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Dynamic Loss For Robust Learning
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Abstract—Label noise and class imbalance are common challenges encountered in real-world datasets. Existing approaches for
robust learning often focus on addressing either label noise or class imbalance individually, resulting in suboptimal performance when
both biases are present. To bridge this gap, this work introduces a novel meta-learning-based dynamic loss that adapts the objective
functions during the training process to effectively learn a classifier from long-tailed noisy data. Specifically, our dynamic loss consists
of two components: a label corrector and a margin generator. The label corrector is responsible for correcting noisy labels, while the
margin generator generates per-class classification margins by capturing the underlying data distribution and the learning state of the
classifier. In addition, we employ a hierarchical sampling strategy that enriches a small amount of unbiased metadata with diverse and
challenging samples. This enables the joint optimization of the two components in the dynamic loss through meta-learning, allowing the
classifier to effectively adapt to clean and balanced test data. Extensive experiments conducted on multiple real-world and synthetic
datasets with various types of data biases, including CIFAR-10/100, Animal-10N, ImageNet-LT, and Webvision, demonstrate that our

method achieves state-of-the-art accuracy.

Index Terms—Robust learning, label noise, class imbalance, meta learning.

1 INTRODUCTION

EEP neural networks (DNNs) have demonstrated re-

markable success attributed to the abundance of la-
beled data [1f, [2], [3]. However, real-world datasets of-
ten exhibit long-tailed distributions and inevitably contain
noisy labels [4]. The presence of such biased data distribu-
tions renders DNNs susceptible to overlooking tail classes
[5] and memorizing noisy training labels [6], leading to
suboptimal performance on balanced and clean test data.
Consequently, addressing the challenge of robust learning
from long-tailed data with noisy labels has received growing
attention in recent studies [7]], [8].

Recent advancements in robust learning [6], [9], [10],
[11] have explored various techniques, including correcting
noisy labels [12], [13] and adjusting classification margins
[5], [14], to address the issues of label noise and class imbal-
ance, respectively. However, these solutions heavily rely on
manually-designed rules to distinguish between noisy and
clean samples, or pre-set parameters to obtain prior knowl-
edge of class distribution. When label noise meets class
imbalance, manual interventions become impractical since
tail classes make it difficult to identify label noise, while
noisy labels make observed class distribution unreliable. As
a result, we aim to pave a new path for robust learning from
biased data in a fully self-adaptive manner.

Taking the aforementioned challenges into considera-
tion, we propose a novel meta-learning-based dynamic loss
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Fig. 1: Upper: Conventional class-specific Gaussian Mixture
Model (GMM) with fixed hyperparameters tends to misclas-
sify clean samples into the noisy split, whereas our label
corrector learns optimal division thresholds for different
classes using training data and samples’ class-specific loss
rank. Lower: Previous methods generate classification mar-
gin () based solely on sample number, whereas our margin
generator takes into account the presence of noisy labels
and the distinct classification difficulties of different classes,
resulting in a more appropriate margin.

that comprises of a learnable label corrector and a margin
generator. Our approach aims to learn a classifier robustly
from long-tailed noisy data. In contrast to the predefined
fixed objective functions adopted by priors, our dynamic
loss learns to correct per-sample labels and adjust per-
class classification margins simultaneously by perceiving
the underlying data distribution and the learning state of
the classifier. As a result, our approach provides suitable dy-
namic learning objectives throughout the training process.
The main challenge in correcting noisy labels lies in
identifying noisy samples and disregarding or reusing them
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appropriately. Previous solutions [13], [15] have used a
GMM with fixed hyperparameters to differentiate between
noisy and clean samples based on their loss values, which
is inadequate for long-tailed noisy data. This is because
some clean samples of tail classes may have higher loss
values than noisy samples of head classes due to the highly
skewed class distribution. While a class-specific GMM [16] is
a straightforward solution, it is still prone to confusion due
to the significant variation in noise rates among different
classes (Figure[T). Furthermore, previous methods have rela-
beled identified noisy samples by combining their assigned
labels and the classifier’s predictions in a fixed manner. This
approach can lead to incorrect corrections since the classifier
is imprecise at the beginning of training and susceptible to
overfitting to noisy samples towards the end. To address
these issues, we propose a novel label corrector that can
learn to jointly identify and relabel noisy samples in a fully
learnable fashion. This is achieved by taking into account
both the class-specific loss rank of samples and the learning
state of the classifier.

In order to adjust per-class classification margins, we are
inspired by the fact that classes with fewer samples are asso-
ciated with larger generalization error bounds, which can be
minimized by increasing the classification margin [5]. How-
ever, most prior approaches [14] pre-define a fixed margin
for each class based solely on its sample number (Figure I}.
This approach suffers from two main drawbacks: i) the per-
class sample number becomes unreliable in the presence
of noisy labels; and ii) the distinct classification difficulties
among different classes are simply ignored. To address these
limitations, we propose a novel margin generator that can
learn to produce a suitable dynamic margin for each class
by self-perceiving the true class distribution underlying the
noisy data, as well as the classification difficulty of each
class.

To enable the learning of the classifier from long-tailed
noisy data, we propose a unified dynamic loss that inte-
grates the label corrector and the margin generator, and
optimize them through meta-learning. This approach allows
the objective function for the classifier to be dynamically
adjusted throughout the training process. The label corrector
and the margin generator work in tandem to improve the
learning from noisy data. Specifically, the label corrector
restores the true distribution of the data, which allows the
margin generator to produce a more suitable classification
margin. In turn, the resulting improved margin boosts the
accuracy of the predicted labels and enhances the reliability
of the label corrector. Furthermore, the convergence of meta-
learning is widely recognized as a challenging issue in
the field [17]]. In order to tackle this problem, we propose
the incorporation of a group optimization strategy and the
explicit utilization of known information. These techniques
serve to streamline the meta-learning task, mitigate input
instability, and ultimately enhance the convergence of the
meta-learning process.

To collect a small amount of unbiased meta data for
meta-learning, we have developed a new hierarchical sam-
pling strategy that progressively builds a random primary
set and then a balanced clean meta set. This approach
ensures that the meta set is enriched with diverse and
challenging samples that better simulate the distribution
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of real test data, thereby circumventing the problem of
over-reliance on straightforward samples. By doing so, our
dynamic loss can guide the classifier learning robustly on
various types of biased data in a fully self-adaptive manner.

We conduct a comprehensive evaluation of our proposed
dynamic loss on both synthetic and real-world long-tailed
data with label noise, achieving state-of-the-art results on
a wide variety of benchmarks featuring various imbalance
ratios and noise rates, such as CIFAR-10/100 [[18], Animal-
10N [19], ImageNet-LT [11], and Webvision [4]. Further-
more, additional tests conducted on purely imbalanced or
noisy data further validate the dynamic loss’s exceptional
adaptability and robustness.

In summary, our work contributes in the following ways:

e We introduce a straightforward yet powerful dy-
namic loss, which paves a new way for robust learn-
ing on various forms of biased data in a fully self-
adaptive manner.

o We devise a novel hierarchical sampling strategy that
efficiently generates diverse and unbiased meta data,
which allows for better simulation of the true data
distribution and improves the generalization ability
of the model.

e We achieve state-of-the-art performance on multiple
synthetic and real-world datasets, demonstrating the
effectiveness and versatility of our proposed ap-
proach.

