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Evaluating the Generalization Ability of
Super-Resolution Networks

Yihao Liu, Hengyuan Zhao, Jinjin Gu, Yu Qiao, Senior Member, IEEE, and Chao Dong

Abstract—Performance and generalization ability are two important aspects to evaluate the deep learning models. However, research
on the generalization ability of Super-Resolution (SR) networks is currently absent. Assessing the generalization ability of deep models
not only helps us to understand their intrinsic mechanisms, but also allows us to quantitatively measure their applicability boundaries,
which is important for unrestricted real-world applications. To this end, we make the first attempt to propose a Generalization
Assessment Index for SR networks, namely SRGA. SRGA exploits the statistical characteristics of the internal features of deep
networks to measure the generalization ability. Specially, it is a non-parametric and non-learning metric. To better validate our method,
we collect a patch-based image evaluation set (PIES) that includes both synthetic and real-world images, covering a wide range of
degradations. With SRGA and PIES dataset, we benchmark existing SR models on the generalization ability. This work provides
insights and tools for future research on model generalization in low-level vision.

Index Terms—Model generalization ability, super-resolution networks.

✦

1 INTRODUCTION

D EEP learning has achieved great success in constrained
environment, and we have steadily moved our atten-

tion to its generalization ability. Generalization determines
whether an algorithm can work well on unseen data. How-
ever, due to the data-driven nature, deep learning can easily
overfit the training data, leading to unpredictable general-
ization behavior. In this paper, we address the problem of
generalization in the context of image super-resolution (SR)
and restoration, which are classic low-level vision problems.
Conventional SR models are typically trained under known
degradation types and downsampling kernels, limiting their
performance severely on real-world images [1], [2]. Improv-
ing the generalization ability of SR models is crucial for de-
veloping future methods. Notably, in this work, we extend
the concept of the SR network beyond the classical bicubic
super-resolution task to include simultaneous restoration.
This broader scope allows us to investigate the generaliza-
tion capability of models that perform both restoration and
SR tasks, which are more relevant to real-world scenarios.

The problem of super-resolving images with unknown
degradations is also called blind SR or real SR. According
to a recent blind SR survey [10], existing methods can be
categorized into four classes, including degradation specific
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methods [3], [4], kernel estimation methods [2], [5], unsu-
pervised methods [6], [7], and internal statistical methods
[8], [9]. Remarkably, recent works based on synthetic data
have made significant progress. For example, BSRGAN [4]
and Real-ESRGAN [3] show that when we can synthesize
abundant degradations, the model can be applied in a
wide range of real-world scenarios. This phenomenon is
also observed in blind face restoration task, like GFP-GAN
[11] and GPEN [12]. They all show impressive results on
some real-world images. Recently, Dropout [13], [14] is also
introduced into SR networks to improve the generalization
performance.

However, here comes the problem: how to compare their
generalization performance? We may also wonder: what are
the failure cases? Whether extending the degradation types
is a correct direction? All these require us to objectively
evaluate the generalization ability. Existing works can only
show some visual examples, but do not provide any feasible
evaluation strategies. Without a standard evaluation metric
and dataset, we cannot fairly compare different models,
restricting the progress of their development.

Nevertheless, the evaluation of generalization is by no
means easy! There is no specific assessment for general-
ization ability. In high-level vision tasks, like classification,
they usually use the prediction accuracy on an unseen
dataset or category as the generalization measure [15], [16],
[17], [18], [19]. But in low-level vision tasks, like image
restoration, there are no appropriate strategies. Can we use
image quality assessment (IQA), such as PSNR and NIQE
[20], to take the place of generalization assessment (GA)?
The answer is NO, and there are three main reasons. First,
IQA is designed to evaluate the image quality, yet image
quality is not equal to generalization ability. For example,
traditional interpolation or filtering methods get lower IQA
values than deep models in most cases, but they have a
stable performance (good generalization ability) on all kinds
of data [21]. Generalization should be a relative notion that
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is correlated with the method itself, not only the output.
Second, IQA is highly sensitive to image content, thus will
have different absolute values on different images. While in
image restoration, we need to give a stable measurement
on unseen degradations but not specific datasets. Third, IQA
itself is not perfect. The reference-based IQA, like PSNR and
SSIM, cannot be used in real-world images without ground
truth, while the non-reference IQA, like NIQE and PI [22],
cannot accurately evaluate the image quality. Gu et.al [23]
have proved that existing IQA methods all have low corre-
lation rates with human subjective scores on PIPAL dataset
[24]. The above three issues have stopped IQA from being a
qualified GA. More detailed explanations and experiments
about IQA can be found in Section 6.3.

Additionally, we should note that GA is not proposed to
take the place of IQA. They are two evaluation aspects, and
both have great values. In general, we can first adopt IQAs
to evaluate the model performance. If a model has much
inferior performance than others, it is of little significance to
extraly evaluate its generalization. For models with similar
IQA performance, we can exploit GA to evaluate their
generalization ability. This helps us to comprehensively ap-
praise the models in a multi-dimensional way. Hence, IQA
and GA are different but complementary with each other. They
each describe a different aspect of the model. Nevertheless,
the reasearch on model generalization in low-level vision is
rarely discussed.

To fill in the gap, we make the first attempt to propose
a complete evaluation protocol, including a GA index,
a series of test datasets, and a benchmark, which could
provide a comprehensive evaluation of the generalization
ability. Before presenting our method, we clarify the basic
definitions of generalization in SR task, and provide some
general principles for the new index design. Afterwards, we
introduce the first Generalization Assessment index for SR
task – SRGA. SRGA is based on the statistical characteristics
of internal features of the model, not output images. It is
calculated on the test dataset, but is not sensitive to the
data selection. More interestingly, it is a non-parametric and
non-learning metric, which is guaranteed to have a good
generalization ability itself. Moreover, the proposed SRGA
does not require paired ground-truth images. Therefore, it can
be used to evaluate the model generalization ability on real-world
data, not just on synthetic data. To better validate our method,
we collect a patch-based image evaluation set (PIES) that
includes both synthetic data and real-world images, cov-
ering a wide range of degradations. On this basis, we can
benchmark existing SR models on generalization ability.
The benchmarking results are mostly consistent with our
common sense. For instance, BSRGAN and Real-ESRGAN
have a good generalization performance on most datasets,
and are superior to other blind SR methods. We also have
some surprising discoveries, like SwinIR [25] generalizes
better on heavier noisy degradation, which could provide
further insights on these methods. We hope our SRGA and
datasets can help promote the development of blind SR
methods, as well as other low-level vision problems.

LR Image Space

SR Feature Space
blur

noise

Clean

model A

model B

better Generalization worse

Generalization

Error

Fig. 1. Illustration of measuring the generalization ability in model inter-
nal feature space.

2 PRELIMINARIES

Designing a generalization assessment (GA) method is a
completely new task for low-level vision, thus we need to
reach an agreement on some basic definitions and general
principles. We achieve this goal by answering common
questions, which could lay the foundation of the follow-
up methodology. Actually, if you find this section tedious, it
is also OK to read the Experiments Section first. There you
may raise some questions, and you can find the answers
here.

1. How to define the generalization ability in SR task?
As a commonly-used definition, generalization is the ability
of your model, after being trained to digest new data and
make accurate predictions [26], [27]. There are three key
components – model, data and prediction, which all have
specific meanings in SR task. (1) Model in this paper refers
to the SR network. Generalization should be a property of
the network, NOT output images. (2) Data refers to the input
images with specific degradations. Generalization should
be evaluated on degradations, NOT individual images. (3)
Prediction refers to the processing effect of the output
images. Generalization should measure the consistency of
the processing effects across different input degradations,
NOT absolute quality evaluation values. For example, an
appropriate description would be: if an SR-net trained with
data-A (well-performing domain) can achieve similar pro-
cessing performance on data-B, then SR-net generalizes well
on data-B.

2. How to measure the generalization ability in SR
task? Generally, we use the generalization error to measure
the generalization ability [26], [27]. The generalization error
is easy to define in high-level vision tasks, which can be
calculated by the distance between ground-truth (GT) labels
and the model predictions. However, in low-level vision,
there are no GT images in most cases, and one input image
can correspond to multiple GT images, due to the ill-posed
nature. It is hard to directly measure the restoration accu-
racy. It is acknowledged that deep model could achieve the
best performance on in-distribution data (same distribution
as the training data), but can hardly generalize to out-
distribution data (different distribution from the training
data). Thus, it is reasonable to define the generalization error
in SR as the performance gap between the in-distribution
and out-distribution data. As shown in Figure 1, the in-/out-
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distribution inputs are distributed in two separate image
spaces. After processing, they are expected to lie in the
same space, indicating a better generalization ability. The
gap between these two output spaces is the generalization
error, and GA index is exactly the measurement of such a
generalization error.

3. What are the general principles for GA design? From
the above descriptions, we can summarize four unique char-
acteristics of GA and introduce the corresponding design
principles. (1) GA index should be correlated with both the
model and the test data. Thus, it is better to take advantage
of the model, not only the output image. (2) GA index
should be a relative measure that quantifies the distance
between the reference dataset (e.g., in-distribution data) and
the test dataset (e.g., out-of-distribution data). Therefore,
it is preferred to select an appropriate reference dataset
beforehand. However, in certain situations, identifying a
suitable in-distribution dataset can be a daunting task or
even impossible. In such cases, utilizing a pairwise metric
between all test data may be more suitable for constructing
the GA index. This approach offers a flexible and robust
way of evaluating the generalization relationship across
multiple datasets. (3) GA index in low-level vision should
be sensitive to degradation, but insensitive to image content.
Thus, it is important to disentangle image degradation from
content. (4) GA index should have good generalization
ability itself. Thus, it is preferable to devise a non-learning
(not rely on training data) and non-parametric (not rely on
human settings) metric.

The rest of the paper is organized as follows. In Section
3, we give the formulation of the classic image degrada-
tion model, and discuss the difference between evaluating
model performance and generalization ability. The proposed
SRGA index is presented in Section 4. Then, in Section 5,
we describe the collected PIES dataset. In Section 6, we
demonstrate the effectiveness of the proposed SRGA and
measure the generalization ability of several representative
SR models.

3 FORMULATION

Model Performance. Given a trained SR model G and a set
of test input images SD = {In}Nn=1 with degradation D,
the predicted SR results are obtained by: ISR

n = G(In). To
evaluate the performance of model G, we can quantify the
distance between the predicted output and the ground truth
(GT) image IHR:

Perf(G,SD) =
N∑

n=1

Dist(ISR
n , IHR

n ), (1)

where Dist(·, ·) is a distance or similarity function, such as
L2 error, PSNR, SSIM [28], LPIPS [29] or other image qual-
ity evaluation metrics. The Equ. (1) describes the average
performance of model G on the test set SD. Note that the
model performance is actually affected by image content
and degradation simultaneously. That is, datasets with the
same degradation but different image content will result in
different performance scores.
Generalization Ability. Unlike model performance, gener-
alization ability should characterize the consistency of the

model’s processing effects across different types of input
data, rather than absolute performance values. A model
with good generalization ability should have similar pro-
cessing effects for different types of inputs.

Formally, given two different input sets SD1 and SD2 ,
generalization measures the difference between the process-
ing effects of G on SD1 and SD2 :

Gen(G,SD1
, SD2

) = Dist(F(G,SD1
),F(G,SD2

)), (2)

where F(G,SD) is a function that represents the processing
effct of model G on dataset SD . It should concentrate more
on the image degradation D instead of image content. In
this paper, we explore the intrinsic statistics of deep fea-
tures of SR networks, and propose a statistical method for
evaluating the generalization ability.
Blind Super-resolution. Blind super-resolution aims at re-
covering and super-resovling an input low-resolution (LR)
image with unknown degradation to a high-resolution (HR)
version. Formally, a basic image degradation model is for-
mulated as follows:

ILR = (IHR ⊗ k) ↓s +n, (3)

where IHR is the HR image, ILR is the degraded LR image,
⊗ denotes the convolution operation. There are mainly
three types of degradation in this model, i.e., blur kernel
k, additive noise n and the downsampling operation ↓s. For
blind SR setting, the degradation information is unavailable
during the training process. Generally, most current meth-
ods follow this degradation model or its variants [2], [3], [5].
In this paper, we also follow the basic degradation formu-
lation as Equ. (3) to make the PIES dataset and validate the
proposed generalization index.

