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QDTrack: Quasi-Dense Similarity Learning for
Appearance-Only Multiple Object Tracking

Tobias Fischer*, Thomas E. Huang*, Jiangmiao Pang*, Linlu Qiu, Haofeng Chen, Trevor Darrell, Fisher Yu

Abstract—Similarity learning has been recognized as a crucial step for object tracking. However, existing multiple object tracking
methods only use sparse ground truth matching as the training objective, while ignoring the majority of the informative regions in images.
In this paper, we present Quasi-Dense Similarity Learning, which densely samples hundreds of object regions on a pair of images for
contrastive learning. We combine this similarity learning with multiple existing object detectors to build Quasi-Dense Tracking (QDTrack),
which does not require displacement regression or motion priors. We find that the resulting distinctive feature space admits a simple
nearest neighbor search at inference time for object association. In addition, we show that our similarity learning scheme is not limited to
video data, but can learn effective instance similarity even from static input, enabling a competitive tracking performance without training
on videos or using tracking supervision. We conduct extensive experiments on a wide variety of popular MOT benchmarks. We find that,
despite its simplicity, QDTrack rivals the performance of state-of-the-art tracking methods on all benchmarks and sets a new
state-of-the-art on the large-scale BDD100K MOT benchmark, while introducing negligible computational overhead to the detector.

Index Terms—Multiple Object Tracking, Quasi-Dense Similarity Learning.

1 INTRODUCTION

ULTIPLE Object Tracking (MOT) is a fundamental and
M challenging problem in computer vision, widely used in
safety monitoring, autonomous driving, video analytics, and other
applications. Contemporary MOT methods [1], [2], [3], [4], [5]
mainly follow the tracking-by-detection paradigm [6]. That is, they
detect objects on each frame and then associate them according to
the estimated similarity between each instance. Recent works [1],
[2], [4], [7] show that if the detected objects are accurate, the
spatial proximity between objects in consecutive frames, measured
by Intersection over Union (IoU) or center distance, is a strong
prior to associate the objects. However, this location prior is
often violated in more complex scenarios with non-linear object
motion, varying video frame rate, or complex camera motion, since
the movement of objects on the image plane depends highly on
these factors. To remedy this problem, some methods introduce
motion estimation [8], [9] or displacement regression [4], [10],
[11] to ensure accurate distance estimation. Object appearance
similarity usually takes a secondary role [3], [12] to strengthen
object association or re-identify vanished objects, because extracted
appearance features cannot effectively distinguish different objects.
Thus, the search region is constrained to local neighborhoods to
avoid distractions.

On the contrary, humans can easily associate identical objects
only through appearance. We conjecture this is because the image
and object information is not fully utilized for learning object
similarity. Previous methods regard instance similarity learning as a
post-hoc stage after object detection or only use sparse ground truth
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bounding boxes as training samples [3]. These processes ignore the
majority of the informative regions on the images. We hypothesize
that, because objects in an image are rarely identical to each other, a
nearest neighbor search in a learned feature space should associate
and distinguish instances without bells and whistles. In addition,
we observe that besides the ground truth and detected bounding
boxes, which sparsely distribute on the images, many possible
object regions can provide valuable training supervision.

In this paper, we propose quasi-dense similarity learning, which
densely matches hundreds of informative regions on a pair of
images for contrastive learning. The quasi-dense samples cover a
wide range of informative regions on the images, providing both
more positive examples and hard negatives. Because one sample
has more than one positive counterpart on the reference image,
we extend the InfoNCE loss [13] commonly used in contrastive
learning [14], [15], [16] to multiple positives which makes quasi-
dense learning feasible. Each sample is thus trained to discriminate
an instance from all possible object regions on the reference image
simultaneously. This provides stronger supervision than using only
a handful ground truth labels and enhances the instance similarity
learning. To extract feature embeddings for each region, we use
a lightweight embedding extractor that works with most existing
object detectors.

Besides similarity, the inference pipeline, which measures
the instance similarity and maintains a track history, also plays
an important role in the tracking performance, since it needs
to consider false positives, missed detections, newly appeared
objects, and terminated tracks. To better deal with these cases, we
introduce the bi-directional softmax similarity metric that enforces
bi-directional consistency. In particular, objects that do not have
matching targets in the other frame will lack a bi-directional
matching and thus have low similarity scores to all other objects.
Furthermore, we include unmatched objects in the previous frame,
which we call backdrops, for matching to better filter false positives
that could otherwise act as distractors in following frames. We
compose object detectors, quasi-dense similarity learning, and
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Fig. 1: Training pipeline. After we extract feature embeddings for all quasi-dense samples on a pair of key and reference images, we
apply dense matching between them and optimize the learned representation with multiple positive contrastive learning. The resulting

embedding space effectively discriminates different instances.

our inference pipeline to build Quasi-Dense Tracking (QDTrack)
models. Since the publication of our initial work [17], QDTrack
has been widely adopted for other tracking problems, such as
segmentation tracking [ 18], long-tailed multi-object tracking [19],
and 3D object tracking [20].

In addition to the findings of our initial work [17], we show
that quasi-dense instance similarity learning is not limited to
video data, but can learn effective instance representations from
static images alone. In particular, we show that we can effectively
perform tracking even when learning instance similarity without
any annotations for association and/or video input. Moreover,
in this journal extension we conduct extensive experiments on
a wide variety of tracking benchmarks, namely MOT [21],
DanceTrack [22], BDD100K [23], Waymo [24], and TAO [25].
In addition, we show the flexibility of our method by combining
it with different base models and object detectors. Despite its
simplicity, QDTrack rivals the performance of state-of-the-art
methods without bells and whistles, and sets a new state-of-the-
art on the large-scale BDD100K tracking benchmark. QDTrack
allows for joint, end-to-end training of detection and instance
similarity, thereby simplifying the training and inference pipelines
of MOT frameworks. In addition, our embedding extractor only
adds negligible overhead to the inference time of the detector. We
hope the simplicity and strengths of QDTrack motivates further
research on similarity learning for multiple object tracking.

2 RELATED WORK

In MOT, the current leading paradigm is tracking-by-detection [6].
Tracking-by-detection methods detect objects in each individual
frame, and subsequently associate the detections over time. They
differ in their data association mechanisms and cues that are used
in the association process. A variety of approaches have been
developed to solve the data association problem, e.g., network flow
formulations [26], quadratic pseudo boolean optimization [27],
conditional random fields [28], or multi-hypothesis tracking [29].
Many works have focused on finding the best cues to exploit
for data association, such as 2D motion [2], [7], [10], [30], [31],

[32], 3D motion [20], [33], [34], [35], [36], or visual appearance
similarity [11, [3], [37], [38], [39], [40], [41], [42]. In this work,
we focus on learning visual appearance similarity and follow the
tracking-by-detection paradigm.

Location and motion in MOT Spatial proximity has been proven
effective to associate objects in consecutive frames [2], [7]. Some
methods use 2D motion, such as predictions of a Kalman Filter [2],

317, [43], [44], optical flow [30], and displacement regression [10],
[32], to estimate similarity for object association. However, these
methods are brittle when it comes to varying video frame rate and
complex camera motion, since the 2D motion of the objects depends
highly on these factors. Thus, other methods instead rely on 3D
motion cues to associate objects over time, since in 3D camera and
object motion can be decomposed. A common paradigm [33], [34]
is to track objects with 3D bounding boxes and motion estimates
derived from e.g. scene flow. In contrast, [35], [36], [45] explored
to track and reconstruct objects in 3D by estimating the object’s
rigid-body transformation between two frames. Although these
methods show promising results, many [3], [43] still rely on an
extra appearance similarity model as a complementary component
to re-identify vanished objects, complicating the entire framework.
Our approach is orthogonal to this line of work, as we rely solely on
appearance-based instance similarity and a simple nearest-neighbor
search to associate objects.