2 RELATED WORKS

Long-Tailed Learning. Previous works on long-tailed learn-
ing can be broadly categorized into three main approaches:
data re-sampling [20], [21], boundary adjustment [22], and
re-weighting [9]], [23], [24]. The data re-sampling approach
involves balancing the class distribution by over-sampling
the tail classes. However, this method is prone to overfit-
ting on the tail classes. Methods belonging to the second
category aim to enlarge the classification boundary of the
tail classes while narrowing that of the head classes. This
is achieved by modifying the classification threshold [25]
or by adjusting the weights of the output layer through
normalization [10]. The re-weighting approach aims to as-
sign larger loss weights to the tail classes. Conventional
approaches of this category [24], [26] impose weights on
each training sample directly, which may cause unstable
training due to sensitivity to outliers [14]. Recent works [27]
modify the predicted scores in the Softmax function to
achieve re-weighting, which yields more stable training and
promising performance. In this work, we adapt the re-
weighting strategy to more challenging long-tailed scenarios
with label noise.

Learning under Label Noise. There are two main cat-
egories of methods for learning under label noise: sam-
ple re-weighting and relabeling. The re-weighting strategy
involves assigning lower weights to samples with larger
loss values, which are considered to be noisy [28], [29].
MentorNet [6] learns data-driven curriculums for deep
convolutional neural networks trained on corrupted labels.
Meta-Weight-Net [9] learns an explicit weighting function
directly from a small set of clean data. MetaSeg [30] directly
generates weights according to the feature and given label of
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images. On the other hand, the relabeling strategy leverages
noisy samples by refining their labels. Bootstrapping [31]
integrates assigned labels and model predictions through
interpolation. Some works divide clean and noisy samples
based on priors learned from a manually generated noisy
set [32] and then take advantage of noisy samples [33].
Long-tailed Learning under Label Noise. Recently, there
have been several approaches proposed for addressing long-
tailed learning with label noise. For instance, HAR [§]
applies a data-dependent regularization technique to reg-
ularize different regions of the input space differently. Cur-
veNet [7] learns to assign appropriate weights to different
samples based on their loss curves. ROLT [34] combines
DivideMix and LDAM to correct noisy labels and improve
the performance of tail classes. However, unlike these meth-
ods, the approach presented in this work is the first to
simultaneously correct noisy labels and adaptively adjust
per-class classification margins in a learnable and adaptive
manner according to the training data.

3 METHODS

In this section, we will provide a detailed description of our
dynamic loss and the process of optimizing it through meta-
learning.

3.1 Overview

Our objective is to train a classifier f, with learnable
parameters w using a noisy and imbalanced training set
D = {z;,y;}Y,, where each training example comprises
an image x; and its corresponding one-hot class label y;.
Although the training set is beset by label noise and class
imbalance, our aim is to ensure that the classifier accurately
recognizes all classes. To achieve this goal, we use a bal-
anced and clean test set.

We optimize the learnable parameters w by minimizing
the classification loss on the training set, given by

N
w' = argminZé(yi, fulxy)). (1)

“ =1
where ((-) represents the cross-entropy loss. However, due
to the presence of label noise and class imbalance in the
training set, optimizing using this naive cross-entropy loss
suffers from two significant drawbacks. Firstly, the labels as-
signed to noisy samples do not correspond to their ground-
truths, leading to high loss values and causing the model
to memorize the noisy labels. Secondly, tail classes occur
much less frequently than head classes, but have the same
classification margins, making them susceptible to poor

generalization.

To address the aforementioned issues, we introduce a
novel dynamic loss function that corrects noisy labels and
adjusts the classification margins for different classes in an
adaptive and learnable manner. The dynamic loss is given
by:

D,C:f(y;k, fw(wz)+Q)’ (2)

where y; and g € R represent the reassigned label and the
additive classification margin for x;, respectively.

As depicted in Figure 2| the dynamic loss incorpo-
rates a learnable label corrector Gg,, parameterized by 6,
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and a margin generator Gy, , parameterized by 8,,, which
are responsible for correcting per-sample labels and per-
class classification margins, respectively. We jointly optimize
these components along with the classifier f,, using meta-
learning. In the following, we elaborate on the two compo-
nents and their optimization in detail.

3.2 Label Corrector

The label corrector operates in a class-wise manner to detect
and correct wrongly assigned labels in noisy samples. To
identify such samples, it first divides all samples into C
groups based on their class and sorts the samples in each
group individually according to their loss values. It then
divides the sorted samples in each group into R bins of
equal size. To determine whether a bin r € {1,...,R} is
dominated by noisy or clean samples, the label corrector
uses a lightweight class-wise meta network. As a result, the
bin index 7; of the loss value for sample i can be used as a
reliable indicator for identifying label noise.

In terms of label correction, the classifier can learn from
the clean samples that dominate the data and transfer this
knowledge to the noisy samples, provided that the classifier
has not severely over-fitted on biased data. This allows
the classifier’s predictions on noisy samples to be more
accurate and closer to their ground-truth labels, facilitating
the correction of wrongly assigned labels.

Drawing from the aforementioned observation, we
present our label corrector which reassigns a ground-truth
label y; for a given sample x; by calculating a weighted
sum of its assigned label y; and the prediction y; made
by the classifier. The weights used for the summation are
dependent on the loss bin index r;, given by:

y;k = g@l (yi7y§7ri)

3
Cyrg(nly) 4 ylx (1 —grily)), O

The function g : r;|y; — [0, 1] is a class-dependent weight-
ing function that maps the bin index r; to a balance weight
and is learned by a small meta network. The network is
comprised of a one-hot encoder and a two-layer perceptron
(MLP) with a Sigmoid activation function.

In instances where sample ¢ is regarded as noisy due
to a high loss value resulting in a large bin index r;, the
computed value of g(r;|y;) tends to approach zero. Conse-
quently, the label corrector adjusts its label assignment by
incorporating the prediction made by the classifier to rectify
its initial erroneous label assignment. The reverse is also
true: if the sample has a low loss value and a small bin index,
the weight assigned to the classifier’s prediction is close to
zero, allowing the assigned label to remain dominant in the
label correction process.

3.3 Margin Generator

To design the margin generator, we revisit the Label-
Distribution-Aware Margin Loss (LDAM) [5] from the per-
spective of generalization error bound. Given that tail
classes often have fewer training samples, they typically
exhibit larger generalization error bounds when compared
with head classes. Since the generalization error bound
is often negatively correlated with the magnitude of the
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Fig. 2: Overview of our learning paradigm using the dynamic loss. Each training epoch involves splitting the entire data
into an unbiased meta set and a biased training set. In each iteration, we jointly update the label corrector and margin
generator using meta-learning on mini-batch meta and training data, followed by updating the classifier on mini-batch
training data by minimizing the dynamic loss using corrected per-sample labels and generated per-class margins.

classification margin, increasing the classification margins
for the tail classes can effectively reduce their generalization
error bounds.

In this regard, Balanced Meta-Softmax [14] presents an
unbiased extension of standard Softmax by adjusting the
classification margin for class j based on its sample number
n;, and adding the margin —log(n;) to the confidence score
p; predicted by the classifier:

p , ePitlog(n;)
(Wly=7)= log(Zle pitiogn) ) @)

However, when dealing with long-tailed data with noisy
labels, the sample number n; may not accurately reflect the
true number of samples belonging to class j due to the
existence of label noise. Furthermore, manually defining the
margin solely based on the sample number may not account
for the distinct classification difficulties among different
classes.

