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Efficient Spatially Sparse Inference for
Conditional GANs and Diffusion Models

Muyang Li, Ji Lin, Chenlin Meng, Stefano Ermon, Song Han and Jun-Yan Zhu

Abstract—During image editing, existing deep generative models tend to re-synthesize the entire output from scratch, including the
unedited regions. This leads to a significant waste of computation, especially for minor editing operations. In this work, we present
Spatially Sparse Inference (SSI), a general-purpose technique that selectively performs computation for edited regions and accelerates
various generative models, including both conditional GANs and diffusion models. Our key observation is that users prone to gradually
edit the input image. This motivates us to cache and reuse the feature maps of the original image. Given an edited image, we sparsely
apply the convolutional filters to the edited regions while reusing the cached features for the unedited areas. Based on our algorithm, we
further propose Sparse Incremental Generative Engine (SIGE) to convert the computation reduction to latency reduction on off-the-shelf
hardware. With about 1%-area edits, SIGE accelerates DDPM by 3.0× on NVIDIA RTX 3090 and 4.6× on Apple M1 Pro GPU, Stable
Diffusion by 7.2× on 3090, and GauGAN by 5.6× on 3090 and 5.2× on M1 Pro GPU. Compared to our conference version, we extend
SIGE to accommodate attention layers and apply it to Stable Diffusion. Additionally, we offer support for Apple M1 Pro GPU and include
more results with large and sequential edits.

Index Terms—Diffusion Models, GAN, Sparse, Image Editing, Efficiency
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Fig. 1: We introduce Sparse Incremental Generative Engine (SIGE), an engine that selectively performs computations at the edited regions for image editing applications.
The computation and latency are measured on NVIDIA RTX 3090 for a single forward. For the above examples, SIGE significantly reduces the computation of SDEdit
with DDPM [1], [2] and Stable Diffusion [3], and GauGAN [4] while preserving the image quality. When combined with existing model compression methods such as
GAN Compression [5], it further reduces the computation of GauGAN by 47×.

1 INTRODUCTION

D EEP generative models, such as GANs [6], [7] and
diffusion models [1], [2], [8], excel at synthesizing

photo-realistic images, enabling many image synthesis and
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editing applications. For example, users can edit an image
by drawing sketches [9], [10], semantic maps [4], [9], or
strokes [11]. All of these applications require users to interact
with generative models frequently and therefore demand
short inference time.

In practice, content creators often edit images gradually
and only update a small image region each time. However,
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Fig. 2: In the interactive editing scenario, a user adds a new building, which occupies 9.4% pixels. (a) Vanilla SDEdit has to apply denoising networks to the entire
image, even though only a 9.4% area was edited. (b) Our method instead reuses the feature maps of the previous edits and only sparsely applies convolutions to
the newly edited regions, which results in a 5.0× MACs reduction for this example.

even for a minor edit, recent generative models often synthe-
size the entire image, including the unchanged areas, which
leads to a significant waste of computation. As a concrete
example shown in Figure 2(a), the result of the previous
edits has already been computed, and the user further edits
9.4% areas. However, vanilla SDEdit [11] needs to apply the
denoising network on the entire image to obtain the newly
edited regions, wasting 80% computation on the unchanged
areas. A naive approach to address this issue would be
to first segment the newly edited regions, synthesize the
corresponding output regions, and blend the outputs back
into the previous output. Unfortunately, this method often
creates visible seams between the newly edited and unedited
regions. How could we save the computation by only
updating the edited regions without losing global coherence?

In this work, we propose Spatially Sparse Inference (SSI),
a general method to accelerate deep generative models,
including conditional GANs and diffusion models, by uti-
lizing the spatial sparsity of edited regions. Our method
is motivated by the observation that feature maps in the
unedited regions remain mostly the same during user editing.
As shown in Figure 2(b), our key idea is to reuse the cached
feature maps of the previous edits and sparsely update the
newly edited areas. Specifically, given user input, we first
compute a difference mask to locate the newly edited regions.
For each convolution layer in the model, we only sparsely
apply the filters to the masked regions while reusing the pre-
vious activations for the unchanged areas. The sparse update
can significantly reduce the computation without hurting the
image quality. However, the sparse update involves a gather-
scatter process and often incurs significant latency overheads
with existing deep learning frameworks. To address the issue,
we propose Sparse Incremental Generative Engine (SIGE) to
translate the theoretical computation reduction of our algo-
rithm to measured latency reduction on various hardware.

To evaluate our method, we curate image editing and
inpainting benchmarks on LSUN Church [12], Cityscapes [13]
and LAION-5B [14]. Without loss of visual fidelity, we
reduce the computation of DDPM [1], [2], Progressive
Distillation [15], Stable Diffusion [3], and GauGAN [4] by
up to 7.5×, 2.7×, 8.2×, and 18×, respectively, measured by
MACs*. Compared to existing generative model acceleration

*. We measure the computational cost with the number of Multiply-
Accumulate operations (MACs). 1 MAC=2 FLOPs.

methods [5], [16], [17], [18], [19], [20], [21], our method
directly uses the off-the-shelf pre-trained weights and could
be applied to these methods as a plugin. When applied
to GAN Compression [5], we reduce the computation of
GauGAN by up 50×. See Figure 1 for some examples of our
method. With SIGE, we accelerate DDPM by up to 3.0× on
NVIDIA RTX 3090, 4.6× on Apple M1 Pro GPU, and 6.6×
on M1 Pro CPU, Stable Diffusion by up to 7.2× on 3090, and
GauGAN by up to 5.6× on 3090, 5.2× on M1 Pro GPU, and
14× on M1 Pro CPU.