Appearance similarity in MOT In order to strengthen tracking
and re-identify vanished objects, some methods exploit appearance
similarity extracted from an independent model [I1], [3], [37],
[38], [39], [40], [41], [42] or add an extra embedding head to
the detector for end-to-end training [5], [12], [46], [47]. However,
they still learn appearance similarity following the practice in
image similarity learning, and measure the instance similarity
by cosine distance. An appearance similarity model is trained
either as a m-class classification problem [3], where n is equal
to the number of identities in the whole training set, or using
triplet loss [48]. The classification problem is hard to extend to
large-scale datasets, while the triplet loss only compares each
training sample with two other samples, leading to sub-optimal



instance similarity learning. As a consequence, these methods still
rely heavily on motion models and displacement predictions to
track objects, and appearance similarity only takes a secondary
role. In contrast, QDTrack learns instance similarity from densely-
connected contrastive pairs and associates objects with a simple
nearest neighbor search in feature space, which allows for a simpler
tracking framework without compromising accuracy.

Joint detection and tracking Instead of treating object detection
and association as separate modules, Detect & Track [10] is the
first work that jointly optimizes object detection and tracking
modules. It predicts the displacements of each object in consecutive
frames and associates them with the Viterbi algorithm. Tracktor [1]
directly adopts a detector as a tracker. CenterTrack [4] and Chained-
Tracker [1 1] predict the object displacements with pair-wise inputs
to associate the objects. Other methods focus on learning visual
appearance and detection jointly [5], [46], [47], adding an extra
embedding head to the detection network. However, these methods
do not fully exploit image information for similarity learning.
Recent work [49], [50], [51] focuses on leveraging Transformer
networks to integrate tracking and detection into a single, query-
based architecture. These methods track by propagating queries
across timesteps, processing them with a Transformer that outputs
the tracking result. In this work, we focus on learning appearance
similarity from quasi-dense samples jointly with detection.
Self-supervised representation learning The field of self-
supervised representation learning has seen significant progress in
recent years, fueled by a number of methods relying on contrastive
learning [13], [16], [52], [53], [54], [55], [56], [57] that have shown
promising performance. The main paradigm of these methods is to
learn a representation that is similar for two versions of the same
image, where one is distorted with random image augmentations,
while enforcing that this representation is dissimilar to other pairs
in the current training batch. While this has proven to be very
effective, it has not yet drawn much attention when learning the
instance similarity in MOT. In this paper, we supervise densely
matched quasi-dense samples with multiple positive contrastive
learning inspired by [57]. In contrast to image-level contrastive
learning, our method allows for multiple positive training, while
the methods mentioned above can only handle the case when
there is only a single positive target. The promising results of our
method show the importance of representation learning for the
MOT problem.

Learning to track from static images Learning to track
objects from static images where no association annotations are
available has recently been proposed by multiple methods [4], [47].
CenterTrack [4] proposes to use data augmentation to simulate
video input from given a single static image to obtain 2D offsets to
learn object motion. FairMOT [47] treats every object in a given
detection dataset as a unique class and learns to distinguish between
those to learn tracking from static images. In contrast to learning
simulated motion or treating every object over a whole dataset as
unique, we show that our similarity learning scheme can effectively
learn to track objects from static images with comparable accuracy
to video input without further modification. We draw inspiration
from the success of recent self-supervised representation learning
methods and apply our similarity learning scheme between two
augmented instances of the same input image.

3 METHOD

We propose quasi-dense similarity learning to learn a feature
embedding space that can associate identical objects and distinguish
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different objects for online multiple object tracking. We define
dense matching to be matching between bounding box candidates
at all pixel locations and sparse matching to be matching between
ground truth box labels as matching candidates. In contrast, quasi-
dense matching considers potential object candidates specifically at
potential object regions. The main ingredients of Quasi-Dense
Tracking (QDTrack) are object detection, instance similarity
learning, and object association.

3.1

Our method can be easily coupled with both two-stage and one-
stage detectors with end-to-end training. Object detectors contain
two components, a feature extractor and a bounding box prediction
head. The feature extractor is typically composed of a base model to
extract image features and a Feature Pyramid Network (FPN) [58]
to obtain multi-scale features. The bounding box prediction head
produces dense bounding box candidates, from which we sample
quasi-dense samples by filtering with Non-Maximal Suppression
(NMS). The resulting samples indicate likely object regions that
include multiple overlapped bounding boxes for each object.

Object detection

3.2 Quasi-dense similarity learning

We use regions that likely contain objects to learn the instance
similarity with quasi-dense matching. The full training pipeline is
shown in Figure 1. Given a key image I; for training, we randomly
select a reference image I from its temporal neighborhood. The
neighbor distance is constrained by an interval k. We use the
object regions from both images and Rol Align [59] to obtain
their corresponding feature maps from the image features. We add
an extra lightweight embedding head in parallel with the original
bounding box head to extract features for each region. A region is
defined as a positive sample to a ground truth object if it has an
IoU higher than «; or negative if lower than as. A matching of
regions on two frames is positive if the two regions are associated
with the same ground truth object and negative otherwise.
Assume there are V' samples on the key frame as training
samples and K samples on the reference frame as contrastive
targets. For each training sample, we can use the non-parametric

softmax [13], [16] with cross-entropy to optimize the feature
embeddings,
exp(v-k*
Eembed = 710g ( ) (1)

exp(v-kT) + > k- exp(v - k)’

where v, kT, k™ are feature embeddings of the training sample, its
positive target, and negative targets in K. The overall embedding
loss is averaged across all training samples, but we only illustrate
one training sample for brevity.

We apply dense matching between object regions on the pairs
of images. Specifically, each sample in I; is matched to all samples
in I, in contrast to only using sparse sample crops (mostly ground
truth boxes) to learn instance similarity in previous works [48],
[60]. Each training sample in the key frame has more than one
positive targets in the reference frame, so Eq. (1) can be extended
as

exp(v-kT)
exp(v-kT)+ >, _exp(v-k7)

»Cembed = - Z IOg (@)

Kkt

However, this equation does not treat positive and negative
targets fairly. Namely, each negative is considered multiple times
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Fig. 2: Inference pipeline. First, we extract object detections and their corresponding feature embeddings from the current frame. Next,
we use bi-softmax to measure the instance similarity between all detections and matching candidates. Finally, we associate objects with a
simple nearest neighbor search in the feature space and update our track history.

Algorithm 1 Inference pipeline of QDTrack for associating objects
across a video sequence.

Input: frame index ¢, detections b;, scores s;, detection embed-
dings m; for ¢+ = 1... N, and track embeddings m; for

j=1...M
1: DuplicateRemoval(b;)
2: fort=1...N,5=1...M # compute matching scores
3: f(i, j) = bisoftmax(n;, m;)
4: end for
5: fort=1...N # track management
6: c=max(f(7)) # match confidence
7: Jmaten = argmax(f(7)) # matched track ID
8: if ¢ > Buaren and s; > Bops

and isNotBackdrop(jmaten)  # Object match found

9: updateTrack(jmatch, Pi, 0y, 1) # update track
10: else if s; > Bhew
11 createTrack(b;,n;,t) # create new track
12: else
13: addBackdrop(b;, n;, t) # add new backdrop
14: end if
15: end for

while each positive is considered only once. Alternatively, we can
first reformulate Eq. (1) as

Eembed = 10g

1+Zexp(v~k_—v-k+)} . 3)

k—

Then in the multi-positive scenario, it can be extended by accumu-
lating the positive term as

1+ZZexp(V~k_—v-k+)}. 4)

kt k—

Eembed = log

We further adopt L2 loss as an auxiliary loss

2
C) ) &)

v-k

L"aux = (7 -
[V 1k |

where c is 1 if the match of two samples is positive and O otherwise.
Note the auxiliary loss aims to constrain the magnitude of the logits
and cosine similarity instead of improving the performance. We
sample all positive pairs and three times more negative pairs to
calculate the auxiliary loss and use hard negative mining.

The entire network is jointly optimized under

L= Ldet + ’Yl‘cembed + ’VQEauxy (6)

where 71 and 2 are set to 0.25 and 1.0 by default in this paper.

3.3 Object association and track management

Tracking objects across frames purely based on object feature
embeddings introduces many challenges. False positives, ID
switches, newly appeared objects, and terminated tracks all increase
the matching difficulty. We here introduce our inference pipeline
that utilizes instance similarity for object association and a track
management scheme to address these problems. The entire pipeline
is shown in Figure 2 and described in Algorithm 1.

Duplicate removal Most object detectors only use intra-class
NMS to remove duplicate detections within each class, which
results in some detections that are in the same location but with
different categories. For object tracking, this is undesirable as it
will create duplicate object embeddings. We instead use inter-class
NMS to avoid this issue.