We propose a learnable margin generator Gg, , which
consists of a two-layer multi-layer perceptron (MLP) that
can dynamically adjust the margin for each class. During
classifier training, the margin generator optimizes a learn-
able margin vector ¢ € RY, which is initialized with an
all-ones vector:

q="20e,(1)=[q,---,qc] 5)

By integrating the margin vector into the standard Softmax
loss, we have the modified loss function:
R ) ePita;

Uwly =j) = log(zic:1 e
where p; and ¢; denote the predicted score and the learned
margin for class j, respectively. Since the classification mar-
gin is —g; in our formulation, the learned margin g; for class
J should be positively correlated with its sample number.

Hence the margin generator can automatically adjust
per-class margins by adapting to the underlying true class
distribution in long-tailed noisy data, as well as the classifi-
cation difficulty of each class. Importantly, the margin gen-
erator can accomplish this in a learnable manner, without
requiring any manual intervention or prior information.

(6)

3.4 Hierarchical Sampling Strategy

We combine the label corrector Gg, and margin generator
Go,, into a unified meta net G, which is a crucial element of
our dynamic loss. We employ meta-learning to optimize Gg
and facilitate the learning of the classifier f,, to better adjust
to balanced and clean test data.

To enable meta-learning, a meta set D. = {(z;, )},
containing a small number of balanced and clean data must
be constructed. A simple approach is to select M; samples
with the lowest classification loss values from each class in
D, as samples with lower loss values computed by f., are
more likely to have correctly assigned labels. However, this
approach can be problematic because easier samples often
have lower loss values during training, which can result in
fixed easy samples being selected at each epoch and increase
the risk of overfitting to such samples.

Therefore, we have devised a hierarchical sampling strat-
egy to create D.. This strategy involves a two-step process:
first, we randomly select M, samples from each class in D
to construct a primary set; second, we choose M; samples
with low loss from each class in the primary set to form the
final meta set. The samples that are not selected for the meta
set are included in the counterpart set D,,. Refer to Fig. [2] for
an illustration of this process.

The advantages of incorporating the primary set are two-
fold. Firstly, since the samples in the primary set are ran-
domly selected at each epoch, it ensures that the resulting
meta set is distinct across different epochs. Secondly, the
primary set contains fewer samples than D, increasing the
likelihood of selecting hard yet clean samples located near
the decision boundary into the meta set. This hierarchical
sampling strategy guarantees the dynamism and diversity
of the meta set, preventing the model from overfitting to
biased data.

3.5 Optimization

The convergence of meta-learning poses significant chal-
lenges [17]. Previous approaches [7]], [9], [15] employ a strat-
egy of inputting all known information, particularly given
labels, predicted labels and loss value, into the meta net,
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TABLE 1: Detailed settings for training on different datasets.

Settings | CIFAR-10 | CIFAR-100 | Webvision | Animal-10N ImageNet-LT
Optimizer SGD
Momentum 0.9
Classfier Weight Decay 5e-4 5e-4 le-4 5e-4 le-4
Learning Rate 0.1 0.1 0.02 0.02 0.1
Learning Scheduler Cosine Annealing
Optimizer Adam
MetaNet Welght Decay 0
Learning Rate 3e-3
Learning Scheduler Fixed
MO 0.5 0.5 0.5 0.5 -
M1 0.25 0.25 0.25 0.25 -
Epoch 300 300 150 100 90 / 400
h
Others Warmup Epoch 5 5 1 5 0
Batch Size 512 512 64 128 128
Rank bins 100 50 100 100 -
MLP MLP , overlapping loss values between noisy and clean samples.
Vi These factors make it challenging to discern between them
i solely based on loss values. To overcome this challenge,
we employ a grouping strategy that involves sorting by
7 yion yi loss value for noisy data and given labels for imbalanced
gi data. This strategy brings stability to the input information,
Vi reducing its instability and enhancing the influence of each
yi input on the meta net. By explicitly utilizing known infor-
L
mation and implementing the grouping strategy, we sim-
implicit explicit P 5 groupIng &Y,

Fig. 3: Visualization of implicit and explicit inputs. y;, v},
y; and r; represent the assigned label of the training set,
predicted label of the classifier, reassigned label of our meta
net, and the bin index of the loss rank, respectively.

generating customized weights for each sample. However,
due to computational complexity, meta nets often exhibit
a relatively simple network structure consisting of a few
fully connected layers, limiting their capability to handle
complex tasks. Notably, in scenarios involving biased data,
a substantial portion of the known information, such as
predicted and given labels, can be omitted from the meta
net’s input. This is because only one of these labels needs
to be selected as the sample’s label, and a weight can be
learned to combine the two labels and obtain a new label.
Directly incorporating these known information into the
meta net not only increases the optimization difficulty but
also diminishes the utilization of the information. This is
due to the implicit nature of using these information, requir-
ing the meta net to extract it from the input, as expressed by:

y; = Go,(Yi, i) = 9(Yi, Y, i) ()

To enhance the utilization of known information, we
opt for explicit utilization through our Label Corrector, as
illustrated in Figure [3land governed by Equation

The customization of weights for individual samples
diminishes the impact of diverse input information on the
meta net. However, input information often encompasses er-
rors, such as varying sample loss values during training and

plify the task of the meta net, promoting easier convergence
and the assignment of accurate weights and margins to each
sample group.

4 EXPERIMENTS ON LONG-TAILED NoIsY DATA
4.1 Experiments on CIFAR-N-LT

Dataset and Implement Details. We assess the performance
of our method on CIFAR-N-LT dataset, which comprises
CIFAR-10 and CIFAR-100 [18]. These datasets contain 60,000
RGB images, out of which 50,000 images are used for
training and 10,000 images for testing. The images are
evenly distributed across 10 and 100 categories, respectively.
Additionally, the datasets are subjected to simulated label
noise and class imbalance.

To simulate a long-tailed dataset, we follow the expo-
nential profile proposed in [5], where the imbalance ratio p
leads to an exponential decay in the sample number across
different classes. We then inject label noise into the long-
tailed dataset to create the training set, with each sample’s
label independently changed to class j with probability
%)\, where NV is the total number of training samples, N; is
the frequency of class j, and ) represents the noise rate.

