
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/16 2 6 5 5/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Yuan, Yu-Jie, S u n, Yang-Tian, Lai, Yu-Kun , M a, Yuew e n, Jia, Ron gfei, Kobb el t , Leif a n d

Gao, Lin 2 0 2 3. In t e r a c tive N eR F g eo m e t ry e di ting wi th s h a p e p rio r s. IEEE

Tra n s a c tions on Pa t t e r n Analysis a n d M ac hin e In t ellige nc e 4 5 (12) , p p . 1 4 8 2 1-

1 4 8 3 7. 1 0 .11 0 9/TPAMI.202 3.33 1 5 0 6 8

P u blish e r s p a g e: h t t p://dx.doi.o rg/10.11 0 9/TPAMI.202 3.33 1 5 0 6 8

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 1

Interactive NeRF Geometry Editing with Shape
Priors

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, Leif Kobbelt, and Lin Gao∗

Abstract—Neural Radiance Fields (NeRFs) have shown great potential for tasks like novel view synthesis of static 3D scenes. Since

NeRFs are trained on a large number of input images, it is not trivial to change their content afterwards. Previous methods to modify

NeRFs provide some control but they do not support direct shape deformation which is common for geometry representations like

triangle meshes. In this paper, we present a NeRF geometry editing method that first extracts a triangle mesh representation of the

geometry inside a NeRF. This mesh can be modified by any 3D modeling tool (we use ARAP mesh deformation). The mesh

deformation is then extended into a volume deformation around the shape which establishes a mapping between ray queries to the

deformed NeRF and the corresponding queries to the original NeRF. The basic shape editing mechanism is extended towards more

powerful and more meaningful editing handles by generating box abstractions of the NeRF shapes which provide an intuitive interface

to the user. By additionally assigning semantic labels, we can even identify and combine parts from different objects. We demonstrate

the performance and quality of our method in a number of experiments on synthetic data as well as real captured scenes.

Index Terms—Neural Radiance Fields, Geometry Editing, Shape Deformation, Interactive Editing

✦

1 INTRODUCTION

NOVEL view synthesis has been extensively studied in
computer vision and computer graphics. In particular,

the recently proposed neural radiance field (NeRF) [1] has
inspired a large number of follow-up works aiming to
achieve better visual effects [2], faster rendering speed [3],
[4], generalization to different scenes [5], relighting [6], [7],
applying to dynamic scenes [8], and reducing the number of
inputs [9], [10]. However, as an implicit modeling method,
the neural radiance field is difficult for users to interactively
edit or modify the scene objects, which is relatively easy
with explicit representations. The mesh representation, as a
kind of explicit representation, is commonly used in shape
modeling and rendering. There is a lot of research work on
mesh deformation or editing [11]. However, it is difficult
to obtain an accurate explicit representation of a real-world
scene. From a sparse set of images, one can use some Multi-
View Stereo (MVS) method [12] to reconstruct the point
cloud or mesh representation of the scene, but the quality is
generally poor. Rendering the reconstructed representation
under novel views often leads to unrealistic results. There-
fore, based on the promising novel view synthesis ability

• ∗ Corresponding Author is Lin Gao (gaolin@ict.ac.cn).
• Yu-Jie Yuan, Yang-Tian Sun, and Lin Gao are with the Beijing Key

Laboratory of Mobile Computing and Pervasive Device, Institute of
Computing Technology, Chinese Academy of Sciences, Beijing, China, and
also with the University of Chinese Academy of Sciences, Beijing, China.
E-Mail: {yuanyujie, sunyangtian, gaolin}@ict.ac.cn

• Yu-Kun Lai is with the School of Computer Science & Informatics, Cardiff
University, U.K.
E-mail: LaiY4@cardiff.ac.uk

• Yuewen Ma is with PICO, ByteDance, Beijing, China.
E-mail: mayuewen@bytedance.com

• Rongfei Jia is with Beijing ZaoWuHuiJing Technology Co., Ltd, Beijing,
China.
E-mail: iceprg@126.com

• Leif Kobbelt is with Computer Graphics Group, RWTH Aachen Univer-
sity, Germany.
E-mail: kobbelt@cs.rwth-aachen.de

of implicit representations such as NeRFs, further studying
how to edit the implicit representation has become a new
research direction.

There has been some initial work exploring NeRF edit-
ing. Given a NeRF to be edited, EditNeRF [13] allows users
to draw a few coarse scribbles on a rendered image of
the NeRF from a random view, and optimizes the network
parameters by back propagation to achieve consistent mod-
ification across all views. The network is trained on a set of
synthetic data from the same category and relies on the data
prior to enable the propagation of user edits from 2D images
to 3D space. However, this method is difficult to generalize
to real data with complex textures and does not support
shape deformation of objects. Zhang et al. [14] propose an
editable free-viewpoint video reconstruction method. They
split dynamic humans in the scene from the background and
use different NeRF networks to model individual people,
enabling editing of each person in the time and space
domains, such as modifications to the position and size
of a person and adjustments to the timing of an action.
However, the method cannot modify human poses, or edit
objects other than people. Similarly, there is also work on
modeling static scenes, where changes to the position or
size of objects can be achieved by decoupling the scene [15],
or by organizing the scene using an octree [16]. Recently,
Kania et al. [17] proposed a controllable neural radiance
field that connects the user-annotated mask of attribute
regions and attribute values with the deformation of rays,
enabling the adjustment of attribute values to change the
state of the corresponding attribute regions. This method
relies on user annotations and works better on human
faces. It also produces blurred rendering after deformation.
Meanwhile, some works [8], [18] consider using NeRF to
model dynamic scenes and using Multi-Layer Perceptron
(MLP) to predict scene changes. However, they either limit
the edits to human bodies [19], or can only learn motion

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 2

information from the recorded videos, and cannot perform
editing [8].

In this paper, we propose an interactive system for real-
time geometry-aware shape deformation of neural radiance
fields that combines the advantage of explicit representa-
tions for easy local editing and the advantage of implicit
representations for realistic rendering effects. Our method
not only supports user-specified control points to deform
the neural radiance field, but more importantly, provides
the user with automatically extracted intuitive deformation
handles for easy manipulation. Different from the previous
work [13], [15], we focus on the geometric content of the
scene, as shown in Fig. 1, supporting users to edit the scene
geometry, and can perform photo-realistic rendering of the
edited scenes from novel views. To this end, we first extract
an explicit triangle mesh representation from the trained
NeRF. The explicit mesh representation is then intuitively
deformed by the user. Next, a tetrahedral mesh is built from
the triangle mesh representation, which wraps around the
triangle mesh. We use the deformation of the triangle mesh
to drive the deformation of the tetrahedral mesh, which
propagates the deformation of the scene geometric surface
to the spatial discrete deformation field. Finally, we use
tetrahedral vertex interpolation to complete the propaga-
tion from the discrete deformation field to the continuous
deformation field. The rays passing through the tetrahedral
mesh will be bent accordingly following the continuous
deformation field, so that the final rendering result conforms
to the user’s edits. Although the user needs to manually
specify the control points, our method is general, not limited
to specific shapes such as human bodies, and applicable to
arbitrary shapes such as animal models and general man-
made objects.

To further support geometry-aware editing, we propose
to automatically generate box handles for intuitive interac-
tion. The key idea is to introduce geometric properties (such
as shape and structure) of the objects in NeRF to the defor-
mation process to aid the user’s editing. Specifically, we first
extract the explicit geometry representation as a mesh from
real-captured images and perform geometric analysis on the
extracted mesh, including shape abstraction as a collection
of boxes, segmentation, and symmetry detection between
box abstractions. The extracted box abstractions will then
be used as the deformation handles for the user to edit
the geometry of NeRF, and the symmetry information will
help the user to synchronize the editing between symmet-
rical box handles to reduce the interaction burden, i.e., if
the user edits one of the box handles, other symmetrical
boxes will have a corresponding deformation to maintain
the symmetry. Furthermore, based on the segmented parts,
our system allows the user to combine semantic parts from
different objects to form a new NeRF, as shown in Fig. 2. Our
system supports real-time shape deformation editing and
free-view rendering of the results. In summary, our work
has the following three contributions:

• We propose a system for real-time interactive editing
of NeRF geometry, which automatically generates
object-aligned boxes as the deformation handles for
intuitive editing.

• We propose a geometry-aware approach to deform-

ing neural radiance field geometry, which maintains
the geometric properties of the object when manipu-
lating the handles to deform the NeRF geometry.

• Our approach also enables users to combine semantic
parts from distinct objects to create new ones.

This paper substantially extends our original conference
version [20] in the following ways: We propose a geometry-
aware shape editing method for static NeRFs. We build
an interactive NeRF-Editing system that can automatically
generate boxes as deformation handles for intuitive user
interaction, and maintain the geometric property, in par-
ticular symmetry, during the editing. We further propose
a composition approach based on shape segmentation that
supports combining shape parts from different NeRFs into
a new NeRF. The code will be publicly released.

2 RELATED WORK

Our NeRF editing framework provides a new paradigm
for novel view synthesis of an edited neural implicit scene
representation. Here, we summarize related work of novel
view synthesis and 3D deformation/editing methods.