Bi-directional softmax Our main inference strategy is bi-
directional matching in the feature embedding space. Assume
there are IV detected objects in frame ¢ with feature embeddings
n and M matching candidates with feature embeddings m from
the past x frames. The instance similarity f between objects and
their matching candidates is obtained by a bi-directional softmax
(bi-softmax):

. 1 exp(n; - m;)
f(z,j) = 9 M—1 .
k=0 exp(ni 'mk)

exp(n; - m;)

N—1
2 k=0 exp(ny, - m;)

@)
A high score under bi-softmax indicates that the two matched
objects are each other’s nearest neighbor in the feature space,



thus satisfying bi-directional consistency. f can be used to directly
associate objects with a simple nearest neighbor search.

Track management We use a track management scheme to
keep track of inactive and currently active tracks and to handle the
matching of objects. Active tracks are tracks that have a matching
detection in the previous frame, otherwise they become inactive.
Tracks that are inactivate for K frames will be removed and not
be considered for matching. Detections are only considered for
matching to existing tracks if the detection confidence is above
a threshold (.5, 4. A match is determined if the matching score is
higher than a threshold Syt cn.

Objects without a target in the feature space should not be
matched to any candidates. Newly appeared objects, vanished
tracks, and some false positives fall into this category. Bi-softmax
can handle such objects, as it is difficult to achieve high matching
scores in both directions due to the uncertainty in matching. Thus,
these objects will likely obtain a low bi-softmax score and will
not be matched to any existing tracks. For such objects that have a
detection confidence higher than a threshold 3., we initialize a
new track instead.

Most detections with low confidence that do not match any
existing tracks are false positives that introduce uncertainty to the
matching process. Previous methods often directly drop them and
do not consider them again. We argue that these false positives
appear frequently in the following frames, which hurts tracking
performance. To remedy this, we keep the unmatched objects as
backdrops for L frames and use them as matching candidates.
Detections that are matched to backdrops will thus not be matched
to existing tracks. Our experiments show that backdrops can reduce
the number of false positives.

4 EXPERIMENTS

We conduct experiments on a variety of MOT benchmarks including
MOT17 [21] and MOT20 [61], DanceTrack [22], BDD100K [23],
Waymo [24], and TAO [25], and compare our method extensively
to the state-of-the-art. In addition, we show that we can effectively
perform tracking even without tracking supervision or video data.
We demonstrate the flexibility of our method by combining it with
different detection methods and feature-extraction base models and
conduct extensive ablation studies on all aspects of our method.
Finally, we also present a straightforward extension of our method
to segmentation tracking and give insights on the limitations of
our method. More detailed oracle and failure case analyses are
presented in the appendix.

4.1 Datasets

MOT Challenge We perform experiments on two of the MOT
Challenge benchmarks, namely MOT17 [21] and MOT20 [61]. The
MOT Challenge videos contain high-density public spaces such as
street scenes and malls with many pedestrians, creating challenging
tracking conditions with heavy occlusions. Only pedestrians are
evaluated in this benchmark. Since these datasets do not provide
official validation sets, we split each training video into two
halves: the first half for training and the second half for validation
following [4], [5], [47].

The MOT17 dataset contains 7 videos (5,316 images) for
training and 7 videos (5,919 images) for testing. The video frame
rate is 25 - 30 FPS. The MOT?20 dataset includes heavily crowded
scenes and contains 4 videos (8,931 images) for training and 4
videos (4,479 images) for testing. The video frame rate is 25 FPS.
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DanceTrack The DanceTrack [22] benchmark is a large-scale
dataset for multi-human tracking consisting mostly of group
dancing videos. The dataset is unique in that by relying mostly
on group dancing videos, the objects to track often have similar
appearance, diverse motion, and extreme articulation. It features
40 videos for training, 25 videos for validation and 35 videos for
testing, with a total of 105,855 frames captured at 20 FPS.
BDD100K The large-scale, diverse driving dataset BDD100K [23]
contains 100,000 video sequences of dashcam driving footage. It
contains several subsets with different types of annotations. We use
the detection and tracking sets for training and the tracking set for
evaluation. The tracking set annotates 8 categories for evaluation. It
contains 1,400 videos (278k images) for training, 200 videos (40k
images) for validation, and 400 videos (80k images) for testing.
The detection set has 70,000 images for training. The images in
the tracking set are annotated at 5 FPS.

Waymo Waymo open dataset [24] contains images from 5 cameras
associated with 5 different directions: front, front left, front right,
side left, and side right. There are 3,990 videos (790k images) for
training, 1,010 videos (200k images) for validation, and 750 videos
(148k images) for testing. It annotates 3 classes for evaluation. The
videos are annotated at 10 FPS.

TAO TAO dataset [25] annotates 482 classes in total, which are a
subset the classes annotated in the LVIS dataset [77]. It has 400
videos, 216 classes in the training set, 988 videos, 302 classes
in the validation set, and 1419 videos, 369 classes in the test set.
The classes in train, validation, and test sets may not overlap. The
videos are annotated at 1 FPS. The annotated classes in TAO follow
a long-tailed distribution, e.g., half of the annotated instances are
of class person and a sixth of the objects are of class car, while
there are many classes with only few annotated instances.

4.2 Metrics

We use several well-established tracking metrics for evaluation.
MOTA The Multiple Object Tracking Accuracy (MOTA) [78]
metric computes tracking accuracy in tandem with detection
accuracy. It is defined as,

o (my+ fr +er)
Ztgt

where ¢ is the timestep, m; is the number of misses, f; is the
number of false positives, e; is the number of mismatches, and
g 1s the number of objects. MOTA weighs detection performance
more heavily than association performance. For tracking with
multiple classes, we compute MOTA for each class independently
then take an average over the number of classes (mMOTA).

IDF1 The Identification F; Score (IDF1) [79] matches ground
truth and predictions on the trajectory level and computes a
corresponding F1-score. It is defined as,

MOTA =1 —

®

IDTP
IDF1 = | | , )
|IDTP| + 0.5|IDFN| + 0.5| IDFP|

where IDTP, IDFN, and IDFP are the true positive, false negative,
and false positive trajectories. IDF1 focuses on measuring associa-
tion performance. Similar to MOTA, we compute an average over
multiple classes for multi-class tracking (mIDF1).

HOTA Higher Order Tracking Accuracy (HOTA) [80] aims
to fairly combine the evaluation of detection and association.
Therefore, HOTA is composed of two accuracy scores, detection
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TABLE 1: Comparison to state-of-the-art on MOT Challenge benchmarks. We benchmark our method against existing works

on both MOT17 and MOT?20 test sets with private detections. Datasets include CrowdHuman (CH) [