4 STATISTICAL MODELING OF DEEP SR NET-
WORKS

4.1 Overview of the Proposed SRGA
The overview of the proposed generalization ability metric
SRGA is depicted in Figure 2. SRGA is built upon the
statistical modeling of deep features of SR networks. It is
a relative measurement that computes the distance of the
feature distributions between the reference dataset and the
candidate test dataset. The reference dataset used in SRGA
is typically the one on which the model performs well, and
is usually within the training distribution. We first obtain
the corresponding deep features of the input datasets. These
features are then compressed using principal component
analysis (PCA), and the resulting projected feature sets are
modeled using a generalized Gaussian distribution. Finally,
the generalization error is measured by the Kullback-Leibler
divergence (KLD) between the two probability distributions,
leading to the proposed generalization index SRGA.

When a model performs well on a specific dataset, we
can use it as a reference and compare the distance between
other candidate datasets and the reference dataset using
SRGA. However, if an appropriate reference dataset cannot
be identified, we can treat all candidate datasets equally and
calculate the SRGA score between each pair to obtain a gen-
eralization matrix. By using SRGA in this way, we can assess
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Fig. 2. Schematic pipeline for calculating the proposed generalization index SRGA with unpaired reference dataset.

a model’s generalization performance beyond its training
set and make informed decisions about its suitability for
real-world applications. In the following, we will elaborate
on the details of the adopted statistical methodology.

4.2 Revisit Natural Image Statistics
For decades, lots of efforts have been made to explore
the statistics of natural images [30], [31], [32], [33]. For
example, Mallat [34] discovered that coefficients of multi-
scale and orthonormal wavelet decompositions of images
could be described by the generalized Gaussian model.
Moulin and Liu [35] analyzed the multi-resolution (wavelet)
image denoising schemes using generalized Gaussian and
complexity priors. Among these works, Mittal et al. [36]
discovered that the image mean subtracted contrast nor-
malized (MSCN) coefficients in the spatial domain have
characteristic statistical properties that are strongly corre-
lated to the image distortion. They adopted the generalized
Gaussian distribution to model the MSCN coefficients, and
successfully proposed the widely-used no-reference image
quality assessment (NR-IQA) BRISQUE [36] and NIQE [20].
A recent work [21] further discovered the deep degradation
representations (DDR) hidden in the SR networks: the deep
features of SR networks are spontaneously discriminative to
image degradations rather than image contents.

Inspired by these works, we present a new perspective
for studying the generalization ability of deep models.
Specifically, we explore the statistics of deep features of
SR networks and build a statistical model to quantitatively
measure the generalization ability.

4.3 Statistics of Deep Features of SR Networks
Given a set of N input images {In}Nn=1 with degradation
D, for arbitrary super-resolution model G, we can obtain
its corresponding deep features {Fn} = {GF (In)}, where
Fn ∈ RH×W×C , H , W and C are the height, width and
depth, respectively. GF denotes the model containing all the
layers before the last output layer, i.e., Fn is the extracted
deepest feature map before the output layer.

Firstly, we apply PCA [37] to reduce the dimen-
sion of vec(Fn)

1 from HWC to D, to alleviate the
calculation cost and compress information.2 Specifically,
Y = [vec(F1); vec(F2); ...; vec(FN)] ∈ RN×HWC . The PCA
method will find a projection matrix P ∈ RHWC×D , result-
ing in X = Y P,X ∈ RN×D. Denote set(X) = {X(j, k)|j ∈
{1, 2, ...,N}, k ∈ {1, 2, ...,D}}. The cardinal of set(X) is

1. Flatten the spatial feature map into a one-dimensional vector.
2. In our experiments, D is set to 300. Other reasonable values (>

300) also work fine.

N × D. Our finding is that the elements x ∈ set(X) have
the statistical properties that are determined by the model
G and the degradation type D. Formally, x obeys probability
distribution pG,D: x ∼ pG,D(x).

Notbly, for all the SR models, we extract the output
features of the penultimate layer to calculate the SRGA
index. A simplified illustration is depicted in Figure 4.
This deepest layer contains all the processed information
to produce the final results. There is no more processing
layer afterwards. Thus, it is reasonable to use this layer to
compute SRGA. To make an analogy, IQA adopts the three-
channel output images to measure the model performance
(image quality), while we utilize the penultimate multi-
channel output feature maps to evaluate the generalization
ability of deep models. Another reason is that different
models have different architectures, it is convenient and
universal to adopt the last layer.

In order to visualize how the distributions pG,D vary as
a function of the model G and input degradation D, Figure
3 plots the histograms of x ∈ set(X) with different G and D
on PIES dataset (described in Section 5). From the statistical
results, we can draw two important observations: 1) For a
given model G, different input degradation types D1 and
D2 will lead to different probability distributions pG,D1

and pG,D2 . By quantifying the distance between these two
resulting probability distributions, it is possible to measure
the difference in the processing effect on different input dis-
tributions. 2) For degradation type D, different model G will
produce different distributions, implying that each model
has created its own feature manifold, which determines the
generalization ability.

4.4 Generalized Gaussian Distribution
To model and analyze the statistics of the deep features of
SR networks, we explore to fit the empirical distributions
pG,D with an appropriate statistical distribution. The Gener-
alized Gaussian Distribution (GGD) is widely used for many
relevant tasks, since its form is general and covers many
common distributions like Gaussian distributions, Laplace
distributions and uniform distributions. More importantly,
extensive practice has demonstrated that GGD can fit nat-
ural image statistics, and the deep features extracted by
SR networks inherit such properties. We discover that the
statistical properties of deep features are changed by the
presence of distortion. Thus, quantifying these changes can
make it possible to measure the processing effect of the
model on different input degradations. The GGD with zero
mean is formulated as:

GGD(x;α, σ2) =
α

2βΓ(1/α)
exp

(
−
( |x|

β

)α)
, (4)
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(b) SRResNet (train: blur0-4)(a) SRResNet (train: clean) (c) DAN (d) BSRGAN

Clean 2.718 0.687

Blur2 2.333 0.596

Blur5 2.007 0.466

Clean 2.866 0.691

Blur2 2.795 0.683

Blur5 2.299 0.526

Clean 4.278 0.668

Blur2 3.849 0.690

Blur5 2.465 0.529

Clean 8.921 0.762

Blur2 8.531 0.749

Blur5 7.695 0.701

Fig. 3. Statistics of deep features of SR networks. Different distributions will lead to different parameters. The distribution differences within the
training data (well generalized region) are usually small, while the distribution outside the training data deviates significantly. This potentially reveals
the difference of the processing effects for various degradations. By measuring the distribution differences, we can approximately evaluate the
generalization ability.

Internal Building Blocks

……

Fig. 4. Simplified architecture for arbitrary SR networks. We extract the
deepest features (pointed by the arrow) to calculate the SRGA index.

where

β = σ

√
Γ(1/α)

Γ(3/α)
, (5)

and Γ(.) is the gamma function:

Γ(z) =

∫ ∞

0
tz−1e−t dt (z > 0). (6)

There are two parameters α and σ in GGD. The pa-
rameter α controls the “shape” of the distribution. α = 1
and α = 2 yield the Laplacian and the Gaussian density
function, respectively. Smaller values of the shape parameter
lead to more peaked distributions. Another parameter σ
controls the variance. Intuitively, the natural image contents
are presented by the distribution, while the degradation
changes the distribution parameters.

We try to match the empirical histograms of the feature
sample values x ∈ X with the best possible GGD pdf.
Specifically, we adopt the moment-matching based method
proposed in [38] to estimate the parameters α and σ of GGD.
Table 22 summarizes the statistics of several representative
models with different input degraded images. The complete
results are in the supplementary materials.

TABLE 1
The estimated GGD parameters of representative methods with

different degraded input.

Methods Clean Blur1 Blur2 Blur4
SRResNet

(train: clean)
σ 2.718 2.532 2.333 2.083
α 0.687 0.661 0.596 0.494

SRResNet
(train: blur0-4)

σ 2.866 2.783 2.795 2.465
α 0.691 0.682 0.683 0.591

SwinIR-GAN σ 5.178 5.140 5.069 4.929
α 0.740 0.742 0.742 0.733

4.5 Measuring Model Generalization Ability
In the previous sections, we have revealed that different
input degradation types will lead to different feature dis-
tributions. Ideally, if model G is robust enough and has
perfect generalization ability, the outputs of different inputs
should be of the same distribution or very close to each
other. Hence, by quantifying the distance between these
two probability distributions, we can measure the difference
of processing effects between different input distributions,
which reflects the model generalization performance.

In practice, given two sets of input images with different
degradation types {In}D1 and {In}D2 , we first obtain their
corresponding deep feature sets set(XD1) and set(XD2).
Then, we adopt GGD to fit the datapoints to model the
feature statistics: pG,D1(x) = GGD(x;α1, σ

2
1), pG,D2(x) =

GGD(x;α2, σ
2
2). Once the distribution parameters have

been estimated with the deep features, we can capture
the distribution change by calculating the Kullback-Leibler
divergence (KLD) between distributions. Fortunately, the
KLD of two zero-mean Generalized Gaussian Distribution
GGD(x;α1, σ

2
1) and GGD(x;α2, σ

2
2) has the closed-form

solution [40]:

Dkl = ln
α1σ2Γ(1/α2)

√
Γ(1/α2)Γ(3/α1)

α2σ1Γ(1/α1)
√
Γ(1/α1)Γ(3/α2)

+

(
σ1

√
Γ(1/α1)Γ(3/α2)

σ2

√
Γ(1/α2)Γ(3/α1)

)α2

Γ(α2/α1 + 1/α1)

Γ(1/α1)
.

(7)

Now, we have an analytical approach to quantitatively
measure the difference in the output feature distributions
caused by different input images. Specifically, to evaluate
the generalization ability of model G, a reference dataset
SDref

could be selected (i.e., known in-distribution data that
the model can perform well), then we compute the feature
distribution distance (FDD) between the reference dataset
SDref

and the test dataset SDtest
:

FDD = Dkl(P (G,SDref
), P (G,SDtest

)), (8)

SRGA = log10(FDD + 10−δ) + δ, (9)

where P (G,SD) represents the generalized Gaussian dis-
tribution fitted by the deep features of model G with the
input dataset SD . Smaller FDD means that G has similar
processing effects on these two different input degradations.
δ is introduced to avoid zero point in logarithmic function



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 2
Description of Patch-based Image Evaluation Dataset (PIES). It includes both synthetic and real-world images with fine-grained degradation types.

Datasets Has Ref? Syn/Real? Description

PIES-Clean ✓ Syn Image patches collected from DIV2K-valid100, BSDS100, Urban100 and General100 datasets.
The corresponding LR patches are downsampled using matlab bicubic function.

PIES-Blur ✓ Syn Additionally apply Gaussian blur on PIES-Clean dataset. The blur kernel width is sampled in
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0} (16 subsets in total).

PIES-AnisoBlur ✓ Syn Additionally apply anisotropic Gaussian blur on PIES-Clean dataset.
The kernel size is 21, the kernel width is uniformly sampled in [0.6, 5] and the rotation is uniformly sampled in [0, π].

PIES-Noise ✓ Syn Add Gaussian noise on PIES-Clean dataset.
The noise level is sampled in {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} (10 subsets in total).

PIES-BlurNoise ✓ Syn Apply both Gaussian blur and Gaussian noise.
The blur kernel width is sampled in {1, 2, 4, 6}, and the noise level is sampled in {10, 20, 30} (12 subsets in total).