Novel view synthesis. To infer the photo-realistic novel
view synthesis result from given input images, prior works
rely on explicit [21], [22], [23], [24] or implicit [25], [26], [27]
geometry representation of the real world scene. Recently,
used both as a component in deep neural network pipelines
and as a standalone rendering pipeline, neural rendering
has achieved immense progress, which is comprehensively
summarized in [28], [29]. It adopts deep neural networks to
synthesize images, which can be employed on multiple rep-
resentations, such as voxels [30], [31], point clouds [32], [33],
meshes [34], [35], [36], [37], multi-plane images (MPIs) [38],
[39], [40] and implicit fields [41], [42]. As one of the rep-
resentative works, Neural Radiance Field (NeRF) [1] has
attracted a lot of attention, which uses a multi-layer per-
ceptron (MLP) to model the geometry and appearance of a
scene. NeRF can achieve photo-realistic synthesis of novel
view images with view-dependent effects. However, NeRF
still has shortcomings and plenty of work has extended the
original NeRF, including better synthesis effects [2], [43],
[44], applicable to dynamic scenes [8], [14], [18], [19], [45],
[46], [47], [48], [49], faster training and rendering speed [3],
[4], [50], [51], [52], generalization to different scenes [53],
[54], relighting [6], [7], [55], [56], and various kinds of edit-
ing [20], [57], [58], [59], [60], [61]. In this work, we focus on
geometry editing/deformation for NeRF. Most of the exist-
ing NeRF editing work adopts the idea of decoupling, such
as decoupling geometry and appearance [13], decomposing
scenes into individual objects and the background [14], [15],
and disentangling images into different attribute areas [17].
CoNeRF [17] can modify the object shape by changing the
attribute values. The method is based on dynamic videos,
and users are required to label attribute values and corre-
sponding attribute areas, so only states that have appeared
in the video can be generated, while unseen states cannot
be generated. Our framework instead supports editing the
geometric shape of the objects in a static NeRF, which can
then be used to synthesize photo-realistic novel view images
for visualization. More recently, after the publication of our
conference version [20], NeuMesh [62] proposed to define

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 3

Figure 1. We propose a method to edit a static neural radiance field (NeRF). Users only need to capture multi-view images to build a NeRF
representation, and then they can explicitly and intuitively edit the implicit representation of the scene. Our method can perform user-controlled
shape deformation on the geometry of the scene, which contains multiple objects.

Figure 2. We propose a system for interactive editing of neural radiance
fields (NeRFs), which can deform the NeRF geometry. The deforma-
tion is geometry-aware and controlled by some automatically extracted
box abstractions as interaction handles. Our method also supports re-
combination of parts from different models to form new ones, which also
enables free view synthesis.

geometric features and appearance features on mesh ver-
tices, which are then combined with a neural radiance field
for rendering. The method can achieve geometric editing
and appearance editing. There has also been work [63]
considering the use of tetrahedral deformation to bend rays
to achieve geometric deformation of NeRF. However, these
works do not consider the preservation of geometric prop-
erties and the provision of intuitive handles. Our method is
able to automatically generate boxes as deformation handles
for user interaction, and maintain the geometric properties,
in particular symmetry, during editing. Our method also
supports part-level NeRF compositions.

3D deformation and editing methods. Editing a 3D
model means deforming the shape of the model under
some controls given by the user. There has been much work
about the editing of explicit geometry representations [64],
[65], which we refer readers to a recent survey [11]. Tradi-
tional mesh deformation methods are based on Laplacian
coordinates [66], [67], [68], Poisson equation [69], and dual

Laplacian coordinates [70]. As a representative work among
them, ARAP (As-Rigid-As-Possible) deformation [71] is an
interactive mesh editing scheme, which preserves details
during the deformation by maintaining the rigidity of local
transformations. Another approach to driving mesh defor-
mation is through a proxy, such as skeletons [72], [73] or
cages [74], [75], [76]. These methods need to calculate the
weights [77], [78], [79] between the proxy and the mesh
vertices, and propagate the transformation of the proxy to
the mesh. With the proliferation of geometric models [80],
data-driven deformation [81], [82], [83] becomes available,
which analyzes the deformation prior of existing shapes
in the dataset and produces more realistic results. At the
same time, plenty of data also allows neural networks to be
introduced into 3D editing [84], [85], [86], [87]. In addition
to explicit mesh representations, implicit fields can also be
edited in combination with a neural network. Deng et al.
proposed the deformed implicit field [88], which is capa-
ble of modeling dense surface correspondence and shape
editing based on the learned information from an object
category. Our work also aims to edit implicit representa-
tions, in particular NeRFs. The difference is that we take
advantage of the intuitive and convenient characteristics of
explicit mesh editing. By establishing a connection between
the explicit mesh representation and implicit neural repre-
sentation, well-developed mesh deformation methods can
be used to edit the geometry of the implicit representation.
In addition to considering control points as deformation
handles, we propose to automatically generate box abstrac-
tions as the handles for editing, and we also take into ac-
count geometric property preservation of the model during
editing.

3 OUR METHOD

Our work is based on the neural radiance field (NeRF) [1],
which has promising performance in novel view synthesis.
As a result, our method enables users to interactively edit
the content of the scene in a geometry-aware manner, and
can generate new images from arbitrary views after editing.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 4

We will first briefly review NeRF pipeline (Sec. 3.1), and
then introduce how to extract the explicit triangle mesh
representation from the implicit representation of the scene
and enable users to edit the mesh representation (Sec. 3.2).
After the user edits the triangle mesh representation of the
scene, we need to transfer this deformation to the implicit
volume representation. We split the transfer into two steps.
The first step is to transfer the surface mesh deformation
to a volumetric mesh, where we build a tetrahedral mesh
that wraps around the surface mesh, and transfer user edits
on the surface mesh to a discrete deformation field on the
tetrahedral mesh (Sec. 3.3). The next step is to transform the
discrete deformation field to a continuous deformation field
in the volume space, which is used to guide the bending of
the rays to render images conforming to user edits (Sec. 3.4).
Later, in Sec. 4.3, we will show that directly transferring the
deformation from the surface mesh to the implicit volume
by interpolation will lead to visible artifacts compared to our
two step strategy. We also propose an interactive geometry-
aware NeRF editing system based on the above method.
We will describe how to perform geometric analysis of
objects modeled by the NeRF, including shape abstraction,
segmentation and symmetry detection (Sec. 3.5). Using the
control of the box abstractions, the NeRF geometry is de-
formed under the constraints of symmetry and segmenta-
tion information (Sec. 3.6). Our system further supports the
re-combination of segmented parts from different NeRFs
into a new NeRF. Finally, we will present our real-time
interactive editing system (Sec. 3.7). Our method establishes
the connection between the explicit mesh representation
and the implicit radiance field, enabling users to modify
the geometry of radiance field through intuitive edits. The
system overview is shown in Fig. 3.

3.1 Neural Radiance Fields

Neural Radiance Field or NeRF [1] proposes to use a multi-
layer perceptron (MLP) network to model the geometry and
appearance of the scene from a sparse set of images. Given
the known camera parameters, the image pixels can be
transformed to the world coordinate system and connected
with the camera position to generate the light rays that
are directed toward the scene. NeRF samples points on
the ray and uses volume rendering [89] to composite the
color of each ray. The spatial coordinates p = (x, y, z) of
each sampled point and the ray direction d = (θ, φ) will
go through positional encoding ζ(·), and then be passed to
the fully connected network to predict the volume density
σ and RGB value c: FΘ : (ζ(p), ζ(d)) → (σ, c), where
Θ represents the network weights. The predicted density
value σ can be interpreted as the differentiable probability
of the ray terminated at the sampled point, and the color

Ĉ(r) of the image pixel corresponding to the ray r(t) can be
calculated through discrete accumulation:

Ĉ(r) =
N∑

i=1

exp(−
i−1∑

j=1

σjδj)(1− exp(−σiδi))ci, (1)

where δi = ti+1− ti is the distance between successive sam-
ples. The network is supervised by the RGB loss function,

which is calculated between the generated color Ĉ(r) and
the ground truth color C(r) of the ray.

3.2 Editing of Explicit Surface Mesh Representation

After the NeRF network is trained, an explicit triangle mesh
representation can be extracted directly from the neural
radiance fields using Marching Cubes [90]. However, the
mesh extracted from the original NeRF network is often of
low quality. In order to obtain a satisfactory editing rep-
resentation, we adopt the reconstruction method proposed
in NeuS [91], which takes a bias-free volume rendering
approach to learn the geometry as a neural signed distance
function (SDF) representation. The mesh representation ex-
tracted from the zero-level set of SDF will serve as the
user’s editing proxy, allowing users to edit the scene content
intuitively. In this paper, we use the classic ARAP (as-rigid-
as-possible) deformation method [71] to enable users to
interactively deform the mesh. It should be noted that any
other mesh deformation method can be used here, including
skeleton-based and cage-based methods.

The extracted triangle mesh is denoted as S, and N(i)
represents the index set of vertices adjacent to vertex i. We
further denote vi ∈ R

3 as the position of the vertex i on the
mesh S. After the user’s edits, the mesh S is transformed
to the deformed mesh S′ with the same connectivity and
different vertex positions v′

i, treating user editing as bound-
ary conditions. The overall ARAP deformation energy is to
measure the rigidity of the entire mesh and is the sum of
the distortion energies of each deformation cell, including
vertex i and its 1-ring neighbors, shown in Eq. 2.

E(S′) =
n∑

i=1

∑

j∈N(i)

wij∥(v
′

i − v
′

j)−Ri(vi − vj)∥
2
. (2)

Here, wij =
1
2 (cotαij+cotβij) is the cotangent weight, and

αij , βij are the angles opposite to the mesh edge (i, j). Ri is
the local rotation matrix at vertex i. The deformed shape S′

is obtained by minimizing the ARAP energy, which can be
efficiently solved by alternately optimizing local rotations
Ri and deformed positions v

′

i. We refer the readers to [71]
for the specific optimization process.

3.3 Deformation Transfer to Discrete Volume

After the user edits the triangle mesh representation of
the scene, the deformation needs to be transferred to the
implicit volume representation. As introduced before, we
split the transfer into two steps. In the first step, we build
a tetrahedral mesh (a discrete volumetric representation)
to cover the extracted triangle mesh. Starting from the
extracted triangle mesh S, we first calculate a cage mesh
that encloses the mesh S. This can be achieved by enlarging
the triangle mesh by shifting all the vertices by a certain
distance offset from the mesh surface in normal direction.
We set the default value to 5% of the average distance
from the camera positions to object center. The interior of
the cage mesh can be regarded as the “effective space” of
the implicit volume, because the area near real geometry
surface of the scene is enclosed by this cage mesh. When
editing larger scenes with multiple objects, this design also
ensures other objects not being edited are not affected. We
use the tetrahedralization method, TetWild [92], to tessellate
the cage mesh to obtain a tetrahedral mesh representation
T . It should be noted that the extracted triangle mesh S

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 5

Figure 3. The pipeline of our geometry-aware NeRF editing framework. Leveraging the shape priors brought in by synthetic data, our method
enables geometric analysis of real reconstructed models and interactive geometric editing utilizing the box abstractions as interaction handles. At
the same time, the segmentation enables our method to re-combine parts from different models to form new ones.

