
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Value-Function-based Sequential Minimization
for Bi-level Optimization

Risheng Liu, Member, IEEE, Xuan Liu, Shangzhi Zeng, Jin Zhang, and Yixuan Zhang

Abstract—Gradient-based Bi-Level Optimization (BLO) methods have been widely applied to handle modern learning tasks. However,
most existing strategies are theoretically designed based on restrictive assumptions (e.g., convexity of the lower-level sub-problem), and
computationally not applicable for high-dimensional tasks. Moreover, there are almost no gradient-based methods able to solve BLO in
those challenging scenarios, such as BLO with functional constraints and pessimistic BLO. In this work, by reformulating BLO into
approximated single-level problems, we provide a new algorithm, named Bi-level Value-Function-based Sequential Minimization (BVFSM),
to address the above issues. Specifically, BVFSM constructs a series of value-function-based approximations, and thus avoids repeated
calculations of recurrent gradient and Hessian inverse required by existing approaches, time-consuming especially for high-dimensional
tasks. We also extend BVFSM to address BLO with additional functional constraints. More importantly, BVFSM can be used for the
challenging pessimistic BLO, which has never been properly solved before. In theory, we prove the asymptotic convergence of BVFSM on
these types of BLO, in which the restrictive lower-level convexity assumption is discarded. To our best knowledge, this is the first
gradient-based algorithm that can solve different kinds of BLO (e.g., optimistic, pessimistic, and with constraints) with solid convergence
guarantees. Extensive experiments verify the theoretical investigations and demonstrate our superiority on various real-world applications.

Index Terms—Bi-level optimization, gradient-based method, value-function, sequential minimization, hyper-parameter optimization.

F

1 INTRODUCTION

CURRENTLY, a number of important machine learning
and deep learning tasks can be captured by hierarchical

models, such as hyper-parameter optimization [1], [2], [3],
[4], neural architecture search [5], [6], [7], meta learning [8],
[9], [10], Generative Adversarial Networks (GAN) [11], [12],
reinforcement learning [13], image processing [14], [15], [16],
[17], and so on. In general, these hierarchical models can
be formulated as the following Bi-Level Optimization (BLO)
problem [18], [19], [20]:

“ min
x∈X

” F (x,y), s.t. y ∈ S(x) := arg min
y

f(x,y), (1)

where x ∈ X is the Upper-Level (UL) variable, y ∈ Rn is
the Lower-Level (LL) variable, the UL objective F (x,y) :
X × Rn → R and the LL objective f(x,y) : Rm × Rn →
R, are continuously differentiable and jointly continuous
functions, and the UL constraint X ⊂ Rm is a compact set.
Nevertheless, the model in Eq. (1) cannot be solved directly.
Some existing works only consider the case that the LL

• R. Liu and X. Liu are with the DUT-RU International School of
Information Science & Engineering, Dalian University of Technology,
and the Key Laboratory for Ubiquitous Network and Service Software
of Liaoning Province, Dalian, Liaoning, China. R. Liu is also with the
Pazhou Lab, Guangzhou, Guangdong, China. E-mail: rsliu@dlut.edu.cn,
liuxuan 16@126.com.

• S. Zeng is with the Department of Mathematics and Statistics, University
of Victoria, Victoria, B.C., Canada. E-mail: zengshangzhi@uvic.ca.

• J. Zhang is with the Department of Mathematics, SUSTech International
Center for Mathematics, Southern University of Science and Technology,
National Center for Applied Mathematics Shenzhen, and Peng Cheng
Laboratory, Shenzhen, Guangdong, China. (Corresponding author, E-mail:
zhangj9@sustech.edu.cn.)

• Y. Zhang is with the Department of Applied Mathematics, the Hong Kong
Polytechnic University, Hong Kong, China. E-mail:
yi-xuan.zhang@connect.polyu.hk.

Manuscript received April 19, 2005; revised August 26, 2015.

solution set S(x) is a singleton. However, since this may
not be satisfied and y ∈ S(x) may not be unique, Eq. (1)
is not a rigorous BLO model in mathematics, and thus we
use the quotation marks around “min” to denote the slightly
imprecise definition of the UL objective [18], [21].

Strictly, people usually focus on an extreme situation of
the BLO model, i.e., the optimistic BLO [18]:

min
x∈X

min
y∈Rn

F (x,y), s.t. y ∈ S(x). (2)

It can be found from the above expression that in optimistic
BLO, x and y are in a cooperative relationship, aiming to
minimize F (x,y) at the same time. Therefore, it can be
applied to a variety of learning and vision tasks, such as
hyper-parameter optimization, meta learning, and so on.
Sometimes we also need to study BLO problems with in-
equality constraints on the UL or LL for capturing constraints
in real tasks. Another situation one can consider is the
pessimistic BLO, which changes the miny∈Rn in Eq. (2) into
maxy∈Rn [18]. In the pessimistic case, x and y are in an
adversarial relationship, and hence solving pessimistic BLO
can be applied to adversarial learning and GAN.

Actually, BLO is challenging to solve, because in the
hierarchical structure, we need to solve S(x) governed
by the fixed x, and select an appropriate y from S(x)
to optimize the UL F (x,y), making x and y intricately
dependent of each other, especially when S(x) is not a
singleton [22]. In classical optimization, KKT condition is
utilized to characterize the problem, but this method is not
applicable to machine learning tasks of large scale due to the
use of too many multipliers [23], [24]. In the machine learning
community, a class of mainstream and popular methods
are gradient-based methods, divided into Explicit Gradient-
Based Methods (EGBMs) [2], [8], [25], [26], [5] and Implicit

ar
X

iv
:2

11
0.

04
97

4v
2

 [
cs

.L
G

]
 6

 M
ay

 2
02

3

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Gradient-Based Methods (IGBMs) [27], [9], [28], according
to divergent ideas of calculating the gradient needed for
implementing gradient descent. EGBMs implement this
process via unrolled differentiation, and IGBMs use the
implicit function theorem to obtain the gradient. Both of
them usually deal with the problem where the LL solution
set S(x) is a singleton, which is a quite restrictive condition
in real application tasks. In dealing with this, Liu et al. [29],
[30] proposed Bi-level Descent Aggregation (BDA) as a new
EGBM, which removes this assumption and solves the model
from the perspective of optimistic BLO.

Nevertheless, there still exists a bottleneck hard to break
through, that the LL problems in real learning tasks are
usually too complex for EGBMs and IGBMs. In theory, all
of the EGBMs and IGBMs require the convexity of the LL
problem, or the Lower-Level Convexity, denoted as LLC for
short, which is a strong condition and not satisfied in many
complicated real-world tasks. For example, since the layer
of chosen network is usually greater than one, LLC is not
satisfied, so the convergence of these methods cannot be guar-
anteed. In computation, additionally, EGBMs using unrolled
differentiation request large time and space complexity, while
IGBMs need to approximate the inverse of a matrix, also with
high computational cost, especially when the LL variable y
is of large scale, which means the dimension of y is large,
generating matrices and vectors of high dimension during
the calculating procedure. Furthermore, it has been rarely
discussed how to handle machine learning tasks by solving
an optimization problem with functional constraints on the
UL and LL, or by solving a pessimistic BLO. However, these
problems are worth discussing, because pessimistic BLO
can be used to capture min-max bi-level structures, which
is suitable for GAN and so on, and optimization problems
with constraints can be used to represent learning tasks
more accurately. Unfortunately, existing methods including
EGBMs and IGBMs, are not able to handle these problems.

To address the above limitations of existing methods, in
this work, we propose a novel framework, named Bi-level
Value-Function-based Sequential Minimization (BVFSM) 1.
To be specific, we start with reformulating BLO into a simple
bi-level optimization problem by the value-function [31],
[32] of UL objective. After that, we further transform it
into a single-level optimization problem with an inequality
constraint through the value-function of LL objective. Then,
by using the smoothing technique via regularization and
adding the constraint into the objective by an auxiliary
function of penalty or barrier, eventually the original prob-
lem can be transformed into a sequence of unconstrained
differentiable single-level problems, which can be solved
by gradient descent. Thanks to the re-characterization via
the value-function of LL problem, our computational cost
is the least to implement the algorithm, and simultaneously,
BVFSM can be applied under more relaxed conditions.

Specifically, BVFSM avoids solving an unrolled dynamic
system by recurrent gradient or approximating the inverse
of Hessian during each iteration like existing methods.
Instead, we only need to calculate the first-order gradient
in each iteration, reduces the computational complexity
relative to the LL problem size by an order of magnitude

1. A preliminary version of this work has been published in [1].

compared to existing gradient-based BLO methods, and
thus require less time and space complexity than EGBMs
and IGBMs, especially for complex high-dimensional BLO.
Besides, BVFSM enables to maintain the level of complexity
when applying BLO to networks, thereby making it possible
to use BLO in existing networks and expanding its range
of applications significantly. We illustrate the efficiency of
BVFSM over existing methods through complexity analysis
in theory and various experimental results in reality. In
addition, we consider the asymptotic convergence different
from some previous gradient-based methods inspired from
the perspective of sequential minimization, and prove that
the solutions to the sequence of approximate sub-problems
converge to the true solution of the original BLO without
the restrictive LLC assumption as before. Also, BVFSM can
be extended to more complicated and challenging scenarios,
namely, BLO with functional constraints and pessimistic BLO
problems. We regard pessimistic BLO as a new viewpoint
to deal with learning tasks, which has not been solved
by gradient-based methods before to our best knowledge.
Specially, we use the experiment of GAN as an example
to illustrate the application of our method for solving
pessimistic BLO. We summarize our contributions as follows.

• By reformulating the original BLO as an approx-
imated single-level problem based on the value-
function, BVFSM breaks the traditional mindset
in gradient-based methods, and establishes a com-
petently new sequential minimization algorithmic
framework, which not only can be used to address
optimistic BLO, but also has the ability to handle
BLO in other more challenging scenarios (i.e., with
functional constraints and pessimistic), which have
seldom been discussed.

• BVFSM significantly reduces the computational com-
plexity by an order of magnitude compared to ex-
isting gradient-based BLO methods with the help
of value-function-based reformulation which breaks
the traditional mindset. Also, BVFSM avoids the re-
peated calculation of recurrent gradients and Hessian
inverse, which are the core bottleneck for solving high-
dimensional BLO problems in existing approaches.
The superiority allows BVFSM to be applied to large-
scale networks and frontier tasks effectively.

• We rigorously analyze the asymptotic convergence
behaviors of BVFSM on all types of BLO mentioned
above. Our theoretical investigations successfully
remove the restrictive LLC condition, required in
most existing works but actually too ambitious to
satisfy in real-world applications.

• In terms of experiments, we conduct extensive experi-
ments to verify our theoretical findings and demon-
strate the superiority of BVFSM on various learning
tasks. Especially, by formulating and solving GAN
by BVFSM, we also show the application potential of
our solution strategy on pessimistic BLO for complex
learning problems.

2 RELATED WORKS

As aforementioned, BLO is challenging to solve due to its
nested structures between UL and LL. Early methods can

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

only handle models with not too many hyper-parameters.
For example, to find appropriate parameters, the standard
method is to use random search [33] through randomly
sampling, or to use Bayesian optimization [34]. However,
in real learning tasks, the dimension of hyper-parameters
is very large, which early methods cannot deal with, so
gradient-based methods are proposed. Here we first put
forward a unified form of gradient-based methods, and then
discuss the existing methods for further comparing them
with our proposed method.

Existing gradient-based methods mainly focus on the
optimistic BLO only, so we use the optimistic scenario
to illustrate our algorithmic framework clearly, while in
Section 3.4, we will discuss how to use our method to solve
pessimistic BLO. For optimistic BLO, it can be found from
Eq. (2) that the UL variable x and LL variable y will effect
each other in a nested relationship. To address this issue, one
can transform it into the following form, where ϕ(x) is the
value-function of the sub-problem,

min
x∈X

ϕ(x), ϕ(x) := min
y

{
F (x,y) : y ∈ S(x)

}
. (3)

For a fixed x, this sub-problem for solving ϕ(x) is an
inner simple BLO task, as it is only about one variable y,
with x as a parameter. Then, we hope to minimize ϕ(x)
through gradient descent. However, as a value-function, ϕ(x)
is non-smooth, non-convex, even with jumps, and thus
ill-conditioned, so we use a smooth function to approx-
imate ϕ(x) and approach ∂ϕ(x)

∂x . Existing methods can
be classified into two categories according to divergent
ways to calculate ∂ϕ(x)

∂x [20], i.e., Explicit Gradient-Based
Methods (EGBMs), which derives the gradient by Automatic
Differentiation (AD), and Implicit Gradient-Based Methods
(IGBMs), which apply implicit function theorem to deal with
the optimality conditions of LL problems.

Note that both EGBMs and IGBMs require y ∈ S(x)
to be unique (except BDA), denoted as y∗(x), while for
BDA, by integrating information from both the UL and LL
sub-problem, yT (x) is obtained by iterations to approach
the appropriate y∗(x). Hence, ϕ(x) = F (x,y∗(x)), and
therefore by the chain rule, the approximated ∂ϕ(x)

∂x is split
into direct and indirect gradients of x,

∂ϕ(x)

∂x
=
∂F (x,y∗(x))

∂x
+G(x), (4)

where ∂F (x,y)
∂x is the direct gradient and G(x) is the indirect

gradient, G(x) =
(
∂y∗(x)
∂x

)>
∂F (x,y∗)
∂y∗ . Then we need to

compute G(x), in other words, the value of ∂y
∗(x)
∂x .

Explicit Gradient-Based Methods (EGBMs). Maclaurin
et al. [25] and Franceschi et al. [2], [8] first proposed Reverse
Hyper-Gradient (RHG) and Forward Hyper-Gradient (FHG)
respectively, to implement a dynamic system, under the LLC
assumption. Given an initial point y0, denote the iteration
process to approach y∗(x) as yt+1(x) = Φt(x,yt(x)), t =
0, 1, · · · , T − 1, where Φt is a smooth mapping performed
to solve yT (x) and T is the number of iterations. In
particular, for example, if the process is gradient descent,
Φt (x,yt(x)) = yt(x) − st

∂f(x,yt(x))
∂yt

,where st > 0 is the
corresponding step size. Then ϕ(x) in Eq. (3) can be approx-
imated by ϕ(x) ≈ ϕT (x) = F (x,yT (x)). As T increases,

ϕT (x) approaches ϕ(x) generally, and a sequence of uncon-
strained minimization problems is obtained. Thus, gradient-
based methods can be regarded as a kind of sequential-
minimization-type scheme [35]. From the chain rule, we

have ∂yt(x)
∂x =

(
∂Φt−1(x,yt−1)

∂yt−1

)>
∂yt−1(x)

∂x + ∂Φt−1(x,yt−1)
∂x ,

and ∂yT (x)
∂x can be obtained from this unrolled procedure.