PIES-RealCam ✓ Real Image patches selected from RealSR dataset [39]. RealSR dataset consists of LR-HR image pairs obtained by
adjusting the lens of two digital single lens reflex (DSLR) cameras (Nikon D810 and Cannon 5D3).

PIES-RealLQ × Real Image patches collected from the Internet, containing real-world images of various distortion types and degrees.

and the min value is shifted to 0 by adding δ (we set δ = 5).
The proposed SRGA is a plausible representation of Dist
and F in Equ. (2).

In addition, if there are N test datasets {Si
Dtest

}, we can
calculate the mean value of the SRGA:

mSRGA =
1

N

N∑
i

SRGA(P (G,SDref
), P (G,Si

Dtest
)).

(10)
Notably, mSRGA describes the averaged generalization

ability across multiple degradation datasets. It is actually
averaging different degradations not the contents of the
datasets. For the same degradation but different contents,
SRGA is not sensitive; for different degradations, mSRGA
can give a mean value. It is worth noting that such a
measurement method does not require any paired ground
truth (GT) image or even the final output image. Further,
even if the contents of the two sets of input images are
completely different, we can still measure the difference
between them. Because the probability distribution is de-
rived from the statistics of the network deep features and
is almost irrelevant to specific image content (see Section
6.3). In summary, SRGA satisfies all four properties for GA
design in Section 2. SRGA is correlated with both the model
itself and the test data. It is a relative indicator that measures
the difference of processing effects. It is not sensitive to
specific image content but the degradation. Also, SRGA is a
statistical approach without relying on learning process.

Generalization Matrix. Identifying a reference dataset
that accurately reflects a model’s performance can be a
tricky task. Fortunately, the use of SRGA offers a solution to
this challenge by enabling us to evaluate a model’s general-
ization ability without relying on a specific reference dataset.
By calculating the SRGA score between candidate datasets,
we can obtain an SRGA matrix that effectively illustrates the
processing effects of the model on different datasets. This
approach allows us to compare the generalization abilities
of different datasets by examining their SRGA distances.
Datasets with similar SRGA distances demonstrate simi-
lar generalization abilities, and the model is expected to
perform consistently on such datasets. By leveraging the
SRGA matrix, we can evaluate a model’s performance in a
more comprehensive manner and make informed decisions
when selecting the most suitable model for a specific task.

Therefore, SRGA is a valuable tool for assessing a model’s
generalization ability and can aid in selecting the best model
for a given task.

5 PATCH-BASED IMAGE EVALUATION SET

For SR task, classical test datasets include Set5 [41], Set14
[42], BSD100 [43], Urban100 [44] and DIV2K-valid100 [45].
Most methods evaluate their performance on these public
datasets. However, these datasets are mainly designed for
evaluating the absolute model performance. As illustrated
in Figure 13, these datasets have severe bias on image
contents, which cannot well reflect the model generalization
on degradations. Further, these datasets do not provide
sufficient fine-grained and continuous degradation types,
making it difficult to precisely evaluate the generalization
performance. Moreover, test images with large resolution
require tremendous computational cost and storage to esti-
mate the feature distributions. Therefore, we propose a new
fine-grained Patch-based Image Evaluation Set (PIES). It
contains a variety of test images with different degradation
types and degrees, including both synthetic and real-world
degradations. PIES dataset has the following characteristics:
i) Patch-based. Instead of evaluating a whole image with
large resolution, we focus on image patches with relatively
small resolution (128 × 128 for HR and 32 × 32 for LR, i.e.
×4 SR). The degradation type and degree in one patch can
be considered homogeneous and spatially invariant, which
can facilitate analysis. ii) Fine-grained degradation types.
PIES dataset contains different types of common degra-
dation and covers a wide range of degradation degrees.
The descriptions for PIES are summarized in Table 2. Each
subset contains 800 patches. With PIES dataset, we can both
evaluate the model performance and generalization ability
on a unified platform.

Notably, researchers can also define their own test
dataset and reference dataset according to the practical
needs. The proposed SRGA index is not restricted to
specific datasets and does not require paired GT images.
Thus, it can be applied in real-world images.

6 EXPERIMENTS

In this paper, we select representative SR methods to
benchmark their generalization ability with PIES dataset,
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Fig. 5. The PSNR curves (a)&(d), SRGA curves (b)&(e) and NIQE curves (c)&(f) of different models on blur and noise degradations, respectively.
SRGA successfully quantifies the model generalization ability. Further, it can reflect more precise information about the model generalization ability.
The detailed quantitative values are listed in the supplementary file.

including SRResNet [1], IKC [2], DAN [5], DASR [46],
Real-ESRGAN [3], BSRGAN [4] and SwinIR [25]. We train
SRResNet with different training data as baselines. For
other methods, we directly adopt their released pre-trained
models. IKC, DAN and DASR methods mainly focus on
blur degradation, thus their released model cannot deal
with noisy images. Real-ESRGAN, BSRGAN and SwinIR-
GAN (GAN version of SwinIR) are trained with multiple
synthetic complex degraded data. We conduct experiments
on ×4 SR. Since the blind SR methods are supposed to
perform well on clean input images, we select PIES-Clean
dataset as the reference dataset, and then calculate the SRGA
index between the reference and other test datasets. Note
again that SRGA is not limited to synthetic datasets, but
is applicable to real-world datasets. A smaller SRGA value
suggests that the model can well generalize to the test
dataset.3

In this section, we first conduct validation experiments
to verify the correctness of the proposed SRGA index, and
benchmark the generalization ability of existing models.
Then, we compare SRGA with IQA as generalization ability
measurements. Due to the space limit, the complete quanti-
tative and qualitative results are included in the supplemen-
tary file.

6.1 Sanity Check for SRGA

As there is no ground truth or human label for general-
ization ability, it is hard to evaluate the effectiveness of GA
index directly. Nevertheless, we can construct some cases for
sanity check. Case 1: The baseline model SRResNet trained

3. Note that model like SRResNet (train: blur2) performs well on
blur2 images, thus, the reference dataset should be selected as PIES-
Blur2 instead of PIES-Clean.

only with clean LR data is supposed to have poor general-
ization ability to handle blur images. The PSNR value of this
model reaches the highest on the clean input data, and then
decreases rapidly as the blur degree increases (Figure 5(a)).
After involving blur LR data into training, SRResNet (train:
blur0-4) is eligible to restore blur images: the PSNR value
decreases slowly especially in the range of blur level [0, 3]. In
Figure 5(b), we observe that the SRGA curves have the same
trend with the PSNR curves in such cases. For example, the
SRGA curve of SRResNet (train: clean) is steadily increasing,
while the SRGA curve of SRResNet (train: blur0-4) grows
slower and its values are all lower than that of SRResNet
(train: clean). Especially in blur range [0, 3], the SRGA values
of SRResNet (train: blur0-4) only change a little within a
small range. The SRGA curves successfully depict the model
generalization ability in a quantitative manner. Similar re-
sults are also observed in baseline model SRResNet (train:
clean) and SRResNet (train: noise0-20) (see Figure 5(d)&(e)).
Case 2: In another extreme case, we train a SRResNet model
with only blur2 data. The SRGA curve can also successfully
reflect the trend of generalization. Case 3: SRResNet (train:
clean) and SRResNet (train: noise0-20) have similar poor
generalization trend on blur degradation; but SRResNet
(train: noise0-20) has better generalization than SRResNet
(train: clean) on noise degradation (see Table 3). The SRGA
results are consistent with our common sense. In principal,
SRGA is theoretically and experimentally sound. It provides
us with a tool to quantitatively measure the generalization,
which is more reliable than intuitive judgment.

6.2 Evaluating the Model Generalization Ability

Model generalization ability measures the difference of
processing effects on different types of input data. In the
following, we analyze the model generalization results on
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Fig. 6. The SRGA matrices on blur degradation of (a) SRResNet (train: clean), (b) SRResNet (train: blur0-4), (c) DAN, (d) DASR, (e) SwinIR-PSNR,
(f) SwinIR-GAN.

TABLE 3
Average results (mSRGA) of generalization ability of representative SR networks. The null value indicates that the method cannot handle this type
of degradation. The reference dataset is excluded when calculating the average. PIES-Blur, PIES-Noise and PIES-BlurNoise each contain multiple

subdatasets. Since models may perform inconsistently on different degrees of degraded data, the average value may not reflect the actual
situation. We recommend to refer to the detailed results in the supplementary file. (0 ∼ 2: well generalized; 2 ∼ 3: mediocre; > 3: poor)

Methods PIES-Blur PIES-AnisoBlur PIES-Noise PIES-BlurNoise PIES-RealCam PIES-RealLQ
SRResNet (train: clean) 3.639 (13) 3.615 (13) 3.727 (9) 3.454 (10) 3.563 (11) 3.825 (8)

SRResNet (train: blur0-4) 2.967 (7) 2.880 (8) - 3.366 (9) 3.125 (6) 3.811 (6)

SRResNet (train: noise0-20) 3.623 (12) 3.605 (12) 2.325 (8) 3.167 (8) 3.547 (10) 3.827 (9)

SRResNet (train: blur0-4&noise0-20) 2.978 (8) 2.820 (7) 1.574 (2) 2.901 (6) 2.566 (1) 3.736 (3)

IKC 3.416 (10) 3.375 (11) - - 3.432 (9) 3.845 (10)

DAN 3.534 (11) 3.310 (10) - - 3.937 (13) 4.070 (12)

DASR 3.248 (9) 3.157 (9) - - 3.770 (12) 4.033 (11)

Real-ESRGAN 2.480 (4) 2.500 (6) 1.791 (4) 2.692 (3) 3.301 (7) 3.823 (7)

Real-ESRNet 2.336 (3) 2.456 (5) 1.566 (1) 2.900 (5) 2.787 (3) 3.770 (4)

BSRGAN 2.592 (5) 2.397 (4) 1.946 (5) 2.850 (4) 2.872 (5) 3.796 (5)

BSRNet 2.598 (6) 2.339 (3) 2.254 (7) 2.964 (7) 2.686 (2) 4.345 (13)

SwinIR-GAN 1.639 (1) 1.852 (2) 1.996 (6) 2.435 (2) 3.379 (8) 3.662 (2)

SwinIR-PSNR 1.668 (2) 1.727 (1) 1.685 (3) 2.297 (1) 2.826 (4) 3.655 (1)

blur, noise and real-world degraded input data. Note that
the generalization ability is not equal to the output image
quality. The benchmarking results are summarized in Table
3. The detailed quantitative results are described in the
supplementary file.

Blur degradation. Figure 5(b) summarizes the distances
of the resulting feature distributions between clean LR input
dataset and degraded input datasets with various isotropic
Gaussian blur levels. Smaller value means the model can
well generalize to the test dataset. Larger SRGA values
imply the model processes the input degradation more
differently than the chosen reference dataset. As can be seen,

the distances of SRResNet (train: blur0-4) are continuously
smaller than SRResNet (train: clean), which is intuitive
and reasonable. The results can successfully describe the
model performance change in a quantitative and analytical
manner. Interestingly, for mild blur degradation (blur [0, 3]),
DAN [5] has better model performance and generalization
ability than SRResNet (train: blur0-2) and IKC. However,
when the blur level becomes larger, its performance (PSNR,
SSIM) and generalization (SRGA) deteriorate dramatically,
indicating that DAN can only well generalized within mild
degradation region. The proposed SRGA metric successfully
describes such phenomenon. Another important observa-
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Fig. 7. Visual results of different models on PIES-Blur dataset.
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Fig. 8. Visual results of different models on PIES-Noise dataset. Note that PSNR and NIQE evaluate the individual image quality, while SRGA
measures the model generalization (the consistency of processing effect) across different degraded datasets.

tion is that methods like Real-ESRGAN [3], BSRGAN [4]
and SwinIR [25] have relatively more stable and better
generalization ability, especially for severe degraded data.
Particularly, when the blur level is larger than 5, SRResNet,
IKC [2], DAN [5] and DASR [46] all fail to reconstruct the
sharp images, while Real-ESRGAN, BSRGAN and SwinIR-
GAN can still generate realistic images with sharp textures
(see Figure 18). It shows the superiority of such newly-
proposed methods. This suggests that models trained with
more degradations are likely to have better generalization
despite that the absolute performance could deteriorate. For
anisotropic blur degradation, as shown in Table 3, SRGA
can also successfully embody the generalization ability of
different models. Methods like BSRGAN, Real-ESRGAN
and SwinIR still have good generalization on anisotropic
blur degradation.