User

Edits

Volume

ARAP

Deformation Constraints

TetWild

Extracted Mesh

Deformed Mesh

Bounding Cage Tet Mesh

Deformed Tet

Ray

Bending

Figure 4. We use deformations specified by users to bend the rays.

is also wrapped in the tetrahedral mesh T . We visualize
some extracted triangle mesh S and the corresponding
tetrahedral mesh T in the supplementary material. We use
the displacement of the triangle mesh vertices vi to drive
the deformation of the tetrahedral mesh T , which trans-
fers the surface deformation to the tetrahedral mesh. The
deformed tetrahedral mesh is denoted as T ′, and tk and
t
′

k denote the vertices of the tetrahedral mesh before and
after deformation respectively, where k is the vertex index.
Here, we also use the ARAP deformation method to deform
the tetrahedral mesh T under the constraints of the surface
mesh deformation. Eq. 2 can be extended from the triangle
mesh to the tetrahedral mesh straightforwardly. The only
difference is that the constraints are changed from user-
specified control points to the triangle mesh vertices. We can
find which tetrahedron each triangle mesh vertex is located
in, and calculate its barycentric coordinates relative to the
four vertices of the tetrahedron. Then, the optimization
problem is,

minE(T ′), subject to At
′ = v

′, (3)

where A is the barycentric weight matrix. This optimization
problem can be converted into linear equations using the

Lagrangian multiplier method. Please refer to the supple-
mentary material for the specific derivation.

3.4 Ray Bending

After transferring the surface deformation to the tetrahedral
mesh, we can obtain the piece-wise linear deformation
field of the “effective space”. We now utilize these discrete
transformations to bend the casting rays. To generate an
image of the deformed radiance field, we cast rays to the
space containing the deformed tetrahedral mesh. For each
sampled point on the ray, we find which tetrahedron of the
deformed tetrahedral mesh T ′ it is located in. Using the
correspondence between T and T ′, the displacement from
the vertices after deformation to the vertices before defor-
mation can be obtained. Through barycentric interpolation
of the displacements of the four vertices of the tetrahedron
where the sampled point is located, the displacement of the
sampled point back to the original “effective space” ∆p can
be obtained. We add the displacement ∆p to the input coor-
dinates of the sampled point to predict the density and RGB
values. The ray direction will also be recalculated according
to the adjacent sampled points after transformation, which
denoted as d′, then

(ζ(p+∆p), ζ(d′)) → (σ, c). (4)

The density and RGB values of the sampled points along the
ray are used to calculate the corresponding pixel color using
Eq. 1. It should be noted that the sampled points that are
not within the tetrahedral mesh T ′ will not be moved, i.e.,
the part of the ray outside the tetrahedral mesh will not be
bent. The process of building deformation field is illustrated
in Fig. 4.

3.5 Geometry Analysis using Shape Priors

The aforementioned ARAP method needs to manually se-
lect control points for deformation. Although using control
points has high degrees of flexibility, the selection of control

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 6

points and the deformation operation can still be tricky for
inexperienced users. Moreover, the deformation does not
take into account the geometric properties of the object, such
as symmetry. We now consider how to extract the geometric
properties of the reconstructed model and generate the box
abstractions that are used as the deformation handles. Note
that this extended approach only works for geometry-aware
editing (preserving geometry properties during editing) and
for objects where shape priors from synthetic data are
available, which reduces the difficulty of user operations.
Otherwise, the previously described approach still applies.

A single model has limited semantic information, so it
is difficult to reliably perform automatic geometry analysis
directly on the single reconstructed model. We instead rely
on shape priors from the synthetic model dataset to help
with the geometric analysis of the real reconstructed model.
However, the models in the synthetic dataset have been
aligned and have a uniform scale, and different recon-
structed models have different orientations and scales. So
we first align and scale the reconstructed mesh to match
those models in the synthetic dataset. The differences be-
tween the reconstructed and synthetic models are typically
large, so we adopt a heuristic algorithm, including exhaus-
tive search and ICP (Iterative Closest Point) algorithm [93].
Concretely, we rotate the reconstructed model by 10 degrees
along each of the three axes at a time. We then randomly
pick a model from the synthetic dataset and scale it to
a similar size to the rotated real model. We calculate the
Chamfer distance between the rotated real model and the
scaled synthetic model and select the rotation angle pair
with the smallest distance. We further subdivide the an-
gle near the selected rotation angle and repeat the above
operations. After a certain number of repetitions (3 in our
method), the ICP algorithm completes the final alignment
and the aligned real model will be scaled to match the
original synthetic model.

After alignment and scaling, the reconstructed model
can be directly input into the network of [94] to extract box
abstractions and part segmentation at the same time. Fur-
ther, we perform global reflection symmetry detection [95]
to identify box abstractions that are symmetric to each other
with respect to the detected symmetry plane. However, the
box pair that should be symmetric may be inconsistent in
size, leading to misjudgment as asymmetric. So we use the
segmented parts to help judge the symmetric boxes, i.e., if
the segmented parts are symmetric, their corresponding box
abstractions are also considered symmetric. So far, we ob-
tain the box abstractions, part segmentation, and symmetry
pairs. Next, we will use such rich geometric information to
perform geometry-aware NeRF editing.

3.6 Geometry-aware NeRF Editing

Based on the extracted geometric information, our method
enables interactive editing of NeRF geometry using box
abstractions as handles. The symmetry and segmentation
information are introduced into the editing at the same time,
which can maintain the shape symmetry during editing
and the editing will not extend beyond the corresponding
semantic part (i.e., not accidentally affecting neighboring
parts). Finally, using semantic segmentation, we can also

combine parts from different NeRFs into a new model,
which naturally supports free-view synthesis.

Box-driven Deformation. Compared with the oriented
bounding box (OBB) of the semantic part (that is a box
containing all points of the part and usually larger than
the box abstraction), the box abstraction is tighter and also
reflects the structure of the model, which is beneficial for
interaction. Therefore, we choose to use the box abstrac-
tion as the interactive deformation handle. First, the box
abstractions are edited to drive the deformation of the recon-
structed mesh. The user can perform operations including
rotation, translation, and scaling on the box. We use R̂, t̂,
Ŝ to denote the rotation matrix, the translation vector, and
the scaling matrix of the box, respectively. These edits are
further propagated to the mesh. To achieve this, we find
the two closest boxes for each vertex of the mesh, and the
weighted combination of the transformations of these two
boxes is used as the transformation of the vertex, where
the weights are calculated based on the inverse of the dis-
tance between the vertex and the box surface. To introduce
semantic information into the editing, we first associate
semantic segmentation with box handles, where each box
handle corresponds to a semantic part. Because semantic
segmentation is performed on the point cloud sampled from
the mesh surface, for each vertex on the mesh, we find
the nearest sampled point and associate the corresponding
box (referred as semantic box) of the sampled point with
the mesh vertex. Then the transformation of the semantic
box is also propagated to the transformation of the mesh
vertex. Specifically, in the above weighted combination, the
transformation of the semantic box will be given a greater
weight, and combined with the transformations of the other
two nearest box handles to obtain the transformation of the
mesh vertex. Formally, given the rotation matrices R̂1, R̂2

of the two closest boxes and the rotation matrix R̂sem of the
semantic box, dist1, dist2 are the distances from the mesh
vertex v to the two closest boxes, the distance to the semantic
box distsem is set to be 10−5×min(dist1, dist2), which tends
to be much smaller than dist1 and dist2, then the rotation
matrix R̂v of the vertex v is calculated as

R̂v = exp(log(R̂1) ·w1 + log(R̂2) ·w2 + log(R̂sem) ·wsem),
(5)

where

w1 =
1/dist1

1/dist1 + 1/dist2 + 1/distsem
,

w2 =
1/dist2

1/dist1 + 1/dist2 + 1/distsem
,

wsem =
1/distsem

1/dist1 + 1/dist2 + 1/distsem
.

Here, log is the matrix logarithm, and exp is the exponential
function of the matrix. The use of matrix logarithm and
exponential ensures rotation matrices are combined in a
meaningful way [96]. And given the translation vectors t̂1,
t̂2 of the two closest boxes (excluding the semantic box), the
translation vector t̂sem of the semantic box, the translation
vector t̂v of the vertex v is calculated as

t̂v = t̂1 · w1 + t̂2 · w2 + t̂sem · wsem, (6)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 7

Figure 5. Illustration of our interactive NeRF editing system. It has three
subviews that display the box handles, the triangle mesh representation
and the NeRF rendering, respectively.

where the calculation of w1, w2 and wsem is the same as
above. The calculation of the scaling matrix is similar to that
of the translation vector.

Further, to maintain the model symmetry and reduce
the burden of interaction on the user during the editing,
we mark the symmetric box pairs and the user can choose
whether to ensure symmetry during editing. If symmetry
is maintained, the boxes that are symmetric to the user-
edited box will be transformed accordingly at the same time,
maintaining the symmetry of the model. After propagating
the edits to the mesh, the deformation will be propagated
from the mesh to the implicit spatial field in two steps using
the method proposed in previous subsections 3.3, 3.4 for
NeRF geometry editing.

Part Composition. In addition to interactive geometry-
aware shape deformation of NeRF, our system also supports
semantic part-level NeRF composition. This relies on the
part segmentation extracted by the aforementioned method.
Because the box handle corresponds to the segmented part,
we can specify the parts to be combined by marking the box
handles. It is important to note that since we align the recon-
structed real models to match the synthetic data, the incon-
sistencies in the spatial location and size of different recon-
structed models are largely eliminated. However, there are
still some cases of misalignment between the parts during
combination, especially models from different categories,
and the user can adjust the location and size using the
box handles. These interactions are not complicated. When
the combined NeRF is rendered, each sampled point will
obtain its density and color value from the NeRF network
corresponding to the OBB (not the box handle as it may not
cover the entire part) of the segmented part in which it is
located, and finally the colors of all sampled points on each
ray will be aggregated through volume rendering. In order
to obtain a continuous transition at the boundary of the
part combination, we first fuse the segmented point cloud
from different models. Then, for each sampled point, we
find several (4 in our implementation) nearest points on the
fused point cloud. If these closest points are from different
NeRF models, then we fuse the colors from different NeRF
models based on the inverse distance weighting.