However, FHG and RHG require calculating the gradient of
x composed of the first-order condition of LL problem by AD
during the entire trajectory, so the computational cost owing
to the time and space complexity is very high. In dealing
with this, Shaban et al. [26] proposed Truncated Reverse
Hyper-Gradient (TRHG) to truncate the iteration, and thus
TRHG only needs to store the last I iterations, reducing the
computational load. Nevertheless, it additionally requires f
to be strongly convex, and the truncated path length is hard
to determine. Another method Liu et al. [5] tried is to use
the difference of vectors to approximate the gradient, but the
accuracy of using the difference is not promised and there is
no theoretical guarantee for this method. On the other hand,
from the viewpoint of theory, for more relaxed conditions,
Liu et al. [29], [30] proposed Bi-level Descent Aggregation
(BDA) to remove the assumption that the LL solution set is a
singleton, which is a simplification of real-world problems.
Specifically, BDA uses information from both the UL and the
LL problem as an aggregation during iterations. However,
the obstacle of LLC and computational cost still exists.

Implicit Gradient-Based Methods (IGBMs). IGBMs or
implicit differentiation [27], [9], [28], can be applied to
obtain ∂y∗(x)

∂x under the LLC assumption. If ∂2f(x,y∗(x))
∂y∂y

is assumed to be invertible in advance as an additional
condition, by using the implicit function theorem on the
optimality condition ∂f(x,y∗(x))

∂y = 0, the LL problem is

replaced with an implicit equation, and then ∂y∗(x)
∂x =

−
(
∂2f(x,y∗(x))

∂y∂y

)−1
∂2f(x,y∗(x))

∂y∂x . Unlike EGBMs relying on
the first-order condition during the entire trajectory, IGBMs
only depends on the first-order condition once, which decou-
ples the computational burden from the solution trajectory
of the LL problem, but this leads to repeated computation of
the inverse of Hessian matrix, which is still a heavy burden.
In dealing with this, to avoid direct inverse calculation, the
Conjugate Gradient (CG) method [27], [9] changes it into
solving a linear system, and Neumann method [28] uses the
Neumann series to calculate the Hessian inverse. However,
after using these methods, the computational requirements
are reduced but still large, because the burden of computing
the inverse of matrix changes into computing Hessian-vector
products. Additionally, the accuracy of solving a linear
system highly depends on its condition number [36], and
the ill condition may result in numerical instabilities. A large
quadratic term is added on the LL objective to eliminate
the ill-condition in [9], but this approach may change the
solution set greatly.

As discussed above, EGBMs and IGBMs need repeated
calculations of recurrent gradient or Hessian inverse, leading
to high time and space complexity in numerical computation,
and require the LLC assumption in theory. Actually, when
the dimension of y is very large, which happens in practical
problems usually, the computational burden of massively
computing the products of matrices and vectors might be

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

too heavy to carry. In addition, the LLC assumption is also
not suitable for most complex real-world tasks.

3 THE PROPOSED ALGORITHM

In this section, we illustrate our algorithmic framework,
named Bi-level Value-Function-based Sequential Minimiza-
tion (BVFSM). Our method also follows the idea of construct-
ing a sequence of unconstrained minimization problems to
approximate the original bi-level problem, but different from
existing methods, BVFSM uses the re-characterization via
the value-function of the LL problem. Thanks to this strategy,
our algorithm is able to handle problems with complicated
non-convex high-dimensional LL, which existing methods
are not able to deal with.

3.1 Value-Function-based Single-level Reformulation
BVFSM designs a sequence of single-level unconstrained
minimization problems to approximate the original prob-
lem through a value-function-based reformulation. We first
present this procedure under the optimistic BLO case.

Recall the original optimistic BLO in Eq. (2) has been
transformed into Eq. (3), and we hope to compute G(x) in
Eq. (4). Note that the difficulty of computing ∂ϕ(x)

∂x comes
from the ill-condition of ϕ(x), owing to the nested structure
of the bi-level sub-problem for solving ϕ(x). Hence, we
introduce the value-function of the LL problem f∗(x) :=
miny f(x,y) to transform it into a single-level problem. Then
the problem can be reformulated as

ϕ(x) = min
y

{
F (x,y) : f(x,y) ≤ f∗(x)

}
. (5)

However, the inequality constraint f(x,y) ≤ f∗(x) is still
ill-posed, because it does not satisfy any standard regularity
condition and f∗(x) is non-smooth. In dealing with such
difficulty, we approximate f∗(x) with regularization:

f∗µ(x) = min
y

{
f(x,y) +

µ

2
‖y‖2

}
, (6)

where µ
2 ‖y‖

2 (µ > 0) is the regularization term.
We further add an auxiliary function of the inequality

constraints to the objective, and obtain

ϕµ,θ,σ(x)=min
y

{
F (x,y)+Pσ

(
f(x,y)− f∗µ(x)

)
+
θ

2
‖y‖2

}
,

(7)
where (µ, θ, σ) > 0, θ2‖y‖

2 is the regularization term, and
Pσ : R → R (where R = R ∪ {∞}) is the selected auxiliary
function for the sequential unconstrained minimization
method with parameter σ, which will be defined in Eq. (8)
and discussed in detail next. This reformulation changes the
constrained problem Eq. (5) into a sequence of unconstrained
problems Eq. (7) under different parameters. The regulariza-
tion terms in Eq. 6 and Eq. 7 are to guarantee the uniqueness
of solution to these two problems, which is essential for
the differentiability of ϕµ,θ,σ(x), and will be discussed in
Remark 1 of Section 3.2. Experiments in Section 5.1.1 also
demonstrate that introducing the regularization terms for
differentiability to avoid possible jumps matters to improve
the computational stability.

The sequential unconstrained minimization method is
mainly used for solving constrained nonlinear programming

by changing the problem into a sequence of unconstrained
minimization problems [35], [37], [38]. To be specific, we
add to the objective a selected auxiliary function of the
constraints with a sequence of parameters, and obtain
a series of unconstrained problems. The convergence of
parameters makes the sequential unconstrained problems
converge to the original constrained problem, leading to
the convergence of the solution. Based on the property of
auxiliary functions, they are divided mainly into two types,
barrier functions and penalty functions [39], [40], whose
definitions are provided here.

Definition 1 A continuous, differentiable, and non-decreasing
function ρ : R → R is called a standard barrier function if
ρ(ω;σ) satisfies ρ(ω;σ) ≥ 0 and limσ→0 ρ(ω;σ) = 0, when
ω < 0; and ρ(ω;σ) → ∞ when ω → 0. It is called a standard
penalty function if it satisfies ρ(ω;σ) = 0 when ω ≤ 0; and
ρ(ω;σ) > 0 and limσ→0 ρ(ω;σ) =∞ when ω > 0. Here σ > 0
is the barrier or penalty parameter. In addition, if ρ(ω;σ(1)) is
a standard barrier function, then ρ(ω − σ(2) ;σ(1)) is called a
modified barrier function (σ(1), σ(2) > 0).

For the simplicity of expression later, we denote the
function Pσ in Eq. (7) to be

Pσ(ω) :=

ρ(ω;σ), if ρ is a penalty

or standard barrier function,

ρ(ω − σ(2);σ(1)), if ρ is a modified barrier function.
(8)

Here for a modified barrier function, σ(2) > 0 is to guarantee
that in Eq. (7), f(x,y) − f∗µ(x) − σ(2) < 0, and the barrier
function is well-defined.

Classical examples of auxiliary functions are the quadratic
penalty function, inverse barrier function and log barrier
function [41], [40]. There are also some other popular
examples, such as the polynomial penalty function [39]
and truncated log barrier function [42]. These examples of
standard penalty and barrier functions are listed in Table 1.
Note that we need the smoothness of ϕµ,θ,σ(x), and will
calculate the gradient of Pσ afterwards, so we choose smooth
auxiliary functions rather than non-smooth exact penalty
functions. Note that when ρ is a modified barrier function, σ
of Pσ(ω) in Eq. (8) has two components σ(1) and σ(2), and
the specific form of Pσ(ω) comes from substituting ω − σ(2)

and σ(1) for ω and σ in Table 1.

3.2 Sequential Minimization Strategy
From the discussion above, we then hope to solve

min
x∈X

ϕµ,θ,σ(x), (9)

with ϕµ,θ,σ(x) in Eq. (7). First denote

z∗µ(x) = argmin
y

{
f(x,y) +

µ

2
‖y‖2

}
, (10)

y∗µ,θ,σ(x) = argmin
y

{
F (x,y) + Pσ

(
f(x,y)− f∗µ(x)

)
+
θ

2
‖y‖2

}
.

(11)
The following proposition gives the smoothness of ϕµ,θ,σ (x)

and the formula for computing ∂ϕµ,θ,σ(x)
∂x or G(x), which

serves as the ground for our algorithm.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE 1
Some available standard penalty and barrier functions.

Penalty functions

Quadratic ρ(ω;σ) = 1
2σ

(
ω+
)2, where ω+ = max {ω, 0}

Polynomial ρ(ω;σ) = 1
qσ

(
ω+
)q , where q is a positive integer

chosen such that ρ(ω;σ) is differentiable

Barrier functions

Inverse ρ(ω;σ) =

{
−
σ

ω
, ω < 0

∞, ω ≥ 0

Truncated Log
ρ(ω;σ) =

− σ (log (−ω) + β1) , −κ ≤ ω < 0

− σ
(
β2 +

β3

ω2
+
β4

ω

)
, ω < −κ

∞, ω ≥ 0
where 0 < κ ≤ 1, β1, β2, β3, β4 are chosen
such that ρ(ω;σ) ≥ 0 and is twice differentiable

Proposition 1 (Calculation of G(x)) Suppose F (x,y) and
f(x,y) are bounded below and continuously differentiable.
Given x ∈ X and µ, θ, σ > 0, when z∗µ(x) and y∗µ,θ,σ(x) are
unique, then ϕµ,θ,σ(x) is differentiable and

G(x) =
∂Pσ

(
f (x,y)− f∗µ(x)

)
∂x

∣∣
y=y∗µ,θ,σ(x)

, (12)

where f∗µ(x) = f
(
x, z∗µ(x)

)
+
µ

2
‖z∗µ(x)‖2, and

∂f∗µ(x)

∂x =
∂f(x,y)
∂x

∣∣
y=z∗µ(x)

.

Proof: We first prove that for any x̄ ∈ X , f(x,y) +
µ
2 ‖y‖

2 is level-bounded in y locally uniformly in x̄ ∈ X
(see [29, Definition 3]). That means for any c ∈ R, there
exist δ > 0 and a bounded set B ⊂ Rn, such that{
y ∈ Rn : f(x,y) + µ

2 ‖y‖
2 ≤ c

}
⊂ B, for all x ∈ Bδ(x̄)∩X ,

where Bδ(x̄) denotes the open ball with center at x̄ and ra-
dius δ, i.e., Bδ(x̄) = {x̂ ∈ X : ‖x̄− x̂‖ < δ}. Assume by con-
tradiction that the above does not hold. Then there exist se-
quences {xk} and {yk} satisfying xk → x̄ and ‖yk‖ → +∞,
such that f(xk,yk) + µ

2 ‖yk‖
2 ≤ c. As f(x,y) is bounded

below, then ‖yk‖ → ∞ implies f(xk,yk) + µ
2 ‖yk‖

2 → ∞,
which contradicts with f(xk,yk) + µ

2 ‖yk‖
2 ≤ c and c ∈ R.

Hence, from the arbitrariness of x̄, we have
f(x,y) + µ

2 ‖y‖
2 is level-bounded in y locally uniformly

in x ∈ X , and then the inf-compactness condition
in [43, Theorem 4.13] holds for f(x,y) + µ

2 ‖y‖
2. Since

argminy∈Rn
{
f(x,y) + µ

2 ‖y‖
2
}

is a singleton, it follows
from [43, Theorem 4.13, Remark 4.14] that

∂f∗µ(x)

∂x
=
∂
(
f(x,y) + µ

2 ‖y‖
2
)

∂x

∣∣
y=z∗µ(x)

=
∂f(x,y)

∂x

∣∣
y=z∗µ(x)

.

Next, from definitions of penalty and barrier func-
tions (Definition 1), we have ρ(ω;σ) ≥ 0 for any ω, so
Pσ(ω) ≥ 0 holds. Then, since F (x,y) is assumed to
be bounded below, similar to f(x,y) + µ

2 ‖y‖
2, the inf-

compactness condition in [43, Theorem 4.13] also holds for
F (x,y) + Pσ

(
f(x,y)− f∗µ(x)

)
+ θ

2‖y‖
2. Combining with

the fact that

argminy∈Rn

{
F (x,y) + Pσ

(
f(x,y)− f∗µ(x)

)
+
θ

2
‖y‖2

}

is a singleton, [43, Theorem 4.13, Remark 4.14] shows that

∂ϕµ,θ,σ (x)

∂x

=
∂
(
F (x,y) + Pσ

(
f(x,y)− f∗µ(x)

)
+ θ

2‖y‖
2
)

∂x

∣∣
y=y∗µ,θ,σ(x)

=

(
∂F (x,y)

∂x
+
∂Pσ

(
f(x,y)− f∗µ(x)

)
∂x

) ∣∣
y=y∗µ,θ,σ(x)

.

Therefore, the conclusion in Eq. (12) follows immediately. �

Remark 1 In Proposition 1 we require the uniqueness of z∗µ(x)
and y∗µ,θ,σ(x) to guarantee the differentiability of ϕµ,θ,σ(x). This
can be achieved by conditions much weaker than convexity, such
as the convexity only on a level set. We start with the uniqueness
of z∗µ(x). For any given x ∈ X , consider a function f(x,y)
satisfying that there exists a constant c > miny f(x,y) such
that f(x,y) is convex in y on the level set {y : f(x,y) ≤
c}. Suppose ŷ is a minimum of f(x,y). Then infy{f(x,y) +
µ/2‖y‖2} ≤ f(x, ŷ)+µ/2‖ŷ‖2 = miny f(x,y)+µ/2‖ŷ‖2 <
c, for a sufficiently small µ > 0. Thus, z∗µ(x) locates inside the
level set {y : f(x,y) ≤ c} on which f(x,y) is convex. Hence,
f(x,y) + µ/2‖y‖2 is strictly convex on {y : f(x,y) ≤ c}, and
the uniqueness of z∗µ(x) follows.

As for the uniqueness of y∗µ,θ,σ(x), suppose given x,
there exist constants c1 > miny∈S(x) F (x,y) and c2 >
miny f(x,y) such that F and f are convex in y on the
set {y : F (x,y) ≤ c1 and f(x,y) ≤ c2}. If we select a
non-decreasing and convex auxiliary function Pσ(·) (such as
those in Table 1), then Pσ

(
f(x,y)− f∗µ(x)

)
is convex in y

on the set (see [44] Proposition 1.54). Or simply if there
exists c > miny F (x,y) + Pσ

(
f(x,y)− f∗µ(x)

)
such that

F (x,y) + Pσ
(
f(x,y)− f∗µ(x)

)
is convex on the set {y :

F (x,y) + Pσ
(
f(x,y)− f∗µ(x)

)
≤ c}, then it derives the strict

convexity of F (x,y) + Pσ
(
f(x,y)− f∗µ(x)

)
+ θ

2‖y‖
2 in y on

the set similarly, and the uniqueness of y∗µ,θ,σ(x) follows.