Pairwise SRGA Matrix for Blur Degradation. One of
the key advantages of SRGA is its ability to eliminate the
need for ground-truth images, making it a practical tool
for real-world scenarios where ground-truth datasets are
unavailable. This allows all candidate test datasets to be
treated equally. Concretely, we can compute the SRGA score
for each pair of datasets and obtain an SRGA matrix that
provides a comprehensive view of a model’s generalization
ability. The resulting SRGA matrix provides a valuable
tool for comparing and selecting models across a range of
datasets, facilitating the identification of models with the
best overall performance. Figure 6 presents the detailed

SRGA matrices of different models under fine-grained blur
levels. From Figure 6(a), we can observe that, except for
the diagonal elements, the SRGA values at other positions
are considerably high, indicating that the model’s perfor-
mance in handling different degraded data significantly
varies. This observation is consistent with our intuition and
analysis that models trained only on clean data struggle
with degraded data, leading to low generalization ability.
Comparing Figure 6(a) and Figure 6(b), when adding blur
data into training, the SRGA scores in low-level blur regions
are relatively low, indicating that the model has similar pro-
cessing effects on these datasets. The SRGA matrix provides
a useful tool for describing the generalization distribution
over different degradation data.

Noise degradation. As show in Figure 5(e), as the input
noise level increases, the feature distributions become more
divergent from that of the input clean data. When the
noise level exceeds the range that the model can handle
(denoise), the SRGA values increase dramatically. When
noise level is extremely severe (e.g., noise level is larger
than 30), most methods are unable to produce visually
pleasing images. The results of SRResNet contains many
noise residues and artifacts. The results of Real-ESRGAN
(Real-ESRNet) are over-smoothed. The results of BSRGAN
(BSRNet) are unsatisfactory with severe color distortion and
artifacts. It is noteworthy that SwinIR-GAN shows peculiar
characteristics when the noise level is large. The distance
of the feature distributions between the clean input and
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Fig. 9. Visual results of different models on PIES-RealCam dataset.
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Fig. 10. Visual results of different models on PIES-RealLQ dataset.
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severe noise input becomes smaller. The visual results of
SwinIR-GAN can give a reasonable explanation and can
well embody the superiority of the proposed distribution-
based GA metric (see Figure 8). SwinIR-GAN can produce
relatively realistic output images by generating sharpened
textures. Although the generated images are not consistent
with the ground truth image, they look realistic with few
noise residue and artifacts. SwinIR-GAN seems to treat
the severe noisy input as a kind of texture and generate
more textured details according to the noise distribution.
This demonstrates SwinIR’s powerful learning and gener-
ation capabilities. However, if we use the IQAs (especially
reference-based IQA) to deduce the model generalization
ability, such important phenomenon and observation cannot
be perceived (see navy blur curves in Figure 5(d)&(e)). More
discussions are in Section 6.3. SRGA successfully helps us
discover such an interesting fact. Specifically, the PSNR
values continuously decrease when the noise level become
larger, since it measures the pixel-wise distance between
the SR results and the GT images. However, SRGA can
help us find that the processing effect of SwinIR-GAN on
severe noisy images is not continuously deteriorating. For
severe noisy images, SwinIR-GAN can still produce visually
plausible realistic results.

Real-world degradation. Another advantage of the pro-
posed SRGA is that it does not require any paired refer-
ence images as ground-truth (GT). Thus, it can be applied
to evaluate the model generalization ability on real-world
images. As shown in Table 3, SwinIR [25], BSRGAN [4]
and Real-ESRGAN [3] generalize well on PIES-RealCam
dataset. PIES-RealCam dataset is collected from [47], which
captures paired images by zooming the cameral focal lenth.
The LR images mainly contain modest blur and noise
degradations. Hence, it is reasonable that SRResNet (train:
blur0-4&noise0-20) has good generalization performance on
this dataset as well. This suggests that models trained with
synthetic blur and noise data are able to generalize to LR
images simply caused by camera focal length. The visual
results of PIES-RealCam dataset are shown in Figure 23.
For PIES-RealLQ dataset, the LR images are colleted from
the Internet, which contain various degradations including
blur, noise, compression, physical damage, etc. The degree
of degradation also ranges from mild to severe. As can be
seen, IKC [2], DAN [5] and DASR [46] have quite different
processing effects on this dataset, compared with the chosen
reference PIES-Clean dataset. This implies that although
these models have good performance on clean LR inputs,
they do not generalize well on the collected real-world
images. On the contrary, Real-ESRGAN [3] and SwinIR [25]
have a relatively good generalization ability on this dataset.
This again suggests that exploiting abundant synthetic data
into training is helpful for covering more realistic cases,
especially for large models. The visual results of PIES-
RealLQ dataset are shown in Figure 24.

Note again, the generalization does not equal to model
performance. It just measures the difference in the process-
ing effect of the model on different inputs. To fully evaluate
the merits of a model, we need to assess it comprehensively,
including model performance, generalization ability, num-
ber of parameters, computational cost, etc. SRGA only gives
a new perspective for evaluating the generalization ability.
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Fig. 11. As the number of patches increases, the estimated distribution
parameters gradually converge.

6.3 Comparing SRGA with IQA

Notably, GA and IQA are conceptually different. They are
two different but complementary facets of evaluating the model.
We are not proposing GA to supplant IQA. Previously, however,
since there is not any viable metric for evaluating the model
generalization, people tend to utilize IQA to measure the
performance and to deduce the generalization. Notwith-
standing, there are several limitations of IQA for measuring
model generalization ability. In the following, we illustrate
the advantages of SRGA and limitations of IQA in five
aspects.
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Fig. 12. Limitation of IQAs for measuring generalization ability. If the
image contents are not aligned across degradations, PSNR values will
fluctuate since it is heavily sensitive with the image contents while SRGA
curves are more stable, focusing more on degradations.“PIES-REDS
Interspersed” means that the data in each blur level are interspersed by
PIES and REDS.

SRGA vs. PSNR in sensitivity of image content. IQA is
highly sensitive to image content, thus will have different
values on different images. Different datasets will have
different absolute IQA values, even though they share the
same degradation. While in image restoration, we need to
give a stable measurement on unseen degradations but not
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Fig. 13. IQA is highly sensitive to image content. Different datasets will have different absolute IQA values, even though they share the same
degradation. For example, under the same degradation conditions, the average PSNR value of Urban100 dataset is consistently lower than Set14
and BSDS100 datasets. More counterintuitively, the PSNR value of Urban100 with blur level 2 is even worse than those of Set14 and BSDS100 with
blur level 4 (marked with red dashed lines and arrows). If we use IQA to indicate the model generalization ability, we may come to a conclusion that
the model has better generalization ability on the degradation of blur level 4 rather than blur level 2. However, the visual results do not support such
a claim. For image restoration task, the model generalization ability should focus more on the input degradations rather than the specific contents.
Concretely, for different datasets containing the same degradation type, the generalization ability of the model should be the same, i.e., models
should have the same generalization on Urban100 with blur level 2 and BSDS100 with blur level 2. IQA fails to satisfy such a property thus is not
appropriate for evaluating the model generalization ability.

specific datasets. For different datasets containing the same
degradation type, the generalization ability of the model
should be the same. An illustration is depicted in Figure
12 and 13. The proposed SRGA metric stems from the
statistical characteristics of deep features of SR model: for a
given model, different input degradation types will lead to
different feature probability distributions, and such distribu-
tions are less sensitive to the image content but have higher
response to image degradation, as illustrated in Section 4.3.
Similar property is also observed in previous literatures [20],
[21], [36], [48]. We further validate this property. We select
different numbers of image patches from PIES-Blur dataset
to fit the corresponding distribution parameters (σ and α)
using SRResNet(train:clean) model. Thus, the contents of
the selected image sets with different numbers of patches
are inconsistent. The patches are randomly selected and
each setting is repeated three times. As shown in Figure 11,
with the increase of patch number, the estimated parameters
gradually converge. Moreover, we select different datasets
at different blur levels, so that the contents of the images
are not aligned. For example, the data for clean, blur1, and
blur2 are from the PIES dataset, and the data for blur0.5,
blur1.5, and blur2.5 are from the REDS [49] dataset. Figure
12 plots the corresponding PSNR and SRGA curves. The
PSNR values are largely affected by the image content,
leading to a fluctuating PSNR curve (not monotonic). But
the SRGA curve can still depict the generalization trend of
the model, despite of the fact that we use different datasets
for calculation.4

SRGA vs. PSNR in luminance jitter. Another advan-
tageous property of SRGA is that it is more robust to
image luminance jitter, which is a common photographic
disturbance in real camera imaging. To validate the ro-
bustness of SRGA, we manually shift the luminance of the
test PIES-Blur images and maintain the original luminance
of the reference PIES-Clean dataset. As revealed in Figure

4. In this experiment, PIES-Clean is selected as the reference dataset.

14, when the global luminance jitter is within [−10,+20],
SRGA is basically unaffected and maintains good stability.
However, PSNR is sensitive to such a disturbance, since
it measures the absolute distance between paired pixels.
This shows the great superiority of SRGA over IQA. SRGA
can deal with such disturbances since the PCA operation
has substracted the mean of the features beforehand. If
the brightness changes too much, SRGA will also change,
because the input distribution has altered a lot. This is
equivalent to adding a new degradation to the input image,
which is out of the scope of this discussion.

SRGA vs. NR-IQA in performance stability. For no-
reference IQA, like NIQE, it is widely acknowledged that it
is unstable and less accurate [4], [23]. As shown in Figure
5(c), the NIQE curves of SRResNet (train: blur0-4) and
SRResNet (train: blur0-4&noise0-20) on PIES-Blur dataset
are counterintuitive and abnormal. The NIQE value reaches
the maximum at Blur4 data, and then drops suddenly. To
better illustrate the abnormal behavior of NIQE, we show
some visual results of SRResNet (train: blur0-4) in Figure
15. The visual examples reveal that the NIQE values cannot
always reflect the actual image quality. In the second row,
the NIQE value of Blur3.5 data is even higher than that of
Blur4.0 and Blur4.5. However, the image quality of Blur3.5 is
clearly better than Blur4.0 and Blur4.5 with sharper textures.
Similar phenomena are observed in the third and fourth
rows. This problem occurs not only in a few images, but
also in a large amount of images, especially for images with
blur level around 4.0. In addition, as shown in Figure 5(f),
NIQE values also fluctuate greatly on PIES-Noise dataset,
compared with PSNR. In Figure 8, the results of SwinIR-
GAN on Noise> 20 look visually similar, but their NIQE
values differ a lot. This can be attributed to the fact that
NIQE is simply determined by limited handcrafted features.
Besides NIQE, Gu et al. [23], [24] have demonstrated that
other existing NR-IQAs are also far from satisfactory. Inac-
curacy and instability make NR-IQA unsuitable as a good
GA.
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Fig. 14. When the global brightness between the test and reference images is not aligned (luminance jitter), SR models may still produce good SR
results, but IQA will be severely affected, especially for the most commonly-used PSNR. Nevertheless, SRGA is more robust to such disturbances.
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Fig. 15. When there is no corresponding ground-truth image, FR-IQAs
like PSNR, SSIM and LPIPS are unavailable. Existing commonly-used
NR-IQA like NIQE is instable and less accurate. We evaluate the results
of SRResNet (train:blur0-4) on PIES-Blur dataset. The NIQE values
cannot reflect the actual visual quality. For example, in the second row,
the NIQE value of Blur3.5 data is even higher than that of Blur4.0 and
Blur4.5. In the fourth row, the visual quality of Clean data is obvious
better than others. However, the NIQE value of Clean data is worse
than that of Blur4.5 data. Note that Lower NIQE values indicate better
performance. The NIQE results often do not match subjective image
quality evaluations. This reveals that NR-IQA is much less accurate
in evaluating the model performance, let alone deducing the model
generalization ability.