], CityPersons (CP) [63], and

ETHZ [64]. t indicates using COCO pre-trained weights. T means higher is better.
Method Detector Base model Datasets MOTA 1+ IDF1 1 HOTA1 AssAtT DetAT AssRet AssPrt DetRet  DetPrt
MOT17
CenterTrack [4] CenterNet [65] DLA-34 MOT, CH 67.8 64.7 522 51.0 53.8 56.6 73.0 57.5 76.9
FairtMOT [47] £ CenterNet [65] DLA-34 MOT, CH, CP,ETHZ 737 723 59.3 58.0 60.9 63.6 76.3 66.0 78.5
ReMOT [66] - - - 77.0 72.0 59.7 57.1 62.8 61.7 78.0 68.8 77.1
OC-SORT [44] 1 YOLOX-X  Modified CSP MOT, CH, CP,ETHZ ~ 78.0 715 63.2 63.4 63.2 67.5 80.8 67.2 80.3
MAA [67] CrowdDet [68]  R50-FPN MOT, CH 79.4 75.9 62.0 60.2 64.2 67.3 74.0 70.9 76.4
StongSORT [69] 1~ YOLOX-X  Modified CSP MOT, CH, CP,ETHZ ~ 79.6 79.5 64.4 64.4 64.6 71.0 78.7 70.2 78.3
ByteTrack [43] 1 YOLOX-X  Modified CSP MOT, CH, CP,ETHZ 803 713 63.1 62.0 64.5 68.2 76.0 70.1 78.1
QDTrack (Ours) | FRCNN R50-FPN MOT, CH 77.2 722 58.8 56.2 61.8 62.6 74.1 66.6 78.1
YOLOX-X  Modified CSP MOT, CH 78.7 71.5 63.5 62.6 64.5 69.3 76.2 71.0 77.7
MOT20
SGT [70] 1 CenterNet [65] DLA-34 MOT, CH 72.8 70.5 56.9 553 58.8 60.3 75.4 63.8 76.8
StrongSORT [69] 1 ~ YOLOX-X  Modified CSP MOT, CH 73.8 77.0 62.6 64.0 61.3 69.6 80.0 65.3 81.2
MAA [67] CrowdDet [68]  R50-FPN MOT, CH 73.9 71.2 57.3 55.1 59.7 61.1 72.1 64.8 77.4
OC-SORT [44] 1 YOLOX-X  Modified CSP MOT, CH 75.7 76.3 62.4 62.5 62.4 67.4 79.6 66.9 80.4
ReMOT [66] - - - 77.4 73.1 61.2 58.7 63.9 63.1 79.5 69.8 78.6
ByteTrack [43] YOLOX-X  Modified CSP MOT, CH 77.8 75.2 61.3 59.6 63.4 66.2 74.6 69.1 78.4
QDTrack (Ours) 1 YOLOX-X  Modified CSP MOT, CH 74.7 73.8 60.0 58.9 61.4 65.7 74.8 66.4 79.1
TABLE 2: Comparison to state-of-the-art on DanceTrack. We 80 -
compare our method to existing methods on the challenging . S —_
I ®
DanceTrack test set. We use YOLOX-X [71] as our detector. 60 \0\ —_
®
'<_( 40 \o
Method | HOTAT DetA? AssAt MOTA1 IDFI 1 S " FartioT
FairMOT [47] 39.7 66.7 23.8 82.2 40.8 20 ByteTrack
CenterTrack [4] 41.8 78.1 22.6 86.8 35.7 —eo— QDTrack
TraDes [72] 433 74.5 254 86.2 41.2 0 T T T T T
TransTrack [51] 45.5 75.9 27.5 88.4 452 32 16 8 4 2 1
ByteTrack [43] 47.7 71.0 32.1 89.6 53.9 FPS
GTR [73] 48.0 72.5 31.9 84.7 50.3
MOTR [50] 542 73.5 40.2 79.7 51.5 : . . :
OC-SORT [44] 551 203 183 92,0 546 Fig. 3: Ablation study on video frame rate. We compare QDTrack
to state-of-the-art tracking methods, namely ByteTrack [43] and
QDTrack (Ours) ‘ 54.2 80.1 36.8 87.7 50.4

accuracy DetA and association accuracy AssA. DetA is defined
as,
[T

DetA = ,
|TP| + |FN| + |FP|

(10)

where TP, FN, and FP are the true positive, false negative, and
false positive detections. Additionally, detection recall DetRe and
detection precision DetPr are used. AssA is defined as,

>

|TP| a€TP

|TPA(a)]

AssA =
S9 |TPA(a)| + |FNA(a)| + |FPA(a)|

, (D

where TPA, FNA, and FPA are the true positive, false negative, and
false positive associations. Similarly, association recall AssRe and
association precision AssPr are used. HOTA is computed as a
geometric mean of DetA and AssA.

4.3

Two-stage object detectors use a Region Proposal Network (RPN)
to first generate a set of proposal bounding boxes, i.e., Region
of Interests (Rols). We use the Rols from the RPN for similarity
learning. One-stage object detectors do not have a proposal stage
and instead perform detection directly on the entire dense grid
of bounding box locations. As our similarity learning protocol
requires object regions, we generate them by simply using the
dense detection outputs before post-processing. We follow the
same box filtering procedure as the RPN [74], where we keep the
most confident 1000 boxes then apply Non-maximum Suppression

Implementation details

FairMOT [
frame rates.

], on the MOT17 validation split at different video

(NMS) with an IoU threshold of 0.7. We investigate Faster
R-CNN [74] for two-stage detectors and RetinaNet [81] and
YOLOX [71] for one-stage detectors in this work.

We select 128 Rols from the key frame as training samples, and
256 Rols from the reference frame with a positive-negative ratio
of 1.0 as contrastive targets. We use IoU-balanced sampling [82]
to sample negative Rols, which better balances the sampling of
hard negatives according to their IoU. We use 4conv-Ifc head
with group normalization [83] to extract feature embeddings. The
channel number of embedding features is set to 256 by default.
We keep backdrops only from the previous frame. For association,
we associate objects only when they are classified as the same
category.

On MOT17 and MOT20, we follow the recent practice of
[43], [44], [69] and train QDTrack with the popular YOLOX [71]
detector on the union of CrowdHuman [62] and the respective
MOT benchmark. On DanceTrack and BDD100K, we again
follow [43] and use the same detector, but we only train on the
respective dataset. For data augmentation, we follow [71] and
utilize MixUp [84] and Mosaic augmentations. For our ablation
studies we use Faster-RCNN in combination with ResNet-50 and
FPN unless otherwise noted.

On Waymo, we use the original scale of the images for training
and inference. We do not use any other data augmentation methods

1. https://github.com/cheind/py-motmetrics


https://github.com/cheind/py-motmetrics
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TABLE 3: Comparison to state-of-the-art on BDD100K. We report results and compare with existing works on the BDD100K tracking
validation and test set. T indicates using COCO pre-trained weights.

Split  Method Detector ~ Base model mMOTA 1 mIDFI{ MOTA{ IDF1+ FN] FP| IDSw.] MT{ ML
Yu et al [23] FRCNN DLA-34 25.9 445 56.9 66.8 122406 52372 8315 8396 3795
DeepSORT [3] FRCNN R50-FPN 352 493 - - - - - - -

val TETer [19] FRCNN R50-FPN 39.1 533 - - - - - - -
ByteTrack [43] 1 YOLOX-X Modified CSP 455 54.8 69.1 704 92805 34998 9140 9626 3005
QDTrack (Ours) ~ FRCNN R50-FPN 377 52.9 65.7 727 104861 41355 5640 9649 2874
QDTrack (Ours) 1 YOLOX-X Modified CSP 42.1 543 68.2 733 83395 48798 8478 10925 2272
Yu et al [23] FRCNN DLA-34 26.3 44.7 583 682 213220 100230 14674 16299 6017
DeepBlueAl - - 31.6 387 56.9 560 292063 35401 25186 10296 12266
madamada - - 33.6 43.0 59.8 557 209339 76612 42901 16774 5004

test DeepSORT [3] FRCNN R50-FPN 34.0 50.2 - - - - - - -
TETer [19] FRCNN R50-FPN 37.4 533 - - - - - - -
ByteTrack [43] 1 YOLOX-X Modified CSP 401 55.8 69.9 713 169073 63869 15466 18057 5107
QDTrack (Ours) ~ FRCNN R50-FPN 387 54.1 66.5 740 185773 78068 10098 18167 4635
QDTrack (Ours) 1 YOLOX-X Modified CSP 42.4 55.6 68.4 739 154797 89376 14282 19852 3924

TABLE 4: Comparison to state-of-the-art on Waymo. We show results of our method compared with existing methods on the Waymo
Open tracking validation set using py-motmetrics library (top) 'and test set using official evaluation (bottom). We use Faster R-CNN [74]

as our detector. * indicates methods using undisclosed detectors.

Split Method Category MOTA 1 IDF1 1 FN | FP | ID Sw. | MT ¢t ML | mAP 1
ToU baseline [12] Vehicle 38.3 - - - - - 45.8
Tracktor++ [1], [12] Vehicle 42.6 - - - - - 424

val RetinaTrack [12] Vehicle 449 - - - - - 45.7
QDTrack (Ours) Vehicle 55.6 66.2 514548 214998 24309 17595 5559 49.5
rack {urs All 44.0 56.8 674064 264886 30712 21410 7510 40.1

Method ~ Split Category MOTA/L1+ FP/AL1) MisM/LI] Miss’L1 ] MOTA/L2+ FP/AL2] MisM/L2) Miss/L2 |
Tracktor [24], [75] Vehicle 34.8 10.6 149 39.7 28.3 8.6 12.1 51.0
CascadeRCNN-SORTv2* All 50.2 7.8 2.7 39.3 442 6.9 2.4 46.5

test HorizonMOT* All 51.0 7.5 2.4 39.0 45.1 7.1 2.3 45.5
Ours (ResNet-50) All 494 7.4 1.5 41.7 43.9 7.1 1.3 48.2
Ours (ResNet-101 + DCN) All 51.2 7.6 1.5 39.7 45.1 7.2 1.3 46.4

TABLE 5: Comparison to state-of-the-art on TAO. We evaluate
and compare our method on the TAO challenge benchmark. We
use Faster R-CNN [74] as our detection method. T indicates offline
methods, I indicates methods using additional data.