Proposition 1 serves as the foundation for our algorithmic
framework. Denote ϕk(x) := ϕµk,θk,σk(x). Next, we will
illustrate the implementation at the k-th step of the outer
loop and the l-th step of the inner loop, that is, to calculate
∂ϕk(xl)
∂x , as a guide.
We first calculate z∗µk(xl) in Eq. (10) through Tz steps of

gradient descent, and denote the output as zTz

k,l, regarded
as an approximation of z∗µk(xl). After that, we calculate
y∗µk,θk,σk(xl) in Eq. (11) through Ty steps of gradient descent,
and denote the output as y

Ty

k,l. Note that if the objective
function is convex, running some number of steps of the
method would lead to an approximation of the minimizer.
Meanwhile, the convexity of objective functions for approx-
imating z∗µk(xl) and y∗µk,θk,σk(xl) can be guaranteed if f
and F are convex in y as discussed in Remark 1. Also, if the
objective function is not convex but all of its stationary points
are minimizers, which is a weaker condition than convexity,
gradient descent would still help to converge to minimizers.

Then, according to Proposition 1, we can obtain

∂ϕk(xl)

∂x
≈
∂F (xl,y

Ty

k,l)

∂x
+Gk,l , (13)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

with Gk,l =
∂Pσk

(
f
(
xl,y

Ty
k,l

)
−fTzk,l

)
∂x , where fTz

k,l = f(xl, z
Tz

k,l) +
µk
2 ‖z

Tz

k,l‖2. As a summary, the algorithm for solving Eq. (9)
is shown in Algorithms 1 and 2.

Algorithm 1 Our Solution Strategy for Eq. (9).
Input: x0, (µ0, θ0, σ0), step size α > 0.
Output: The optimal UL solution x∗.

1: for k = 0→ K − 1 do
2: Calculate (µk, θk, σk).
3: for l = 0→ L− 1 do
4: Calculate ∂ϕk(xl)

∂x by Algorithm 2.
5: xl+1 = ProjX

(
xl − α∂ϕk(xl)

∂x

)
.

6: end for
7: x0 = xL.
8: end for
9: return x∗.

Algorithm 2 Calculation of ∂ϕk(xl)
∂x .

Input: xl, (µk, θk, σk).
Output: ∂ϕk(xl)

∂x .
1: Calculate zTz

k,l as an approximation of z∗µk(xl) by perform-
ing Tz-step gradient descent on Eq. (10).

2: Calculate y
Ty

k,l as an approximation of y∗µk,θk,σk(xl) by
performing Ty-step gradient descent on Eq. (11).

3: Calculate an approximation of ∂ϕk(xl)
∂x by Eq. (13).

3.3 Extension for BLO with Functional Constraints
We consider the BLO with functional constraints on UL and
LL problems in this subsection, which is a more general
setting, and the above discussion without constraints can be
extended to the case with inequality constraints.

The optimistic BLO problems in Eq. (2) with functional
constraints are then

min
x∈X ,y∈Rn

F (x,y)

s.t.

Hj(x,y) ≤ 0, for any j

y ∈ S(x) := argmin
y

{
f(x,y) : hj′(x,y) ≤ 0, for any j′

}
,

where the UL constraints Hj(x,y) : Rm × Rn → R
(for any j ∈ {1, 2, · · · , J}) and the LL constraints hj′(x,y) :
Rm×Rn → R (for any j′ ∈ {1, 2, · · · , J ′}) are continuously
differentiable functions. This is equivalent to minx∈X ϕ(x),
where ϕ(x), the value-function of the sub-problem in Eq. (3),
is adapted correspondingly to be

ϕ(x) := min
y

{
F (x,y) : Hj(x,y) ≤ 0, ∀j, and y ∈ S(x)

}
.

Also, the counterpart for value-function of the LL prob-
lem is f∗(x) := miny {f(x,y) : hj′(x,y) ≤ 0,∀ j′}, and
following the technique within Eq. (5) to transform the LL
problem into an inequality constraint, the problem can be
reformulated as

ϕ(x) = min
y

{
F (x,y) : Hj(x,y) ≤ 0,∀ j,

f(x,y) ≤ f∗(x), and hj′(x,y) ≤ 0, ∀ j′
}
.

(14)

After that, using the same idea of sequential minimization
method, inspired by the regularized smoothing method
in [45], the value-function f∗(x) can be approximated with
a barrier function (different from Eq. (6) due to the LL
constraints) and a regularization term:

f∗µ,σB (x) = min
y

{
f(x,y)+

J′∑
j′=1

PB,σB (hj′(x,y))+
µ

2
‖y‖2

}
,

where PB,σB (ω) : R → R is the selected standard
barrier function for the LL constraint hj′ as defined
in Eq. (8), with σB as the barrier parameter. Note
that here we define PB,σB as a standard barrier
function but not a modified barrier function. As for
the approximation of ϕ(x), Eq. (7) is transferred into

ϕµ,θ,σ(x) = min
y

{
F (x,y) +

J∑
j=1

PH,σH (Hj(x,y))

+

J′∑
j′=1

Ph,σh(hj′(x,y)) + Pf,σf
(
f(x,y)− f∗µ,σB (x)

)
+
θ

2
‖y‖2

}
,

where PH,σH , Ph,σh , Pf,σf : R→ R are the selected auxiliary
functions of penalty or modified barrier with parameters σH ,
σh and σf , and (µ, θ, σ) = (µ, θ, σB , σH , σh, σf) > 0.

Then corresponding to Eq. (10) and Eq. (11), by denoting

z∗µ,σB (x)=argmin
y

{
f(x,y)+

J′∑
j′=1

PB,σB (hj′(x,y))+
µ

2
‖y‖2

}
,

y∗µ,θ,σ(x) = argmin
y

{
F (x,y) +

J∑
j=1

PH,σH (Hj(x,y))

+

J′∑
j′=1

Ph,σh(hj′(x,y)) + Pf,σf
(
f(x,y)− f∗µ,σB (x)

)
+
θ

2
‖y‖2

}
,

we have the next proposition, which follows the same idea
from Proposition 1.

Proposition 2 Suppose F (x,y) and f(x,y) are
bounded below and continuously differentiable. Given
x ∈ X and µ, θ, σ > 0, when z∗µ,σB (x) and
y∗µ,θ,σ(x) are unique, then ϕµ,θ,σ(x) is differentiable and

G(x) =

[
J∑
j=1

∂PH,σH (Hj(x,y))

∂x
+

J′∑
j′=1

∂Ph,σh(hj′(x,y))

∂x

+
∂Pf,σf

(
f (x,y)− f∗µ,σB (x)

)
∂x

]∣∣
y=y∗µ,θ,σ(x)

,

where

f∗µ,σB (x) = f
(
x, z∗µ,σB (x)

)
+

J′∑
j′=1

∂PB,σB
(
hj′(x, z

∗
µ,σB (x))

)
+
µ

2
‖z∗µ,σB (x)‖2,

∂f∗µ,σB (x)

∂x
=

[
∂f(x,y)

∂x
+

J′∑
j′=1

∂PB,σB (hj′(x,y))

∂x

]∣∣
y=z∗µ,σB

(x)
.

The proof is similar to Proposition 1, obtained by apply-
ing [43, Theorem 4.13, Remark 4.14]. The algorithm is then
based on Proposition 2 and similar to Algorithm 1 and 2.
Note that in Section 4.1, our convergence analysis is carried

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

out under this constrained setting, because problems without
constraints can be regarded as its special case.

Remark 2 In terms of the uniqueness of z∗µ,σB (x) and y∗µ,θ,σ(x),
if we select convex auxiliary functions PB,σB , PH,σH , Ph,σh ,
Pf,σf , and suppose hj′(x,y),∀ j′, and Hj(x,y),∀ j, in the
constraints are convex in the level set, then the uniqueness follows
similarly as in Remark 1.

3.4 Extension for Pessimistic BLO
In this part, we consider the pessimistic BLO, which has
been rarely discussed for handling learning tasks to our
best knowledge. For brevity, we focus on problems without
constraints on UL and LL, and this can be extended to the
case with constraints easily. As what we have discussed
about pessimistic BLO at the very beginning, its form is

min
x∈X

max
y∈Rn

F (x,y), s.t. y ∈ S(x) = arg min
y

f(x,y).

(15)
Similar to the optimistic case, this problem

can be transformed into minx ϕp(x), where the
value-function ϕ(x) in Eq. (3) is redefined as
ϕp(x) := max

y

{
F (x,y) : y ∈ S(x)

}
. Considering the

value-function f∗(x), we have the same regularized f∗µ(x)
to the optimistic case in Eq. (6). As for the approximation
of ϕp(x), thanks to the value-function-based sequential
minimization, different from Eq. (7), we have

ϕpµ,θ,σ(x) = max
y

{
F (x,y)− Pσ

(
f(x,y)− f∗µ(x)

)
− θ

2
‖y‖2

}
,

where Pσ is defined in Eq. (8). Same as before, our goal is to
solve minx ϕ

p
µ,θ,σ(x).

Denote z∗µ(x) to be the same as in Eq. (10), and Eq. (11)
is changed into

y∗µ,θ,σ(x) = argmax
y

{
F (x,y)− Pσ

(
f(x,y)− f∗µ(x)

)
− θ

2
‖y‖2

}
.

Then Proposition 1 in the optimistic case is changed into the
following in the pessimistic case.

Proposition 3 Suppose −F (x,y) and f(x,y) are bounded be-
low and continuously differentiable. Given x ∈ X and µ, θ, σ > 0,
when z∗µ(x) and y∗µ,θ,σ(x) are unique, then ϕpµ,θ,σ(x) is differen-
tiable and

∂ϕpµ,θ,σ (x)

∂x
=
∂F
(
x,y∗µ,θ,σ(x)

)
∂x

+G(x),

with G(x) =
−∂Pσ

(
f (x,y)− f∗µ(x)

)
∂x

∣∣
y=y∗µ,θ,σ(x)

,

where f∗µ(x) = f
(
x, z∗µ(x)

)
+
µ

2
‖z∗µ(x)‖2, and

∂f∗µ(x)

∂x = ∂f(x,y)
∂x

∣∣
y=z∗µ(x)

.

The proof is similar to Proposition 1, obtained by ap-
plying [43, Theorem 4.13, Remark 4.14]. The algorithm in
the pessimistic case can then be derived similar to the
optimistic case, but when calculating y∗µ,θ,σ(x), gradient
ascent is performed instead of gradient descent. In addition,
the convergence of BVFSM for pessimistic BLO will be
discussed in detail in Section 4.1.

Remark 3 The uniqueness of z∗µ(x) can be guaranteed same to
the analysis in Remark 1. Similarly, suppose given x, there exist
constants c1 < maxy∈S(x) F (x,y) and c2 > miny f(x,y),
such that F is concave and f is convex in y on the set
{y : F (x,y) ≥ c1 and f(x,y) ≤ c2}, and we select a non-
decreasing and convex auxiliary function Pσ(·). Or simply suppose
there exists c < maxy F (x,y) + Pσ

(
f(x,y)− f∗µ(x)

)
such

that F (x,y) + Pσ
(
f(x,y)− f∗µ(x)

)
is concave on the set

{y : F (x,y)−Pσ
(
f(x,y)− f∗µ(x)

)
≥ c}. Then the uniqueness

of y∗µ,θ,σ(x) follows.

4 THEORETICAL ANALYSIS

This section brings out the convergence analysis and com-
plexity analysis of the proposed BVFSM.

4.1 Convergence Analysis
Here we show the convergence analysis of the proposed
method. As BLO without constraints can be seen as a special
case of BLO with constraints by regarding constraints as
Hj(x,y) ≡ 0,∀j, and hj′(x,y) ≡ 0,∀j′, we prove the more
general constrained case. Also, for brevity, we first prove
in the optimistic BLO case, and the pessimistic case will be
analyzed later in Corollary 1.

Note that for sequential-minimization-type scheme, in-
cluding EGBMs and BVFSM, the convergence analysis can
be classified into asymptotic and non-asymptotic conver-
gence [46], [47]. This work considers asymptotic convergence
and focuses on the approximation quality. That is, whether
the solutions to approximate problems converge to the origi-
nal solution, which comes from the sequential approximated
sub-problems converging to the original bi-level problem. We
prove the asymptotic convergence from the aspect of global
solution, and start by recalling the equivalent definition of
epiconvergence given in [43, pp. 41].

Definition 2 ϕk
e−→ ϕ if and only if for all x ∈ Rm, the

following two conditions hold:
(1) for any sequence {xk} converging to x,

lim inf
k→∞

ϕk(xk) ≥ ϕ(x); (16)

(2) there is a sequence {xk} converging to x such that

lim sup
k→∞

ϕk(xk) ≤ ϕ(x). (17)

The convergence results are given under the following
statements as our blanket assumption.

Assumption 1 (Assumptions for the problem)
(1) S(x) is nonempty for x ∈ X .
(2) Both F (x,y) and f(x,y) are jointly continuous and contin-

uously differentiable. Both Hj(x,y), ∀ j and hj′(x,y), ∀ j′
are continuously differentiable.

(3) F (x,y) is level-bounded in y locally uniformly in x ∈ X
(see [29, Definition 3]).

(4) For constrained BLO, 0 is not a local optimal value of
hj′(x,y) w.r.t. y for all j′.

For the simplicity of symbols, here we let j = j′ = 1,
meaning that there is one constraint on the UL and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

LL problem respectively, and denote them as H(x,y)
and h(x,y). When j 6= 1 or j′ 6= 1, the proofs par-
allel actually. In addition, denote f∗k (x) := f∗µk,σB,k(x),
ϕk(x) := ϕµk,θk,σk(x), and Pk(ω) := Pσk(ω) defined in
Eq. (8). Also, PB,k(ω), PH,k(ω), Ph,k(ω), Pf,k(ω) are defined
similarly. Note that PB,k is the standard barrier function,
while PH,k, Ph,k, Pf,k are penalty or modified barrier
functions. Then

f∗k (x) = min
y

{
f(x,y) + PB,k(h(x,y)) +

µk
2
‖y‖2

}
,

ϕk(x) = min
y

{
F (x,y) + PH,k(H(x,y)) + Ph,k(h(x,y))

+Pf,k(f(x,y)− f∗k (x)) +
θk
2
‖y‖2

}
.

To begin with, we present the following lemma on the
properties of penalty and modified barrier functions, as the
preparation for further discussion and proofs2.

Lemma 1 Let {σk} in Pk(ω) = Pσk(ω) be a positive se-
quence such that limk→∞ σk = 0. Additionally assume that
limk→∞ ρ(−σ(2)

k ;σ
(1)
k) = 0 when ρ is a modified barrier

function. Then we have
(1) Pk(ω) is continuous, differentiable and non-decreasing, and

satisfies Pk(ω) ≥ 0.
(2) For any ω ≤ 0, limk→∞ Pk(ω) = 0.
(3) For any sequence {ωk}, limk→∞ Pk(ωk) < +∞ implies

that lim supk→∞ ωk ≤ 0.

We will use these properties in later proofs, so we hold
these requirements on parameters in Lemma 1 from now on.
To prove the convergence result, we verify the two conditions
given in Definition 2, and show that ϕk(x) + δX (x)

e−→
ϕ(x) + δX (x), where δX (x) denotes the indicator function
of the set X , i.e., δX (x) = 0 if x ∈ X and δX (x) = +∞
if x /∈ X . To begin with, we propose the following three
lemmas to verify the two condition in Eq. (16) and Eq. (17)
in Definition 2.