SRGA vs. IQA in real data without GT. Full-reference
IQA, like PSNR, SSIM and LPIPS, requires paired ground-
truth (GT) images, which are impractical in real scenarios.
No-reference IQA is inaccurate and instable as mentioned
before. However, SRGA does not rely on paired reference
images, since it considers the distance between statistical
feature distributions. As shown in Table 3, SRGA can be
successfully applied on real-world datasets.

Failure cases of IQA. IQA cannot precisely reflect the
model generalization. For example, when the noise level
is extremely severe (e.g., larger than 30), most methods
are unable to produce visually pleasing images. However,
SwinIR-GAN can produce relatively realistic output im-
ages by generating imaginary textures (see Figure 8). This

demonstrates SwinIR’s powerful learning and generation
capabilities. The PSNR curve of SwinIR continues to decline,
while the SRGA curve well depicts the trend of model
generalization (see navy blur curves in Figure 5(d)&(e)).
This suggests the intrinsic superiority of SRGA.

These aforementioned issues have prevented IQA from
being a qualified GA. In fact, IQA and SRGA are comple-
mentary. IQA can be used to evaluate the absolute model
performance and help select the reference dataset for SRGA.
If a model has extremely low IQA score, such as a randomly
initialized network, it is meaningless to discuss its gener-
alization ability, and there is no need to consider its SRGA
value. Hence, IQA and SRGA should cooperate with each
other.

7 PROSPECTS AND LIMITATIONS

Although the SRGA metric is designed specifically for blind
super-resolution tasks, it can also be applied to other low-
level vision tasks that face similar generalization challenges.
For example, denoising, deblurring, and dehazing models
are trained on a set of degraded images and expected to
perform well on a wide range of in/out-distribution de-
graded images. The SRGA metric can be used to evaluate
the generalization ability of these models across various
types and levels of degradations. By using the SRGA metric
in these tasks, we can obtain a reliable measure of a model’s
generalization ability to handle real-world scenarios. In the
future work, we will explore the possibility of extending
the SRGA metric to other image restoration tasks and in-
vestigating its effectiveness in evaluating the generalization
performance of other more models.

Since we are the first to propose a generalization as-
sessment metric for SR networks, our work has several
limitations. First, SRGA requires a relatively large amount
of computation and storage. Specifically, to estimate the
GGD parameters of a dataset with 200 output features and
dimensions of 128 × 128 × 64 (with input dimensions of 32
× 32 × 3), the time cost is approximately 120 seconds using
two physical Intel(R) Xeon(R) Gold 6258R CPUs with 32GB
RAM. Second, unlike IQA, it is hard to subjectively evaluate
GA by user study, as GA requires to measure the process-
ing consistency between degraded datasets, not individual
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images. Third, SRGA is a statistical method, which cannot
be directly used as a loss function to optimize the network.
But we can mimic its behavior to guide the design of future
models.

8 CONCLUSION

In this paper, we present a novel perspective for measur-
ing the SR model’s generalization ability. The proposed
generalization assessment index, named SRGA, utilizes the
statistics of the internal deep features of SR networks.
Specifically, we adopt generalized Gaussian distribution to
model the deep features and then calculate the distance
between different degraded input sets. Interestingly, SRGA
does not require paired reference images or any learning
process. The proposed SRGA and PIES datasets can help
promote the development of blind SR methods, as well as
other low-level vision problems.
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APPENDIX A
COMPLETE BENCHMARKING RESULTS

We present the completee quantitative results in this section.
The benchmarking results of model generalization ability
based on SRGA are summarized in Tab. 4, 5, 6, 7 and 8 . The
corresponding SRGA curves are already shown in the main
paper. In addition, we also show the PSNR, SSIM, LPIPS,
NIQE values, which evaluate the output image quality and
measure the model performance, as shown in Tab. 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20 and 21. The corresponding
curves are depicted in Fig. 16 and 17.

APPENDIX B
VISUALIZATION OF OUTPUT IMAGES

The visual results of the output images produced by rep-
resentative SR models are shown in Fig. 18, 19, 20, 21, 22,
23, and 24. From the visual results, we can see that Real-
ESRGAN, BSRGAN, SwinIR-GAN achieve relatively better
performance with visually pleasing output images.

APPENDIX C
SAMPLES OF PIES DATASET

Fig. 25, 26, and 27 show some samples of PIES dataset,
including PIES-Blur, PIES-Noise, PIES-BlurNoise, PIES-
RealCam and PIES-RealLQ. It is easy to create your own
datasets to test the model generalization ability using SRGA.
The proposed PIES dataset only provide a unified platform
to evaluate the model. The proposed metric is not restricted
to this dataset.
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TABLE 4
Model generalization ability (SRGA) on PIES-Blur dataset. Small SRGA value denotes better generalization.

Methods
Blur Level

Clean 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
SRResNet (train: clean) 0.000 1.204 2.489 3.024 3.325 3.532 3.705 3.835 3.938 4.014 4.070 4.118 4.151 4.177 4.196 4.213 4.229
SRResNet (train: blur0 4) 0.000 0.903 1.690 1.633 1.568 1.681 2.225 2.930 3.358 3.607 3.772 3.880 3.958 4.011 4.057 4.089 4.111
SRResNet (train: blur2) 4.124 4.054 3.758 3.156 0.000 2.997 3.403 3.642 3.798 3.910 3.989 4.051 4.096 4.128 4.154 4.173 4.190
SRResNet (train: blur0 4+noise0 20) 0.000 0.778 1.886 1.892 1.477 1.653 2.164 2.831 3.349 3.641 3.809 3.911 3.978 4.026 4.057 4.086 4.105
IKC 0.000 1.672 2.810 3.181 3.231 3.216 3.116 3.056 2.975 3.184 3.582 3.854 4.031 4.125 4.177 4.211 4.231
DAN 0.000 1.362 2.049 2.134 2.471 2.919 3.367 3.750 3.987 4.126 4.210 4.274 4.323 4.362 4.390 4.407 4.419
DASR 0.000 1.041 1.881 1.987 2.199 2.511 2.878 3.202 3.520 3.791 3.944 4.048 4.120 4.167 4.208 4.226 4.245
Real-ESRGAN 0.000 0.301 1.114 1.672 2.025 2.279 2.458 2.612 2.722 2.836 2.934 3.015 3.068 3.120 3.151 3.180 3.192
Real-ESRNet 0.000 0.000 0.778 1.322 1.763 2.000 2.127 2.281 2.480 2.725 2.866 3.052 3.170 3.187 3.191 3.206 3.230
BSRGAN 0.000 0.000 0.903 1.556 2.041 2.356 2.610 2.814 2.947 3.061 3.147 3.217 3.280 3.333 3.373 3.403 3.437
BSRNet 0.000 0.000 0.845 1.447 1.903 2.241 2.496 2.719 2.905 3.056 3.181 3.294 3.387 3.459 3.516 3.549 3.570
SwinIR-GAN 0.000 0.000 0.477 0.778 1.204 1.556 1.748 1.929 2.037 2.090 2.124 2.121 2.107 2.090 2.049 1.987 1.934
SwinIR-PSNR 0.000 0.000 0.000 0.477 0.954 1.301 1.531 1.778 1.914 2.053 2.143 2.260 2.365 2.433 2.471 2.498 2.504

TABLE 5
Model generalization ability (SRGA) on PIES-Noise dataset. Small SRGA value denotes better generalization.

Methods
Noise Level

Clean 5 10 15 20 25 30 35 40 45 50
SRResNet (train: clean) 0.000 1.000 2.579 3.368 3.826 4.108 4.291 4.417 4.501 4.564 4.612
SRResNet (train: noise0 20) 0.000 0.301 0.954 1.398 1.591 1.362 2.161 3.323 3.818 4.087 4.253
SRResNet (train: blur0 4+noise0 20) 0.000 0.172 0.077 0.778 0.699 0.477 1.857 2.534 2.900 3.111 3.226
Real-ESRGAN 0.000 0.903 1.279 1.255 1.580 1.643 1.839 2.083 2.312 2.456 2.562
Real-ESRNet 0.000 0.602 1.041 1.255 1.447 1.690 1.778 1.845 1.996 1.959 2.049
BSRGAN 0.000 0.602 1.415 1.756 1.982 2.049 2.228 2.354 2.387 2.358 2.328
BSRNet 0.000 0.903 1.708 2.057 2.288 2.371 2.498 2.571 2.648 2.700 2.800
SwinIR-GAN 0.000 0.301 1.681 2.248 2.461 2.533 2.494 2.417 2.182 1.964 1.681
SwinIR-PSNR 0.000 0.477 1.114 1.301 1.491 1.643 1.857 2.049 2.179 2.320 2.423

TABLE 6
Model generalization ability (SRGA) on PIES-BlurNoise dataset. Small SRGA value denotes better generalization.

Methods
Blur1 Blur2 Blur4 Blur6

Clean 10 20 30 10 20 30 10 20 30 10 20 30
SRResNet (train: clean) 0.000 1.771 3.744 4.282 1.934 3.665 4.260 3.037 3.535 4.239 3.266 3.476 4.224
SRResNet (train: blur0 4) 0.000 1.114 3.632 4.184 2.297 3.535 4.161 3.179 3.361 4.125 3.412 3.279 4.115
SRResNet (train: noise0 20) 0.000 2.459 2.539 1.079 3.253 3.261 2.630 3.833 3.827 3.427 4.037 4.030 3.630
SRResNet (train: blur0 4+noise0 20) 0.000 1.964 2.061 0.954 2.307 2.584 2.797 3.299 3.534 3.642 3.870 3.920 3.874
Real-ESRGAN 0.000 1.875 1.857 1.633 2.442 2.452 2.382 3.039 3.114 3.232 3.270 3.419 3.585
Real-ESRNet 0.000 1.663 2.025 2.253 2.332 2.624 2.868 3.093 3.383 3.575 3.448 3.687 3.852
BSRGAN 0.000 1.892 2.389 2.569 2.425 2.668 2.727 3.121 3.177 3.135 3.378 3.379 3.339
BSRNet 0.000 1.982 2.490 2.654 2.450 2.805 2.885 3.134 3.288 3.339 3.468 3.520 3.554
SwinIR-GAN 0.000 1.863 2.548 2.520 2.104 2.611 2.550 2.444 2.649 2.531 2.330 2.515 2.554
SwinIR-PSNR 0.000 1.322 1.806 2.004 1.839 2.086 2.301 2.358 2.604 2.814 2.550 2.825 3.053

TABLE 7
Model generalization ability (SRGA) on PIES-RealCam and PIES-RealLQ datasets. Small SRGA value denotes better generalization.

Methods PIES-Clean PIES-RealCam PIES-RealLQ
SRResNet (train: clean) 0.000 3.563 3.825
SRResNet (train: blur0 4) 0.000 3.125 3.811
SRResNet (train: noise0 20) 0.000 3.547 3.827
SRResNet (train: blur0 4+noise0 20) 0.000 2.566 3.736
IKC 0.000 3.432 3.845
DAN 0.000 3.937 4.070
DASR 0.000 3.770 4.033
Real-ESRGAN 0.000 3.301 3.823
Real-ESRNet 0.000 2.787 3.770
BSRGAN 0.000 2.872 3.796
BSRNet 0.000 2.686 4.345
SwinIR-GAN 0.000 3.379 3.662
SwinIR-PSNR 0.000 2.826 3.655
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TABLE 8
Model performance (PNSR, SSIM, NIQE) and model generalization ability (SRGA) on PIES-AnisoBlur dataset.