Following ROLT [34], we consider imbalance ratios of
p € {10,100} and noise rates of A € {0.1,0.2,0.3,0.4,0.5}.
The ResNet-32 [2] is adopted as the classifier, and we train
all classifiers using balanced-softmax for 300 epochs with
a batch size of 512. The learning rate is initialized as 0.1
and controlled by a cosine annealing learning scheduler [37].
We train all classifiers using the same SGD optimizer with
a momentum of 0.9 and a weight decay of 5e-4. Further
training details can be found in Table
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TABLE 2: Accuracy (%) on CIFAR-10-N-LT with varying imbalance ratio and noise rate.
Imbalance Ratio ‘ 10 ‘ 100 ‘
Noise Rate | 01 0.2 0.3 0.4 05 | 01 02 03 0.4 05 | A&
Last | 7663 6889 6121 5401 4409 | 5999 5056 4481 3713  30.02 | 52.73
Cross Entopy Best | 77.14 7435 7222 6828 59.65 | 6345 5345 4949 4553 4076 | 60.43
Last | 88.11 8695 6642 7378 7385 | 63.08 61.14 2431 2413 2009 | 58.19
DivideMix [13] Best | 8850 87.13 67.67 7426 7415 | 63.08 6161 3379 31.06 26.10 | 60.74
Last | 8521 8571 84.13 81.16 7891 | 64.76 6141 5642 5131 44.05 | 69.31
ELR+ [35] Best | 87.04 8614 8438 8330 8023 | 6573 6212 5642 5226 4573 | 70.34
, Last | 86.67 8460 8485 8134 79.02 | 6621 61.63 6001 3771 39.01 | 68.11
MOIT+ [36 Best | 87.00 8484 8485 8195 7952 | 6692 6216 6049 37.85 39.19 | 68.48
Last | 8752 8400 7949 7353 6527 | 7614 6937 62.03 5279 4644 | 69.66
Balanced-Softmax [14]  Best | 87.62 8450 8284 79.09 7590 | 7863 7329 70.89 6757 6340 | 7637
DivideMix Last | 8823 8696 78.02 79.17 7689 | 76.63 7572 4682 5325 5433 | 71.60
+Balanced-Softmax Best | 88.93 86.06 79.19 7981 7820 | 7936 7655 4860 5499 5584 | 72.75
Last | 77.31 78.68 79.15 81.17 7757 | 5546 51.67 4940 3821 2669 | 61.53
FaMUS [15] Best | 83.12 8434 8485 8544 8412 | 5750 5461 5430 4535 3293 | 66.66
Last | 84.10 8170 7847 7873 7565 | 6577 6621 6237 4871 51.85 | 69.36
CurveNet [7] Best | 84.87 8462 7998 8133 7837 | 6755 6872 6371 51.63 52.84 | 71.36
Last | 8646 8427 8178 7955 78.07 | 78.60 7505 72.08 6548 6390 | 7652
HAR [8] Best | 87.03 8447 8194 79.87 7825 | 79.02 76.14 7274 6722  65.00 | 77.17
Last | 89.23 8839 8658 8443 8334 | 7780 7631 7410 69.64 67.45 | 79.73
Dynamic Loss (Ours)  Best | 89.44 8846 8672 8473 83.71 | 7896 7664 7617 7037 7026 | 80.55

Main Results. Table [2| and [3| present the average accu-
racy on CIFAR-10-N-LT and CIFAR-100-N-LT with vary-
ing imbalance ratios and noise rates. Our method exhibits
consistently high accuracy across a wide range of biases,
whereas previous methods suffer rapid degradation. Specif-
ically, our dynamic loss improves the average last accuracy
by 3.21% and 5.79% compared to HAR on CIFAR-10-
N-LT and CIFAR-100-N-LT, respectively. Additionally, our
method significantly outperforms the baseline model that
simply combines strategies from DivideMix and Balanced-
Softmax.

Furthermore, the performance of our last model is gen-
erally very close to that of our best model despite varying
bias settings. In contrast, the last models of DivideMix and
Balanced-Softmax degrade significantly compared to their
corresponding best models, especially on CIFAR-10-N-LT
with severe imbalance and noise (e.g., p = 100 and A = 0.5).
These results suggest that our method is much more resis-
tant to overfitting on biased data than the aforementioned
priors.

It is worth noting that previous methods require care-
fully tuned hyperparameters based on unobservable noise
rate [13] or perform two-stage training to obtain prior infor-
mation on class distribution [8]. In comparison, our dynamic
loss employs a fixed set of hyperparameters and requires
only one-round end-to-end training without manual inter-
ventions on the same dataset.

4.2 Experiments on Webvision.

Dataset and Implement Details. We also evaluate our
dynamic loss on the WebVision dataset [4], which is a large-
scale real-world dataset that suffers from label noise and
class imbalance. It comprises 2.4 million images, of which
approximately 20% are mislabeled [41]. To construct the

miniWebVision dataset, we follow the methodology pro-
posed in MentorNet [6] by selecting the top 50 classes,
resulting in an observed imbalance ratio of around 6.78.
Following priors [13], we train the Inception-ResNet V2 [42]
for 150 epochs using the SGD optimizer with momentum
0.9 and weight decay of 1le-4. For ResNet-50, the training
details is following INOLML [40]. During the warm-up
stage, which lasts for one epoch, we use a batch size of
64 and an initial learning rate of 0.02. The learning rate is
then adjusted using a cosine annealing learning scheduler.
We evaluate the model’s performance on the validation sets
of both WebVision and ImageNet [43]. Additional training
details are available in Table
Main Results. Table [ displays the performance of our
method on the WebVision and ImageNet validation sets.
Our approach outperforms other state-of-the-art methods
even though most of them utilize additional model co-
training and ensembling techniques. Notably, our method
surpasses HAR and ROLT+, which are specifically designed
to handle long-tailed noisy data, by at least 2.48% in terms
of accuracy on WebVision, demonstrating its superiority.
The rapid advancements in the field of self-supervised
learning have highlighted the increasing importance of
adaptive methods for learning from biased data. Particu-
larly, methods that can effectively adapt to models with
varying initial parameters are of great significance. In
this study, we performed experiments on ResNet-50 that
was pre-trained using self-supervised techniques, such as
CLIP [44]. The results, presented in the last row of Table E}
demonstrate a significant improvement of 3.92% in accuracy,
achieved through our proposed approach, compared to the
model trained using cross entropy with the same initial
parameters pretrained by CLIP. These findings provide
evidence of the dynamic adaptability of our method to
classifiers with different initial parameters.
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TABLE 3: Accuracy (%) on CIFAR-100-N-LT with varying imbalance ratio and noise rate. NC: not converging, NA: not

available.
Imbalance Ratio ‘ 10 ‘ 100 ‘
Noise Rate | 01 0.2 0.3 0.4 0.5 | o1 0.2 03 0.4 05 | Average

Last | 4348 3725 3134 2553 1945 | 2992 2185 1932 1371 1221 2541

Cross Entopy Best | 4395 37.64 3218 2944 2387 | 3052 2213 1958 1459 1281 26.67
Last | 5417 5192 5044 4502 4343 | 3631 3568 3410 3319 2722 41.15

DivideMix [13] Best | 5494 5335 5093 4536 4344 | 3699 3624 3487 3364 2774 41.75
Last | 5248 5130 4624 3998 3491 | 33.01 2810 2492 2211 1654 34.96

ELR+ [35] Best | 53.91 5190 47.88 4261 3735 | 3381 2894 2610 2211  17.39 36.20
MOIT+ [36] Last | 4466 4012  NC NC NC NC NC NC NC NC NA
: Best | 47.70 4494 4210 3912 3550 | 3266 3035 2899 2599 2282 35.02

Last | 58.38 5459 5049 4483 4045 | 43.17 3867 3327 2708 22.10 41.30

Balanced-Softmax [14]  Best | 58.62 5473 5066 4563 4056 | 4350 38.67 33.62 28.05 24.19 41.82
DivideMix Last | 5637 54.80 5483 5129 4889 | 4326 4242 4046 37.83 3095 46.11
+Balanced-Softmax Best | 56.85 56.06 55.64 5230 50.01 | 43.67 4279 4099 3850  32.38 46.92
Last | 46.07 5159 4607 4693 4383 | 2933 3022 2853 2783 2457 30.72