3.7 Interactive NeRF Editing System

Our goal is to provide users with a real-time interactive
NeRF editing system, but the rendering speed of the original

NeRF cannot support real-time editing. For this reason, we
adopt instant-ngp (instant neural graphics primitives) [50]
that speeds up NeRF training and rendering. See [50] for
details. Since our method will also produce deformed mesh
results during editing and combined OBB in the composi-
tion, we only sample points near the mesh surface or inside
the OBB, which greatly reduces the number of sampled
points, reduces the number of times for network inference,
and further speeds up rendering. Our system has a total
of three subviews that present the interactive deformation
handles (i.e. the box abstractions), the reconstructed triangle
mesh, and the NeRF rendering result under the correspond-
ing viewpoint, respectively, as shown in Fig. 5. The user can
select one of the boxes by clicking it, and rotate, translate
and scale each box. The triangle mesh model is driven
to deform in real-time, while the edited rendering is also
shown. The user changes the viewpoint of the rendering
result by changing the viewpoint of the box abstraction. The
whole procedure is operated in real-time and the demo of
interactive geometry-aware NeRF editing can be found in
the supplementary material.

View1 View2 View3 View4

B
ef

o
re

A
ft

er
B

ef
o

re
A

ft
er

Figure 6. We show the editing results (row “After”) compared with NeRF
rendering results (row “Before”) on synthetic data under different views,
including a Lego bulldozer and a chair, which illustrate that our method
can edit the NeRF of general models. Different columns show different
views.

4 EXPERIMENTS AND EVALUATIONS

In this section, we conduct several qualitative and quantita-
tive experiments, including showing editing results on both
synthetic data and captured real scenes, comparisons with
baseline methods, and ablation study.

4.1 Datasets and metrics

We demonstrate our method on several public synthetic
datasets, including some characters in the mixamo [97], the
Lego bulldozer and chair from the original NeRF paper [1].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 8

Figure 7. Results of our NeRF editing framework (rows “Edit1”, “Edit2”,
“Edit3”) compared with original NeRF results (row “Before”) on a real
captured giraffe soft toy. Different columns show different views. We can
edit the object into different poses and render it under different views.
“Edit Op.” denotes “ Edit Operation”.

Moreover, we also test our method on a real captured
horse statue from FVS dataset [36] and several real scenes
captured by ourselves. The characters in the mixamo are
rendered by ourselves. We generate 100 random views from
the upper hemisphere with Blender for training. For the data
from NeRF datasets, we use the default training setting of
the datasets. For the real scenes captured by ourselves, we
leave one image for validation, and the other images are
used for training. More information about the self-captured
dataset is included in the supplementary document.

It needs to be noted that different from dynamic NeRF
methods [8], it is difficult to obtain the ground truths of the
novel view synthesis results after user editing, especially on
real scenes, as such edited scenes do not physically exist.
So we mainly evaluate our approach quantitatively and
qualitatively on the characters in the mixamo. Specifically,
we rig the mixamo character model, render the deformed
characters as the ground truths and compare them with the
outputs of our NeRF editing method. We use Structural Sim-
ilarity Index Measure (SSIM) [98], Learned Perceptual Im-
age Patch Similarity (LPIPS) [99] and Peak Signal-to-Noise
Ratio (PSNR) as the metrics to evaluate the performance
of our approach. We also evaluate the Fréchet Inception
Distance [100] (FID) scores on real scenes to measure the
distribution similarity between the results before editing
and after editing, since the ground truths are not available.

4.2 Editing Results

Shape editing results under different views. We first show
NeRF editing results with manually specified control points
rendered from different views in Figs. 6- 8 for synthetic
data and real captured objects. For comparison, we also
show the results under the same views before editing. In
Fig. 6, the first set is a Lego bulldozer from the NeRF
dataset. We put down its shovel and achieve the editing
of complex synthetic data. The second set is a synthetic
chair from the NeRF dataset. We stretch the back and legs of
the chair, which demonstrates that our method can edit the

local parts of man-made objects. In Fig. 7, we present the
editing results on a giraffe soft toy captured by ourselves.
It can be seen that users can edit the giraffe to different
poses, as well as scale local areas, which demonstrates the
usability of our method. In Fig. 8, we show four more sets
of results from real scenes to illustrate that our method
can be applied to different objects. The wings of the toy
dragon are deformed to make them spread out. This can
further realize the animation of the dragon flapping its
wings while viewing it from different directions. We also
show an example of a horse statue from the FVS dataset,
where we can deform the horse’s head and raise its hoof.
On the example of a laptop, we can rotate its panel to be
at different angles. For the real captured chair, we bend the
legs of the chair to present another design style, and at the
same time enlarge the backrest, which makes the chair more
comfortable to sit on. These results show that our approach
is able to deform static neural radiance fields according to
the user’s editing. In Fig. 1, we show an example of shape
deformation for multiple objects in a scene. We first split the
mesh of the horse statue from the scene, then copy it into
multiple ones, place them in different locations, and deform
them differently.

Interactive shape editing with box handles. Our
method can also automatically generate box abstractions as
deformation handles, and use the box handles to deform the
NeRF geometry. We show such interactive editing results
with box handles on real captured objects in Figs. 9 and 10.
In order to better show the editing effects for comparison,
we also show the rendering results before editing under the
same views. In Fig. 9, we present the editing results on
a typical category, namely chairs. Three different styles of
chairs are edited using the box handles. We use symmetry
and semantic constraints here. It can be seen that by using
the box rotation, we can easily change the chair legs from
the vertical state to other states to create different styles
of chairs, such as the results of the third group. Boxes can
also be translated, changing the position of parts such as
the chair legs in the first group, the beams in the second
one, and the chair back in the third one. Finally, the use of
scaling allows the parts to change size, such as the chair
back in the second group, which is enlarged to make people
more comfortable to lean on. In Fig. 10, we show more
editing results on other categories, such as animal and table.
It should be noted that we turn off the symmetry constraint
and keep the semantic constraint during the editing. It can
be seen that the user can deform the standing giraffe into
a running posture, and at the same time can change the
direction of the table legs.

Deformation transfer results. In addition to interactive
shape deformation, we can also use deformation transfer
methods to transfer the deformations from the existing
deformation sequence to the objects represented by NeRF.
This can achieve some interesting applications. For exam-
ple, we can transfer the motions of a running horse mesh
model [101] to an elk NeRF model. The results are shown in
Fig. 11. More cases are shown in the supplementary material
where we transfer the movements of a human face from a
video clip to a head sculpture and the motions between two
human-like characters.

Part composition results. Utilizing shape segmentation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 9

View1 View2 View3 View4
B

ef
o

re
A

ft
er

B
ef

o
re

A
ft

er
B

ef
o

re
A

ft
er

B
ef

o
re

A
ft

er

Figure 8. Results of our NeRF editing framework (row “After”) compared
with original NeRF results (row “Before”) on multiple real captured
data. Different columns show different views. We edit the static neural
radiance fields and exhibit the deformed results under different views.

information, our method also allows the user to combine
parts from different NeRFs into a new NeRF and enables
free view synthesis of the combined object. We have shown
two sets of results in Figs. 2 and 3. Fig. 12 shows two groups
of the part composition results from two chairs through part
swapping. We also show a combination between the objects
from different categories, an elk and a table, in Fig. 13, where
the elk legs are combined with the tabletop to form a table
supported by the elk legs. From these results, we can see
that by using parts from different NeRFs, users can generate
new models and can view them from any view.

4.3 Comparisons

As we are the first to perform general geometric shape
deformation on NeRF, we propose three baseline methods
for comparison. We adopt a naive way for the first baseline
to build the correspondence between the extracted triangle
mesh and continuous volume space. We no longer construct
a tetrahedral mesh and use it as a proxy, but instead directly
find the closest point of the sampled point on the extracted
triangle mesh surface, and use the displacement of the

Figure 9. Results of our geometry-aware NeRF editing (row “After”)
compared with original NeRF results (row “Before”) on multiple real
captured chairs. We visualize box abstractions in the first column, while
other columns show different views. We edit the static neural radiance
fields and exhibit the deformed results under different views. Note that
we use symmetry information during editing.

closest point as the displacement of the sampled point. We
denote the first one as “Closest Point”. The second baseline
is similar to the first one. The difference is that we linearly
interpolate the displacements of three nearest triangle mesh
vertices, with the coefficients inversely related to distances,
to obtain the displacement of the sampled point. We denote
this one as “3NN”. The last baseline is mesh rendering. The
extracted triangle mesh is with vertex color information,
which can be directly rendered after user-controlled shape
deformation or deformation transfer.

We compare our method with the “Closest Point” and
“3NN” baselines on the synthetic data mixamo which has
ground truth edited results. The visual comparison results
are shown in Fig. 14, and the quantitative comparison is
shown in Table 1. We also show a visual comparison on a
real captured scene in the last row of Fig. 14. Due to the
absence of ground truth, we visualize the NeRF rendering
result before deformation and corresponding deformation
results. It can be seen that the “Closest Point” and “3NN”
baselines may cause discontinuities, as they inherit the non-
smoothness (of the normal field) of the mesh proxy, so the
rendering results have obvious artifacts. While our method
adopts two-step deformation transfer, which extends the
ARAP deformation to a tetrahedron-envelop with a regu-
larizing effect, and the interpolation in tetrahedron ensures

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 10

Boxes View1 View2 View3 View4
B

ef
o

re
A

ft
er

B
ef

o
re

A
ft

er

Figure 10. Results of our geometry-aware NeRF editing (row “After”)
compared with original NeRF results (row “Before”) on more real cap-
tured data. We visualize box abstractions in the first column, while other
columns show different views. We edit the static neural radiance fields
and exhibit the deformed results under different views. Note that we do
not use symmetry information during editing.

Figure 11. Results of deformation transfer between a horse mesh model
and an elk NeRF model. With the help of mesh deformation transfer
methods, we can animate the static NeRF model.

Figure 12. Results of part composition. We exchange the upper and
lower parts of two chairs and obtain two composition results.

the spatial continuity, so the results are more visually satis-
factory and have quantitative advantages.