Methods PSNR SSIM NIQE SRGA
SRResNet (train: clean) 21.54 0.5692 15.14 3.615
SRResNet (train: blur0 4) 23.24 0.6564 15.27 2.880
SRResNet (train: noise0 20) 21.52 0.5665 15.18 3.605
SRResNet (train: blur0 4+noise0 20) 23.19 0.6513 15.48 2.820
IKC 23.16 0.6537 16.23 3.375
DAN 23.43 0.6636 15.80 3.310
DASR 23.49 0.6658 15.92 3.157
Real-ESRGAN 21.31 0.5771 10.84 2.500
Real-ESRNet 22.46 0.6247 15.32 2.456
BSRGAN 21.89 0.5831 9.93 2.397
BSRNet 22.98 0.6315 15.91 2.339
SwinIR-GAN 21.21 0.5762 10.36 1.852
SwinIR-PSNR 22.57 0.6347 15.16 1.727

TABLE 9
Model performance (PSNR) on PIES-Blur dataset. Higher PSNR value denotes that the output images are closer to the ground truth images in

content.

Methods
Blur Level

Clean 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
SRResNet (train: clean) 25.87 25.82 24.99 23.74 22.69 21.85 21.18 20.63 20.19 19.84 19.56 19.34 19.17 19.03 18.91 18.82 18.74
SRResNet (train: blur0 4) 25.48 25.52 25.47 25.43 25.37 25.19 24.82 23.83 22.49 21.31 20.46 19.89 19.51 19.26 19.09 18.97 18.88
SRResNet (train: blur2) 16.20 16.69 18.80 22.48 25.80 23.74 22.27 21.34 20.69 20.21 19.85 19.57 19.36 19.19 19.05 18.94 18.85
SRResNet (train: blur0 4+noise0 20) 25.10 25.15 25.08 24.95 24.87 24.70 24.38 23.75 22.50 21.32 20.51 19.97 19.61 19.34 19.15 19.00 18.89
IKC 25.50 25.67 25.63 25.26 24.96 24.52 23.84 22.80 21.66 20.77 20.21 19.84 19.59 19.38 19.21 19.08 18.97
DAN 25.94 25.95 25.90 25.86 25.59 24.88 23.70 22.39 21.28 20.56 20.09 19.75 19.48 19.27 19.12 18.99 18.90
DASR 25.67 25.70 25.70 25.65 25.49 25.08 24.35 23.40 22.27 21.19 20.47 19.99 19.66 19.41 19.23 19.09 18.97
Real-ESRGAN 21.90 21.92 21.99 22.03 22.01 21.89 21.66 21.30 20.87 20.58 20.41 20.36 20.32 20.27 20.16 20.04 19.93
Real-ESRNet 23.41 23.43 23.49 23.53 23.50 23.31 22.98 22.53 22.05 21.65 21.35 21.27 21.30 21.22 21.02 20.80 20.60
BSRGAN 22.54 22.56 22.60 22.60 22.53 22.36 22.13 21.83 21.51 21.17 20.84 20.55 20.29 20.05 19.85 19.68 19.53
BSRNet 23.79 23.80 23.83 23.80 23.67 23.43 23.08 22.66 22.19 21.72 21.31 20.97 20.70 20.48 20.30 20.17 20.06
SwinIR-GAN 22.06 22.07 22.06 22.01 21.87 21.66 21.39 21.06 20.71 20.38 20.05 19.73 19.42 19.14 18.90 18.71 18.56
SwinIR-PSNR 23.62 23.63 23.63 23.57 23.43 23.21 22.89 22.50 22.07 21.64 21.25 20.91 20.62 20.41 20.28 20.20 20.13

TABLE 10
Model performance (SSIM) on PIES-Blur dataset. Higher SSIM value denotes that the output images are structurally closer to the ground truth

images.

Methods
Blur Level

Clean 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
SRResNet (train: clean) 0.7569 0.7531 0.7274 0.6789 0.6278 0.5828 0.5452 0.5149 0.4912 0.4729 0.4589 0.4481 0.4396 0.4329 0.4276 0.4232 0.4196
SRResNet (train: blur0 4) 0.7495 0.7482 0.7425 0.7396 0.7357 0.7266 0.7063 0.6640 0.6043 0.5448 0.4990 0.4684 0.4487 0.4364 0.4286 0.4229 0.4185
SRResNet (train: blur2) 0.4559 0.4804 0.5755 0.7022 0.7497 0.6745 0.6024 0.5520 0.5161 0.4900 0.4709 0.4567 0.4458 0.4373 0.4307 0.4253 0.4210
SRResNet (train: blur0 4+noise0 20) 0.7377 0.7364 0.7288 0.7234 0.7215 0.7103 0.6894 0.6553 0.6002 0.5435 0.5013 0.4724 0.4525 0.4385 0.4283 0.4208 0.4150
IKC 0.7583 0.7585 0.7494 0.7331 0.7231 0.7102 0.6895 0.6509 0.6018 0.5477 0.4992 0.4677 0.4488 0.4365 0.4275 0.4209 0.4157
DAN 0.7629 0.7616 0.7581 0.7556 0.7477 0.7251 0.6765 0.6084 0.5471 0.5061 0.4802 0.4623 0.4491 0.4393 0.4321 0.4264 0.4218
DASR 0.7559 0.7548 0.7515 0.7485 0.7425 0.7294 0.7024 0.6596 0.6027 0.5418 0.4986 0.4700 0.4513 0.4388 0.4300 0.4237 0.4184
Real-ESRGAN 0.6271 0.6268 0.6254 0.6219 0.6151 0.6042 0.5876 0.5635 0.5371 0.5186 0.5088 0.5063 0.5049 0.5021 0.4968 0.4910 0.4853
Real-ESRNet 0.6795 0.6792 0.6781 0.6750 0.6684 0.6563 0.6390 0.6157 0.5891 0.5660 0.5503 0.5449 0.5464 0.5442 0.5358 0.5266 0.5178
BSRGAN 0.6321 0.6320 0.6306 0.6264 0.6180 0.6055 0.5899 0.5725 0.5549 0.5366 0.5193 0.5038 0.4898 0.4771 0.4661 0.4567 0.4487
BSRNet 0.6814 0.6810 0.6788 0.6734 0.6636 0.6493 0.6314 0.6106 0.5878 0.5650 0.5446 0.5278 0.5139 0.5025 0.4935 0.4868 0.4817
SwinIR-GAN 0.6321 0.6317 0.6289 0.6226 0.6118 0.5965 0.5780 0.5579 0.5377 0.5189 0.5007 0.4837 0.4673 0.4532 0.4420 0.4337 0.4277
SwinIR-PSNR 0.6922 0.6917 0.6890 0.6831 0.6728 0.6579 0.6396 0.6192 0.5979 0.5770 0.5578 0.5407 0.5257 0.5153 0.5096 0.5060 0.5038

TABLE 11
Model performance (LPIPS) on PIES-Blur dataset. Lower LPIPS value denotes that the output images are perceptually closer to the ground truth

images.

Methods
Blur Level

Clean 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
SRResNet (train: clean) 0.2136 0.2216 0.2669 0.3511 0.4339 0.4979 0.5476 0.5860 0.6150 0.6359 0.6503 0.6601 0.6666 0.6709 0.6738 0.6758 0.6770
SRResNet (train: blur0 4) 0.2202 0.2233 0.2320 0.2324 0.2345 0.2436 0.2666 0.3234 0.4173 0.5154 0.5738 0.5957 0.6062 0.6141 0.6207 0.6248 0.6267
SRResNet (train: blur2) 0.3379 0.3217 0.2669 0.2130 0.2186 0.3487 0.4637 0.5336 0.5811 0.6135 0.6343 0.6470 0.6543 0.6582 0.6597 0.6600 0.6592
SRResNet (train: blur0 4+noise0 20) 0.2299 0.2337 0.2471 0.2503 0.2464 0.2594 0.2891 0.3363 0.4160 0.5073 0.5688 0.5968 0.6078 0.6109 0.6103 0.6088 0.6066
IKC 0.2058 0.2100 0.2321 0.2564 0.2693 0.2837 0.3016 0.3442 0.4003 0.4719 0.5287 0.5530 0.5646 0.5681 0.5674 0.5658 0.5633
DAN 0.2042 0.2086 0.2178 0.2220 0.2334 0.2670 0.3418 0.4454 0.5344 0.5900 0.6194 0.6357 0.6457 0.6507 0.6526 0.6531 0.6518
DASR 0.2138 0.2169 0.2229 0.2262 0.2326 0.2471 0.2797 0.3346 0.4159 0.5077 0.5583 0.5802 0.5866 0.5881 0.5893 0.5889 0.5885
Real-ESRGAN 0.1932 0.1935 0.1948 0.1975 0.2027 0.2115 0.2249 0.2418 0.2601 0.2759 0.2880 0.2953 0.2969 0.2973 0.2996 0.3022 0.3052
Real-ESRNet 0.2843 0.2851 0.2881 0.2932 0.3020 0.3161 0.3361 0.3606 0.3865 0.4104 0.4268 0.4315 0.4255 0.4194 0.4194 0.4227 0.4270
BSRGAN 0.1909 0.1910 0.1918 0.1949 0.2010 0.2104 0.2230 0.2390 0.2576 0.2781 0.2983 0.3160 0.3309 0.3427 0.3519 0.3588 0.3632
BSRNet 0.2790 0.2800 0.2841 0.2917 0.3040 0.3206 0.3414 0.3661 0.3945 0.4237 0.4494 0.4706 0.4880 0.5018 0.5111 0.5162 0.5184
SwinIR-GAN 0.1724 0.1728 0.1742 0.1778 0.1845 0.1947 0.2083 0.2223 0.2379 0.2527 0.2670 0.2806 0.2906 0.2987 0.3041 0.3076 0.3102
SwinIR-PSNR 0.2671 0.2683 0.2724 0.2792 0.2897 0.3047 0.3234 0.3444 0.3667 0.3889 0.4092 0.4270 0.4413 0.4505 0.4547 0.4568 0.4580
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TABLE 12
Model performance (NIQE) on PIES-Blur dataset. Lower NIQE value denotes better perceptual quality.

Methods
Blur Level

Clean 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
SRResNet (train: clean) 12.28 12.39 13.64 14.84 14.90 14.52 14.73 15.03 15.34 15.68 16.01 16.28 16.54 16.71 16.84 16.91 16.98
SRResNet (train: blur0 4) 12.20 12.31 12.67 12.69 12.67 13.00 13.13 14.09 17.64 15.72 14.84 14.59 14.68 14.76 14.95 14.98 15.01
SRResNet (train: blur2) 26.71 24.98 18.47 13.48 12.44 15.15 14.82 14.63 14.82 15.05 15.33 15.59 15.79 15.92 15.99 16.01 16.00
SRResNet (train: blur0 4+noise0 20) 12.76 12.82 13.03 12.95 12.91 13.09 13.62 15.30 18.42 19.59 16.96 15.49 15.62 15.44 14.70 14.63 14.57
IKC 13.11 13.20 13.65 14.40 13.96 13.98 14.32 14.66 13.98 14.10 14.51 14.86 14.81 14.79 14.71 14.68 14.65
DAN 12.09 12.20 12.39 12.40 12.66 13.47 14.17 14.78 14.49 14.90 15.21 15.60 15.95 16.15 16.24 16.29 16.26
DASR 11.64 11.80 12.05 12.15 12.41 12.78 13.64 14.48 14.71 13.69 13.60 13.83 13.94 14.13 14.06 14.22 14.27
Real-ESRGAN 10.15 10.14 10.12 10.10 10.14 10.18 10.22 11.05 10.98 10.64 11.18 11.00 10.35 10.31 10.33 10.37 10.48
Real-ESRNet 13.76 13.80 13.87 13.95 14.16 14.12 14.35 16.30 16.06 16.58 16.84 16.97 17.02 17.10 17.61 18.12 18.36
BSRGAN 9.77 9.77 9.76 9.72 9.75 9.80 9.81 9.97 10.16 10.39 10.52 10.63 10.74 10.73 10.78 10.64 10.51
BSRNet 14.11 14.15 14.38 14.64 14.98 15.35 15.90 16.60 17.72 19.28 20.25 20.00 19.59 18.86 18.50 18.36 18.28
SwinIR-GAN 9.83 9.83 9.84 9.91 9.89 9.94 10.05 10.17 10.08 10.11 10.10 10.18 10.07 10.15 10.16 10.22 10.24
SwinIR-PSNR 13.48 13.55 13.75 13.97 14.18 14.44 14.75 15.13 15.48 15.80 16.15 16.47 16.53 16.75 16.88 16.95 16.80
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Fig. 16. The PSNR, SSIM, LPIPS and NIQE curves of different methods on PIES-Blur dataset.

