The second
row shows B-spline Kalman Filter at its optimal setting. The third row shows KDEtrack at its optimal setting. Figures from left to right represent the
estimation at time stamps 225, 450, 675, and 900, respectively.

cutoff value and smoothness parameter. As we can observe,
TAKDE dominates all other benchmark algorithms in terms
of test log-likelihood by a large margin. TAKDE is also
robust with respect to different cutoff values and different
smoothness parameters, as it dominates all other benchmark
algorithms even under the best settings for KDEtrack. The
only exception is TAKDE with normal bandwidth selector on
the TEM dataset. The underlying reason is that the low data
volume available at different batches (training and testing
combined) forces the "true" density distribution at each time
stamp to an average of Dirac measures, which is far from the
normal assumption of the normal bandwidth selector.

The run-time comparisons are shown in Table 3. The
values represent the time used for executing the density
estimation for all test data points in all batches. We can
observe that in addition to being more accurate than the
benchmark algorithms, TAKDE is also much faster in speed
as it requires negligible calculations in addition to kernel
density evaluation. The computation advantage makes a
huge difference for the ECG dataset in particular, as the other
two benchmark algorithms do not run nearly fast enough to
catch up with the 2kHz data collection rate.

4.3 Visual Examination
In this subsection, we visualize the previously compared den-
sity estimators. We pick the time stamps {225, 450, 675, 900}
in 1150 batches of data in the TEM dataset for visualization.
The results are shown in Fig. 5. As we can observe, TAKDE
at its optimal setting (for test log-likelihood) yields a more
flexible model compared to other algorithms. TAKDE with

normal smoothness parameter yields the smoothest model
among all. Our results in Table 2 also show that the normal
smoothness parameter can achieve estimation performance
close to the optimal setting while yielding smooth density
functions that facilitate easy interpretation. For this reason,
in most real-world applications that do not place estimation
accuracy as their first priority, we do recommend using the
normal smoothness parameter (36) to avoid cross-validation.

5 CONCLUSION

In this paper, we established a theoretical AMISE upper
bound expression for the "sliding window" kernel density
estimator in dynamic density estimation. We proposed the
temporal adaptive kernel density estimator that maintains
the fast processing advantage of the "sliding window" kernel
density estimator, while being theoretically optimal under
the worst-case AMISE. We provided extensive numerical
simulations to verify that TAKDE is superior to state-of-the-
art real-time dynamic density estimators in terms of the mean
test log-likelihood. TAKDE also dominated these algorithms
in terms of achieving smaller run-times.

The proposed weight sequence is reminiscent of the
attention mechanism in a transformer neural network for
sequence re-weighting [31]. Considering the massive success
of transformers in different fields, one of the future research
directions is to see whether learning the weight sequence
through the attention mechanism can result in a better
performance.
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Note that TAKDE in its current state only works for
univariate density estimation. Thus, another future direction
is to extend it to multivariate density cases.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of NSF
Award #2038625 as part of the NSF/DHS/DOT/NIH/USDA-
NIFA Cyber-Physical Systems Program.

REFERENCES

[1] H. Zheng, R. K. Smith, Y. Jun, C. Kisielowski, U. Dahmen, and A. P.
Alivisatos, “Observation of single colloidal platinum nanocrystal
growth trajectories,” Science, vol. 324, no. 5932, pp. 1309–1312, 2009.

[2] Y. Qian, J. Z. Huang, C. Park, and Y. Ding, “Fast dynamic
nonparametric distribution tracking in electron microscopic data,”
The Annals of Applied Statistics, vol. 13, no. 3, pp. 1537–1563, 2019.

[3] T. J. Woehl, C. Park, J. E. Evans, I. Arslan, W. D. Ristenpart, and
N. D. Browning, “Direct observation of aggregative nanoparticle
growth: Kinetic modeling of the size distribution and growth rate,”
Nano letters, vol. 14, no. 1, pp. 373–378, 2014.

[4] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and
Visualization. John Wiley & Sons, 2015.
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