Then we compare our method with mesh rendering
baseline on the Lego data from NeRF dataset. It should be
noted that although our method uses an explicit triangle

Figure 13. Results of part composition from two objects from different
categories. We combine the elk legs and a tabletop to form a table
supported by the elk legs.

GT Closest Point 3NN Ours

Figure 14. Visual comparisons with the “Closest Point” and “3NN” base-
lines. The “Closest Point” and “3NN” baselines may cause discontinu-
ities, so the resulting rendering results have obvious artifacts. Note that
the last row is a real captured toy giraffe, so ground truth does not exist
and we instead visualize the NeRF rendering results before deformation
for reference.

mesh representation for interactive editing, it has a certain
degree of error tolerance in terms of the mesh reconstruc-
tion, and the reconstructed triangle mesh does not need
to be perfect. This is because the mesh is only used as
an intermediate representation and our final images are
still obtained through volume rendering. The direct mesh
rendering requires a high quality mesh, and all artifacts on
the mesh will appear in the rendered images. As shown
in Fig. 15, the reconstructed mesh in the Lego dataset is
not of good quality, and the result of mesh rendering is not
ideal, while our method can still perform editing, and with
the help of volume rendering, desired results can still be
obtained.

We also compare the extended version, geometry-aware
NeRF-Editing with the original NeRF-Editing [20]. Unlike
the original NeRF-Editing which only allows users to manu-
ally select control points for editing, geometry-aware NeRF-
Editing can automatically generate box abstractions that are
convenient for users to edit. At the same time, it can analyze
the shape symmetry and maintain the symmetry during

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 11

Method SSIM ↑ LPIPS ↓ PSNR ↑ FID (real) ↓
Closest Point 0.928 0.055 22.38 300.8
3NN 0.941 0.042 24.30 291.7
Ours 0.975 0.024 29.62 253.7

Table 1
Quantitative comparison with the “Closest Point” and “3NN” baselines.
It can be seen that our framework achieves better results. Note that the
first three metrics are calculated on mixamo synthetic data, while the

last FID is calculated on real data.

Mesh Render NeRF Edited Mesh Our Editing

Figure 15. Comparisons with mesh rendering on the synthetic data.
Mesh rendering has obvious artifacts when the mesh quality is not good,
while this does not affect our editing and image synthesis.

editing, which reduces the editing burden of users and
improves the usability of the system. We show the visual
comparison results with NeRF-Editing in Fig. 16.

The user is required to deform the same model as close to
the same pose as possible using the two different methods.
As can be seen from the results, geometry-aware NeRF-
Editing can easily maintain the symmetry between the chair
legs, and the deformed chair legs are still symmetrical.
NeRF-Editing edits the chair legs one by one. To preserve
the symmetry of the chair legs, users need to be careful
when editing, and the final result is still not symmetrical.
Further, we use the symmetry distance error (SDE) [95]
to measure the symmetry of the model. Specifically, SDE
calculates the average distance from the mirrored copy of
the sampled points with respect to the symmetry plane to
the mesh model. We calculate the SDE of the reconstructed
model before editing and the editing results. The results
are shown in Table 2. From the numerical comparison, it
can be further seen that our editing results well maintain
the symmetry of the original model, while NeRF-Editing
increases the symmetry error. In terms of image quality,
since our method uses boxes for interaction and cannot
automatically generate boxes on the synthetic dataset, max-
imo, we compare the FID scores with NeRF-Editing on the
real scene and the results are shown in Table 3.

We also evaluate the efficiency of our proposed system.
The rendering resolution is 480× 360. As shown in Table 4,
we measure the time of each component, including the
preprocessing time, the deformation time, the rendering
time, and the total online time. We also show the total
time of the original NeRF-Editing for comparison. Note
that the total online time does not include preprocessing
time, as preprocessing is performed offline and we only
consider the time required for online editing. It can be
seen that compared with the original version, our extended
version has a great improvement in efficiency. Although
the preprocessing of our extended version may take some
time, the geometric information it brings in will reduce
the interactive burden and help maintain the geometric

Figure 16. Comparisons with NeRF-Editing [20] (NeRF-E). It can be
seen that NeRF-Editing is not easy to maintain symmetry due to editing
parts one by one, while our method uses symmetry-constrained editing
to ensure symmetry in the editing results.

Original NeRF-Editing w/o sym. Ours
SDE(×10−4) 1.1596 1.8856 1.9717 1.1828

Table 2
Quantitative comparisons with NeRF-Editing [20] and our

geometry-aware editing method without symmetry (w/o sym.), along
with our full model with symmetry (Ours). We calculate the SDE

(symmetry distance error) for the deformed results and the original
model. It can be seen that our method well preserves the symmetry of

the original model.

properties of editing results.

4.4 Ablation Study

We conduct ablation studies on the synthetic data with
respect to the novel view synthesis results after editing.
First, as we introduce a tetrahedral mesh in our method
as a proxy between the triangle mesh and the continuous
volume, we compare the results of editing on the triangle
mesh and editing on the tetrahedral mesh, and verify the
necessity of editing on the triangle mesh and transferring
deformation by our method. Second, in order to evaluate the
influence of the reconstructed triangle mesh on our results,
we compare the results of the triangle mesh extracted by the
original NeRF and that extracted by NeuS which improves
the quality of reconstruction. Tables 5 and 6 summarize the
quantitative results of the ablation studies.

Necessity of edit on triangle mesh. Table 5 shows the
quantitative comparisons between editing on the tetrahedral
mesh and triangle mesh, which indicates that editing on the
triangle mesh performs better. The qualitative results are

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 12

NeRF-Editing w/o seg. w/o sym. Box Ours
FID ↓ 254.82 277.96 243.93 290.42 240.81

Table 3
Quantitative comparisons with NeRF-Editing [20] and other ablations in
terms of image quality. ‘Box’ represents rendering with the guidance of

boxes. We calculate the FID scores that measure the similarity
between the image results before and after editing. It can be seen that

our method better preserves the distribution of the images.

Preprocessing Deformation Rendering Total online Original total
Time ∼ 20min 0.0376s 0.0456s 0.0848s 7.9334s

Table 4
Quantitative comparisons between the original NeRF-Editing [20] and
our extended version. We show the preprocessing time, deformation

time, rendering time and total online time of our extended version, and
total time of the original version for comparison. Note that the total

online time does not include preprocessing time. Although
preprocessing may take some time, the online editing time of the
extended version is much lower than that of the original version.

presented in Fig. 17. The results of editing on the tetrahedral
mesh have obvious artifacts due to poor tetrahedral mesh
quality.

Impact of mesh quality. Table 6 evaluates the influence
of the reconstructed mesh quality to our method. It can be
seen that the result of using the mesh from NeuS is better
than that of NeRF, but the difference is small. The visual
comparisons are shown in Fig. 18, where the results of using
the mesh from NeRF have some artifacts in detail, but the
overall result is not bad. This illustrates that mesh quality
has some but relatively limited effect on our results.

GT Tetrahedral Triangle

Figure 17. Ablation study of editing on the tetrahedral mesh or triangle
mesh. It can be seen that editing on the tetrahedral mesh will bring in
artifacts in rendered results.

We conduct three ablation experiments on our extended
version, geometry-aware NeRF-Editing. The first two abla-
tion experiments aim at geometry-aware editing. We remove
the symmetry information (w/o sym.) or the segmentation
information (w/o seg.) during the box editing, and compare
with the complete geometry-aware method. Another abla-
tion experiment aims at the rendering approach. Currently,
we first use the box handles to drive the deformation of
the reconstructed mesh, and then use the mesh to guide
the NeRF sampling. An alternative rendering way avoids
the introduction of the mesh, which directly uses the box
transformation to bend the rays. We compare with this
alternative rendering method (box rendering) to illustrate
the necessity of introducing the mesh to the editing. Fig. 19
shows the comparison results of the ablation studies.

Editing without segmentation information. The seg-
mentation information can limit the box editing to the
corresponding part without affecting other parts. As shown
in the second row of Fig. 19, without the segmentation
information, the mesh vertices belonging to another part

Method SSIM ↑ LPIPS ↓ PSNR ↑
Edit on tetrahedral mesh 0.934 0.049 24.37
Edit on triangle mesh 0.975 0.024 29.62

Table 5
Evaluation on the necessity of editing on the triangle mesh. Editing on

the triangle mesh leads to better results than directly editing on the
tetrahedral mesh.

GT NeRF NeuS

Figure 18. Ablation study of mesh quality. The reconstructed mesh from
NeRF is worse than that of NeuS, leading to some artifacts in the
rendered results. We visualize the rendered results (first row) and the
mesh colored with vertex normals (second row).

but close to the edge of the parts will also be transformed,
resulting in unreasonable results, such as the joint between
the seat and the chair leg is elongated together with the chair
leg. This is not the case when the segmentation information
is introduced, as shown in the last row of Fig. 19.

Editing without symmetry information. The symmetry
information helps to maintain the symmetry of the original
model and reduce the editing burden of users, which has
been illustrated in the comparison with NeRF-Editing. The
third row of Fig. 19 shows the editing results without
introducing symmetry. It can be seen that similar to NeRF-
Editing, the results do not keep the symmetry of the original
model well. We also calculate the SDE of the results, and
the results are shown in Table 2. The result of introducing
symmetry also has clear advantages quantitatively.

Directly rendering with box transformations. The box
transformations can be directly used to bend the render-
ing rays. Only sampled points within the deformed boxes
are preserved. Specifically, each sampled point takes the
weighted sum of the transformations of the two nearest
boxes as its own transformation. Before the sampled point
is fed into the network, its transformation is applied to the
coordinates of the sampled point, transforming it back to the
original space of NeRF. The results are shown in the fourth
row of Fig. 19. It can be seen that the rendering images are
incomplete.

4.5 User Study

A user study is conducted to compare the deformation
method with symmetry and semantic information with
the method without such information. We provide two
NeRF models with box handles, semantic and symmetry

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 13

Method SSIM ↑ LPIPS ↓ PSNR ↑
NeRF 0.969 0.027 28.95
NeuS 0.975 0.024 29.62

Table 6
Evaluation on the impact of the extracted mesh quality. The

reconstructed mesh from NeuS is better than that from NeRF, leading
to better editing results.