FaMUS [15] Best | 47.03 52.05 4641 47.88 4430 | 29.66 3031 2850 27.24 2485 30.81
Last | 5041 4714 4318 4123 3485 | 2210 2044 1780 1187 9.4 29.83

CurveNet [7] Best | 52.73 5193 4756 44.08 39.74 | 2526 2135 1872  13.60 1220 32.72
Last | 58.88 5543 5257 4601 4396 | 4267 3939 3443 2943 2494 277

HAR [8] Best | 59.32 55.80 5344 4675 4461 | 4445 4098 3609 31.17  27.15 43.98
Last | 59.24 5757 56.85 52.07 50.74 | 4723 4574 4272  39.58  33.87 48.56

Dynamic Loss (Ours)  Best | 59.52 57.85 57.32  52.66 51.26 | 47.55 45.82 4354  39.96  34.30 48.98

TABLE 4: Accuracy (%) on WebVision and ImageNet val-
idation sets. * denotes the use of model cotraining or en-
sembling. T indicates the backbone is pretrained using self-
supervised techniques (CLIP). IRV2: Inception-ResNet V2.

‘ ‘ Webvision ‘ ImageNet
Methods ‘ Backbone ‘ top1 top5 ‘ top1 top5
Cross Entropy IRV2 7248 88.48 | 65.08 87.88
Cross Entropy ResNet-50 71.72  87.84 | 65.96 86.88
Cross Entropy ResNet-507 | 78.04 93.04 | 72.84 91.68
HAR [8] IRV2 7550 90.70 | 70.30  90.00
DivideMix* [13] IRV2 7732 91.64 | 7520 90.84
ROLT+* [34] IRV2 7764 9244 | 7464 9248
ELR+* [35] IRV2 7778 91.68 | 7029  89.76
CMW-Net-SL* [38] | IRV2 7808 9296 | 75.72  92.52
FaMUS* [15] IRV2 7940 9280 | 77.00 92.76
MOIT+ [36] IRV2 78.76 - - -
NCR [39] ResNet-50 80.50 - - -
INOLML* [40] ResNet-50 81.70 93.80 | 78.10 92.90
Dynamic Loss IRV2 80.12 93.64 | 7476  93.08
Dynamic Loss ResNet-50 7856 9252 | 72.08 91.36
Dynamic Loss ResNet-507 | 81.96 9448 | 7743  93.40

5 EXPERIMENTS ON NoiIsYy DATA

5.1

Dataset and Implement Details. CIFAR-N is a synthetic
noisy dataset derived from CIFAR. It includes two common
types of simulated label noise: symmetric and asymmetric.
Symmetric noise is introduced by randomly changing the
labels with all possible labels based on a fixed probability
of X (also known as noise rate). Asymmetric noise, on the
other hand, is designed manually to mimic real-world label

Experiments on CIFAR-N

noise, where labels are only altered with those in similar
classes, such as deer — horse and dog <+ cat. We evaluate
the performance of our dynamic loss in handling noisy
data using CIFAR-10-N and CIFAR-100-N with symmetric
noise rates of 0.2,0.4,0.6 and asymmetric noise rates of
0.2,0.4. We utilize PreAct ResNet (PARes18) [49] as the
classifier, following the approach proposed in DivideMix
[13]. Additional training details can be found in Table
Results on CIFAR-N. Table [5 illustrates that our pro-
posed method outperforms previous methods specifically
designed for learning on noisy data, achieving the highest
average accuracy. Unlike DivideMix, which requires manual
tuning of hyperparameters under different noise types and
rates, our dynamic loss adapts well to various noisy sce-
narios in a fully self-adaptive manner without any manual
intervention.

5.2 Experiments on Animal-10N

Dataset and Implement Details. We also evaluate our
method on the real-world noisy dataset ANIMAL-10N [19],
which contains a total of 55,000 images (50,000 for training
and 5,000 for testing) of 5 pairs of confusing animals. All
image categories are equally represented in the dataset.
The images are collected from websites using the search
keywords as labels, resulting in significant label noise with
an estimated rate of 8%. To ensure a fair comparison with
prior work [19], we train the VGG10-BN [1] for 100 epochs
using the SGD optimizer with a momentum of 0.9 and
weight decay of 5e-4. The warm-up stage lasts for 5 epochs,
and the batch size is set to 128. We initialize the learning
rate to 0.02 and control it with a cosine annealing learning
scheduler. Further training details are presented in Table
Main Results. Table [f] illustrates that our dynamic loss
achieves state-of-the-art performance compared to all pre-
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TABLE 5: Accuracy (%) on CIFAR-N with varying noise rate. PARes18 used as the classifier.

Datasets \ CIFAR-10-N \ CIFAR-100-N

Noise Rate | 20 40 60 20 (Asym.) 40 (Asym) | Avg. | 20 40 60 Avg.
Cross Entopy 86.98 77.52 73.63 83.60 77.85 79.92 60.38 46.92 31.82 46.37
SELFIE [19] 86.39 82.23 74.81 - - - 55.71 51.14 43.85 50.23
PLC [45] 86.40 71.72 65.22 90.23 85.40 79.79 59.66 49.24 33.18 4736
NCT [46] 95.00 87.00 73.22 91.51 93.00 87.95 67.65 57.97 45.01 56.88
Coteaching [47] 93.83 91.74 57.65 93.23 90.78 85.45 70.81 62.65 4155 58.34
CMW-Net [38] 91.09 86.91 83.33 93.02 92.70 89.41 70.11 65.84 56.93 64.29
DivdeMix [13] 95.63 93.78 94.23 94.18 92.73 94.11 77.20 73.37 70.75 73.77
GJS [48] 94.20 92.80 89.72 91.92 86.07 90.94 73.31 71.33 66.92 70.52
NCR [39] 95.20 94.50 78.45 - 90.70 - 76.60 74.20 38.25 63.02
MOIT+ [36] 94.08 91.95 89.38 94.50 93.27 92.64 75.89 70.88 65.30 70.69
Dynamic Loss (Ours) | 95.90 94.69 92.28 95.74 94.51 | 9462 | 7826 75.28 69.18 74.24

TABLE 6: Accuracy (%) on Animal-10N.

Methods ‘ Cross Entropy

SELFIE [19] PLC [45] NCT [46] Co-teaching [47] CMW-Net [38] DivdeMix [13] GJS [48] ‘ Dynamic Loss

Accuracy ‘ 79.40 81.80 83.40 84.10

80.20

84.70 84.00 8417 |  86.54

vious methods on the ANIMAL-10N dataset. Specifically,
our method outperforms the classifier trained with cross
entropy by a large margin of 7.14%, demonstrating its
superior ability to handle real-world noisy data.