Lemma 2 Let {(µk, σk)} be a positive sequence such that
(µk, σk) → 0, also satisfying the same setting as in
Lemma 1. Then for any sequence {xk} converging to x̄,
lim sup
k→∞

f∗k (xk) ≤ f∗(x̄).

Lemma 3 Let {(µk, θk, σk)} be a positive sequence such that
limk→∞(µk, θk, σk) = 0, and satisfy the same setting as in
Lemma 1. Given x̄ ∈ X , then for any sequence {xk} converging
to x̄, we have lim inf

k→∞
ϕk(xk) ≥ ϕ(x̄).

Lemma 4 Let {(µk, θk, σk)} be a positive sequence such that
limk→∞(µk, θk, σk) = 0, and satisfy the same setting as in
Lemma 1. Then for any x ∈ X , lim sup

k→∞
ϕk(x) ≤ ϕ(x).

Now, by combining the above results, we can obtain
the desired epiconvergence result, which also indicates
the convergence of our method. Note that this is another
type of the convergence of algorithm iterates in asymptotic
convergence different from non-asymptotic convergence.

2. Proofs of the four lemmas are provided in Appendix A, available at
https://arxiv.org/abs/2110.04974.

Theorem 1 (Convergence for Optimistic BLO)
Let {(µk, θk, σk)} be a positive sequence such that

(µk, θk, σk)→ 0, also satisfying the same setting as in Lemma 1.
(1) The epiconvergence holds:

ϕk(x) + δX (x)
e−→ ϕ(x) + δX (x).

(2) We have the following inequality:

lim sup
k→∞

(
inf
x∈X

ϕk(x)

)
≤ inf

x∈X
ϕ(x).

In addition, if x` ∈ argminx∈Xϕ`(x) for some subsequence
{`} ⊂ N, and x` converges to x̃, then x̃ ∈ argminx∈Xϕ(x)
and

lim
`→∞

(
inf
x∈X

ϕ`(x)

)
= inf

x∈X
ϕ(x).

Proof: To prove the epiconvergence of ϕk to ϕ, we just
need to verify that the sequence {ϕk} satisfies the two condi-
tions given in Definition 2. Considering any sequence {xk}
converging to x, if x ∈ X , from Lemma 3 we have

ϕ(x) + δX (x) = ϕ(x) ≤ lim inf
k→∞

ϕk(xk)

≤ lim inf
k→∞

ϕk(xk) + δX (xk).

When x /∈ X , we have lim infk→∞ ϕk(xk) + δX (xk) = +∞
because X is closed. Thus the first condition Eq. (16) in
Definition 2 is satisfied.

Next, for any x ∈ Rm, if x ∈ X , then it follows from
Lemma 4 that

lim sup
k→∞

ϕk(x) + δX (x) = lim sup
k→∞

ϕk(x)

≤ ϕ(x) = ϕ(x) + δX (x).

When x /∈ X , we have ϕ(x)+δX (x) = +∞. Thus, the second
condition Eq. (17) in Definition 2 is satisfied. Therefore,
we get the conclusion (1) immediately from Definition
2, and the conclusion (2) follows from [43, Proposition 4.6]. �

Next, we consider the convergence for pessimistic BLO.
To begin with, for pessimistic BLO without functional
constraints, we denote ϕpk(x) similarly to the optimistic case:

ϕpk(x) :=ϕpµk,θk,σk(x)

= max
y

{
F (x,y)− Pk(f(x,y)− f∗k (x))− θk

2
‖y‖2

}
,

where f∗k (x) = miny

{
f(x,y) + µk

2 ‖y‖
2
}
. Then we have

the following corollary. Note that this convergence result can
also be extended to pessimistic BLO with constraints easily.

Corollary 1 (Convergence for Pessimistic BLO)
Let {(µk, θk, σk)} be a positive sequence such that

(µk, θk, σk)→ 0, also satisfying the same setting as in Lemma 1.
Then we have the following inequality:

lim sup
k→∞

(
inf
x∈X

ϕpk(x)

)
≤ inf

x∈X
ϕp(x).

In addition, if x` ∈ argminx∈Xϕ
p
` (x) for some subsequence

{`} ⊂ N, and x` converges to x̃, then we have x̃ ∈
argminx∈Xϕ

p(x) and

lim
`→∞

(
inf
x∈X

ϕp` (x)

)
= inf

x∈X
ϕp(x).

https://arxiv.org/abs/2110.04974

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 2
Convergence of existing methods and BVFSM. We present the convergence results and conditions whether it is available without the LLC condition,
whether it can be extended to BLO with constraints and pessimistic BLO, respectively for each method. Note that these convergence results are

studied via two different types: the asymptotic and non-asymptotic analysis [46], [47], and BVFSM achieves the asymptotic convergence without the
LLC condition. BVFSM can also be extended to BLO with constraints and pessimistic BLO which other methods cannot carry out.

Category Method Convergence Results Required Conditions w/o LLC Constraints Pessimistic

EGBMs

FHG/RHG Asymptotic F (x,y) and f(x,y) are C1.
% % %inf

x∈X
ϕk(x)→ inf

x∈X
ϕ(x) S(x) is a singleton.

TRHG Non-asymptotic F (x,y) is C1 and bounded below.
% % %

xk−→x̂∗ f(x,y) is C1, Lf -smooth and strongly convex.

BDA
Asymptotic F (x,y) is LF -smooth, convex, bounded below.

% % %inf
x∈X

ϕk(x)→ inf
x∈X

ϕ(x)
f(x,y) is Lf -smooth. S(x) is a singleton.

IGBMs CG/Neumann
Non-asymptotic F (x,y) and f(x,y) are C1.

% % %xk−→x̂∗ ∂2f(x,y)
∂y∂y

is invertible. S(x) is a singleton.

Ours BVFSM
Asymptotic F (x,y) and f(x,y) are C1

" " "inf
x∈X

ϕk(x)→ inf
x∈X

ϕ(x) and level-bounded.
1 C1 denotes continuously differentiable. Lf (or LF)-smooth means the gradient of f (or F) is Lipschitz continuous with Lipschitz constant Lf (or LF).

“Level-bounded” is short for “level-bounded in y locally uniformly in x ∈ X”.
2 x̂∗ denotes the stationary point.

TABLE 3
Complexity of existing gradient-based methods and BVFSM. We show the key update ideas for calculating G(x) in ∂ϕ(x)

∂x
. Please see [2], [27], [28]

for more details of EGBMs and IGBMs. Note that our method avoids solving an unrolled dynamic system or approximating the inverse of Hessian.

Category Method Key point for calculating G(x) Time Space

EGBMs

FHG G(x) ≈ Z>T
∂F (x,yT)

∂y Zt =
∂2f
∂y2 Zt−1 + ∂2f

∂y∂x
O(m2nT) O(mn)

RHG G(x) ≈ q−1

qt−1 = qt +
(
∂2f
∂x∂y

)>
pt, pt−1 =

(
∂2f
∂y2

)>
pt

O(n(m+ n)T) O(m+ nT)

TRHG G(x) ≈ qI−1 O(n(m+ n)I) O(m+ nI)

BDA G(x) ≈ q−1 Same as RHG, but replace f with (1− α)f + αF O(n(m+ n)T) O(m+ nT)

IGBMs
CG

G(x) ≈ −
(
∂2f(x,yT)
∂y∂x

)>
q

∂2f
∂y2 q = ∂F

∂y
O(m+ nT + n2Q) O(m+ n)

Neumann q =
∑Q
i=0

(
I− ∂2f

∂y2

)i
∂F
∂y

O(m+ nT + n2Q) O(m+ n)

Ours BVFSM
G(x) ≈

∂Pσk

(
f

(
xl,y

Ty
k,l

)
−fTzk,l

)
∂x

fTz
k,l = f(xl, z

Tz
k,l) +

µk
2
‖zTz
k,l‖

2 O(m+ n(Tz + Ty)) O(m+ n)

Proof: Based on the proof of Theorem 1, we first need to
prove ϕpk(x) + δX (x)

e−→ ϕp(x) + δX (x) by Lemma 1, 2, 3,
and 4. Lemma 1 and 2 are unrelated to whether it is the
optimistic or pessimistic case, and thus holds naturally.
The corresponding results for Lemma 3 and 4 can be
derived simply by replacing F in their proof with −F .
Then the conclusion can be obtained by the process same
to Theorem 1. �

In Table 2, we present the comparison among exist-
ing methods and our BVFSM. It can be seen that under
mild assumptions, BVFSM is able to achieve asymptotic
convergence without the LLC restriction, and be applied
in BLO with constraints and pessimistic BLO, which is
not available by other methods. In addition, as shown in
Theorem 1, our asymptotic convergence is obtained from
the epiconvergence property, which is a stronger result than
solely asymptotic convergence.

4.2 Complexity Analysis

In this part, we compare the time and space complexity of
Algorithms 2 with EGBMs (i.e., FHG, RHG, TRHG and BDA)
and IGBMs (i.e., CG and Neumann) for computing G(x)

or ∂ϕ(x)
∂x , i.e., the direction for updating variable x. Table 3

summarizes the complexity results. Our complexity analysis
follows the assumptions in [5]. Note that BVFSM has an
order of magnitude lower time complexity with respect to
the LL dimension n compared to existing methods. For all
existing methods, we assume solving the optimal solution of
the LL problem, also the transition function Φ in EGBMs for
obtaining yT (x), is the process of a T -step gradient descent.

EGBMs. As discussed in [2], [26], after implementing T
steps of gradient descent with time and space complexity
ofO(n) to solve the LL problem, FHG for forward calculation
of Hessian-matrix product can be evaluated in timeO(m2nT)
and space O(mn), and RHG for reverse calculation of
Hessian- and Jacobian-vector products can be evaluated in
time O(n(m+ n)T) and space O(m+ nT). TRHG truncates
the length of back-propagation trajectory to I after a T -
step gradient descent, and thus reduces the time and space

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

complexity to O(n(m + n)I) and space O(m + nI). BDA
uses the same idea to RHG, except that it combines UL
and LL objectives during back propagation, so the order
of complexity of time and space is the same to RHG. The
time complexity for EGBMs to calculate the UL gradient
is proportional to T , the number of iterations of the LL
problem, and thus EGBMs take a large amount of time to
ensure convergence.

IGBMs. After implementing a T -step gradient descent for
the LL problem, IGBMs approximate the inverse of Hessian
matrix by conjugate gradient (CG), which solves a linear
system of Q steps, or by Neumann series. Note that each
step of CG and Neumann method includes Hessian-vector
products, requiring O(m+ n2Q) time and O(m+ n) space,
so IGBMs run in time O(m+nT+n2Q) and space O(m+ n).
IGBMs decouple the complexity of calculating the UL
gradient from being proportional to T , but the iteration
number Q always relies on the properties of the Hessian
matrix, and in some cases, Q can be much larger than T .

BVFSM. In our algorithm, it takes time O(nTz) and
space O(n) to calculate Tz steps of gradient descent on
Eq. (10) for the solution of LL problem zTz . Then Ty steps
of gradient descent on Eq. (11) are used to calculate yTy ,
which requires time O(nTy) and space O(n). After that, the
direction can be obtained according to the formula given
in Eq. (13) by several computations of the gradient ∂f∂x and
∂F
∂x without any intermediate update, which requires time
O(m) and space O(m+ n). Therefore, BVFSM runs in time
O(m+ n(Tz + Ty)) and space O(m+ n) for each iteration.

It can be observed from Table 3 that BVFSM needs
less space than EGBMs, and it takes much less time than
EGBMs and IGBMs, especially when n is large, meaning
the LL problem is high-dimensional, such as in application
tasks with a large-scale network. Overall, this is because
BVFSM does not need any computation of Hessian- or
Jacobian-vector products for solving the unrolled dynamic
system by recurrent iteration or approximating the inverse
of Hessian. Its complexity only comes from calculating the
gradients of F and f , which is much easier than calculating
Hessian- and Jacobian-vector products (even by AD). Besides,
although BVFSM has the same order of space complexity to
IGBMs, it is indeed smaller, because the memory is saved
by eliminating the need to save the computational graph
used for calculating Hessian. We will further verify these
advantages through numerical results in Section 5.

5 EXPERIMENTAL RESULTS

In this section, we quantitatively demonstrate the per-
formance of our BVFSM3, especially when dealing with
complicated and high-dimensional problems. We start with
investigating the convergence performance, computational
efficiency, and effect of hyper-parameters on numerical
examples in Section 5.1. In Section 5.2, we apply BVFSM
in the hyper-parameter optimization for the data hyper-
cleaning task under different settings including the type
of auxiliary functions, contamination rates, and various
network structures. To further validate the generality of
our method, we conduct experiments on other tasks such

3. Code is available at https://github.com/vis-opt-group/BVFSM.

as few-shot learning in Section 5.3 and GAN in Section 5.4.
The experiments were conducted on a PC with Intel Core i7-
9700K CPU (4.2 GHz), 32GB RAM and an NVIDIA GeForce
RTX 2060S GPU with 8GB VRAM, and the algorithm was
implemented using PyTorch 1.6. We use the implementation
in [48], [36] for the existing methods, and use MB (MegaByte)
and S (Second) as the evaluation units of space and time
complexity, respectively. Regarding the selection of coeffi-
cients and hyper-parameters, we evaluate them in numerical
experiments and use the same method to select them in
later tasks. Furthermore, we set y0

k,l = y
Ty

k,l−1, z0
k,l = zTz

k,l−1
to initialize each step of the sub-problems. In view of the
optimizer, we use SGD for solving LL and UL sub-problems
in numerical experiments. In some applications, we change
the UL optimizer to Adam to speed up the convergence.

5.1 Numerical Evaluations
5.1.1 Optimistic BLO
We start with the optimistic BLO, and use the numerical
example with a non-convex LL which can adjust various
dimensions to validate the effectiveness of BVFSM over
existing methods. In particular, consider

min
x∈R,y∈Rn

‖x− a‖2 + ‖y − a− c‖2

s.t. [y]i ∈ argmin
[y]i∈R

sin(x + [y]i − [c]i),∀ i,
(18)

where [y]i denotes the i-th component of y, while a ∈ R
and c ∈ Rn are adjustable parameters. Note that here
x ∈ R is a one-dimensional real number, but we still
use the bold letter to represent this scalar to maintain
the context consistency. The solution of such problem is
x∗ = (1−n)a+nC

1+n , and [y∗]i = C + [c]i − x∗,∀ i, where
C = argmin

k

{
‖Ck − 2a‖ : Ck = −π2 + 2kπ, k ∈ Z

}
, and the

optimal value is F ∗ = n(C−2a)2

1+n
4. This example satisfies all

the assumptions of BVFSM, but does not meet the LLC
assumption in [27], [9], [28], which makes it a good example
to validate the advantages of BVFSM. In the following exper-
iments we set a = 2 and [c]i = 2, for any i = 1, 2, · · · , n.

We compare BVFSM with several gradient-based op-
timization methods, including RHG, BDA, CG and Neu-
mann. Note that they all assume the solution of the LL
problem is unique except BDA, so for these methods we
directly regard the obtained local optimal solutions of LL
problems as the unique solutions. We set T = 100 for
RHG and BDA, T = 100, Q = 20 for CG and Neumann,
the aggregation parameters equal to 0.5 in BDA, and
(µk, θk, σ

(1)
k) = (1.0, 1.0, 1.0)/1.01k, σ(2)

k = f(xk,yk) + 1,
step size α = 0.01, Tz = 50, Ty = 25, and L = 1 in BVFSM.