Split  Method AP50  AP75 AP AP50(S) AP50(M) AP50(L)
SORT_TAO [25] 132 - - - - -
val _QDTrack Ours)  16.1 50 7.0 24 4.6 9.6
GTR [73] 225
AOA [76] 25.8
SORT_TAO [25] 102 44 49 7.7 8.2 15.2
st QDTrack Ours) 124 45 52 37 8.3 18.8
GTR [73] 20.1
AOA [76] 275

except random horizontal flipping and initialize the base model with
ImageNet pre-trained weights for training. On TAO, we randomly
select a scale between 640 to 800 and resize the shorter side of
images during training. At inference time, the shorter side of the
images are resized to 800. We use an LVIS [77] pre-trained model,
consistent with the implementation of [25]. We freeze the detection
model and only fine-tune the embedding head to extract instance
representations as the annotations in TAO are incomplete. Since
not all objects in the videos are annotated, fine-tuning the detection
model will lead to worse performance. We provide a more detailed
overview and analysis of our hyper-parameters in the appendix.

4.4 Comparison to state-of-the-art

We compare our method to existing literature across five challeng-
ing multi-object tracking benchmarks.

MOT The official benchmark results with private detectors
on MOT17 and MOT20 benchmarks are shown in Table 1. Our
method achieves competitive performance on both benchmarks,
despite only utilizing appearance cues for association. Notably,
QDTrack obtains a high score of 63.5 HOTA on MOT17 and 60.0
HOTA on MOT?20. Since the MOT benchmarks are captured at a
relatively high frame rate and include only limited camera motion,
2D motion based association [43], [44], [69] works very well in
this scenario. However, this only holds true for the high frame
rate scenario. In Figure 3 we show that when reducing the video
frame rate on the MOT17 validation split, the performance of
ByteTrack [43] drops quickly and even completely fails at a frame
rate of 1 FPS, while our tracker still achieves 58.6 MOTA at this
frame rate. Furthermore, we show that our tracker also compares
favorably to other appearance-based trackers in this regime, namely
FairMOT [47], which drops to 44.3 MOTA maintaining only 64.1%
of its original performance, while we maintain 77.4%.
DanceTrack  The results on the benchmark are shown in
Table 2. Surprisingly, while DanceTrack was specifically designed
to provide a platform to develop MOT algorithms that rely less
on visual appearance and more on motion analysis, we find
that our appearance based tracker performs very well on this
dataset, reaching a HOTA score only marginally behind the state-
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TABLE 6: Learning to track from static images. We apply quasi-dense instance similarity learning on static images without tracking
annotations. We use different data augmentation strategies to distort the image pair: horizontal flip (HF), multi-scale resize and crop
(MS), color jittering (Color), and MixUp / Mosaic. We denote non-consistent augmentation parameters between key and reference
images as ‘NC’. We evaluate performance on the BDD100K tracking validation set and compare to a model trained with video input and

tracking annotations.

Tnput Supervision Augmentations BDD100K
HF HF-NC MS-NC Color-NC  MixUp/Mosaic | mMOTA 1+ mIDF1{+ MOTA1 IDFI{ AP*?
v - - - - 32.0 434 54.7 58.4 29.8
v - v - - 352 47.3 62.1 66.8 32.8
image detection - v v - - 35.6 48.1 62.4 67.8 32.6
- v v v - 36.3 48.0 62.2 67.8 32.8
- v v v v 35.2 47.7 62.4 67.5 33.0
v - - - - 324 454 56.8 60.6 32.0
v - v - - 36.7 49.9 61.6 66.9 33.7
image / video detection - v v - - 35.1 50.4 61.8 68.0 335
- v v v - 36.1 50.4 62.1 68.3 342
- v v v v 377 51.1 62.9 68.2 35.2
v - - - - 36.6 50.8 63.5 71.5 33.0
image / video tracking - v v v - 36.9 52.1 64.1 71.7 34.1
- v v v 37.7 52.9 65.7 72.7 35.0

TABLE 7: Ablation study on different training schedules,
feature extractors, and detectors. We train multiple QDTrack
models with different detectors, feature extractors and training
schedules and measure tracking performance on the BDD100K
tracking validation set.

Detector Base model Schedule MOTA 1 IDF11T AP?T
R50-FPN 1x 65.7 72.7 35.0

R50-FPN 2x 65.6 73.1 35.1

FRCNN R101-FPN 1x 66.2 73.1 353
R101-FPN 2x 65.6 727 34.6

RetinaNet R50-FPN 1x 60.8 69.5 32.1
YOLOX-X  Modified CSP 25 epochs 68.2 73.3 38.9

of-the-art method OC-SORT [44] (—0.9 HOTA). We achieve
this score without any bells and whistles, naively applying the
same configuration as in our MOT17 experiments to train on the
DanceTrack dataset, following [43]. This reinforces our argument
that one can in fact build a robust tracking algorithm by relying on
our quasi-dense instance similarity.

BDD100K The main results on the BDD100K tracking validation
and testing sets are in Table 3. On the validation set, QDTrack
with YOLOX-X achieves 42.1 mMOTA and 54.3 mIDF1, which
are the second-best results behind ByteTrack [43]. Still, QDTrack
achieves much better results in IDF1 (73.3 vs. 70.4). On the test set,
QDTrack with YOLOX-X achieves a high score of 42.4 mMOTA,
55.6 mIDF1, and 73.9 IDF1, outperforming all other methods by a
significant margin. In particular, QDTrack outperforms ByteTrack
by 2.3 mMOTA and 2.6 IDF1. QDTrack with Faster R-CNN
also achieves a competitive score of 38.7 mMOTA, 54.1 mIDF1,
and 74.0 IDF1, outperforming other methods using the same
detector. TETer [19] is an extension of QDTrack that employs a
new association strategy designed for improving long-tailed object
tracking. These results demonstrate that QDTrack can perform well
even on a more challenging large-scale benchmark with a simple
framework.

Waymo Table 4 shows our main results on Waymo open dataset.
We report the results on the validation set following the setup
of RetinaTrack [12], which only conduct experiments on the
vehicle class. We also report the overall performance for future

comparison. We report the results on the test set via official rules.
Our method outperforms all baselines on both validation set and
test set. We obtain 44.0 MOTA and 56.8 IDF1 on the validation
set and 49.4 MOTA/L1 and 43.9 MOTA/L2 on the test set. The
performance of vehicle on the validation set is 10.7, 13.0, and
17.4 points higher than RetinaTrack [12], Tracktor++ [1], [12],
and IoU baseline [12], respectively. Our model with ResNet-
101 and deformable convolution (DCN) [85] has state-of-the-art
performance on the test benchmark, which is on par with the
champion of Waymo 2020 2D Tracking Challenge (HorizonMOT)
despite only using a simple single model.

TAO The results for TAO are shown in Table 5. We obtain 16.1
AP50 on the validation set and 12.4 AP50 on the test set. The
results are 2.9 points and 2.2 points higher than TAO’s baseline.
Although we only boost the overall performance by 2 to 3 points,
we outperform the baseline by a large margin on frequent classes,
i.e., 38.6 points vs. 18.5 points on person. This improvement is not
well represented in the standard evaluation metrics of TAO, since
it averages per-class scores across hundreds of classes. GTR [73]
and AOA [76] are recent methods proposed to tackle long-tail
multi-object tracking. Although they outperform our method, GTR
is an offline method and AOA utilizes separate ReID networks
trained on additional data.