6 EXPERIMENTS ON LONG-TAILED DATA
6.1 Experiments on CIFAR-LT

Dataset and Implement Details. The CIFAR-LT is a sim-
ulated long-tailed dataset that is derived from CIFAR by
reducing the number of training samples per class according
to an exponential function n; = nu’, where n;, i, and n
denote the number of samples in the i-th class, the class
index, and the maximum number of samples across all
classes, respectively. We evaluate the efficacy of our dy-
namic loss approach in dealing with long-tailed data on
clean CIFAR datasets that have varying imbalance ratios
(p € {10,20,50,100}). For more detailed information on
the training process, please refer to Table [T}

Results Table [7] presents the superior performance of our
proposed method compared to previous approaches specif-
ically designed for learning on long-tailed data. Notably,
our method surpasses LDAM, which adjusts classification
margins based solely on the sample number, by a signif-
icant margin of 4.03% and 5.75% on CIFAR-10-LT and
CIFAR-100-LT, respectively. This result demonstrates the ef-
fectiveness of our dynamic loss in accurately perceiving the
classification difficulty of different classes and adaptively
adjusting their margins accordingly.

Furthermore, our approach seamlessly integrates with
Logit Adjustment and Balanced Softmax techniques by uti-
lizing them as base margins while learning the residual
margin through our margin generator. As shown in Table
our proposed approach with Balanced-softmax and logit
adjustment yields a notable improvement in final accuracy,
namely 0.19% and 3.05% on CIFAR-10-LT, compared to the
initial Balanced-softmax and logit adjustment techniques.

However, the performance level remains comparable to that
of our original dynamic loss. These findings indicate that
our original dynamic loss is sufficient for accurately identi-
fying the classification complexity of diverse categories and
accounting for the number of samples per class.

6.2 Experiments on ImageNet-LT

Dataset and Implement Details. The ImageNet-LT dataset
consists of 115.8K images, categorized into 1,000 classes
based on the Pareto distribution. Consequently, the number
of images per class varies between 5 and 1280. Following
previous studies [11], [55], we employ several architec-
tures for training, including ResNet-10, ResNet-50, ResNet-
152, ResNeXt-50 [56], and self-supervised ResNet-50. These
models are trained for either 90 or 400 epochs, utilizing
the SGD optimizer with a momentum of 0.9 and weight
decay of le-4. No warm-up stage is conducted, and a batch
size of 128 is employed. The learning rate is initialized
at 0.1 and controlled using a cosine annealing learning
scheduler. Further details regarding the training procedure
are provided in Table

Main Results Table [8| presents the experimental findings,
showcasing the superior accuracy achieved by our pro-
posed method when employed in conjunction with various
classifiers, namely ResNet-50, ResNet-152, ResNeXt-50, and
self-supervised ResNet-50. Remarkably, even when utilizing
the ResNet-10 classifier trained from scratch, our method
surpasses the performance of the PaCo framework [55]
equipped with self-supervised techniques by 2.12%. These
results underscore the robustness and efficacy of our pro-
posed method in effectively handling the challenges posed
by long-tailed datasets.

Additionally, we conducted supplementary experiments
by incorporating our method with the pretrained ResNet50
using self-supervised techniques. The results reveal a signif-
icant performance improvement of 2.42% compared to the
PaCo framework. This further highlights the compatibility
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TABLE 7: Accuracy (%) on CIFAR-LT with varying imbalance ratio. ResNet32 used as the classifier.

Datasets \ CIFAR-10-LT \ CIFAR-100-LT

Imbalance Ratio | 10 20 50 100 | Avg. | 10 20 50 100 | Avg.
Cross entropy 8639 8223 7481 7036 | 7845 | 5571 5114 4385 3832 | 47.26
Focal Loss [23] 86.66 8276 7671 7038 7913 | 5578 5195 4432 3841 | 47.62
CB Focal [50] 8749 8436 7927 7457 | 8142 | 5799 5259 4532 39.6 48.88
LDAM-DRW [5] 8768 8551 8164  78.02 | 8321 4470 5293 4822 5959 | 51.36
FaMUS [15] 87.9 8624 8332 8096 | 8461 59.00 5595  49.93  46.03 | 52.73
Balanced-Softmax [14] 91.01 88.85 8644 8231 87.15 6400 5948 5436 5047 | 57.08
WD [51] 89.80 8481  79.66  74.84 | 8228 61.60 5275 4589  40.79 | 5026
MiSLAS [52] 90.00 8852 8570  82.10 86.58 6320 5925 5230  47.00 | 5544
Logit Adjustment [53] 89.64 8677 8261 7838 84.35 6283 5881 5215 4836 | 5554
CMO [54] 8326  89.27 8719 8535 | 8627 | 6230  60.12 5140 4660 | 55.11
Dynamic Loss 91.24 8830 8646  82.95 87.24 6399 5979 5451 5014 | 57.11
Dynamic Loss + Balanced-Softmax 90.99 89.66 85.49 83.21 87.34 64.18 60.13 54.60 50.54 57.36
Dynamic Loss + Logit Adjustment 91.10  89.54 8552 8343 | 87.40 6415  60.08 5414 4965 | 57.01

TABLE 8: Accuracy (%) on Imagenet-LT. * indicates the use
of self-supervised techniques. RN: ResNet. RNeXt: ResNeXt.

Methods | Epoch | RN-10 RN-50 RN-152 RNeXt-50
Cross Entopy 90 34.01 4460 46.20 42.78
Focal Loss [23] 90 32.64 41.61 4436 41.58
LDAM-DRW |5] 90 36.03 4880 51.83 5143
CDB-S [57] 90 3770 41.80 4640 45.10
Logit adjustment [53] 90 38.43 48.89  47.86 51.85
Balanced-Softmax [[14] | 90 3821 5096 53.93 51.73
MiSLAS [52] 400 | 4436 53.05 48.82 51.88
PaCo* [55] 400 | 42.89 57.00 58.55 58.20
Dynamic Loss 90 38.87 5116 54.40 52.37
Dynamic Loss 400 | 45.01 53.19 5641 53.48
Dynamic Loss* 400 - 59.42 - -

of our proposed method with self-supervised approaches,
leading to enhanced performance gains.

7 QUALITATIVE ANALYSIS.
7.1 Label corrector

Behavior of Label Corrector. We examine the behavior of
the label corrector on the balanced CIFAR-10-N with asym-
metric noise, which is designed to emulate the structure of
real-world label noise by assigning distinct noise rates to
various classes. Figure[illustrates the learned weight g(r|y)
by the label corrector and the percentage of noisy labels cor-
responding to an increasing loss bin index r for each class.
We observe that for the classes that contain noisy labels,
clean samples mainly appear in the top-ranked (low-loss)
bins while noisy samples occupy the bottom-ranked (high-
loss) bins. This finding supports our hypothesis that the loss
bin index r can be used as a reliable input indicator for
the label corrector to differentiate between noisy and clean
samples. Accordingly, the generated weight g(r|y) remains
at 1 and suddenly drops to 0 at around bin 60, indicating
that the label corrector preserves the assigned ground-truth
label for clean samples and resorts to the predicted label that
is more likely to be the ground-truth for noisy samples. On

the other hand, for the classes without noisy labels, g(r|y)
remains at 1. As a result, our label corrector consistently
outputs the correct labels for both noisy and clean samples
across different classes.