TABLE 13
Model performance (PSNR) on PIES-Noise dataset. Higher PSNR value denotes that the output images are closer to the ground truth images in

content.

Methods
Noise Level

Clean 5 10 15 20 25 30 35 40 45 50
SRResNet (train: clean) 25.87 23.92 21.66 19.66 17.95 16.52 15.35 14.39 13.61 12.96 12.42
SRResNet (train: noise0 20) 25.59 25.02 24.32 23.67 23.11 22.47 20.94 18.62 16.70 15.30 14.27
SRResNet (train: blur0 4+noise0 20) 25.10 24.64 24.04 23.45 22.94 22.32 21.47 20.52 19.68 19.02 18.56
Real-ESRGAN 21.90 21.81 21.45 20.95 20.49 20.06 19.64 19.26 18.93 18.63 18.38
Real-ESRNet 23.41 23.31 22.87 22.32 21.81 21.35 20.90 20.45 20.04 19.58 19.17
BSRGAN 22.54 22.14 21.16 19.94 18.77 17.72 16.81 16.01 15.35 14.75 14.20
BSRNet 23.79 23.32 22.18 20.95 19.80 18.78 17.95 17.28 16.73 16.26 15.83
SwinIR-GAN 22.06 21.84 21.27 20.63 20.01 19.47 18.96 18.52 18.09 17.76 17.42
SwinIR-PSNR 23.62 23.40 22.75 22.00 21.24 20.47 19.71 19.00 18.31 17.72 17.13
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TABLE 14
Model performance (SSIM) on PIES-Noise dataset. Higher SSIM value denotes that the output images are structurally closer to the ground truth

images.

Methods
Noise Level

Clean 5 10 15 20 25 30 35 40 45 50
SRResNet (train: clean) 0.7569 0.6394 0.4964 0.3920 0.3173 0.2635 0.2242 0.1948 0.1729 0.1550 0.1409
SRResNet (train: noise0 20) 0.7473 0.7199 0.6876 0.6593 0.6357 0.6130 0.5379 0.4223 0.3317 0.2661 0.2199
SRResNet (train: blur0 4+noise0 20) 0.7377 0.7159 0.6873 0.6613 0.6399 0.6149 0.5724 0.5225 0.4780 0.4434 0.4209
Real-ESRGAN 0.6271 0.6140 0.5899 0.5649 0.5419 0.5245 0.5065 0.4898 0.4760 0.4633 0.4512
Real-ESRNet 0.6795 0.6668 0.6402 0.6135 0.5891 0.5699 0.5518 0.5344 0.5212 0.5069 0.4934
BSRGAN 0.6321 0.6076 0.5640 0.5151 0.4666 0.4220 0.3828 0.3494 0.3222 0.2996 0.2801
BSRNet 0.6814 0.6573 0.6122 0.5657 0.5225 0.4860 0.4549 0.4286 0.4076 0.3903 0.3750
SwinIR-GAN 0.6321 0.6137 0.5792 0.5455 0.5162 0.4909 0.4664 0.4432 0.4206 0.4022 0.3823
SwinIR-PSNR 0.6922 0.6752 0.6393 0.6050 0.5741 0.5462 0.5187 0.4935 0.4698 0.4487 0.4271

TABLE 15
Model performance (LPIPS) on PIES-Noise dataset. Lower LPIPS value denotes that the output images are perceptually closer to the ground truth

images.

Methods
Noise Level

Clean 5 10 15 20 25 30 35 40 45 50
SRResNet (train: clean) 0.2136 0.3226 0.4664 0.5602 0.6133 0.6482 0.6710 0.6888 0.7032 0.7159 0.7267
SRResNet (train: noise0 20) 0.2184 0.2391 0.2648 0.2870 0.3048 0.3080 0.3636 0.4646 0.5372 0.5877 0.6236
SRResNet (train: blur0 4+noise0 20) 0.2299 0.2441 0.2709 0.2961 0.3155 0.3231 0.3418 0.3649 0.3877 0.4059 0.4199
Real-ESRGAN 0.1932 0.1974 0.2117 0.2300 0.2466 0.2648 0.2825 0.3008 0.3173 0.3329 0.3496
Real-ESRNet 0.2843 0.2938 0.3158 0.3390 0.3587 0.3752 0.3892 0.4013 0.4125 0.4213 0.4288
BSRGAN 0.1909 0.1995 0.2279 0.2657 0.3020 0.3314 0.3576 0.3820 0.4036 0.4246 0.4434
BSRNet 0.2790 0.2907 0.3203 0.3524 0.3830 0.4079 0.4304 0.4509 0.4696 0.4875 0.5019
DASR-N-Ani 0.2248 0.2429 0.2674 0.2937 0.3149 0.3301 0.3371 0.3519 0.3797 0.4057 0.4293
SwinIR-GAN 0.1724 0.1779 0.2009 0.2309 0.2566 0.2777 0.2925 0.3116 0.3261 0.3401 0.3570
SwinIR-PSNR 0.2671 0.2759 0.3049 0.3320 0.3538 0.3722 0.3879 0.4013 0.4142 0.4225 0.4333

TABLE 16
Model performance (NIQE) on PIES-Noise dataset. Lower NIQE value denotes better perceptual quality.

Methods
Noise Level

Clean 5 10 15 20 25 30 35 40 45 50
SRResNet (train: clean) 12.28 13.07 13.25 13.38 13.52 13.71 14.14 14.36 14.84 15.36 16.08
SRResNet (train: noise0 20) 12.54 12.95 13.08 13.33 13.37 12.49 12.04 13.39 15.41 16.63 17.65
SRResNet (train: blur0 4+noise0 20) 12.76 13.05 13.23 13.64 13.84 14.03 14.58 14.78 15.00 14.78 13.94
Real-ESRGAN 10.15 10.16 10.31 10.48 10.61 10.74 10.72 10.76 10.88 10.86 11.07
Real-ESRNet 13.76 13.76 13.98 14.32 14.39 14.28 14.30 14.05 13.99 13.62 13.25
BSRGAN 9.77 9.88 10.02 10.45 10.79 11.11 11.55 11.85 12.70 13.05 12.60
BSRNet 14.11 13.99 14.26 14.65 14.78 14.79 14.83 14.86 14.76 14.81 14.33
DASR-N-Ani 12.12 12.68 13.14 14.01 14.34 14.38 14.10 14.23 14.10 14.04 13.74
SwinIR-GAN 9.83 9.82 9.84 9.93 9.79 9.59 9.38 9.14 8.95 8.77 8.67
SwinIR-PSNR 13.48 13.49 13.86 13.94 13.83 13.52 13.35 12.86 12.46 12.08 11.70
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Fig. 17. The PSNR, SSIM, LPIPS and NIQE curves of different methods on PIES-Noise dataset.
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TABLE 17
Model performance (PSNR) on PIES-BlurNoise dataset. Higher PSNR value denotes that the output images are closer to the ground truth images

in content. n10 represents noise level 10.

Methods
Blur1 Blur2 Blur4 Blur6

clean n10 n20 n30 n10 n20 n30 n10 n20 n30 n10 n20 n30
SRResNet(train: clean) 25.87 21.50 17.93 15.32 20.58 17.55 15.09 18.91 16.61 14.48 18.13 16.11 14.14
SRResNet (train: blur0 4) 25.48 21.68 18.12 15.66 20.74 17.73 15.40 19.03 16.77 14.75 18.23 16.25 14.39
SRResNet (train: noise0 20) 25.59 23.88 22.80 20.85 22.12 21.56 20.18 19.91 19.65 18.72 19.01 18.83 18.01
SRResNet (train: blur0 4+noise0 20) 25.10 23.90 22.75 21.48 23.14 22.10 20.98 21.38 20.47 19.39 19.55 19.18 18.56
Real-ESRGAN 21.90 21.45 20.45 19.60 21.25 20.22 19.38 20.12 19.31 18.78 19.33 18.76 18.37
Real-ESRNet 23.41 22.82 21.72 20.81 22.49 21.36 20.48 21.00 20.15 19.53 20.08 19.43 18.92
BSRGAN 22.54 21.13 18.72 16.73 20.93 18.52 16.57 19.99 17.78 16.06 19.20 17.30 15.75
BSRNet 23.79 22.11 19.71 17.87 21.79 19.43 17.68 20.64 18.61 17.13 19.74 18.08 16.79
SwinIR-GAN 22.06 21.20 19.91 18.83 20.81 19.51 18.46 19.49 18.34 17.45 18.44 17.55 16.92
SwinIR-PSNR 23.62 22.63 21.11 19.58 22.19 20.68 19.23 20.78 19.50 18.28 19.77 18.78 17.72

TABLE 18
Model performance (SSIM) on PIES-BlurNoise dataset. Higher SSIM value denotes that the output images are structurally closer to the ground

truth images.

Methods
Blur1 Blur2 Blur4 Blur6

clean n10 n20 n30 n10 n20 n30 n10 n20 n30 n10 n20 n30
SRResNet (train: clean) 0.7569 0.4762 0.3020 0.2110 0.4122 0.2574 0.1779 0.3087 0.1839 0.1235 0.2698 0.1557 0.1032
SRResNet (train: blur0 4) 0.7495 0.4926 0.3160 0.2256 0.4286 0.2709 0.1909 0.3233 0.1949 0.1337 0.2834 0.1655 0.1120
SRResNet (train: noise0 20) 0.7473 0.6623 0.6144 0.5227 0.5821 0.5524 0.4744 0.4718 0.4591 0.3859 0.4313 0.4237 0.3484
SRResNet (train: blur0 4+noise0 20) 0.7377 0.6719 0.6238 0.5630 0.6327 0.5853 0.5257 0.5388 0.4992 0.4374 0.4546 0.4411 0.3979
Real-ESRGAN 0.6271 0.5834 0.5346 0.4991 0.5605 0.5124 0.4781 0.4925 0.4565 0.4364 0.4517 0.4284 0.4149
Real-ESRNet 0.6795 0.6323 0.5795 0.5418 0.6060 0.5523 0.5159 0.5285 0.4889 0.4633 0.4856 0.4569 0.4359
BSRGAN 0.6321 0.5583 0.4611 0.3773 0.5382 0.4419 0.3637 0.4769 0.3968 0.3324 0.4352 0.3719 0.3163
BSRNet 0.6814 0.6047 0.5143 0.4478 0.5808 0.4927 0.4316 0.5134 0.4436 0.3966 0.4676 0.4160 0.3789
SwinIR-GAN 0.6321 0.5722 0.5082 0.4564 0.5436 0.4828 0.4342 0.4714 0.4225 0.3809 0.4214 0.3844 0.3535
SwinIR-PSNR 0.6922 0.6305 0.5642 0.5085 0.6015 0.5369 0.4839 0.5305 0.4768 0.4324 0.4870 0.4442 0.4060

TABLE 19
Model performance (LPIPS) on PIES-BlurNoise dataset. Lower LPIPS value denotes that the output images are perceptually closer to the ground

truth images.