Convergence performance. Figure 1 compares the con-
vergence curves of UL variable x and objective F (x,y) in
the 2-dimensional case (n = 2). Here the optimal solution
is (x∗,y∗) = (−2/3 + π, 8/3 + π/2, 8/3 + π/2). In order
to show the impact of initial points, we also set different
initial points. From Figure 1(a), when the initial point
is (x,y) = (8, 8, 8), existing methods show the trend of
convergence at the beginning of iteration, but they soon stop

4. Derivation of the closed-form solution is provided in Appendix B,
available at https://arxiv.org/abs/2110.04974.

https://github.com/vis-opt-group/BVFSM
https://arxiv.org/abs/2110.04974

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

100 200 300 400 500

0.5

1

1.5

2
RHG

BDA

CG

Neumann

BVFSM

100 200 300 400 500

50

100

150

(a) Convergence with the initial point (x,y) = (8, 8, 8)

100 200 300 400 500

0.2

0.4

0.6

0.8

1

1.2

1.4

100 200 300 400 500

20

40

60

80

100

(b) Convergence with the initial point (x,y) = (0, 0, 0)

Fig. 1. Convergence behavior of gradient-based BLO algorithms with different initial points. The (1st,3rd) and (2nd,4th) subfigures respectively show
the errors of UL variable (i.e., ‖x−x∗‖/‖x∗‖) and UL objective (i.e., ‖F (x,y)−F (x∗,y∗)‖/‖F (x∗,y∗)‖). The legend is only shown in the first plot.

TABLE 4
Errors of UL variable ‖x− x∗‖/‖x∗‖ with large-scale LL of n dimension.

n RHG BDA CG Neumann BVFSM
50 2.296 2.336 2.058 2.260 0.117
100 2.253 2.294 2.073 2.236 0.159
150 2.213 2.253 2.032 2.202 0.190
200 2.187 2.227 1.972 2.178 0.209

Fig. 2. Computation time (seconds, S) in each step for calculating the gra-
dient of x under various scales n and m (LL and UL dimensions). Blank
areas not drawn indicate that the 3600-second time limit is exceeded.

TABLE 5
The largest LL dimension n that can be achieved by different methods

for a single-step computation within 3600 seconds.

RHG BDA CG Neumann BVFSM
n 13089 12871 15093 18118 283200

further converging due to falling into a local optimal solution.
Furthermore, when the initial point is (x,y) = (0, 0, 0) in
Figure 1(b), existing methods show a trend that the distance
to the optimal solution even increases during the whole
iterative process because they incorrectly converge to the
local solution away from the global solution. On the contrary,
our method can converge to the optimal solution under
different initial points. Table 4 further verifies the conver-
gence performance for larger-scale problems of various LL
dimension n. It shows that our method can still maintain
good convergence performance with high-dimensional LL,
while existing methods fail because they cannot solve the
non-convex LL with convergence guarantee.

Computational efficiency for large-scale problems.
Figure 2 compares the computation time for problems
under various scales n and m. Note that the scale-up of
UL dimension m can be achieved by converting the one-
dimensional x to the mean of multi-dimensional x. As we
can see, our method costs the least computation time for
problems of all scales, and the LL dimension n has much
more influence than the UL dimension m. Table 5 shows the

(a) Errors when µ0, θ0 = 0.01

(b) Errors when µ0, θ0 = 0.001

Fig. 3. Effect of specified Tz, Ty, µ and θ on the solution errors. Here
Tz and Ty are the number of iterations for gradient descent on LL sub-
problems in Eq. (10) and simple BLO problems in Eq. (11), which affect
the accuracy of obtained solution. The curves on the surfaces denote the
optimal Tz (or Ty) to minimize the error with fixed Ty (or Tz). Subfigure (a)
shows that the increasing of Ty and Tz abnormally leads to the deviation
of the solution, because with larger regularization coefficients µ and θ, the
regularized problems are away from the original problems. Subfigure (b)
shows that smaller µ and θ may not completely overcome the ill condition
of the LL problem, resulting in the instability of the surfaces (in the second
plot we reverse the axis to make it easier to observe the trend).

largest LL dimension within the 3600-second time limit. This
allows us to apply BVFSM to more complex LL problems,
which existing methods cannot deal with. We attribute these
superior results to our novel way of the re-characterization
via value-function. We further explore our performance on
problems with complex network structures in Section 5.2.

Effect of hyper-parameters. We next evaluate the effect of
various hyper-parameters in the 2-dimensional case (n = 2).
In Figure 3, we compare the errors under different settings
of Tz, Ty, µ and θ. In Figure 3(a), with larger regularization
coefficients µ and θ, the regularized problems are away
from the original problems. Figure 3(b) shows that smaller µ
and θ may not completely overcome the ill condition of
the LL problem, which means the small coefficients cause
the approximate problem to remain a little ill-conditioned,
resulting in the instability of the surfaces. Hence, it is not an
easy task to determine the regularization coefficients. Since
the selection of such parameters is often highly related to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

(a) Effect of µ0 and θ0 (b) Effect of (µ0, θ0) and σ0

Fig. 4. Effect of µ, θ (in the regularization term) and σ (in the auxiliary
function) on the solution errors. We also plot the optimal and easy-to-
collapse parameters. Subfigure (a) reveals that the effect of µ is greater
than that of θ, and collapses occur when µ = 0. Subfigure (b) shows that
smaller µ and θ (but greater than 0) and larger σ would help to converge.

0 10 20 30 40 50

Time (S)

0.5

1

1.5

2

2.5

0 10 20 30 40 50

Time (S)

0

0.5

1

1.5

2

Fig. 5. Effect of L (inner-loop iterations) on the convergence speed.

the specific problem, in order to maintain the fairness for
comparing the computational burden with other methods,
we set Tz + 2Ty = T in all experiments (because we need
to calculate the gradient of two functions F and f for the
Ty-step gradient descent). Figure 4 shows the effect of µ, θ,
and σ on the convergence results. Figure 4(a) reveals the
effect of regularization coefficients µ and θ. We find that
when µ = 0, the collapse may occur (with the collapse rate
at around 44%), which indicates the necessity of adding
the regularization term to avoid collapse and improve the
computational stability. Figure 4(b) shows that it is a good
choice to use smaller µ, θ and larger σ with a suitable decay
factor to avoid the offset of solution and achieve better
convergence. Figure 5 further analyzes the effect of L, the
number of inner-loop iterations, on the convergence speed.
It can be seen that the smaller L is, the higher convergence
speed can be obtained, so we set L = 1 in all experiments.

5.1.2 BLO with Constraints
To show the performance of BVFSM for problems
with constraints discussed in Section 3.3, we use the
following constrained example with non-convex LL:

min
x∈R,y∈Rn

‖x− a‖2 + ‖y − a‖2

s.t. [y]i ∈ argmin
[y]i∈R

{
sin (x+ [y]i − [c]i) : x+ [y]i ∈ [0, 1]

}
, ∀ i,

where a ∈ R and c ∈ Rn are any fixed given constant
and vector satisfying [c]i ∈ [0, 1] for any i = 1, · · · , n. The
optimal solution is x∗ = 1−n

1+na, [y]i = −x∗,∀ i, and the
optimal value is F ∗ = 4n

1+na
2. Derivation of the closed-form

solution is provided in Appendix B. We conduct experiments
under the 2-dimensional case (n = 2) and set a = 2 and
[c]i = 1, for any i = 1, 2, · · · , n. The constraint is carried
out via (x + [y]i − 0.5)2 − 0.25 ≤ 0, for each component
of y, which is equivalent to x + [y]i ∈ [0, 1].

Fig. 6. The relationship between the true optimal solution (“Opt.” for short)
and the solutions obtained by different methods during the UL iteration
for constrained BLO. It can be seen that BVFSM can gradually converge
to the true solution inside the feasible region, while other methods cannot
deal with the constraint at all. The legend is only shown in the last plot.

(a) Barrier (b) Penalty

Fig. 7. Convergence results for constrained BLO with different initial points
and parameters using (a) barrier and (b) penalty functions. Err. in the
legend denotes ‖x− x∗‖/‖x∗‖. We select the truncated log barrier and
quadratic penalty as the representatives of barrier and penalty functions
respectively. Choosing the barrier function leads to higher stability and
less sensitivity to parameters, while using the penalty function is more
sensitive to parameters but can obtain smaller errors. Both methods are
insensitive to initial values.

Figure 6 displays the solutions after K iterations. It can
be seen that when dealing with constrained LL problems,
only BVFSM can effectively deal with the constraint. Hence,
our method has broader application space, and we will show
the experiment in real learning tasks in Section 5.2, which
solves problems with UL constraints.

To compare the performance of different auxiliary func-
tions, we try barrier and penalty functions for PH,σH , Ph,σh
and Pf,σf , which can be selected arbitrarily and separately
indeed, but here are chosen the same to be compared
more directly. Since all of these auxiliary functions can
guarantee the convergence theoretically, we mainly focus
on the robustness of them under different settings. From
Figure 7, it can be seen that using a penalty function can
converge only under certain settings within a small region,
while using a barrier function has greater robustness, so we
use barrier functions in other experiments. In Section 5.2, we
further show investigations on penalty and barrier functions
on complex networks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

0 100 200 300 400 500

5

10

15

20

25

30

35

40 RHG

BDA

BVFSM

(a) Errors

(b) k = 100

(c) k = 500

Fig. 8. Convergence behavior for pessimistic BLO. On the right side, we show the LL solution y(x) obtained by different methods. Subfigures (b)
and (c) illustrate the results when k = 100 and k = 500, respectively. Here the surfaces denote F (xk,y), and y∗(xk) means the optimal LL solution
among multiple LL solutions y(xk) ∈ S(xk). Both RHG and BDA choose the incorrect LL solutions, while BVFSM chooses the correct solution.

TABLE 6
Comparison among existing methods, BVFSM, and BVFSM with constraints (BVFSM-C) for data hyper-cleaning tasks on three datasets: MNIST,

FashionMNIST and CIFAR10. F1 score is the harmonic mean of precision and recall.

Method MNIST FashionMNIST CIFAR10
Accuracy F1 score Time (S) Accuracy F1 score Time (S) Accuracy F1 score Time (S)

RHG 87.90±0.27 89.36±0.11 0.4131 81.91±0.18 87.12±0.19 0.4589 34.95±0.47 68.27±0.72 1.3374
TRHG 88.57±0.18 89.77±0.29 0.2623 81.85±0.17 86.76±0.14 0.2840 35.42±0.49 68.06±0.55 0.8409
BDA 87.15±0.82 90.38±0.76 0.6694 79.97±0.71 88.24±0.58 0.8571 36.41±0.23 67.33±0.31 1.4869
CG 89.19±0.35 85.96±0.48 0.1799 83.15±0.24 85.13±0.27 0.2041 34.16±0.75 69.10±0.93 0.4796

Neumann 87.54±0.13 89.58±0.34 0.1723 81.37±0.18 87.28±0.19 0.1958 33.45±0.16 68.87±0.11 0.4694
BVFSM 90.41±0.32 91.19±0.25 0.1480 84.31±0.27 88.35±0.13 0.1612 38.19±0.62 69.55±0.42 0.4092

BVFSM-C 90.94±0.32 91.83±0.30 0.1566 83.23±0.34 89.74±0.24 0.1514 37.33±0.33 69.73±0.51 0.4374

5.1.3 Pessimistic BLO
To study the performance of pessimistic BLO, we use the
example similar to optimistic BLO by changing Eq. (18) from
minx∈R,y∈Rn to minx∈R maxy∈Rn and from ‖x− a‖2 + ‖y−
a − c‖2 to ‖x − a‖2 − ‖y − a − c‖2. Here we consider the
2-dimensional case (LL dimension n = 2), and set a = 2
and [c]i = 2 for i = 1, 2. In this case, the optimal solution
is (x∗,y∗) = (−2 + π/2, 4 ± π, 4 ± π), and the optimal
value is F ∗ = −7/4π2 − 4π + 16. Derivation of the exact
solution is provided in Appendix B. We select RHG and BDA
respectively as the representatives of gradient-based methods
with or without unique LL solution. We make no adaptive
modifications to these methods which do not consider the
pessimistic BLO situation.

Figure 8 shows the convergence curves of UL objective
and how various methods choose y ∈ S(x) when S(x) is not
a singleton. From Figure 8(a), our method has significantly
better convergence in the pessimistic case, while RHG and
BDA cannot converge at all. Their distances to the optimal
solution even increase because they fail to select the optimal
LL solution y from multiple LL solutions y ∈ S(x), which is
intuitively demonstrated in Figure 8(b) and 8(c).

5.2 Hyper-parameter Optimization
In this subsection, we use a specific task of hyper-parameter
optimization, called data hyper-cleaning, to evaluate the
performance of BVFSM when the LL problem is non-convex.

0 100 200 300 400

Iterations

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

(a) UL objective F (x,y)

0 100 200 300 400

Iterations

78

80

82

84

86

88

90

(b) F1 score

Fig. 9. Performance for data hyper-cleaning based on the FashionMNIST
experiment in Table 6. The legend is only shown in the first plot.

10 20 30 40 50

70

72

74

76

78

80

82

84

(a) Accuracy

10 20 30 40 50
70

75

80

85

Barrier

Penalty

(b) F1 score

Fig. 10. Performance for data hyper-cleaning with barrier and penalty
functions on FashionMNIST. We choose the truncated log barrier and
quadratic penalty as the representatives of barrier and penalty functions
respectively. Using a barrier function leads to higher accuracy and greater
stability of F1 score. The legend is only shown in the second plot.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 7
The effect of contamination rates for data hyper-cleaning. Accuracy and F1 scores of existing methods drop sharply with the increasing of

contamination rate, while BVFSM maintains a slightly decreasing trend, verifying the robustness of BVFSM in the face of harsh data.

Contamination rate 0.6 0.7 0.8 0.9
Method Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

RHG 77.39±0.61 68.18±0.94 75.62±0.94 56.72±0.72 68.91±0.71 46.81±0.78 59.83±0.91 29.39±0.38
TRHG 77.37±0.52 76.76±0.13 75.60±0.84 65.30±0.10 68.89±0.30 55.39±0.97 59.81±0.38 37.97±0.48
BDA 75.44±0.44 78.24±0.34 73.67±0.59 66.78±0.82 66.96±0.69 56.87±0.79 57.88±0.87 39.45±0.08
CG 78.64±0.52 75.17±0.79 76.87±0.06 63.71±0.41 70.16±0.80 53.80±0.09 61.08±0.63 36.38±0.03

Neumann 76.85±0.95 77.29±0.29 75.08±0.15 65.83±0.22 68.37±0.40 55.92±0.46 59.29±0.26 38.50±0.63
BVFSM 81.49±0.22 85.51±0.70 81.34±0.42 82.55±0.33 80.06±0.97 73.51±0.83 79.73±0.20 55.97±0.73

(a) Time (b) VRAM
Fig. 11. Computation time (S) and memory (VRAM, MB) with various network structures for data hyper-cleaning. Blank areas not drawn indicate that
the 8G VRAM limit is exceeded. We use fully connected networks of 2, 5, 10 layers and with widths of 50, 100, 150 and 200.