Figure 19. Ablation study. ‘Box’ represents rendering with the guidance
of boxes. Other methods fail to maintain symmetry, or restrict editing
within semantic parts, or have issues with rendering, while our method
combines geometric information and achieves better results.

information extracted. We then invited 20 participants to
try our deformation system, including 6 females and 14
males. 12 are familiar with 3D modeling, while the other
8 are not. Among those 12 individuals, 6 are engaged in
research or work in 3D modeling, and 6 are engaged in
research or work in other fields of computer graphics. The
participants used the deformation method with symmetry
and semantic information, denoted as “geometry-aware”,
and the method without such information, denoted as “non-
geometry-aware” to deform the NeRF geometry. They were
first asked to use both methods to deform the NeRF geom-
etry into the same target shape as much as possible, then
deform to an arbitrary shape. Finally, we asked the partici-
pants to score the two methods on six aspects, ease of use,
deformation effects, in line with expectations, symmetry
preservation, semantic preservation, and interaction burden.
Each aspect was scored from 1 to 5, with higher scores
indicating better performance on this aspect. We visualize
the results in Fig. 20. It can be seen that the geometry-aware
deformation method scores higher on all six aspects than
the non-geometry-aware deformation method. This shows
that the introduction of geometric information in editing
has advantages in interactivity, deformation results and
preservation of geometric properties.

Figure 20. The results of the user study comparing geometry-aware de-
formation with non-geometry-aware deformation. The participants were
asked to score 1 to 5 on six aspects: ease of use, deformation effects,
in line with expectations, symmetry preservation, semantic preservation,
and interaction burden. Geometry-aware deformation scores higher on
all six aspects which demonstrates the benefits of introducing geometric
properties.

4.6 Robustness Analysis

In our extended version, we use the method [94] to perform
semantic segmentation and box extraction, PRS-Net [95] to
analyze the symmetry, and rely on these results in editing.
We evaluate the influences of these pre-processing opera-
tions on the final editing. To make the reconstructed model
suitable for those networks trained on the synthetic data,
we scale and align the reconstructed model to match the
synthetic models. It should be noted that PRS-Net randomly
rotates the model during training, so it is robust to rotation.
To further ensure the correctness of symmetry detection, we
randomly rotate the model, and then select the symmetry
plane with the smallest SDE value as the final result. Wrong
rotation and scaling may have an impact on semantic seg-
mentation and box extraction. Because we can always scale
the model to the same bounding box size as the ShapeNet
data in the end, we only evaluate the influences of wrong
rotations. For comparison, we manually rotate the correctly
aligned model by a certain degree to deviate from the correct
orientation. As shown in Fig. 21 (a), we perform different
degrees of deviation. The segmentation and box extraction
results are shown in Figs. 21 (b) and (c), respectively. It can
be seen that the segmentation results are still ideal, but the
box will deviate from the input model, which will be detri-
mental to our editing operations. To this end, we register
the box to the corresponding semantic part. The results after
registration are shown in Fig. 21 (d). The registration results
fit better to the point cloud and can be used for subsequent
editing, reducing the impact of incorrect/inaccurate rota-
tions. Further, we use the registered boxes to deform the
corresponding NeRF. We try to keep the edits the same
in both cases. Fig. 22 compares the editing results when
the alignment is accurate and the editing results when the
alignment is inaccurate. It can be seen that after correcting
the deviation of the generated boxes, the editing when the
alignment is deviated can still ensure the ideal results.

4.7 Limitations

Our method is the first step for geometric shape defor-
mation on NeRFs and still has several limitations. First

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 14

(a) (b) (c) (d)

Figure 21. Evaluations of the influences of wrong rotations to segmenta-
tion and box abstraction. (a) Models with wrong rotations, (b) Segmen-
tation results, (c) box abstraction results, (d) Refined box results.

View1 View2 View3 View4

A
li

g
n

ed
D

ev
ia

te
d

A
li

g
n

ed
D

ev
ia

te
d

Figure 22. Results of wrong rotations (row “Deviated”) compared with
correct rotation (row “Aligned”). Different columns show different views.

of all, the biggest limitation is that we cannot modify the
color as well as the lighting and shadow based on the
editing results. If an object part that is in the shadow during
capturing is deformed to face the light, its color will still
be dim instead of bright, as shown in Fig. 23. Similarly,
the shadow of the respective parts of the combined objects
are only affected by the original environment. The newly
added part will not change the shadow of other parts,
and the combination of parts in different environments
may cause inconsistency, as shown in Fig. 24. This could
be dealt with by incorporating some recent NeRF-based
relighting work [6], [55] to achieve correct color rendering
by decoupling lighting. Second, limited by the geometry
analysis method we use, we can only automatically generate
cube handles and extract segmentation information and
symmetry information for specific categories of objects. For
example, as [94] is only trained on chair, table, animal and
airplane categories, the editing objects we show in this paper
are also mainly chair, table and animal models. But this
does not limit the implementation of our interactive editing
method, and as more data becomes available, the method
[94] can also be trained on other categories. Users can also
draw the cubes by themselves to edit. Last, although we

have verified that inaccurate alignment has little impact on
geometry-aware editing, wrong geometric analysis results
can have an impact on editing. Should this happen, it is
better to edit without using segmentation information and
symmetry information to assist editing.

Training1 Training2 Deformed

Figure 23. A failure case for deformation. Our approach does not edit
the appearance along with geometry deformation. In this example, since
the underarm is occluded from the light in the T-pose during training, it
will always be gloomy even when the woman raises her arm, which is
implausible.

Figure 24. A failure case for composition. Our method cannot eliminate
or change the lighting and shadow, so when combining parts from
significantly different lighting environments, lighting and shadow incon-
sistencies will appear.

5 CONCLUSION

In this paper, we propose the first method to support user-
controlled shape deformation to the geometry of neural ra-
diance field network. By establishing a correspondence be-
tween the explicit mesh representation and the implicit vol-
ume representation, our method can use the well-developed
triangular mesh deformation method to deform the implicit
representation. With the novel view synthesis capability of
NeRF, users can visualize the editing results from arbitrary
views. Our method is suitable for general real scenes which
can edit scene objects including human bodies, animals,
man-made models, etc. Compared with the previous editing
methods for NeRF, our method has a higher degree of
freedom and can support the editing of details. Aiming to
reduce the interaction burden of the user, we propose an ex-
tended version to support interactive geometry-aware shape
deformation to the geometry of NeRF. With the synthetic
model’s data priors, we extract cube abstractions for the
real reconstructed models as handles for user editing. The
segmentation and symmetry information extracted simul-
taneously makes editing more efficient and maintains the
geometric properties of the model. We build an interactive
editing system based on this method, where users can use
the cube handles to deform the geometry of NeRF and
synthesize novel view results in real-time. Further, using
segmentation information, our method can also supports
semantic part-level NeRF compositions. Compared with
the original version, the extended version has advantages
in efficiency and maintaining the geometric properties of
the model. In the future, we will explore how to directly
perform geometric analysis of models modeled by NeRF, as

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 15

well as incorporating relighting methods to adjust lighting
and shadow during editing.

ACKNOWLEDGMENT

This work was supported by grants from the National
Natural Science Foundation of China (No. 62061136007), the
Beijing Municipal Natural Science Foundation for Distin-
guished Young Scholars (No. JQ21013), the Royal Society
Newton Advanced Fellowship (No. NAF\R2\192151), and
the Youth Innovation Promotion Association CAS.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “NeRF: Representing scenes as neural
radiance fields for view synthesis,” in European Conference on
Computer Vision. Springer, 2020, pp. 405–421.

[2] L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt, “Neural
sparse voxel fields,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[3] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa,
“Plenoctrees for real-time rendering of neural radiance fields,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 5752–5761.

[4] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin,
“FastNeRF: High-fidelity neural rendering at 200fps,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
2021, pp. 14 346–14 355.

[5] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “pixelNeRF: Neural
radiance fields from one or few images,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 4578–4587.

[6] M. Boss, R. Braun, V. Jampani, J. T. Barron, C. Liu, and H. Lensch,
“NeRD: Neural reflectance decomposition from image collec-
tions,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 12 684–12 694.

[7] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall,
and J. T. Barron, “NeRV: Neural reflectance and visibility fields
for relighting and view synthesis,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
7495–7504.

[8] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer,
“D-NeRF: Neural radiance fields for dynamic scenes,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 10 318–10 327.

[9] A. Jain, M. Tancik, and P. Abbeel, “Putting NeRF on a diet:
Semantically consistent few-shot view synthesis,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 5885–5894.

[10] Y.-J. Yuan, Y.-K. Lai, Y.-H. Huang, L. Kobbelt, and L. Gao, “Neural
radiance fields from sparse rgb-d images for high-quality view
synthesis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

[11] Y.-J. Yuan, Y.-K. Lai, T. Wu, L. Gao, and L. Liu, “A revisit of shape
editing techniques: From the geometric to the neural viewpoint,”
Journal of Computer Science and Technology, vol. 36, no. 3, pp. 520–
554, 2021.

[12] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm,
“Pixelwise view selection for unstructured multi-view stereo,”
in European Conference on Computer Vision, 2016.

[13] S. Liu, X. Zhang, Z. Zhang, R. Zhang, J.-Y. Zhu, and B. Rus-
sell, “Editing conditional radiance fields,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
5773–5783.

[14] J. Zhang, X. Liu, X. Ye, F. Zhao, Y. Zhang, M. Wu, Y. Zhang, L. Xu,
and J. Yu, “Editable free-viewpoint video using a layered neural
representation,” ACM Transactions on Graphics (TOG), vol. 40,
no. 4, pp. 1–18, 2021.

[15] B. Yang, Y. Zhang, Y. Xu, Y. Li, H. Zhou, H. Bao, G. Zhang,
and Z. Cui, “Learning object-compositional neural radiance field
for editable scene rendering,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, October 2021, pp.
13 779–13 788.

[16] V. Lazova, V. Guzov, K. Olszewski, S. Tulyakov, and G. Pons-
Moll, “Control-nerf: Editable feature volumes for scene rendering
and manipulation,” arXiv preprint arXiv:2204.10850, 2022.