We also visualize the learned label weights of the real-
world datasets miniWebvision and Animal-10n in Figures 5|
and [6] respectively. For miniWebvision, we select 2 cat-
egories at intervals of 25 to visualize their learned label
weights considering the large number of categories. As
shown in Figure [5] the learned label weights vary with
different classes, suggesting that the noise rates of different
classes are different, which is consistent with real-world
datasets. In Animal-10N, two categories were selected at
intervals of 5 to visualize the learned label weights. As
depicted in Figure [} the learned label weights remain 1 and
drop to 0 at around bin 92 (red dotted line), indicating that
the noise rate estimated by the label corrector is about 8%,
which is consistent with the well-recognized estimated noise
rate on Animal-10N [19].

Corrected Label Accuracy. Figure [/]illustrates the accuracy
of the corrected labels on balanced CIFAR-10-N, measured
as the proportion of samples with ground-truth labels after
the label correction process. The label accuracy gradually
increases as the training progresses, and the classifier be-
comes more reliable. Eventually, the label accuracy reaches
over 90% on CIFAR-10-N with noise rates of 0.2 and 0.4.
Remarkably, the accuracy has also significantly improved
by 35% under a noise rate of 0.6. The high accuracy of the
corrected labels validates our design choices from two per-
spectives. Firstly, this finding supports our assumption that
the classifier primarily focuses on fitting in the dominant
clean samples, and can transfer the acquired knowledge to
the noisy samples for predicting their ground-truth labels.
Secondly, the label corrector can precisely identify the noisy
samples and rectify their labels with the predicted correct
ones.

Learnable Weight Varied Trend in Training. Figure [§|illus-
trates the evolution of the learnable weight across training
epochs. At the beginning, the label corrector mainly relies
on the given labels to train the classifier, while gradually
shifting towards trusting the predicted labels for samples
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Fig. 5: The visualization of the per-class learned label

weights on Web Vision.
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Fig. 6: The visualization of the per-class learned label
weights on Animal-10N.

with higher rank bins, as indicated by the decreasing values
of the learnable weight at epoch 45. Furthermore, the label
corrector accurately estimates the noise rate to be approxi-
mately 35% (for a noise rate of 40%, there are actually 35%
noisy samples). The plot, together with Figure [/} reveals
that the epoch at which the label corrector begins to trust
the classifier is delayed as the noise rate increases. This
suggests that the label corrector considers the classifier
to require more training epochs to produce more reliable
predicted labels as the noise rate of the training set increases.
Therefore, our results demonstrate that the label corrector
is capable of dynamically adjusting the relabelling of noisy
labels based on the status of the classifier and the training
set.

Fig. 7: The visualization of the accuracy of generated labels
varied with epoch of Gg, on CIFAR-10-N (left) and CIFAR-
100-N (right) with noise rates A ranging from 0.2 to 0.6.

7.2 Margin generator

Behavior of Margin Generator. We conducted an analysis
of the behavior of the margin generator on clean CIFAR-
10-LT with imbalance factor p = 20. The left subfigure of
Figure [0 shows the generated margins for different classes.
We observed that as the class index increases and the sam-
ple number decreases, the learned margin also decreases
as expected. This suggests that the margin generator has
the ability to automatically discern the sample numbers of
different classes and adaptively adjust the margins for each
class accordingly.

Interestingly, we also observed some irregularly larger
margins on class 9 and 10. To explain this observation, we
visualized the feature distribution of the meta set using
T-SNE [58] as shown in the right subfigure of Figure [9]
We found that the feature distribution of these two classes
correspond to the two rightmost clusters, indicating that
they are easier to be distinguished from the other classes.
This evidence supports the claim that the margin generator
takes into account not only the sample number but also the
classification difficulty of each class when generating com-
prehensively adaptive margins during classifier training.

We present visualizations of the learned label weights for
the real-world miniWebvision and simulated ImageNet-LT
datasets in Figures[10|and [11] respectively. In Figure [0} the
generated margins over different classes in miniWebvision
accord with the complex variation of sample size, which
demonstrates the adaptability of our method to handle com-
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Fig. 9: The learned per-class margins and the number of
samples (left), and the feature distribution of samples in the
meta set (right) on CIFAR-10-LT with p=20, are presented.
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Fig. 10: Visualization of the learned per-class margins on
Webvision.

plex real-world biased data. For the simulated ImageNet-LT
dataset, we visualize the learned margins for 333 categories
in intervals of 3 in Figure As shown in the figure, the
learned margins consistently vary with the sample number
of different classes, suggesting that the margin generator can
generate proper margins for different classes. This finding
provides evidence that our method can handle datasets with
numerous categories.

Learnable Weight Varied with Imbalance Ratios. Figure
depicts the learned margins generated by the margin gener-
ator under different imbalance ratios. We can observe that
as the class index increases, corresponding to decreasing
sample size, the generated margin consistently decreases, ir-
respective of the varying imbalance ratios. Additionally, the
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Fig. 11: Visualization of the learned class margins on

ImageNet-LT.

class

Fig. 12: The visualization of the learned class-aware margin
of G;(60;) on CIFAR-10-LT (left) and CIFAR-100-LT (right)
with imbalance factor p ranging from 10 to 100.

variation in learned margins across different classes tends
to increase as the imbalance ratio becomes more severe.
Both quantitative and qualitative analyses provide evidence
that the margin generator effectively respects and adapts
to various class distributions by automatically learning to
assign appropriate margins.

Learnable Weight Varied in Training. In Figure the
variations of classification margins and feature distributions
of meta set are depicted across different training epochs. It
can be inferred that the margin generator continually adapts
the classification margins based on the feature distributions
of meta set during the training process. For instance, in the
case of class 10, a relatively small classification margin is
assigned to it since it is challenging to recognize at epoch
50. However, as it becomes easier to recognize at epoch 250,
the margin generator assigns a larger classification margin
to it. This observation supports the claim that the margin
generator can dynamically regulate the classification margin
based on the classification difficulty.
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Fig. 13: Visualization of learned classification margins and feature distributions of meta set varied with training epochs.
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Fig. 14: The feature distribution of samples in the meta
set, constructed using hierarchical sampling (left) and naive
sampling (right) on CIFAR-10-N-LT with p=10 and A=0.2.

7.3 Behavior of hierarchical sampling.

We examine the efficacy of our hierarchical sampling strat-
egy in enhancing the construction of meta sets. Figure
visually presents the feature distribution of the meta set
generated using our hierarchical sampling method (left)
and the meta set generated using a naive sampling method
(right). The feature distribution of samples selected using hi-
erarchical sampling demonstrates greater dispersion within
distinct clusters compared to naive sampling. This indicates
that the creation of a primary set prior to random sampling
enables a more diverse meta data selection, encompassing
both easy and challenging samples. As a result, this ap-
proach helps to mitigate biased learning on easier samples.

8 ABLATION STUDIES.

Effect of Label Corrector. We construct a model variant
wherein the label corrector component is removed to as-
sess its efficacy. Table (9a| illustrates that the average final
accuracy of this variant decreases by 8.22% compared to the
complete dynamic loss configuration. This notable decrease
in performance provides compelling evidence of the effec-
tiveness of the label corrector.

Effect of Margin Generator. As indicated in Table to
assess the efficacy of the margin generator, we initially

utilize only the label corrector, which yields an average final
accuracy of 71.08%. Subsequently, we incorporate Balanced-
Softmax to address class imbalance, which only results in
a marginal improvement of 1.56% in accuracy. Finally, by
implementing our margin generator, we are able to further
improve the accuracy to 79.73%. These results serve as
evidence supporting the importance of utilizing a dynamic
margin in managing long-tailed noisy data.