Assuming that some of the labels in our dataset are con-
taminated, the goal of data hyper-cleaning is to reduce the
impact of incorrect samples by adding hyper-parameters
to them. In this experiment, we set y ∈ R10×301 × R300×d

as the parameter of a non-convex 2-layer linear network
classifier where d is the dimension of data, and x ∈ R|Dtr| as
the weight of each sample in the training set. Therefore, the
LL problem is to learn a classifier y by cross-entropy loss g
weighted with given x:

f(x,y) =
∑

(ui,vi)∈Dtr

[sigmoid(x)]i g(y,ui,vi),

where (ui,vi) are the training samples, and sigmoid(x) is
the sigmoid function to constrain the weights x into the range
of [0, 1]. The UL problem is to find a weight x to reduce the
cross-entropy loss g of y on a cleanly labeled validation set:

F (x,y) =
∑

(ui,vi)∈Dval

g(y,ui,vi).

In addition, we also consider adding explicit constraints
directly on x (as discussed in Section 3.3) instead of using
the sigmoid function as indirect constraints. The constraint is
carried out via ([x]i − 0.5)2 − 0.25 ≤ 0, for each component
of x, such that [x]i ∈ [0, 1].

Overall performance. Table 6 shows the accuracy, F1
score and computation time on three different datasets.
For each dataset, we randomly select 5000 samples as the
training set Dtr, 5000 samples as the validation set Dval,
and 10000 samples as the test set Dtest. After that, we
contaminate half of the labels inDtr. From the result, BVFSM
achieves the most competitive performance on all datasets.
Furthermore, BVFSM is faster than EGBMs and IGBMs, and
this advantage is more evident on CIFAR10 with larger
LL dimension, consistent with the complexity analysis in
Section 4.2. The UL objective value and F1 score during
iterations on FashionMNIST are also plotted in Figure 9.

As for the performance of BLO with constraints, we can
find from Table 6 that BVFSM with constraints (denoted

as BVFSM-C in the table) has slightly lower accuracy but
higher F1 score than BVFSM using sigmoid function without
explicit constraints. This is because for BVFSM without
constraints, the compound of sigmoid function in the LL
objective decreases the gradient of x, and thus the UL
variable x with small change rate contributes to its slower
convergence. Accuracy more reflects the convergence of LL
variable y, while F1 score more reflects the convergence of
UL variable x. Therefore, BVFSM with constraints performs
slightly worse in accuracy but better in F1 score than BVFSM
without constraint but with the sigmoid function.

Evaluations on the auxiliary functions, robustness, and
network structures. Figure 10 compares the performance of
different auxiliary functions. Consistent with the numerical
experiment in Figure 7, the barrier function works better
with higher stability without the need for too much fine
tuning of parameters. Table 7 compares the robustness under
various data contamination rates. Figure 11 further shows
the impact of network structures in depth and width. For the
LL variable y we use fully connected networks of various
layers and widths. It is worth noting that the computational
burden is overall not quite sensitive to the network width,
but very sensitive to the network depth. With the deepening
of networks, other methods experience varying degrees of
collapse due to occupying too much memory, while BVFSM
can always keep the computation stable. Since there is
no need to retain the LL iteration trajectory, our storage
burden is much less than that of EGBMs (RHG and BDA).
Thanks to the fact that BVFSM does not need to calculate the
Jacobian- and Hessian-vector products (realized by saving
an additional calculation graph in AD), our burden is also
significantly lower than that of IGBMs (CG and Neumann).

Computational efficiency for large-scale networks.
Next, we verify our computational burden on large-scale
networks closer to real applications such as VGG16 on CI-
FAR10 dataset. Because VGG16 has too much computational
burden on existing methods, in order to make the comparison
available, we change the experimental settings as follows.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

10-1 100 101 102
MACs (G)

200

400

600

800

1000

T
im

e
(S

)

10-2 10-1 100 101
Parameters (M)

0

1000

2000

3000

4000

5000

V
R

A
M

(M
B
)

10-1 100 101 102
GMACs

200

400

600

800

1000

T
im

e
(S

)

RHG
BDA
CG
Neumann
BVFSMy

BVFSMz

Fig. 12. Effects of the quantity of Multiply–Accumulate Operations (MACs) and Parameters on the computational efficiency for data hyper-cleaning
in large-scale networks. BVFSM† and BVFSM‡ denote BVFSM in the 5-layer network same to other methods and the more challenging 50-layer
network, respectively. For a clearer comparison, we use logarithmic coordinates.

TABLE 8
Computation time (S) in each epoch for data hyper-cleaning in VGG

series networks with different convolution layers (Conv.), batch sizes (B)
and iteration number (K). N / A means exceeding the memory limit. Note

that a smaller batch size may take more time because the batch
switching time increases. BVFSM maintains the least burden and

highest speed, especially with large-scale LL in real-world networks.

Conv. (B,K) RHG CG Neumann BVFSM
2 (1,7) 7515 4730 3225 2252
2 (128,20) N/A N/A 415.4 60.81
13 (128,100) N/A N/A 472.9 171.9
13 (512,100) N/A N/A N/A 121.8

For each dataset, we randomly select 4096 samples as the
training set Dtr, 4096 samples as the validation set Dval,
and 512 samples as the test set Dtest. Because the original
network is too computationally intensive for EGBMs, we
perform an additional experiment on some sufficiently small
batch size and iteration number K. We also simplify the
convolution layers from 13 layers in VGG16 to only the first
two layers, and retain the last 3 linear layers. As shown in
Table 8, BVFSM always has the highest speed under various
settings, and still works well with a large K and batch size.

Additionally, we visualize how BVFSM can be applied
to large-scale networks by expanding the width of 5-layer
network, and compare the computational efficiency when the
Multiply–Accumulate Operations (MACs) and parameters
are increased. For the same-size network, the fully-connected
layer typically has more parameters, while the convolutional
layer has more MACs, so we use the fully-connected and
convolutional layer respectively to simulate the scale-up of
parameters and MACs. From Figure 12, other methods are
computationally inefficient and can only handle small-scale
networks, while BVFSM with much higher efficiency is ap-
plicable to larger-scale networks in frontier tasks. Moreover,
considering the effect of number of layers on efficiency as
shown in Figure 11, we also use a more challenging 50-
layer network for BVFSM to further demonstrate its high
efficiency. Specifically, existing methods usually cannot work
under MobileNet with around 1 GMACs, while BVFSM is
available under StyleGAN with around 100 GMACs.

5.3 Few-shot Learning
We then conduct experiments on the few-shot learning task.
Few-shot learning is one of the most popular applications in
meta-learning, whose goal is to learn an algorithm that can
also handle new tasks well. Specifically, each task is an N -
way classification and it aims to learn the hyper-parameter x
so that each task can be solved by only M training samples

(i.e., N -way M -shot). Similar to works in [8], [29], [30], we
model the network with two parts: a four-layer convolution
network x as a common feature extraction layer among
tasks, and a logical regression layer y = yi as the separated
classifier for each task. We also set dataset as D = {Di},
where Di = Ditr ∪ Dival for the i-th task. By setting the loss
function of the i-th task to be cross-entropy g(x,yi;Ditr) for
the LL problem, the LL objective can be defined as

f(x,y) =
∑
i

g(x,yi;Ditr).

As for the UL objective, we also utilize the cross-entropy
function but define it based on {Dival} as

F (x,y) =
∑
i

g(x,yi;Dival).

Our experiment is performed on the widely used benchmark
dataset: Omniglot [49], which contains examples of 1623
handwritten characters from 50 alphabets.

We compare our BVFSM with several approaches, such
as MAML, Meta-SGD, Reptile, iMAML, RHG, TRHG and
BDA [29], [30]. From Table 9, BVFSM achieves slightly
poorer performance than existing methods in the 5-way task,
because when dealing with small-scale LLC problems, the
strength of regularization term by BVFSM to accelerate the
convergence cannot fully counteract its impact on the offset of
solution. However, for larger-scale LL problems (such as 20-
way, 30-way and 40-way), thanks to the regularization term,
BVFSM reveals significant advantages over other methods.

5.4 Generative Adversarial Networks
Next we perform intuitive experiments on GAN to illustrate
the application of BVFSM for pessimistic BLO. GAN is a
network used for unsupervised machine learning to build
a min-max game between two players, i.e., the generator
Gen(x; ·) with the network parameter x, and the discrimi-
nator Dis(y; ·) with the network parameter y. We denote
the standard Gaussian distribution as N (0, 1) and the real
data distribution as pdata. The generator Gen tries to fool
the discriminator Dis by producing data from random
latent vector v ∼ N (0, 1), while the discriminator Dis
distinguishes between real data u ∼ pdata and generated
data Gen(x;v) by outputting the probability that the samples
are real. The goal of GAN is to minx maxy log(Dis(y;u)) +
log(1− Dis(y; Gen(x;v))) [50].

However, this traditional modeling method regards Dis
and Gen as equal status, and does not characterize the
leader-follower relationship that Gen first generates data

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

TABLE 9
Averaged accuracy using various methods (including model-based methods and gradient-based BLO methods) for the few-shot classification task (1-

and 5-shot, i.e., M = 1, 5, and N = 5, 20, 30, 40) on Omniglot.

Method 5-way 20-way 30-way 40-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML 98.70±0.40 99.91±0.10 95.80±0.30 98.90±0.20 86.86±0.49 96.86±0.19 85.98±0.45 94.46±0.43
Meta-SGD 97.97±0.70 98.96±0.20 93.98±0.43 98.42±0.11 89.91±0.04 96.21±0.15 87.39±0.43 95.10±0.15

Reptile 97.68±0.04 99.48±0.06 89.43±0.14 97.12±0.32 85.40±0.30 95.28±0.30 82.50±0.30 92.79±0.33
iMAML 99.16±0.35 99.67±0.12 94.46±0.42 98.69±0.10 89.52±0.20 96.51±0.08 87.28±0.21 95.27±0.08

RHG 98.64±0.21 99.58±0.12 96.13±0.20 99.09±0.08 93.92±0.18 98.43±0.08 90.78±0.20 96.79±0.10
TRHG 98.74±0.21 99.71±0.07 95.82±0.20 98.95±0.07 94.02±0.18 98.39±0.07 90.73±0.20 96.79±0.10
BDA 99.04±0.18 99.74±0.05 96.50±0.16 99.19±0.07 94.37±0.18 98.53±0.07 92.49±0.18 97.12±0.09

BVFSM 98.85±0.12 99.21±0.18 96.73±0.30 98.95±0.20 94.65±0.20 98.56±0.17 92.73±0.12 97.61±0.47

Initialization (a) GAN (b) WGAN

Target (c) Unrolled GAN (d) BVFSM

Fig. 13. Comparison of GAN training on a toy 2D mixture of Gaussians dataset. We show the heat map of the generated distribution as the number of
training steps increases. Subfigure (a) indicates vanilla GAN can capture only one distribution, while in subfigure (b), WGAN attempts to capture
all distributions at the same time with one Gaussian distribution, but fails to achieve satisfactory performance. Unrolled GAN in subfigure (c) can
approximate all distributions simultaneously with the help of a leader-follower structure, but lacks further details. In contrast, our BVFSM fits all
Gaussian distributions well with plenty of details, as shown in subfigure (d).

and after that Dis judges the data, which can be modeled
by Stackelberg game and captured through BLO problems.
Specifically, from this perspective, generative adversarial
learning corresponds to a pessimistic BLO problem: the UL
objective F of Gen tries to generate adversarial samples,
and the LL objective f of Dis aims to learn a robust
classifier which can maximize the UL objective. Therefore,
we reformulate GAN into the form in Eq. (15) discussed in
Section 3.4 to model this relationship, and call it bi-level
GAN. Concretely, for the follower Dis(y; ·), the LL objective
is consistent with the original GAN:

f(x,y) = log(Dis(y;u)) + log(1− Dis(y; Gen(x;v))).

As for UL, considering the antagonistic goals of Gen and Dis,
we model the UL problem as

F (x,y) = log(Dis(y; Gen(x;v))).

Note that the popular WGAN [51] is a variation of
the most classic vanilla GAN [50] (or simply GAN), while
unrolled GAN [11] and the GAN generated by our BVFSM
belong to bi-level GAN, modeling from a BLO perspective.
Our method has the following two advantages over other
types of GAN. On the one hand, compared with vanilla
GAN and WGAN, bi-level GAN can effectively model
the leader-follower relationship between the generator and
discriminator, rather than regard them as the same status. On
the other hand, in bi-level GAN, our method considers the

situation that the objective has multiple solutions, from the
viewpoint of pessimistic BLO, with theoretical convergence
guarantee, which unrolled GAN cannot achieve.

In this experiment we train a simple GAN architecture on
a 2D mixture of 8 Gaussians arranged on a circle. The dataset
is sampled from a mixture of 8 Gaussians with standard
deviation 0.02. The 8 points are the means of data and are
equally spaced around a circle with radius 2. The generator
consists of a fully-connected network with 2 hidden layers of
size 128 with ReLU activation followed by a linear projection
to 2 dimensions. The discriminator first scales its input down
by a factor of 4 (to roughly scale it to (−1, 1)), and is followed
by a 1-layer fully-connected network from ReLU activation
to a linear layer of size 1 to act as the logit. As shown
in Figure 13, we present a visual comparison of sample
generation among GAN, WGAN, unrolled GAN, and our
method. It can be seen that vanilla GAN can capture only
one distribution rather than all Gaussian distributions at a
time, because it ignores the leader-follower structure. WGAN
benefits from the improvement of distance function and uses
one distribution to approximate all Gaussian distributions at
the same time, but it fails to display satisfying performance.
Unrolled GAN shows the ability to capture all distributions
simultaneously thanks to the leader-follower modeling by
BLO, but it lacks further details of the distribution. However,
the desirable treatment of non-convex problems by BVFSM
brings about its ability to fit all distributions well with

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

TABLE 10
KL divergence by various GAN. The divergence between the generated

and target distribution by BVFSM is the smallest.

GAN WGAN Unrolled GAN BVFSM
KL Divergence 2.56 2.48 0.26 0.15

(a) StyleGAN2
(IS, FID)=(11.69, 5.93) (b) StyleGAN2+BVFSM

(IS, FID)=(11.94, 6.08)

Fig. 14. Visualization results and performance metrics by StyleGAN2 and
by adding BVFSM to StyleGAN2 on the AFHQ dataset.

details. In addition, we show the KL divergence between the
generated and target image in Table 10. It can be seen that
the traditional alternately optimized GAN and WGAN yield
larger KL divergence, while unrolled GAN and our method,
which consider GAN as a BLO model, produce smaller KL
divergence, and our method further achieves the best result.

Figure 14 further validates the performance of BVFSM
to be adaptive in large-scale GAN on real datasets. Specif-
ically, we add BVFSM as a training strategy based on
StyleGAN2 [52] on the AFHQ dataset. It can be seen that
our approach is effective in improving the generation quality
and performance metrics Inception Score (IS) and Frechet
Inception Distance (FID).