4.5 Learning to track from static images

Since our quasi-dense instance similarity learning is agnostic to
how the image pair is generated during training, we investigate how
we can leverage static images where no association annotations
are available. Inspired by recent literature in self-supervised
representation learning [55], [56], we experiment with different
data augmentations on static images to learn discriminative instance
representations from static input. In particular, for a given training
sample in a detection dataset, we generate two distorted images
via data augmentation techniques. We find that random horizontal
flip (HF), multi-scale resize and crop (MS), color jittering (Color),
and MixUp / Mosaic augmentations are the most suitable for our
use-case. If the augmentation parameters are not shared across the
key and reference view, we denote it with ‘NC’ (non-consistent).
We only use MixUp / Mosaic with consistent parameters in order
to compose the same images between key and reference views and
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TABLE 8: Ablation study on quasi-dense matching and inference strategy. We investigate the contribution of various components on
the BDD10OK tracking validation set. All models are comparable on detection performance. D. R. means duplicate removal. (P) means

results of the class “pedestrian”.

Quasi-Dense Matching candidates

onc-positive  multi-positive  MeUiC DR Backdrops MOTA 1+ IDFI+ mMOTA{ mIDFI{ MOTA®)1 IDFI(P)*
- - cosine - - 60.4 63.0 34.0 47.9 37.6 49.7
v - cosine - - 61.5 66.8 35.5 50.0 40.5 52.7
- v cosine - - 62.5 67.8 36.2 50.0 44.0 54.3
- v bi-softmax - - 62.9 70.0 35.4 48.5 45.5 58.8
- v bi-softmax v - 63.2 70.1 36.4 50.4 45.5 58.3
- v bi-softmax v v 63.5 71.5 36.6 50.8 46.7 60.2
+3.1 +8.5 +2.6 +2.9 +9.1 +10.5
- x
0 @9y . & °
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(a) Sparse

(b) Quasi-Dense

Fig. 4: Instance embedding space visualization. We visualize the instance embedding space learned via (a) sparse matching and (b)
quasi-dense matching using t-SNE. We show ground truth embedding identities as color and plot embedding vectors sampled from a

sequence in the BDD10OK tracking validation set.

TABLE 9: Ablation study on location and motion cues. We
investigate if our method benefits from using a range of motion
priors on the BDD10OK tracking validation set. We integrate
bounding box IoU, a simple linear motion model, and displacement
regression into the association procedure.

Appearance IoU  Motion  Regression mMOTA 1+ mIDF1 1
- v - - 26.3 36.0
- v v - 27.7 38.5
- v - v 28.6 39.3
v - - - 36.6 50.8
v v - - 36.3 49.8
v v v - 36.4 49.9
v v - v 36.4 50.1

thus be able to match objects across them. To train our models,
we utilize the detection (image) and tracking (video) splits of
BDDI100K. Note that the tracking split contains much more data,
thus influencing the detection performance.

The results of our experiments are shown in Table 6. We
use Faster-RCNN [74] as the detector with ResNet-50 [86] and
FPN [58] as the base model and evaluate the tracking performance
on the BDD100K tracking benchmark [23]. We observe that when
we only apply consistent HF, the tracking performance is far behind
the version trained with full tracking supervision. By adding in
non-consistent augmentations and MixUp / Mosaic, we can narrow
this gap and achieve comparable accuracy to the fully supervised
model. In particular, we exceed the mMOTA of the fully supervised
baseline trained without augmentations besides HF when training
on the same amount of training data by a significant margin. This
clearly shows that not only detection, but also association benefits
greatly from the data augmentation, and that with proper data
augmentation, our similarity learning scheme can track objects
effectively while trained on static images alone. If we use the same
amount of training data, we indeed rival the performance of the

best supervised model, shown by the small gap in mMOTA (—0.1
points).

In addition, we observe that the data augmentation scheme
can also benefit the supervised models, reaching a much higher
score than in our initial work [17] without changing the network
architecture (+1.2 points in mMOTA, +2.1 points in mIDF1). The
increase in mIDF1 highlights the benefit of data augmentation to
the robustness of instance similarity learning.

4.6 Ablation studies

We conduct ablation studies on the validation set of BDD100K [23],
where we investigate the importance of the major model compo-
nents for training and inference procedures.

Different object detectors, feature extractors, and training
schedules We combine our method with different object detectors
and feature extractors to verify the flexibility of our instance
similarity learning scheme. In Table 7, we show the tracking
performance of our method with ResNet-50, ResNet-101 [86], as
well as the modified CSPNet [87] on the tracking validation set
of BDD100K. We combine those feature extractors with a Faster-
RCNN [74] detector and observe that ResNet-101 achieves the best
performance with 66.2 MOTA, 73.1 IDF1, and 35.3 AP.

In addition, we apply our method on two more base object
detection models, namely RetinaNet [81] and YOLOX [71]. Both
methods produce reasonable results, and the YOLOX model
achieves the best overall scores with 68.2 MOTA, 73.3 IDF1, and
38.9 AP. It shows that our method can work independent of feature
extractor or base detection model. Finally, we also experiment
with different training schedules. We investigate the effect of
longer training, increasing the epochs from 12 (1x schedule) to
24 (2x schedule) and 25. Note that we use the extensive data
augmentation techniques presented in section 4.5 in this ablation
study to counteract overfitting when training with longer schedules.
We find that increasing the number of epochs does not help the
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Fig. 5: Illustration of failure cases. We illustrate the two most common failure cases of our method (best viewed digitally). In the top,

we can see that the bus (

and violet) switches identity due to extreme occlusion by pedestrians. In the bottom, we observe that

the pickup truck (green and purple) switches identity when the class prediction changes between ‘truck’ and ‘car’. Note that we still

re-identify the pickup truck once the class predictions match.

TABLE 10: Extension of our method to segmentation tracking.
We show segmentation tracking results of our method on the
BDD100K segmentation tracking validation set. I: ImageNet. C:
COCO. S: Cityscapes. B: BDD100K.

Method Pretraining mMOTSA 1 mIDFl 1T IDsw. |
SORT [2] LC S 10.3 21.8 15951
MaskTrackRCNN [46] ILC, S 12.3 26.2 9116
STEm-Seg [88] LC S 12.2 25.4 8732
QDTrack (ours) LB 25.6 452 980
PCAN [18] LB 27.4 45.1 876

smaller ResNet models, but is beneficial for training very large
models like YOLOX-X.

Importance of quasi-dense matching The results are presented
in the top sub-table of Table 8. We use a Faster R-CNN detector
with ResNet-50 base model. MOTA and IDF1 are calculated over
all instances without considering categories as overall evaluations.
We use cosine distance to calculate the similarity scores during
the inference procedure. Compared to learning with sparse ground
truths, quasi-dense tracking improves the overall IDF1 by 4.8 points
(63.0% to 67.8%). The significant improvement on IDF1 indicates
quasi-dense tracking greatly improves the feature embeddings and
enables more accurate associations.

We then analyze the improvements in detail. In the table, we
can observe that when we match each training sample to more
negative samples and train the feature space with Eq. (1), the
IDF1 is significantly improved by 3.4 points. This improvement
contributes 70% to the total improved 4.8 points IDF1. This
experiment shows that more contrastive targets, even most of them
are negative samples, can improve the feature learning process.
The multiple-positive contrastive learning following Equation (4)
further improves the IDF1 by 1 point (66.8% to 67.8%).
Importance of bi-softmax We investigate how different inference
strategies influence the performance. As shown in the bottom of
Table 8, replacing cosine similarity by bi-softmax improves overall
IDF1 by 2.2 points and the IDF1 of pedestrian by 4.5 points.
This experiment also shows that the one-to-one constraint further
strengthens the estimated similarity.

Importance of matching candidates Duplicate removal and

backdrops improve IDF1 by 1.5 points. Overall, our training and
inference strategies improve the IDF1 by 8.5 points (63.0% to
71.5%). The total number of ID switches is decreased by 30%.
Especially, the MOTA and IDF1 of pedestrian are improved by 9.1
points and 10.5 points respectively, which further demonstrate the
power of quasi-dense contrastive learning.

Combinations with motion and location Finally, we try
to add location and motion priors to understand whether they
are still helpful when we have good feature embeddings for
measuring similarity. These experiments follow the procedures
in Tracktor [1] and use the same detector for fair comparisons.
As shown in Table 9, without appearance features, the tracking
performance is consistently improved with the introduction of
additional information. However, these cues barely enhance the
performance of our approach. Our method yields the best results
when only using appearance embeddings. The results indicate that
our instance feature embeddings are sufficient for multiple object
tracking with the effective quasi-dense matching, which greatly
simplifies the inference pipeline.