Effect of Hierarchical Sampling. Table[Ob|demonstrates that
the substitution of hierarchical sampling with naive random
sampling leads to a reduction of up to 1.20% in average final
accuracy. This observation suggests that the meta set created
using hierarchical sampling possesses a more comparable
distribution to the test set.

Effect of Class-specific Label Corrector. To validate the
class-specific design of our label corrector, we constructed
a class-agnostic variant and evaluated its performance on
CIFAR-10-N, a dataset containing 40% asymmetric noise
with varying noise rates across different classes. Our results
demonstrate that the class-specific label corrector signifi-
cantly outperforms its class-agnostic counterpart by a large
margin of 3.95% in terms of accuracy (94.51% vs. 90.56%),
thus providing clear evidence for the effectiveness of our
class-specific design.

Effect of Explicit Utilizing Given and Predicted labels. To
assess the impact of explicitly utilizing known information,
particularly given labels and predicted labels, we conducted
a comparative analysis between the implicit and explicit
approaches in utilizing such information. The results, as
presented in Table demonstrate that the explicit uti-
lization of known information resulted in a remarkable
22.52% increase in final accuracy and a substantial 6.13%
improvement in best accuracy compared to the implicit
approach. These findings indicate that simplifying the task
of the meta net through the explicit utilization of known
information can significantly enhance the performance of
the classifier. Furthermore, the notable discrepancy between
the final accuracy and the best accuracy underscores the
contribution of explicit utilization of known information in
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TABLE 9: Ablation studies conducted on CIFAR-10-N-LT, considering varying noise rates (0.1-0.5) and imbalance ratios
(10, 100). The average accuracy is reported to evaluate model performance. BS represents Balanced Softmax.

(a) Effect of key components.

(b) Ablations on sampling strategy.

(c) Ablation on utilization of inputs.

Go, G, BS ‘ Last Best Sampling ‘ Last Best Methods ‘ Last Best
X X X 52.73 60.43 Naive 78.53 79.58 Cross Entropy 52.73 60.43
X 4 X 71.51 76.84 Hierarchical 79.73 80.55 Implicit 57.21 74.42
v X X 71.08 77.11 Explicit 79.73 80.55
v X v 72.64 74.96
v v X 79.73 80.55

(d) Ablation on optimization approach.

(e) Ablation on noisy label identifier.

(f) Ablations on meta net architecture.

Go, Go,., ‘ Last Best Loss rank  Uncertainty ‘ Last  Best Architecture ‘ Last Best

- - 5273  60.43 X X 52.73  60.43 Vector 79.50 80.35

Sample-wise Sample-wise | 44.63  74.42 X 4 7291 77.18 3 layer MLPs 79.73 80.55
Sample-wise  Group-wise | 40.76  68.08 4 X 79.73  80.55
Group-wise  Group-wise | 79.73  80.55 v v 80.62 81.23

TABLE 10: Accuracy (%) on CIFAR10-N-LT with varying
imbalance ratio. WRIN-28-10 used as the classifier.

Noise Rate | 0.2 \ 0.4 \
Imbalance Ratio| 10 50 200 | 10 50 200 | A%
Cross Entropy | 78.03 6553 42.06 | 63.04 47.56 29.09 | 54.22
HAR-DRW [8] |88.81 8274 73.98|84.03 7536 63.95|78.15
FSR [59] 8570 77.40 6550 | 81.60 69.80 49.50 | 71.58
INOLML [40] | 90.10 80.10 66.60 | 89.10 78.10 61.60 | 77.60
Dynamic Loss | 92.40 83.56 76.72 [90.46 78.54 66.47 |81.36

facilitating the convergence of the meta net.

Effect of Group-wise Optimization. To validate the ef-
ficacy of the group optimization approach employed in
our method, we conducted experiments comparing it with
sample-wise optimization. The results, presented in Ta-
ble reveal that utilizing a sample-wise approach with
both the label corrector and margin generator hindered
classifier convergence, leading to significantly lower final
accuracy compared to the best achieved accuracy. Similarly,
employing the margin generator in a group-wise manner
alone failed to yield convergence. However, when extending
the group-wise approach to the label corrector, a final accu-
racy of 79.73% was attained. These findings highlight the
significance of optimizing the meta net task, as it enhances
learning efficiency and improves the classifier’s robustness.
Test with MC-Dropout Uncertainty. To further evaluate the
generalizability of our proposed approach, we conducted
an assessment by substituting the loss rank metric with
MC-Dropout uncertainty, renowned for its simplicity and
effectiveness in uncertainty estimation. The results of this
evaluation are presented in Table[9¢] Initially, we exclusively
fed the MC-Dropout uncertainty to the meta net, which
yielded a final accuracy of 72.91% and a best accuracy
of 77.18%. However, this performance was evidently in-
ferior compared to when the loss rank was provided to
the MetaNet. Subsequently, we incorporated both the loss
rank and uncertainty as inputs to the meta net, resulting
in the highest performance. Specifically, this configuration
achieved a final accuracy of 80.62% and a best accuracy of

81.23%. These findings suggest that uncertainty estimation
can serve as a significant supplement to loss rank in the
context of learning with noisy labels.

Effect of Meta Net Architecture. In order to validate the
architecture design of the meta net, we simplified the label
corrector and margin generator by replacing them with a
R-length and C-length learnable vector, respectively. As
shown in Table [0f] this modification resulted in a noticeable
performance drop of 0.23%. Our experimental observation
suggests that this is due to the fact that MLPs are able
to quickly learn appropriate label weights and per-class
margins, whereas the learnable vectors suffer from slow
convergence.

Test on More Classifiers. To demonstrate the broad applica-
bility of our method, we conducted additional evaluations
using the Wide-ResNet-28-10 (WRN-28-10) architecture [60].
Specifically, we set the imbalance ratios to 10, 50, and 200,
and the noise rates to 0.2 and 0.4. The mean accuracy
results are presented in Table |10} Our findings indicate that
our method surpasses the performance of HAR, FSR [59],
and INOLML [40] on both CIFAR-10-N-LT datasets. These
results provide compelling evidence supporting the effec-
tiveness of our dynamic loss across different classifier archi-
tectures.

Training Time Analysis As training time is a critical concern
in meta learning, we evaluated the total training time of
our methods following the approach taken in DivideMix.
Thanks to the use of FaMUS [15] and CurveNet [7] to
accelerate the training speed of meta learning, we were
able to train a model in approximately 7.2 hours using an
NVIDIA GTX 1080 Ti. This is slightly slower than DivideMix
with Nvidia V100 GPU (5.2 hours), but it provides evidence
of the efficiency of our method.

9 CONCLUSIONS

This work introduces a novel dynamic loss for robust learn-
ing from long-tailed data with noisy labels. The dynamic
loss consists of a learnable label corrector and margin gen-
erator, which jointly correct noisy labels and adjust classi-
fication margins to guide classifier learning. The meta net
and classifier are co-optimized through meta-learning using



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

a hierarchical sampling strategy that provides unbiased yet
diverse meta data. Extensive evaluations on both synthetic
and real-world data demonstrate the effectiveness of our dy-
namic loss, which exhibits high adaptability and robustness
to various types of data biases.
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