6 CONCLUSIONS

In this paper, we propose a novel bi-level algorithm BVFSM
to provide an accessible path for large-scale problems with
high dimensions from complex real-world tasks. With the
help of value-function which breaks the traditional mindset
in gradient-based methods, BVFSM can remove the LLC
condition required by earlier works, and improve the effi-
ciency of gradient-based methods, to overcome the bottleneck
caused by high-dimensional non-convex LL problems. By
transforming the regularized LL problem into UL objective
by the value-function-based sequential minimization method,
we obtain a sequence of single-level unconstrained differ-
entiable problems to approximate the original problem. We
prove the asymptotic convergence without LLC, and present
our numerical superiority through complexity analysis and
numerical evaluations for a variety of applications. We also
extend our method to BLO problems with constraints, and
pessimistic BLO problems.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural
Science Foundation of China (Nos. U22B2052, 61922019,
12222106), the National Key R&D Program of China
(2020YFB1313503, 2022YFA1004101), Shenzhen Science and

Technology Program (No. RCYX20200714114700072), the
Guangdong Basic and Applied Basic Research Foundation
(No. 2022B1515020082), and Pacific Institute for the Mathe-
matical Sciences (PIMS).

REFERENCES

[1] R. Liu, X. Liu, X. Yuan, S. Zeng, and J. Zhang, “A value-function-
based interior-point method for non-convex bi-level optimization,”
in ICML, 2021.

[2] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, “Forward and
reverse gradient-based hyperparameter optimization,” in ICML,
2017.

[3] T. Okuno, A. Takeda, A. Kawana, and M. Watanabe, “On lp-
hyperparameter learning via bilevel nonsmooth optimization,”
JMLR, vol. 22, no. 245, pp. 1–47, 2021.

[4] M. Mackay, P. Vicol, J. Lorraine, D. Duvenaud, and R. Grosse, “Self-
tuning networks: Bilevel optimization of hyperparameters using
structured best-response functions,” in ICLR, 2018.

[5] H. Liu, K. Simonyan, and Y. Yang, “DARTS: differentiable architec-
ture search,” in ICLR, 2019.

[6] H. Liang, S. Zhang, J. Sun, X. He, W. Huang, K. Zhuang, and
Z. Li, “Darts+: Improved differentiable architecture search with
early stopping,” arXiv preprint arXiv:1909.06035, 2019.

[7] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable
architecture search: Bridging the depth gap between search and
evaluation,” in ICCV, 2019.

[8] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel
programming for hyperparameter optimization and meta-learning,”
in ICML, 2018.

[9] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-learning
with implicit gradients,” in NeurIPS, 2019.

[10] D. Zügner and S. Günnemann, “Adversarial attacks on graph
neural networks via meta learning,” in ICLR, 2019.

[11] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled
generative adversarial networks,” arXiv preprint arXiv:1611.02163,
2016.

[12] D. Pfau and O. Vinyals, “Connecting generative adversarial net-
works and actor-critic methods,” arXiv preprint arXiv:1610.01945,
2016.

[13] Z. Yang, Y. Chen, M. Hong, and Z. Wang, “Provably global
convergence of actor-critic: A case for linear quadratic regulator
with ergodic cost,” in NeurIPS, 2019.

[14] R. Liu, S. Cheng, Y. He, X. Fan, Z. Lin, and Z. Luo, “On the
convergence of learning-based iterative methods for nonconvex
inverse problems,” IEEE TPAMI, 2019.

[15] R. Liu, Z. Li, Y. Zhang, X. Fan, and Z. Luo, “Bi-level probabilistic
feature learning for deformable image registration,” in IJCAI, 2020.

[16] R. Liu, J. Liu, Z. Jiang, X. Fan, and Z. Luo, “A bilevel integrated
model with data-driven layer ensemble for multi-modality image
fusion,” IEEE TIP, 2020.

[17] R. Liu, P. Mu, J. Chen, X. Fan, and Z. Luo, “Investigating task-
driven latent feasibility for nonconvex image modeling,” IEEE TIP,
2020.

[18] S. Dempe, N. Gadhi, and L. Lafhim, “Optimality conditions for
pessimistic bilevel problems using convexificator,” Positivity, pp.
1–19, 2020.

[19] S. Dempe, Bilevel optimization: theory, algorithms and applications. TU
Bergakademie Freiberg, Fakultät für Mathematik und Informatik,
2018.

[20] R. Liu, J. Gao, J. Zhang, D. Meng, and Z. Lin, “Investigating bi-level
optimization for learning and vision from a unified perspective: A
survey and beyond,” IEEE TPAMI, vol. 44, no. 12, pp. 10 045–10 067,
2021.

[21] M. J. Alves, C. H. Antunes, and J. P. Costa, “New concepts and
an algorithm for multiobjective bilevel programming: optimistic,
pessimistic and moderate solutions,” Operational Research, pp. 1–34,
2019.

[22] R. G. Jeroslow, “The polynomial hierarchy and a simple model for
competitive analysis,” Mathematical programming, 1985.

[23] J. F. Bard and J. E. Falk, “An explicit solution to the multi-level
programming problem,” Computers & Opeations Research, vol. 9,
no. 1, pp. 77–100, 1982.

[24] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical programs with
equilibrium constraints. Cambridge University Press, 1996.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

[25] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Gradient-based
hyperparameter optimization through reversible learning,” in
ICML, ser. JMLR Workshop and Conference Proceedings, 2015.

[26] A. Shaban, C. Cheng, N. Hatch, and B. Boots, “Truncated back-
propagation for bilevel optimization,” in AISTATS, 2019.

[27] F. Pedregosa, “Hyperparameter optimization with approximate
gradient,” in ICML, 2016.

[28] J. Lorraine, P. Vicol, and D. Duvenaud, “Optimizing millions of
hyperparameters by implicit differentiation,” in AISTATS, 2020.

[29] R. Liu, P. Mu, X. Yuan, S. Zeng, and J. Zhang, “A generic first-
order algorithmic framework for bi-level programming beyond
lower-level singleton,” in ICML, 2020.

[30] ——, “A general descent aggregation framework for gradient-based
bi-level optimization,” IEEE TPAMI, vol. 45, no. 1, pp. 38–57, 2022.

[31] J. V. Outrata, “On the numerical solution of a class of stackelberg
problems,” ZOR-Methods and Models of Operations Research, 1990.

[32] J. J. Ye and D. L. Zhu, “Optimality conditions for bilevel program-
ming problems,” Optimization, 1995.

[33] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” JMLR, vol. 13, pp. 281–305, 2012.

[34] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in Inter-
national conference on learning and intelligent optimization, 2011.

[35] A. V. Fiacco and G. P. McCormick, Nonlinear programming: sequential
unconstrained minimization techniques. SIAM, 1990.

[36] R. Grazzi, L. Franceschi, M. Pontil, and S. Salzo, “On the iteration
complexity of hypergradient computation,” in ICML, 2020.

[37] L. S. Lasdon, “An efficient algorithm for minimizing barrier and
penalty functions,” Mathematical Programming, vol. 2, no. 1, pp.
65–106, 1972.

[38] C. L. Byrne, “Alternating minimization as sequential unconstrained
minimization: a survey,” Journal of Optimization Theory and Applica-
tions, vol. 156, no. 3, pp. 554–566, 2013.

[39] R. M. Freund, “Penalty and barrier methods for constrained
optimization,” Lecture Notes, Massachusetts Institute of Technology,
2004.

[40] D. G. Luenberger, Y. Ye et al., Linear and nonlinear programming.
Springer, 1984, vol. 2.

[41] D. Boukari and A. Fiacco, “Survey of penalty, exact-penalty and
multiplier methods from 1968 to 1993,” Optimization, vol. 32, no. 4,
pp. 301–334, 1995.

[42] A. Auslender, “Penalty and barrier methods: a unified framework,”
SIAM Journal on Optimization, vol. 10, no. 1, pp. 211–230, 1999.

[43] J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization
problems. Springer Science & Business Media, 2013.

[44] B. S. Mordukhovich and N. M. Nam, “An easy path to convex
analysis and applications,” Synthesis Lectures on Mathematics and
Statistics, vol. 6, no. 2, pp. 1–218, 2013.

[45] P. Borges, C. Sagastizábal, and M. Solodov, “A regularized smooth-
ing method for fully parameterized convex problems with applica-
tions to convex and nonconvex two-stage stochastic programming,”
Mathematical Programming, 2020.

[46] R. Liu, Y. Liu, W. Yao, S. Zeng, and J. Zhang, “Averaged method
of multipliers for bi-level optimization without lower-level strong
convexity,” arXiv preprint arXiv:2302.03407, 2023.

[47] K. Ji and Y. Liang, “Lower bounds and accelerated algorithms for
bilevel optimization,” JMLR, vol. 23, pp. 1–56, 2022.

[48] E. Grefenstette, B. Amos, D. Yarats, P. M. Htut, A. Molchanov,
F. Meier, D. Kiela, K. Cho, and S. Chintala, “Generalized inner loop
meta-learning,” arXiv preprint arXiv:1910.01727, 2019.

[49] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science,
2015.

[50] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[51] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” 2017.
[52] T. Karras, S. Laine, and T. Aila, “A style-based generator archi-

tecture for generative adversarial networks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2019,
pp. 4401–4410.

Risheng Liu received the B.Sc. and Ph.D. de-
grees in mathematics from Dalian University of
Technology in 2007 and 2012, respectively. He
was a Visiting Scholar with the Robotics Institute,
Carnegie Mellon University, from 2010 to 2012.
He served as a Hong Kong Scholar Research
Fellow at the Hong Kong Polytechnic University
from 2016 to 2017. He is currently a Professor
with the DUT-RU International School of Infor-
mation Science & Engineering, Dalian University
of Technology. His research interests include

machine learning, optimization, computer vision, and multimedia. He
is a member of the ACM, and was a co-recipient of the IEEE ICME Best
Student Paper Award in 2014 and 2015. Two papers were also selected
as a Finalist of the Best Paper Award in ICME 2017.

Xuan Liu received the B.Sc. degree in mathe-
matics from Dalian University of Technology in
2020. He is currently an M.Phil. student in the
Department of Software Engineering at Dalian
University of Technology. His research interests
include computer vision, machine learning, and
control and optimization.

Shangzhi Zeng received the B.Sc. degree in
Mathematics and Applied Mathematics from
Wuhan University in 2015, the M.Phil. degree
from Hong Kong Baptist University in 2017, and
the Ph.D. degree from the University of Hong
Kong in 2021. He is currently a PIMS postdoctoral
fellow in the Department of Mathematics and
Statistics at University of Victoria. His current
research interests include variational analysis
and bilevel optimization.

Jin Zhang received the B.A. degree in jour-
nalism and the M.Phil. degree in mathematics
and operational research and cybernetics from
Dalian University of Technology in 2007 and 2010,
respectively, and the Ph.D. degree in applied
mathematics from University of Victoria, Canada,
in 2015. After working with Hong Kong Baptist
University for three years, he joined Southern
University of Science and Technology as a tenure-
track Assistant Professor with the Department
of Mathematics and promoted to an Associate

Professor in 2022. His broad research area is comprised of optimization,
variational analysis and their applications in economics, engineering, and
data science.

Yixuan Zhang received the B.Sc. degree in
Mathematics and Applied Mathematics from Bei-
jing Normal University in 2020, and the M.Phil.
degree from Southern University of Science and
Technology in 2022. She is currently a Ph.D. stu-
dent in the Department of Applied Mathematics
at the Hong Kong Polytechnic University. Her
current research interests include optimization
and machine learning.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

APPENDIX A
PROOFS OF LEMMAS IN SECTION 4.1
A.1 Lemma 1
Let {σk} in Pk(ω) = Pσk(ω) be a positive sequence
such that limk→∞ σk = 0. Additionally assume that
limk→∞ ρ(−σ(2)

k ;σ
(1)
k) = 0 when ρ is a modified barrier

function. Then we have
(1) Pk(ω) is continuous, differentiable and non-decreasing, and

satisfies Pk(ω) ≥ 0.
(2) For any ω ≤ 0, limk→∞ Pk(ω) = 0.
(3) For any sequence {ωk}, limk→∞ Pk(ωk) < +∞ implies

that lim supk→∞ ωk ≤ 0.
Proof: From the definitions of penalty and barrier functions
(see, e.g., Definition 1), the statement (1) follows immediately.

When ρ is a penalty function, limσ→0 ρ(ω;σ) is equal to
+∞ for ω > 0 and 0 for ω ≤ 0. Hence, as k → ∞, σk → 0,
and we have Pk(ω)→ 0, for ω ≤ 0. For any sequence {ωk}, if
lim supk→∞ ωk > 0, there exists a subsequence {ωt} of {ωk}
and ε > 0 such that ωt ≥ ε for all t. Then, it follows from the
monotonicity of ρ that limt→∞ Pt(ωt) = limt→∞ ρ(ωt;σt) ≥
limt→∞ ρ(ε;σt) = +∞. Thus, limk→∞ Pk(ωk) < +∞ im-
plies that lim supk→∞ ωk ≤ 0.

If ρ is a modified barrier function, since ρ is non-creasing,
we have 0 ≤ ρ(ω − σ(2)

k ;σ
(1)
k) ≤ ρ(−σ(2)

k ;σ
(1)
k) when ω ≤ 0.

The assumption limk→∞ ρ(−σ(2)
k ;σ

(1)
k) = 0 implies ρ(ω −

σ
(2)
k ;σ

(1)
k) → 0 when ω ≤ 0. Hence, as k → ∞, we have

σ
(1)
k → 0, σ(2)

k → 0, and Pk(ω) → 0, for ω ≤ 0. For any
sequence {ωk}, if limk→∞ Pk(ωk) < +∞, then it follows
from the definition of modified barrier function that ωk ≤
σ

(2)
k and (3) follows immediately from σ

(2)
k → 0.

�

A.2 Lemma 2
Let {(µk, σk)} be a positive sequence such that (µk, σk)→ 0, also
satisfying the same setting as in Lemma 1. Then for any sequence
{xk} converging to x̄,

lim sup
k→∞

f∗k (xk) ≤ f∗(x̄).

Proof: Given any ε > 0, there exists ȳ ∈ Rn such that
f(x̄, ȳ) < f∗(x̄) + 1/2 ε, and h(x̄, ȳ) ≤ 0. If h(x̄, ȳ) = 0,
by Assumption 1.(4), the minimum of h w.r.t. y in any
neighbourhood of ȳ is smaller than 0, so we can find a ŷ close
enough to ȳ such that f(x̄, ŷ) < f∗(x̄)+ε, and h(x̄, ŷ) ≤ −δ
for some δ > 0. If h(x̄, ȳ) < 0, such ŷ exists obviously.

As {xk} converges to x̄, h(x̄, ŷ) ≤ −δ combining with
the continuity of h(x,y) implies the existence of K1 > 0
such that h(xk, ŷ) ≤ −δ/2 for all k ≥ K1. Since the barrier
function is non-decreasing, it follows that PB,k(h(xk, ŷ)) ≤
ρ(−δ/2;σ

(1)
k). Then limk→∞ ρ(−δ/2;σ

(1)
k) = 0 yields

lim
k→∞

PB,k(h(xk, ŷ)) = 0.

Next, as {xk} converges to x̄, it follows from the continuity
of f(x,y) and µk → 0 that there exists K2 ≥ K1, such that
for any k ≥ K2,

f∗k (xk) ≤f(xk, ŷ) + PB,k(h(xk, ŷ)) +
µk
2
‖ŷ‖2

≤f(x̄, ŷ) + ε

≤f∗(x̄) + 2ε.