[17] K. Kania, K. M. Yi, M. Kowalski, T. Trzciński, and A. Tagliasac-
chi, “Conerf: Controllable neural radiance fields,” arXiv preprint
arXiv:2112.01983, 2021.

[18] E. Tretschk, A. Tewari, V. Golyanik, M. Zollhofer, C. Lassner, and
C. Theobalt, “Non-rigid neural radiance fields: Reconstruction
and novel view synthesis of a dynamic scene from monocular
video,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 12 959–12 970.

[19] S. Peng, J. Dong, Q. Wang, S. Zhang, Q. Shuai, X. Zhou, and
H. Bao, “Animatable neural radiance fields for modeling dy-
namic human bodies,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 14 314–14 323.

[20] Y.-J. Yuan, Y.-T. Sun, Y.-K. Lai, Y. Ma, R. Jia, and L. Gao, “Nerf-
editing: Geometry editing of neural radiance fields,” in Computer
Vision and Pattern Recognition (CVPR), 2022.

[21] G. Chaurasia, S. Duchêne, O. Sorkine-Hornung, and G. Drettakis,
“Depth synthesis and local warps for plausible image-based
navigation,” ACM Transactions on Graphics (TOG), vol. 32, pp.
30:1–30:12, 2013.

[22] P. Hedman, S. Alsisan, R. Szeliski, and J. Kopf, “Casual 3D
photography,” ACM Transactions on Graphics (TOG), vol. 36, pp. 1
– 15, 2017.

[23] N. Snavely, S. Seitz, and R. Szeliski, “Photo tourism: exploring
photo collections in 3D,” in SIGGRAPH 2006, 2006.

[24] P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow, “Scalable
inside-out image-based rendering,” ACM Transactions on Graphics
(TOG), vol. 35, pp. 1 – 11, 2016.

[25] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lu-
migraph,” Proceedings of the 23rd annual conference on Computer
Graphics and Interactive Techniques, 1996.

[26] M. Levoy and P. Hanrahan, “Light field rendering,” Proceedings
of the 23rd Annual Conference on Computer Graphics and interactive
techniques, 1996.

[27] R. Szeliski and P. Golland, “Stereo matching with transparency
and matting,” in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. IEEE, 1998, pp. 517–524.

[28] A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi,
K. Sunkavalli, R. Martin-Brualla, T. Simon, J. M. Saragih,
M. Nießner, R. Pandey, S. Fanello, G. Wetzstein, J.-Y. Zhu,
C. Theobalt, M. Agrawala, E. Shechtman, D. B. Goldman, and
M. Zollhofer, “State of the art on neural rendering,” Computer
Graphics Forum, vol. 39, 2020.

[29] A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, Z. Xu,
T. Simon, M. Nießner, E. Tretschk, L. Liu, B. Mildenhall, P. Srini-
vasan, R. Pandey, S. Orts-Escolano, S. Fanello, M. Guo, G. Wet-
zstein, J. y Zhu, C. Theobalt, M. Agrawala, D. B. Goldman, and
M. Zollhöfer, “Advances in neural rendering,” ACM SIGGRAPH
2021 Courses, 2021.

[30] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and
M. Zollhofer, “DeepVoxels: Learning persistent 3D feature em-
beddings,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2437–2446.

[31] S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann,
and Y. Sheikh, “Neural volumes: learning dynamic renderable
volumes from images,” ACM Transactions on Graphics (TOG),
vol. 38, no. 4, pp. 1–14, 2019.

[32] K.-A. Aliev, A. Sevastopolsky, M. Kolos, D. Ulyanov, and V. Lem-
pitsky, “Neural point-based graphics,” in European Conference on
Computer Vision. Springer, 2020, pp. 696–712.

[33] P. Dai, Y. Zhang, Z. Li, S. Liu, and B. Zeng, “Neural point
cloud rendering via multi-plane projection,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 7830–7839.

[34] A. Chen, M. Wu, Y. Zhang, N. Li, J. Lu, S. Gao, and J. Yu,
“Deep surface light fields,” in Proceedings of the ACM on Computer
Graphics and Interactive Techniques, vol. 1, no. 1. ACM New York,
NY, USA, 2018, pp. 1–17.

[35] J. Thies, M. Zollhöfer, and M. Nießner, “Deferred neural render-
ing: Image synthesis using neural textures,” ACM Transactions on
Graphics (TOG), vol. 38, no. 4, pp. 1–12, 2019.

[36] G. Riegler and V. Koltun, “Free view synthesis,” in European
Conference on Computer Vision. Springer, 2020, pp. 623–640.

[37] ——, “Stable view synthesis,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2021.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 16

[38] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely, “Stereo
magnification: learning view synthesis using multiplane images,”
ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1–12, 2018.

[39] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari,
R. Ramamoorthi, R. Ng, and A. Kar, “Local light field fusion:
Practical view synthesis with prescriptive sampling guidelines,”
ACM Transactions on Graphics (TOG), vol. 38, no. 4, pp. 1–14, 2019.

[40] Z. Li, W. Xian, A. Davis, and N. Snavely, “Crowdsampling the
plenoptic function,” in European Conference on Computer Vision.
Springer, 2020, pp. 178–196.

[41] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene represen-
tation networks: continuous 3D-structure-aware neural scene
representations,” in Proceedings of the 33rd International Conference
on Neural Information Processing Systems, 2019, pp. 1121–1132.

[42] P. Kellnhofer, L. C. Jebe, A. Jones, R. Spicer, K. Pulli, and
G. Wetzstein, “Neural lumigraph rendering,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 4287–4297.

[43] S. Wizadwongsa, P. Phongthawee, J. Yenphraphai, and S. Suwa-
janakorn, “NeX: Real-time view synthesis with neural basis ex-
pansion,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 8534–8543.

[44] K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “NeRF++:
Analyzing and improving neural radiance fields,” ArXiv, vol.
abs/2010.07492, 2020.

[45] S. Peng, Y. Zhang, Y. Xu, Q. Wang, Q. Shuai, H. Bao, and X. Zhou,
“Neural body: Implicit neural representations with structured
latent codes for novel view synthesis of dynamic humans,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 9054–9063.

[46] G. Gafni, J. Thies, M. Zollhofer, and M. Nießner, “Dynamic neural
radiance fields for monocular 4D facial avatar reconstruction,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 8649–8658.

[47] Z. Li, S. Niklaus, N. Snavely, and O. Wang, “Neural scene
flow fields for space-time view synthesis of dynamic scenes,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 6498–6508.

[48] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M.
Seitz, and R. Martin-Brualla, “Nerfies: Deformable neural radi-
ance fields,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 5865–5874.

[49] K. Park, U. Sinha, P. Hedman, J. T. Barron, S. Bouaziz, D. B.
Goldman, R. Martin-Brualla, and S. M. Seitz, “HyperNeRF: a
higher-dimensional representation for topologically varying neu-
ral radiance fields,” ACM Transactions on Graphics (TOG), vol. 40,
no. 6, pp. 1–12, 2021.

[50] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural
graphics primitives with a multiresolution hash encoding,” ACM
Trans. Graph., vol. 41, no. 4, pp. 102:1–102:15, Jul. 2022. [Online].
Available: https://doi.org/10.1145/3528223.3530127

[51] P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and
P. Debevec, “Baking neural radiance fields for real-time view
synthesis,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 5875–5884.

[52] C. Reiser, S. Peng, Y. Liao, and A. Geiger, “KiloNeRF: Speeding
up neural radiance fields with thousands of tiny MLPs,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 14 335–14 345.

[53] Q. Wang, Z. Wang, K. Genova, P. Srinivasan, H. Zhou, J. T. Bar-
ron, R. Martin-Brualla, N. Snavely, and T. Funkhouser, “IBRNet:
Learning multi-view image-based rendering,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 4690–4699.

[54] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su,
“MVSNeRF: Fast generalizable radiance field reconstruction from
multi-view stereo,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 14 124–14 133.

[55] X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Freeman,
and J. T. Barron, “NeRFactor: Neural factorization of shape and
reflectance under an unknown illumination,” ACM Transactions
on Graphics (TOG), vol. 40, no. 6, pp. 1–18, 2021.

[56] K. Jiang, S.-Y. Chen, H. Fu, and L. Gao, “Nerffacelighting: Im-
plicit and disentangled face lighting representation leveraging
generative prior in neural radiance fields,” ACM Transactions on
Graphics, vol. 42, no. 3, pp. 1–18, 2023.

[57] Y.-H. Huang, Y. He, Y.-J. Yuan, Y.-K. Lai, and L. Gao, “Styl-
izednerf: Consistent 3d scene stylization as stylized nerf via 2d-
3d mutual learning,” in Computer Vision and Pattern Recognition
(CVPR), 2022.

[58] K. Jiang, S.-Y. Chen, F.-L. Liu, H. Fu, and L. Gao, “Nerffaceed-
iting: Disentangled face editing in neural radiance fields,” in
SIGGRAPH Asia 2022 Conference Papers, 2022, pp. 1–9.

[59] T. Wu, J.-M. Sun, Y.-K. Lai, and L. Gao, “De-nerf: Decoupled
neural radiance fields for view-consistent appearance editing and
high-frequency environmental relighting,” in SIGGRAPH 2023
Conference Papers, 2023.

[60] Y.-H. Huang, Y.-P. Cao, Y.-K. Lai, Y. Shan, and L. Gao, “Nerf-
texture: Texture synthesis with neural radiance fields,” in SIG-
GRAPH 2023 Conference Papers, 2023.

[61] L. Gao, F.-L. Liu, S.-Y. Chen, K. Jiang, C. Li, Y.-K. Lai, and H. Fu,
“SketchFaceNeRF: Sketch-based facial generation and editing in
neural radiance fields,” ACM Transactions on Graphics, 2023.

[62] Chong Bao and Bangbang Yang, Z. Junyi, B. Hujun, Z. Yinda,
C. Zhaopeng, and Z. Guofeng, “Neumesh: Learning disentan-
gled neural mesh-based implicit field for geometry and texture
editing,” in European Conference on Computer Vision (ECCV), 2022.

[63] T. Xu and T. Harada, “Deforming radiance fields with cages,” in
ECCV, 2022.