Inference speed To understand the runtime efficiency, we profile
our method on a single NVIDIA RTX 3090 graphics card. Because
it only adds a lightweight embedding head to the detector, our
method only causes marginal overhead in inference speed. With
an input size of 1296 x 720 and a Faster R-CNN detector with
ResNet-50 base model on BDD100K, the inference time is 61 ms,
equating to 16.3 FPS. However, the embedding extractor consumes
3 ms, representing only 5% of the total runtime.

4.7 Embedding visualizations

We use t-SNE to visualize the embeddings trained with sparse
matching and our quasi-dense matching and show them in Figure 4.
The instances are selected from a video in BDD100K tracking
validation set. The same instance is shown with the same color. We
observe that it is easier to separate objects in the feature space of
quasi-dense matching.

4.8 Segmentation tracking

Owing to the simplicity of our method, we can extend it to instance
segmentation tracking in a straightforward manner. To do so, we



simply add a Mask R-CNN [59] mask prediction head to the
existing network architecture and use a pre-trained QDTrack model
trained on the BDD10OK tracking set to fine-tune the mask head
on MOTS data. In particular, BDD100K provides a subset for the
segmentation tracking task. There are 154 videos in the training
set, 32 videos in the validation set, and 37 videos in the test
set. Table 10 shows the results on the BDD100K segmentation
tracking task compared to other methods. QDTrack achieves 25.6
mMOTSA and 45.2 mIDF1. PCAN [ 18] is an extension of QDTrack
that utilizes a prototypical appearance module to further improve
segmentation. We observe that QDTrack based models achieve
much better performance than previous methods.

4.9 Limitations

While our method gains in simplicity and generality by solely
relying on instance similarity learning, we also identify certain
challenges that arise with this paradigm. In particular, we observe
that our model struggles with rapid changes in object appearance,
e.g., through partial occlusion. Also, since our model relies on
discrete class labels to aid the matching process, we observe that
classification errors can lead to truncated object tracks. These cases
are illustrated in Figure 5. In addition, inaccurate object localization
can lead to difficulties in association when regions within a
bounding box cover background and/or other objects, thus impeding
accurate instance embedding extraction. For more detailed failure
case and oracle analysis, please refer to the appendix.

5 CONCLUSION

We present QDTrack, a tracking method based on quasi-dense
instance similarity learning. The key idea behind our method is
to utilize all object regions in an image for similarity learning,
in contrast to previous methods that only use sparse ground-truth
regions as similarity supervision. We observe that the feature
embedding space we learn from quasi-dense matches is much better
suited to discriminate instances, allowing for a simple tracking
framework that associates objects via nearest neighbor search in
the embedding space without bells and whistles. Our method can
be easily coupled with most existing object detectors and feature
extractors for end-to-end training, and learns effective instance
similarity even without video input or tracking annotations.
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APPENDIX A
ADDITIONAL DETAILS

We detail the training settings and hyper-parameters used for each
benchmark investigated in the main paper. We also provide details
regarding the augmentations used during training.

Training setting On MOT17 and MOT20, we train QDTrack with
YOLOX [71] on the union of CrowdHuman [62] and the respective
MOT benchmark for 80 epochs, following recent practice [43],
[44], [69]. We use an image scale of 1440 x 800 for MOT17
and 1600 x 896 for MOT20. We use a batch size of 32 with a
learning rate of 0.0005, and we use a cosine annealing learning
rate schedule, ending at a learning rate 0.05 times the original.
We use an exponential learning rate warm-up for one epoch. For
augmentations, we turn off MixUp and Mosaic for the last ten
epochs. We also use an exponential moving average (EMA), as
done in [71]. On DanceTrack, we use the same training setup as in
MOT17, except for training for 12 epochs. On BDD100K, we use
mostly the same training setup as in MOT17, except for training
for 25 epochs, using a batch size of 48, learning rate of 0.00075,
and not turning off augmentations.

Hyper-parameters The detailed hyper-parameters are shown
in Table 11. As our object association only relies on appearance,
it is robust to different motion patterns in different datasets. The
experiments share similar tracking parameters except for TAO,
since TAO uses 3D mAP instead of CLEAR MOT and HOTA
metrics for evaluation. On TAO, (3., and By are set to 0.0001 to
obtain a high recall. Considering the numerous tracks that results
using these thresholds, we do not maintain backdrops.
Augmentation parameters For Mosaic, we sample the center
of the mosaic image in the range (0.5, 1.5). For the main results
on the benchmarks, we also use random affine transformation
with a rotation degree in the range (-10.0, 10.0), translation factor
in the range (-0.1, 0.1), scale factor in the range (0.5, 1.5), and
shear degree in the range (-2.0, 2.0). For MixUp, we jitter the
additional image by a factor in the range (0.5, 1.5) and flip it with
a probability of 0.5. We also flip the resulting combined image
with a probability of 0.5. We additionally apply random resizing
with a scale range (0.5, 1.5) while maintaining the aspect ratio and
random cropping. Finally, we apply color jitter with a brightness
factor in the range (0.875, 1.125), contrast factor in the range (0.5,
1.5), saturation factor in the range (0.5, 1.5), and hue shift in the
range (—0.27,0.27).

APPENDIX B
ADDITIONAL DETAILS FOR MOT CHALLENGE

For challenging scenes with heavy occlusions (i.e., MOT17 and
MOT?20), object association with only appearance cues can be very
challenging, as there are large overlaps between objects. We utilize
several additional techniques to mitigate these issues. First, object
appearance cues immediately after re-appearance can be unreliable
for association, leading to a higher number of ID switches and lower
AssRe score. We address this by introducing a near-online merging
strategy. For each object that did not match to any previous tracks
and initialized a new track, in each of the ¢ subsequent frames we
merge its current track with a vanished track if their matching score
is higher than a threshold Be.q.. We use distance thresholding
with distance dperge to ignore objects that are too far away. This
enables us to utilize more reliable appearance features moments
after re-appearance for matching. We use ¢t = 10, Brerge = 0.5,
drerge = 50.

13

TABLE 11: Hyper-parameters used in each benchmark. We
include both tracking and detection parameters.

Parameter MOT17 MOT20 DanceTrack BDD100K Waymo TAO
Brew 0.75 0.75 0.8 0.5 0.8 0.0001
Bovs 0.3 0.3 0.6 0.35 0.5  0.0001
Braten 0.5 0.5 0.5 0.5 0.5 0.5
K 30 30 20 10 10 10
L 1 1 1 1 1 -
m 0.5 0.5 0.8 0.8 0.8 0.8
Det. confidence 0.1 0.001 0.1 0.1 0.05  0.0001
Det. NMS threshold 0.7 0.7 0.7 0.65 0.7 0.5

TABLE 12: Ablation study of association strategies used for
MOT Challenge. We evaluate on the MOT17 validation set.

Distance Tracklet Linear

Threshold ~ Merging  Interpolation MOTA T  IDF1T  HOTA T
- - - 76.1 73.6 63.5
v - - 76.2 74.5 64.0
v v - 76.0 76.0 64.4
v v v 76.8 76.2 64.8

Additionally, due to the high frame rate and low object motion
in the MOT benchmarks, we use distance thresholding to reduce
ambiguities during association by ignore matching candidates that
are greater than a distance d away. We use d = 50. Following [43],
we also perform linear interpolation to recover bounding boxes of
fully-occluded objects.

We provide an ablation study of the aforementioned techniques
on the MOT benchmarks, MOT17 and MOT20. The results
on the MOT17 validation set are shown in Table 12. Using
distance thresholding can improve IDF1 from 73.6 to 74.5 (+0.9).
Performing tracklet merging can improve IDF1 from 74.5 to 76.0
(+1.5). Linear interpolation can further improve all metrics.

APPENDIX C
ADDITIONAL ABLATION STUDIES

Momentum of the embeddings Assume there is an existing track
and its embedding is Fy. This track is associated to an object on
the current frame and its embedding is £;. The new embedding
of this track will be m x Ey + (1 — m) * Ey, where m is the
momentum. The momentum does not improve the results too much
but it considers the history of embeddings. We show the ablation
studies of different values of momentum in Table 13. The models
for this table are re-trained so the results are slightly different from
the results in the main paper.