By letting k →∞, we obtain

lim sup
k→∞

f∗k (xk) ≤ f∗(x̄) + 2ε,

and taking ε→ 0 to the above yields the conclusion. �

A.3 Lemma 3

Let {(µk, θk, σk)} be a positive sequence such that
limk→∞(µk, θk, σk) = 0, and satisfy the same setting as in
Lemma 1. Given x̄ ∈ X , then for any sequence {xk} converging
to x̄, we have

lim inf
k→∞

ϕk(xk) ≥ ϕ(x̄).

Proof: We assume by contradiction that there exists x̄ ∈ X
and a sequence {xk}, satisfying xk → x̄ as k →∞ with the
following inequality

lim
k→∞

ϕk(xk) < ϕ(x̄).

Then, there exist ε > 0 and a sequence {yk} satisfying

F (xk,yk) + PH,k(H(xk,yk)) + Ph,k(h(xk,yk))

+ Pf,k(f(xk,yk)− f∗k (xk)) +
θk
2
‖yk‖2 < ϕ(x̄)− ε.

(19)

Since F (x,y) is level-bounded in y locally uniformly in x̄,
we have that {yk} is bounded. Take a subsequence {yt} of
{yk} which satisfies there exists ŷ, such that yt → ŷ.

The inequality Eq. (19) yields that

Pf,t(f(xt,yt)− f∗t (xt)) < ϕ(x̄)− ε− F (xt,yt).

Taking t→∞ then limt→∞ Pf,t(f(xt,yt)− f∗t (xt)) < +∞.
From Lemma 1, we have lim supt→∞ {f(xt,yt)− f∗t (xt)} ≤
0, and hence by the continuity of f ,

lim
t→∞

f(xt,yt) ≤ lim inf
t→∞

f∗t (xt).

Then, by the continuity of f and Lemma 2, we have

f(x̄, ŷ) = lim
t→∞

f(xt,yt) ≤ lim sup
t→∞

f∗t (xt) ≤ f∗(x̄).

By using similar arguments and the continuity of h and H ,
one can show h(x̄, ŷ) ≤ 0 and H(x̄, ŷ) ≤ 0. Thus, we have
ŷ ∈ S(x̄), and ŷ is a feasible point to problem Eq. (14) with
x = x̄. Then Eq. (19) yields

ϕ(x̄) ≤ F (x̄, ŷ) ≤ lim sup
k→∞

F (xk,yk) ≤ ϕ(x̄)− ε,

which implies a contradiction. Thus we get the conclusion. �

A.4 Lemma 4

Let {(µk, θk, σk)} be a positive sequence such that
limk→∞(µk, θk, σk) = 0, and satisfy the same setting as in
Lemma 1. Then for any x ∈ X ,

lim sup
k→∞

ϕk(x) ≤ ϕ(x).

Proof: Given any x̄ ∈ X , for any ε > 0, there exists ȳ ∈ Rn
satisfying f(x̄, ȳ) ≤ f∗(x̄), h(x̄, ȳ) ≤ 0, H(x̄, ȳ) ≤ 0, and
F (x̄, ȳ) ≤ ϕ(x̄) + ε.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

By the definition of ϕk, we have

ϕk(x̄) ≤F (x̄, ȳ) + PH,k(H(x̄, ȳ)) + Ph,k(h(x̄, ȳ))

+ Pf,k(f(x̄, ȳ)− f∗k (x̄)) +
θk
2
‖ȳ‖2.

(20)

From Lemma 1, as k → ∞, we have PH,k (H(x̄, ȳ)) → 0,
and Ph,k(h(x̄, ȳ)) → 0. As we choose the standard barrier
function for PB,k in the definition of f∗k (x), thus f(x,y) +
PB,k(h(x,y))+ µk

2 ‖y‖
2 is always larger than f(x,y) for any

x and y feasible to the LL problem, and hence f∗k (x̄) ≥ f∗(x̄).
Then we have f(x̄, ȳ)− f∗k (x̄) ≤ f(x̄, ȳ)− f∗(x̄) ≤ 0. Then
it follows from the monotonicity of Pf,k and Lemma 1 that
Pf,k(f(x̄, ȳ)− f∗k (x̄))→ 0.

Therefore, as θk → 0, by taking k → ∞ in inequality
Eq. (20), we have

lim sup
k→∞

ϕk(x̄) ≤ ϕ(x̄) + ε.

Then, we get the conclusion by letting ε→ 0. �

APPENDIX B
CLOSED-FORM SOLUTION IN SECTION 5.1
Here we provide the detailed derivation of the closed-form
solutions for the numerical examples in Section 5.1.

B.1 Optimistic BLO in Section 5.1.1
We consider the following optimistic BLO:

min
x∈R,y∈Rn

‖x− a‖2 + ‖y − a− c‖2

s.t. [y]i ∈ argmin
[y]i∈R

sin(x + [y]i − [c]i),∀ i,

where [y]i denotes the i-th component of y, while a ∈ R
and c ∈ Rn are adjustable parameters. Note that here in the
numerical example, x ∈ R is a one-dimensional real number,
and we still use the bold letter to represent the scalar in order
to maintain the consistency of the context. The solution of
such problem is

x∗ =
(1− n)a+ nC

1 + n
, and [y∗]i = C + [c]i − x,∀ i,

where

C = argmin
k

{
‖Ck − 2a‖ : Ck = −π

2
+ 2kπ, k ∈ Z

}
,

and the optimal value is F ∗ = n(C−2a)2

1+n . Derivation of the
optimal solution and optimal value is as follows.

From the LL problem

[y]i ∈ argmin
[y]i∈R

sin(x + [y]i − [c]i),∀ i,

we have [y]i ∈
{
−x + [c]i − π

2 + 2kπ : k ∈ Z
}
,∀ i. Then

the problem is to find the x and k to minimize

F = ‖x− a‖2 + ‖y − a− c‖2

= (x− a)2 +
n∑
i=1

([y]i − a− [c]i)
2

= (x− a)2 + n(−x− π

2
+ 2kπ − a)2

= (n+ 1)x2 + 2
[
n
(
a+

π

2
− 2kπ

)
− a

]
x

+ a2 + n
(
a+

π

2
− 2kπ

)2
.

For a given k, denote Ck = −π2 + 2kπ, then

Fk = (n+ 1)x2 + 2 [n(a− Ck)− a]x + a2 + n (a− Ck)
2
,

which is strongly convex and quadratic w.r.t. x. Thus, it is
easy to obtain x∗k = (1−n)a+nCk

1+n , and

F ∗k = a2 + n(a− Ck)2 − [n(a− Ck)− a]2

n+ 1

=
n

n+ 1
(Ck − 2a)2.

Hence, by denoting

C = argmin
k

{
‖Ck − 2a‖ : Ck = −π

2
+ 2kπ, k ∈ Z

}
,

we have the optimal value F ∗ = n
n+1 (C − 2a)2, and the

corresponding solution

x∗ =
(1− n)a+ nC

1 + n
, and [y∗]i = C + [c]i − x∗,∀ i.

B.2 BLO with constraints in Section 5.1.2
We consider the following constrained BLO problem with
non-convex LL:

min
x∈R,y∈Rn

‖x− a‖2 + ‖y − a‖2

s.t. [y]i ∈ argmin
[y]i∈R

{
sin (x+ [y]i − [c]i) : x+ [y]i ∈ [0, 1]

}
, ∀ i,

where a ∈ R and c ∈ Rn are any fixed given constant
and vector satisfying [c]i ∈ [0, 1] for any i = 1, · · · , n. The
optimal solution is

x∗ =
1− n
1 + n

a, and [y∗]i = −x∗,∀ i,

and the optimal value is F ∗ = 4n
1+na

2. Derivation of the
optimal solution and optimal value is as follows.

From x + [y]i ∈ [0, 1], along with [c]i ∈ [0, 1],∀ i, it is
easy to obtain

x + [y]i − [c]i ∈
[

[c]i, 1− [c]i
]
⊂ [−1, 1] ⊂

[
−π

2
,
π

2

]
.

Hence, sin (x + [y]i − [c]i) is increasing w.r.t. [y]i under the
constraints for all i. Thus, from the LL problem we have
x + [y]i − [c]i = −[c]i, i.e., [y]i = −x,∀ i. Then the problem
is to find the x to minimize

F = ‖x− a‖2 + ‖y − a‖2

= (x− a)2 + n(−x− a)2

= (n+ 1)x2 + 2a(n− 1)x + (n+ 1)a2.

Therefore, the optimal solution x∗ = 1−n
1+na, [y∗]i = −x∗,∀ i,

and by substituting x∗ into F , we have the optimal
value F ∗ = 4n

1+na
2.

B.3 Pessimistic BLO in Section 5.1.3
For the pessimistic BLO we use the following example:

min
x∈R

max
y∈Rn

‖x− a‖2 − ‖y − a− c‖2

s.t. [y]i ∈ argmin
[y]i∈R

sin(x + [y]i − [c]i),∀ i,
(21)

where [y]i denotes the i-th component of y, while a ∈ R
and c ∈ Rn are adjustable parameters. In our experiment, we

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 21

set a = 2 and [c]i = 2 for any i = 1, 2, · · · , n, and consider
the 2-dimensional case (LL dimension n = 2). The optimal
solution to this problem is

(x∗,y∗) =
(
−2 +

π

2
, 4± π, 4± π

)
,

and the optimal value is

F ∗ =
(
−4 +

π

2

)2
− 2π2 = −7

4
π2 − 4π + 16.

Derivation of the optimal solution and optimal value is as
follows.

From the LL problem

[y]i ∈ argmin
[y]i∈R

sin(x + [y]i − [c]i),∀ i,

we have [y]i ∈
{
−x + [c]i − π

2 + 2kπ : k ∈ Z
}
,∀ i. Then

the problem is transferred to

min
x∈R

max
k∈Z

(x− a)2 − n
[
x + a−

(
−π

2
+ 2kπ

)]2
.

Denote Ck = −π2 + 2kπ. For a given x, suppose

x + a ∈ [Ck̂ − π,Ck̂ + π] (k̂ ∈ Z).

Then to maximize (x−a)2−n
[
x + a−

(
−π2 + 2kπ

)]2 w.r.t. k
is to minimize

[
x + a−

(
−π2 + 2kπ

)]2
= (x + a − Ck)2

w.r.t. k, and

arg min
k

(x + a− Ck)2 = k̂.

Thus, the problem is transformed into

min
x

(x−a)2−n
(
x + a− Ck̂

)2
, if x+a ∈ [Ck̂−π,Ck̂+π],

i.e.,
min
x∈R

ϕ(x)

where

ϕ(x) := (x− a)2 − n
(
x + a− Ck̂

)2
,

if x ∈ [−a+ Ck̂ − π,−a+ Ck̂ + π] (k̂ ∈ Z).

It is easy to obtain that ϕ(x) is continuous on R (on interval
endpoints ϕ(x) = (x− a)2 − nπ2), and

1

2
ϕ′(x) = x− a− n(x + a− Ck̂),

when x ∈ [−a+ Ck̂ − π,−a+ Ck̂ + π] (k̂ ∈ Z).
Because we set n = 2 and a = 2, then if x ∈ [−2 + Ck̂ −

π,−2 + Ck̂ + π],

ϕ(x) := (x− 2)2 − 2
(
x + 2− Ck̂

)2
,

1

2
ϕ′(x) = −x− 6 + 2Ck̂.

Hence,

1

2
ϕ′(x) ∈

[
−4 + Ck̂ − π,−4 + Ck̂ + π

]
.

Therefore,
(1) if k̂ ≤ 0, then

1

2
ϕ′(x) ≤ −4 + Ck̂ + π ≤ −4 +

π

2
< 0,

and ϕ(x) is decreasing. In this case, Ck̂ ≤ −
π
2 , and

x ≤ −2 + π
2 .

(2) if k̂ ≥ 2, then

1

2
ϕ′(x) ≥ −4 + Ck̂ − π ≥ −4 +

7π

2
> 0,

and ϕ(x) is increasing. In this case, Ck̂ ≥
7π
2 , and

x ≥ − 2 + 5π
2 .

(3) when x ∈
[
−2 + π

2 ,−2 + 5π
2

]
, the corresponding k̂ = 1,

and

ϕ(x) := (x− 2)2 − 2

(
x + 2− 3π

2

)2

,

1

2
ϕ′(x) = −x− 6 + 3π.

Thus, when x ∈
(
−2 + π

2 , 3π − 6
)
, ϕ′(x) > 0, and ϕ(x)

is increasing; when x ∈
(
3π − 6,−2 + 5π

2

)
, ϕ′(x) < 0,

and ϕ(x) is decreasing.
To sum up, ϕ(x) is increasing on

[
−2 + π

2 , 3π − 6
]

and
[
−2 + 5π

2 ,+∞
)
, and decreasing on

(
−∞,−2 + π

2

]
and[

3π − 6,−2 + 5π
2

]
. Therefore, the optimal x occurs at either

−2 + π
2 or −2 + 5π

2 . Since at these two local minimizers,

ϕ
(
−2 +

π

2

)
=
(
−4 +

π

2

)2
− 2π2

< ϕ

(
−2 +

5π

2

)
=

(
−4 +

5π

2

)2

− 2π2,

we have x∗ = −2 + π
2 , and

F ∗ =
(
−4 +

π

2

)2
− 2π2 = −7

4
π2 − 4π + 16.

For x∗ = −2 + π
2 , it means x∗ ∈

[
−2− π

2 − π,−2− π
2 + π

]
and x∗ ∈

[
−2 + 3π

2 − π,−2 + π
2 + π

]
, so Ck̂ = −π2 or 3π

2 ,
i.e., k̂ = 0 or 1. Thus,

[y∗]i = −x∗ + [c]i −
π

2
= 4− π

or
[y∗]i = −x∗ + [c]i +

3π

2
= 4 + π

for i = 1, 2. Hence,

(x∗,y∗) =
(
−2 +

π

2
, 4± π, 4± π

)
.

	1 Introduction
	2 Related Works
	3 The Proposed Algorithm
	3.1 Value-Function-based Single-level Reformulation
	3.2 Sequential Minimization Strategy
	3.3 Extension for BLO with Functional Constraints
	3.4 Extension for Pessimistic BLO

	4 Theoretical Analysis
	4.1 Convergence Analysis
	4.2 Complexity Analysis

	5 Experimental Results
	5.1 Numerical Evaluations
	5.1.1 Optimistic BLO
	5.1.2 BLO with Constraints
	5.1.3 Pessimistic BLO

	5.2 Hyper-parameter Optimization
	5.3 Few-shot Learning
	5.4 Generative Adversarial Networks

	6 Conclusions
	References
	Biographies
	Risheng Liu
	Xuan Liu
	Shangzhi Zeng
	Jin Zhang
	Yixuan Zhang

	Appendix A: Proofs of Lemmas in Section 4.1
	A.1 Lemma 1
	A.2 Lemma 2
	A.3 Lemma 3
	A.4 Lemma 4

	Appendix B: Closed-form Solution in Section 5.1
	B.1 Optimistic BLO in Section 5.1.1
	B.2 BLO with constraints in Section 5.1.2
	B.3 Pessimistic BLO in Section 5.1.3