[64] L. Gao, G. Zhang, and Y. Lai, “L p shape deformation,” Science
China Information Sciences, vol. 55, no. 5, pp. 983–993, 2012.

[65] S.-Y. Chen, L. Gao, Y.-K. Lai, and S. Xia, “Rigidity controllable as-
rigid-as-possible shape deformation,” Graphical Models, vol. 91,
pp. 13–21, 2017.

[66] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-
P. Seidel, “Laplacian surface editing,” in Proceedings of the 2004
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing,
2004, pp. 175–184.

[67] O. Sorkine, “Laplacian mesh processing,” Eurographics (STARs),
vol. 29, 2005.

[68] Y. Lipman, O. Sorkine, M. Alexa, D. Cohen-Or, D. Levin, C. Rössl,
and H.-P. Seidel, “Laplacian framework for interactive mesh
editing,” International Journal of Shape Modeling, vol. 11, no. 01,
pp. 43–61, 2005.

[69] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum,
“Mesh editing with Poisson-based gradient field manipulation,”
in ACM SIGGRAPH 2004 Papers, 2004, pp. 644–651.

[70] O.-C. Au, C.-L. Tai, L. Liu, and H. Fu, “Dual Laplacian editing for
meshes,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 3, pp. 386–395, 2006.

[71] O. Sorkine-Hornung and M. Alexa, “As-rigid-as-possible surface
modeling,” in Symposium on Geometry Processing, 2007.

[72] N. Magnenat-Thalmann, R. Laperrire, and D. Thalmann, “Joint-
dependent local deformations for hand animation and object
grasping,” in In Proceedings on Graphics interface’88. Citeseer,
1988.

[73] A. Jacobson, I. Baran, L. Kavan, J. Popović, and O. Sorkine,
“Fast automatic skinning transformations,” ACM Transactions on
Graphics (TOG), vol. 31, no. 4, pp. 1–10, 2012.

[74] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid
geometric models,” SIGGRAPH Comput. Graph., vol. 20, no. 4, p.
151–160, 1986.

[75] Y. Zhang, J. Zheng, and Y. Cai, “Proxy-driven free-form de-
formation by topology-adjustable control lattice,” Computers &
Graphics, vol. 89, pp. 167–177, 2020.

[76] W. Yifan, N. Aigerman, V. G. Kim, S. Chaudhuri, and O. Sorkine-
Hornung, “Neural cages for detail-preserving 3D deformations,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 75–83.

[77] A. Jacobson, I. Baran, J. Popovic, and O. Sorkine, “Bounded bi-
harmonic weights for real-time deformation,” ACM Transactions
on Graphics (TOG), vol. 30, no. 4, pp. 78–1, 2011.

[78] Y.-J. Yuan, Y.-K. Lai, T. Wu, S. Xia, and L. Gao, “Data-driven
weight optimization for real-time mesh deformation,” Graphical
Models, vol. 104, p. 101037, 2019.

[79] M. S. Floater, “Mean value coordinates,” Computer Aided Geomet-
ric Design, vol. 20, no. 1, pp. 19–27, 2003.

[80] F. Bogo, J. Romero, M. Loper, and M. J. Black, “FAUST: Dataset
and evaluation for 3D mesh registration,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
IEEE, 2014.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 17

[81] R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popović, “Mesh-
based inverse kinematics,” ACM Transactions on Graphics (TOG),
vol. 24, no. 3, pp. 488–495, 2005.

[82] L. Gao, Y.-K. Lai, D. Liang, S.-Y. Chen, and S. Xia, “Efficient
and flexible deformation representation for data-driven surface
modeling,” ACM Transactions on Graphics (TOG), vol. 35, no. 5,
pp. 158:1–158:17, 2016.

[83] L. Gao, Y.-K. Lai, J. Yang, Z. Ling-Xiao, S. Xia, and L. Kobbelt,
“Sparse data driven mesh deformation,” IEEE Transactions on
Visualization and Computer Graphics, vol. 27, no. 3, pp. 2085–2100,
2019.

[84] Q. Tan, L. Gao, Y.-K. Lai, and S. Xia, “Variational autoencoders
for deforming 3D mesh models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
5841–5850.

[85] J. Yang, L. Gao, Q. Tan, Y.-H. Huang, S. Xia, and Y.-K. Lai, “Multi-
scale mesh deformation component analysis with attention-based
autoencoders,” IEEE Transactions on Visualization and Computer
Graphics, 2021.

[86] L. Liu, Y. Zheng, D. Tang, Y. Yuan, C. Fan, and K. Zhou, “Neu-
roSkinning: Automatic skin binding for production characters
with deep graph networks,” ACM Transactions on Graphics (TOG),
vol. 38, no. 4, pp. 1–12, 2019.

[87] Z. Xu, Y. Zhou, E. Kalogerakis, C. Landreth, and K. Singh,
“RigNet: Neural rigging for articulated characters,” ACM Trans-
actions on Graphics (TOG), vol. 39, no. 4, pp. 1–14, 2020.

[88] Y. Deng, J. Yang, and X. Tong, “Deformed implicit field: Modeling
3D shapes with learned dense correspondence,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2021.

[89] J. T. Kajiya and B. P. Von Herzen, “Ray tracing volume densities,”
ACM SIGGRAPH Computer Graphics, vol. 18, no. 3, pp. 165–174,
1984.

[90] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolu-
tion 3D surface construction algorithm,” ACM Siggraph Computer
Graphics, vol. 21, no. 4, pp. 163–169, 1987.

[91] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang,
“NeuS: Learning neural implicit surfaces by volume rendering
for multi-view reconstruction,” in Advances in Neural Information
Processing Systems, vol. 34, 2021.

[92] Y. Hu, T. Schneider, B. Wang, D. Zorin, and D. Panozzo, “Fast
tetrahedral meshing in the wild,” ACM Transactions on Graphics
(TOG), vol. 39, pp. 117:1 – 117:18, 2020.

[93] P. J. Besl and N. D. McKay, “Method for registration of 3-D
shapes,” in Sensor fusion IV: control paradigms and data structures,
vol. 1611. Spie, 1992, pp. 586–606.

[94] K. Yang and X. Chen, “Unsupervised learning for cuboid shape
abstraction via joint segmentation from point clouds,” ACM
Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1–11, 2021.

[95] L. Gao, L.-X. Zhang, H.-Y. Meng, Y.-H. Ren, Y.-K. Lai, and
L. Kobbelt, “PRS-Net: Planar reflective symmetry detection net
for 3D models,” IEEE Transactions on Visualization and Computer
Graphics, vol. 27, no. 6, pp. 3007–3018, 2020.

[96] M. Alexa, “Linear combination of transformations,” ACM Trans-
actions on Graphics (TOG), vol. 21, no. 3, pp. 380–387, 2002.

[97] A. Inc, “Mixamo,” https://www.mixamo.com.
[98] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., “Image

quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612,
2004.

[99] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep features as a perceptual
metric,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 586–595.

[100] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter, “GANs trained by a two time-scale update rule
converge to a local nash equilibrium,” in Advances in Neural
Information Processing Systems, vol. 30, 2017.

[101] R. W. Sumner and J. Popović, “Deformation transfer for triangle
meshes,” ACM Transactions on Graphics (TOG), vol. 23, no. 3, pp.
399–405, 2004.

Yu-Jie Yuan received the bachelor’s degree
in mathematics from Xi’an Jiaotong University
in 2018. He is currently a Ph.D. candidate in
the Institute of Computing Technology, Chinese
Academy of Sciences. His research interests in-
clude computer graphics and neural rendering.

Yang-Tian Sun received the Master’s degree
from the Institute of Computing Technology, Chi-
nese Academy of Sciences in 2022. His re-
search interests include computer graphics and
neural rendering.

Yu-Kun Lai received his bachelor’s degree and
PhD degree in computer science from Tsinghua
University in 2003 and 2008, respectively. He
is currently a Professor in the School of Com-
puter Science & Informatics, Cardiff University.
His research interests include computer graph-
ics, geometry processing, image processing and
computer vision. He is on the editorial boards
of IEEE Transactions on Visualization and Com-
puter Graphics and The Visual Computer.

Yuewen Ma received his PhD degree from
Nanyang Technological University, Singapore in
2013. He has been engaged in the research and
product of computer graphics and 3D vision for
a long time. He is currently the leader of 3D
reconstruction at ByteDance Pico.

Rongfei Jia received his PhD degree from Bei-
hang University. He focuses on 3D deep learning
research and has realized automatic 3D recon-
struction of commodities, automatic layout gen-
eration of real houses, and intelligent matching
generation. He has published many papers at
conferences such as NeurIPS, ICCV, and KDD.
He also won the first Chinagraph open-source
dataset award.

Leif Kobbelt is a full professor and the head
of the Computer Graphics Group at the RWTH
Aachen University, Germany. His research in-
terests include all areas of Computer Graphics
and Geometry Processing with a focus on multi
resolution and free-form modeling as well as the
efficient handling of polygonal mesh data. He re-
ceived his master’s degree in 1992 and Ph.D. in
1994 from the University of Karlsruhe, Germany.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JUNE 2022 18

Lin Gao received the bachelor’s degree in math-
ematics from Sichuan University and the PhD
degree in computer science from Tsinghua Uni-
versity. He is currently an Associate Professor at
the Institute of Computing Technology, Chinese
Academy of Sciences. He has been awarded the
Newton Advanced Fellowship from the Royal So-
ciety and the Asia Graphics Association young
researcher award. His research interests include
computer graphics and geometric processing.

	Introduction
	Related Work
	Our Method
	Neural Radiance Fields
	Editing of Explicit Surface Mesh Representation
	Deformation Transfer to Discrete Volume
	Ray Bending
	Geometry Analysis blackusing Shape Priors
	Geometry-aware NeRF Editing
	Interactive NeRF Editing System

	Experiments and Evaluations
	Datasets and metrics
	Editing Results
	Comparisons
	Ablation Study
	User Study
	Robustness Analysis
	Limitations

	Conclusion
	References
	Biographies
	Yu-Jie Yuan
	Yang-Tian Sun
	Yu-Kun Lai
	Yuewen Ma
	Rongfei Jia
	Leif Kobbelt
	Lin Gao