Sensitivity of 7; and v, in Eq. 6 We found 7, does not
change the final results while «y; does. If y; is higher than 0.5, the
performance will drop, but does not matter if it is lower than 0.5.

APPENDIX D
ORACLE ANALYSIS

We investigate the performances of two types of oracles on the
BDD100K tracking validation set: detection oracle and tracking
oracle. For the detection oracle, we directly extract feature
embeddings of the ground truth objects in each frame and associate
them using our method. For the tracking oracle, we use ground
truth tracking labels to associate the detected objects.

Detection oracle The results are shown in Table 14. We can
observe that all MOTAs are higher than 94%, and some of them are



TABLE 13: Ablation study of momentum of the embeddings.
We evaluate on the BDD100OK tracking validation set.

Momentum mMOTA 4 mIDFI{+ MOTA{ IDFI ¢
0.6 37.0 50.9 63.3 714
0.7 37.0 50.9 63.3 713
0.8 37.0 50.7 63.3 71.1
0.9 37.0 50.6 63.3 70.8
1.0 37.0 50.5 63.3 70.5

even close to 100%. This is because we use the ground truth boxes
directly so that the number of false negatives and false positives
are close to 0.

The metric IDF1 and ID Switches can measure the performance

of identity consistency. The average IDF1 over the 8 classes is
88.8%, which is 38 points higher than our result. The gaps on
classes “car” and “pedestrain” are only 11.1 points and 19.3 points
between oracle results and our results respectively, while gaps on
other classes are exceeding 30 points. These results show that if
highly accurate detection results are provided, our method can
obtain robust feature embeddings and associate objects effectively.
However, the huge performance gaps also indicate the demand
of promoting detection algorithms in the video domain. We also
notice that the total number of ID switches in the oracle experiment
is higher than ours. This is due to the high object recalls in the
oracle experiments, as more detected instances may introduce more
ID switches accordingly.
Tracking oracle The results are shown in Table 15. We can
observe that when associating object directly with tracking labels,
the mIDF1 is only boosted by 4.3 points. This promising oracle
analysis shows the effectiveness of our method and indicates
that our method is bounded more by detection performance than
tracking performance.

APPENDIX E
FAILURE CASE ANALYSIS

Our method can distinguish different instances even they are similar
in appearance. However, there are still some failure cases. We show
them below with figures, in which we use yellow color to represent
false negatives, red color to represent false positives, and cyan color
to represent ID switches. The float number at the corner of each
box indicates the detection score, while the integer indicates the
object identity number. We use green dashed box to highlight the
objects we want to emphasize.
Object classification Inaccurate classification confidence is
the main distraction for the association procedure because false
negatives and false positives destroy the one-to-one matching
constraint. As shown in Figure 6, the false negatives are mainly
small objects or occluded objects under crowd scenes. The false
positives are objects that have similar appearances to annotated
objects, such as persons in the mirror or advertising board, etc.

Inaccurate object category is a less frequent distraction caused
by classification. The class of the instance may switch between dif-
ferent categories, which mostly belong to the same super-category.
Figure 7 shows an example. The category of the highlighted object
changes from “rider” to “pedestrian” when the bicycle is occluded.
Our method fails in this case because we require the associated
objects have the same category.

These failure cases caused by object classification suggest
that improvements could be achieved via leveraging video object
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detection algorithms, i.e. exploiting temporal information to
improve the detector, thus obtaining better tracking performance.
Object truncation/occlusion Object truncation/occlusion causes
inaccurate object localization. As shown in Figure 8, the highlighted
objects are truncated by other objects. The detector detects two
objects. One of them is a false positive box that only covers a part
of the object. The other one is a box with a lower detection score
but covers the entire object. This case may influence the association
process if the two boxes have similar feature embeddings.

An instance may have totally different appearances before and
after occlusion that result in low similarity scores. As shown in
Figure 9, only the front of the car appears before occlusion, while
only the rear of the car appears after occlusion. Our method can
associate two boxes if they cover the same discriminative regions
of an object, not necessarily the exact same region. However, if
two boxes cover totally different regions of the object, they will
have a low matching score.

Another corner case is the extreme high-level truncation. As
shown in Figure 10, the highly truncated objects only appear a
little when they just enter or leave the camera view. We cannot
distinguish different instances effectively according to the limited
appearance information.

APPENDIX F
VISUALIZATIONS

We show the visualizations of different instance patches during
the testing procedure in Figure 11. The detected objects in each
frame are matched to prior objects via bi-directional softmax. The
prior objects include tracks in the consecutive frame, vanished
tracks, and backdrops. We annotate them with different colors.
Each detected object is enclosed by the same color of its matched
object. We can observe that most false positives in the current frame
are matched to backdrops, which demonstrates keeping backdrops
during the matching procedure helps reduce the number of false
positives.

APPENDIX G

QUALITATIVE RESULTS

We show some qualitative results of our method on BDD100K
dataset and MOT17 dataset in Figure 12 and Figure 13, respectively.
The results are sampled from a certain interval for illustrative
purposes.
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TABLE 14: Detection oracle analysis. The numbers in the round brackets mean the gaps between oracle results and our results.

Category MOTA 1 IDF1 1 MOTP+ FN| FP| IDSw. | MT 4 ML |
Pedestrian 94.3 79.5 (+19.3) 99.8 1 1 3226 3506 0
Rider 95.8 88.5 (+40.4) 99.9 0 0 107 134 0
Car 97.7 86.1 (+11.1) 99.9 0 0 7716 13189 0
Bus 99.2 93.0 (+31.2) 100.0 0 0 72 196 0
Truck 98.8 90.3 (+33.8) 100.0 0 0 340 726 0
Bicycle 88.2 79.5 (+31.8) 98.7 8 8 470 243 0
Motorcycle 97.0 94.5 (+37.8) 99.8 0 0 27 44 0
Train 99.4 98.7 (+98.7) 100.0 0 0 2 6 0
All 96.3 88.8 (+38.0) 99.8 9 9 11960 18044 0

TABLE 15: Tracking oracle analysis. The numbers in the round brackets mean the gaps between oracle results and our results.

Category MOTA 1 IDF1 1 MOTP FN | FP | IDSw., MT{ ML
Pedestrian 54.7 71.2 (+11.0) 77.6 14990 10095 755 1835 367
Rider 31.4 52.6 (+4.5) 76.6 1390 242 115 16 56
Car 74.3 82.9 (+7.9) 84.1 54585 31014 2309 8759 1141
Bus 38.2 65.8 (+4.0) 86.1 3532 2031 57 61 41
Truck 37.0 60.9 (+4.4) 84.7 12719 4259 247 149 239
Bicycle 30.6 55.6 (+7.9) 75.4 2031 714 125 60 58
Motorcycle 14.6 51.7 (-5.0) 76.4 443 292 35 10 18
Train 0.6 0.0 (+0.0) 0.0 308 2 0 0 6
All 35.0 55.1 (+4.3) 70.1 89998 48649 3643 10890 1926

Fig. 6: Failure cases caused by inaccurate classification confidences. The objects enclosed by yellow rectangles are false negatives,
and the objects enclosed by red rectangles are false positives.

Fig. 7: Failure case caused by inaccurate object category. The category of the highlighted object changes from “rider” to “pedestrian”
due to the occlusion of the bicycle. They cannot be associated because they do not satisfy the category consistency.
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Fig. 8: Inaccurate object localization caused by truncation. The red false positive box only covers part of the object, while the yellow
box covers the entire object. They may have similar feature embeddings thus influencing the association procedure.

Grocery deliverytoyou
ath at work

Fig. 9: Occlusion in different regions of the same object. Two detected objects in different frames cover totally different regions of the
object thus having low appearance similarity.

Fig. 10: Extreme high-level truncation. Our method cannot distinguish different instances effectively according to the limited appearance
information in highly truncated objects.
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Fig. 11: Visualizations of different instance patches during inference. The detected objects in the current frame are matched to
tracklets in the consecutive frame, vanished tracklets, and backdrops via bi-directional softmax.

Fig. 12: Qualitative results of our method on BDD100K.



Fig. 13: Qualitative results of our method on MOT17.
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