Methods
Blur1 Blur2 Blur4 Blur6

clean n10 n20 n30 n10 n20 n30 n10 n20 n30 n10 n20 n30
SRResNet (train: clean) 0.2136 0.5064 0.6379 0.6815 0.5853 0.6773 0.7000 0.6587 0.7054 0.7092 0.6741 0.7093 0.7097
SRResNet (train: blur0 4) 0.2202 0.4911 0.6363 0.6858 0.5705 0.6761 0.7058 0.6508 0.7078 0.7181 0.6674 0.7133 0.7176
SRResNet (train: noise0 20) 0.2184 0.3043 0.3384 0.3842 0.4369 0.4397 0.4410 0.6027 0.5888 0.5157 0.6530 0.6388 0.5344
SRResNet (train: blur0 4+noise0 20) 0.2299 0.2944 0.3396 0.3564 0.3420 0.3883 0.4009 0.4691 0.5149 0.4886 0.6088 0.6092 0.5184
Real-ESRGAN 0.1932 0.2175 0.2572 0.2937 0.2360 0.2798 0.3224 0.3080 0.3604 0.4100 0.3623 0.4240 0.4818
Real-ESRNet 0.2843 0.3268 0.3729 0.4037 0.3599 0.4088 0.4409 0.4505 0.4901 0.5202 0.5049 0.5379 0.5666
BSRGAN 0.1909 0.2329 0.3071 0.3647 0.2506 0.3266 0.3822 0.3127 0.3816 0.4257 0.3668 0.4163 0.4538
BSRNet 0.2790 0.3303 0.3945 0.4414 0.3601 0.4242 0.4667 0.4490 0.4942 0.5249 0.5155 0.5349 0.5566
SwinIR-GAN 0.1724 0.2080 0.2654 0.3031 0.2305 0.2855 0.3220 0.2870 0.3318 0.3674 0.3218 0.3610 0.3919
SwinIR-PSNR 0.2671 0.3158 0.3684 0.4027 0.3476 0.4004 0.4366 0.4243 0.4685 0.5036 0.4718 0.5072 0.5371

TABLE 20
Model performance (NIQE) on PIES-BlurNoise dataset. Lower NIQE value denotes better perceptual quality.

Methods
Blur1 Blur2 Blur4 Blur6

clean n10 n20 n30 n10 n20 n30 n10 n20 n30 n10 n20 n30
SRResNet (train: clean) 12.28 12.21 12.23 13.18 8.86 10.30 11.80 7.45 9.86 11.80 7.54 10.26 12.24
SRResNet (train: blur0 4) 12.20 11.91 12.06 12.68 8.80 10.27 11.56 7.17 9.65 11.60 7.22 10.10 12.04
SRResNet (train: noise0 20) 12.54 13.80 13.91 11.98 15.93 16.64 11.87 15.65 15.52 9.31 16.36 15.84 9.21
SRResNet (train: blur0 4+noise0 20) 12.76 13.60 14.14 13.95 14.38 14.70 13.21 17.03 18.15 10.72 16.73 15.68 10.32
Real-ESRGAN 10.15 10.24 10.73 10.83 10.30 10.57 10.76 10.94 11.46 11.37 11.05 11.36 12.11
Real-ESRNet 13.76 14.31 14.83 14.56 14.83 15.26 15.26 17.68 16.95 15.92 18.28 17.14 17.08
BSRGAN 9.77 10.05 10.86 11.70 10.10 10.78 11.78 10.93 11.13 11.81 10.59 11.13 11.94
BSRNet 14.11 14.57 15.25 15.15 15.16 15.76 15.71 18.58 17.13 17.22 19.37 19.62 18.58
SwinIR-GAN 9.83 10.00 10.06 9.36 10.09 9.84 9.39 10.17 9.72 9.19 10.05 9.83 9.14
SwinIR-PSNR 13.48 14.14 14.14 13.50 14.66 14.75 14.13 16.09 16.03 14.92 17.03 16.58 16.18
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TABLE 21
Model performance (NIQE) on PIES-RealCam and PIES-RealLQ datasets. Lower NIQE value denotes better perceptual quality.

Methods PIES800-RealCam PIES800-RealLQ
SRResNet (train: clean) 22.40 14.40
SRResNet (train: blur0 4) 22.40 14.03
SRResNet (train: noise0 20) 23.71 15.67
SRResNet (train: blur0 4+noise0 20) 23.63 14.02
IKC 21.60 13.77
DAN 22.86 14.00
DASR 22.74 13.44
Real-ESRGAN 18.94 13.53
Real-ESRNet 26.86 18.02
BSRGAN 20.30 13.09
BSRNet 32.71 18.39
SwinIR-GAN 17.75 12.84
SwinIR-PSNR 27.82 17.78

TABLE 22
The estimated GGD parameters σ and α of representative methods with different degraded input.

Methods
Blur Level

Clean 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

SRResNet (train: clean)
σ 2.718 2.668 2.532 2.418 2.333 2.260 2.194 2.138 2.083 2.042 2.007 1.983 1.965 1.948 1.933 1.920 1.911

α 0.687 0.684 0.661 0.628 0.596 0.568 0.539 0.514 0.494 0.478 0.466 0.454 0.446 0.440 0.436 0.432 0.428

SRResNet (train: blur0 4)
σ 2.866 2.840 2.783 2.787 2.795 2.785 2.735 2.599 2.465 2.370 2.299 2.245 2.203 2.170 2.142 2.122 2.101

α 0.691 0.686 0.682 0.683 0.683 0.682 0.667 0.632 0.591 0.555 0.526 0.505 0.489 0.478 0.468 0.461 0.457

IKC
σ 1.291 1.245 1.133 1.062 1.048 1.049 1.068 1.082 1.100 1.066 0.977 0.895 0.834 0.800 0.781 0.768 0.760

α 0.770 0.774 0.778 0.774 0.779 0.786 0.798 0.795 0.787 0.764 0.718 0.678 0.643 0.619 0.604 0.595 0.588

DAN
σ 4.278 4.152 4.025 3.986 3.849 3.610 3.273 2.902 2.669 2.542 2.465 2.404 2.357 2.317 2.291 2.276 2.264

α 0.668 0.675 0.673 0.680 0.690 0.695 0.689 0.660 0.605 0.559 0.529 0.506 0.488 0.474 0.463 0.456 0.452

RealESRGAN
σ 5.022 5.007 4.952 4.879 4.794 4.728 4.645 4.575 4.513 4.452 4.393 4.348 4.312 4.270 4.248 4.234 4.230

α 0.790 0.788 0.784 0.781 0.781 0.775 0.778 0.776 0.776 0.772 0.768 0.761 0.758 0.757 0.755 0.750 0.747

RealESRNet
σ 3.718 3.707 3.678 3.645 3.613 3.579 3.562 3.550 3.512 3.462 3.421 3.351 3.269 3.251 3.233 3.213 3.197

α 0.739 0.739 0.738 0.734 0.725 0.721 0.717 0.708 0.699 0.683 0.673 0.659 0.656 0.657 0.661 0.663 0.662

BSRGAN
σ 8.921 8.900 8.814 8.689 8.531 8.360 8.183 8.026 7.888 7.781 7.695 7.615 7.553 7.493 7.456 7.409 7.373

α 0.762 0.762 0.760 0.756 0.749 0.744 0.737 0.726 0.720 0.710 0.701 0.694 0.685 0.678 0.671 0.668 0.662

BSRNet
σ 5.339 5.328 5.289 5.234 5.165 5.092 5.015 4.939 4.857 4.788 4.734 4.678 4.631 4.584 4.552 4.527 4.510

α 0.693 0.693 0.689 0.684 0.677 0.668 0.659 0.647 0.635 0.622 0.608 0.594 0.581 0.571 0.562 0.557 0.554

DASR
σ 6.416 6.293 6.107 6.058 5.948 5.747 5.445 5.087 4.691 4.342 4.155 4.020 3.908 3.837 3.773 3.747 3.713

α 0.679 0.682 0.683 0.686 0.693 0.705 0.715 0.727 0.704 0.649 0.603 0.571 0.551 0.537 0.524 0.518 0.513

SRResNet (train: blur0 4+noise0 20)
σ 3.171 3.137 3.064 3.059 3.100 3.084 3.020 2.893 2.735 2.612 2.529 2.477 2.435 2.406 2.380 2.358 2.342

α 0.696 0.694 0.682 0.683 0.689 0.687 0.678 0.646 0.595 0.552 0.521 0.500 0.486 0.475 0.469 0.463 0.459

SwinIR-GAN
σ 5.178 5.164 5.140 5.110 5.069 5.036 5.002 4.965 4.929 4.903 4.886 4.884 4.891 4.906 4.926 4.941 4.953

α 0.740 0.742 0.742 0.742 0.742 0.736 0.734 0.732 0.733 0.736 0.738 0.739 0.738 0.735 0.733 0.734 0.735

SwinIR-PSNR
σ 4.279 4.275 4.267 4.254 4.239 4.218 4.184 4.145 4.107 4.067 4.046 4.025 3.997 3.983 3.987 3.986 3.991

α 0.747 0.746 0.746 0.744 0.740 0.737 0.737 0.736 0.739 0.741 0.740 0.735 0.732 0.728 0.722 0.719 0.717
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Fig. 18. Visual comparison on PIES-Blur dataset (1).
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Fig. 19. Visual comparison on PIES-Blur dataset (2).
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Fig. 20. Visual comparison on PIES-Noise dataset (1).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 28

Noise5

SRResNet

(train: clean)

Noise10 Noise15 Noise20 Noise25 Noise30 Noise40 Noise50

SRResNet

(train: noise0-20)

SRResNet

(train: blur0-4

&noise0-20)

Real-ESRGAN

Real-ESRNet

BSRGAN

SwinIR-GAN

BSRNet

SwinIR-PSNR

Clean

Input

Fig. 21. Visual comparison on PIES-Noise dataset (2).
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Fig. 22. Visual comparison on PIES-BlurNoise dataset.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 30

SRResNet
(train: clean)Input

SRResNet
(train: blur0-4)

SRResNet
(blur0-4&noise0-20)

SRResNet
(train: noise0-20) IKC DAN

Real-ESRGANDASR Real-ESRNet BSRGAN BSRNet SwinIR-GAN SwinIR-PSNR

SRResNet
(train: clean)Input

SRResNet
(train: blur0-4)

SRResNet
(blur0-4&noise0-20)

SRResNet
(train: noise0-20) IKC DAN

Real-ESRGANDASR Real-ESRNet BSRGAN BSRNet SwinIR-GAN SwinIR-PSNR

SRResNet
(train: clean)Input

SRResNet
(train: blur0-4)

SRResNet
(blur0-4&noise0-20)

SRResNet
(train: noise0-20) IKC DAN

Real-ESRGANDASR Real-ESRNet BSRGAN BSRNet SwinIR-GAN SwinIR-PSNR

SRResNet
(train: clean)Input

SRResNet
(train: blur0-4)

SRResNet
(blur0-4&noise0-20)

SRResNet
(train: noise0-20) IKC DAN

Real-ESRGANDASR Real-ESRNet BSRGAN BSRNet SwinIR-GAN SwinIR-PSNR

Fig. 23. Visual comparison on PIES-RealCam dataset.
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Fig. 24. Visual comparison on PIES-RealLQ dataset.
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Fig. 25. Samples of PIES-Blur, PIES-Noise and PIES-BlurNoise datasets.
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(a) HR

(b) LR

Fig. 26. Samples of PIES-RealCam dataset.

Fig. 27. Samples of PIES-RealLQ dataset.
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