This journal paper extends our conference version [22]
with new development and experiments in the following
areas:
• We extend SIGE to support both self-attention and cross-

attention layers by pruning unedited query tokens. This
optimization can dramatically shrink the attention map
size according to the edit size, reducing the computation
and latency of the attention layers correspondingly.

• We further apply our method to Stable Diffusion [3], a
widely-used text-to-image model with latency primarily
bottlenecked by its self-attention layers. Since our previous
engine can only accelerate convolutions, it can only reduce
the computation by 1.6× and latency by 1.1× on Stable
Diffusion, even with a 2.8%-area edit. In contrast, with our
new attention optimization, we reduce Stable Diffusion’s
computation and latency by ∼ 5×.

• We additionally support SIGE on the Metal Performance
Shaders (MPS) backend to enable inference on the Apple
M1 Pro GPU. On this hardware, we achieve up to
4.6×, 3.0×, and 5.2× speedups for DDPM, Progressive
Distillation, and GauGAN, respectively.

• We show additional results of SIGE with large and
sequential edits. Specifically, on NVIDIA RTX 3090, our
method remains faster than the original model with up
to ∼ 70% edits. For sequential edits, it can incrementally
update the cached activations. We also include an extra
ablation study regarding the dilation hyper-parameter to
validate our design choice.

Our code, benchmarks and demo are available at https:
//github.com/lmxyy/sige.

2 RELATED WORK

Generative models. Generative models such as GANs [6],
[7], [24], [25], diffusion models [2], [3], [8], [26], and auto-

https://github.com/lmxyy/sige
https://github.com/lmxyy/sige
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Fig. 3: Tiling-based sparse convolution overview. For each convolution Fl in the network, we wrap it into SIGE Convl. The activations of the original image are already
pre-computed. When getting the edited image, we first compute a difference mask between the original and edited image and reduce the mask to the active block
indices to locate the edited regions. In each SIGE Convl, we directly gather the active blocks from the edited activation Aedited

l according to the reduced indices, stack the
blocks along the batch dimension, and feed them into Fl. The gathered blocks have an overlap of width 2 if Fl is 3 × 3 convolution with stride 1 [23]. After getting the
output blocks from Fl, we scatter them back into Fl(A

original
l ) to get the edited output, which approximates Fl(A

edited
l ).

Original Edited 256 × 256 128 × 128 64 × 64 32 × 32 16 × 16 8 × 8
Fig. 4: Left: Detailed edit example. Right: Channel-wise average of |∆Al| at the l-th layer of DDPM with different feature map resolutions. |∆Al| is sparse and non-zero
values are aggregated at the edited regions.

regressive models [27], [28] have demonstrated impressive
photorealistic synthesis capability. They have also been
extended to conditional image synthesis tasks such as image-
to-image translation [9], [29], [30], [31], controllable image
generation [4], [11], [32], and real image editing [31], [32], [33],
[34], [35], [36], [37], [38]. Unfortunately, recent generative
models have become increasingly computationally intensive,
compared to their recognition counterparts. For example,
GauGAN [4] consumes 281GMACs, 500× more than
MobileNet [39], [40], [41]. Similarly, one key limitation of
diffusion models [2] is their substantial computation cost and
long inference time. To generate one image, DDPM requires
hundreds or thousands of forwarding steps [2], [26], which is
often infeasible in real-world interactive settings. To improve
the sampling efficiency of DDPMs, recent works [1], [42],
[43] propose to interpret the sampling process of DDPMs
from the perspective of ordinary differential equations.
However, these approaches still require hundreds of steps
to generate high-quality samples. To further reduce the
sampling cost, DDGAN [44] uses a multimodal conditional
GAN to model each denoising step. Salimans et al. [15]
propose to progressively distill a pre-trained DDPM model
into a new one that requires fewer steps. Although this
approach drastically reduces the sampling steps, the distilled
model itself remains computationally prohibitive. Unlike
prior work, our work focuses on reducing the computation
cost of a pre-trained model. It is complementary to recent
efforts on model compression, distillation, and the sampling
step reduction of the diffusion models.

Model acceleration. People apply model compression
techniques, including pruning [45], [46], [47], [48], [49], [50]
and quantization [45], [51], [52], [53], [54], [55], to reduce the

computation and model size of off-the-shelf deep learning
models. Recent works apply Neural Architecture Search
(NAS) [56], [57], [58], [59], [60], [61], [62] to automatically
design efficient neural architectures. The above ideas
can be successfully applied to accelerate the inference of
GANs [5], [16], [17], [18], [19], [20], [21], [63], [64], [65], [66],
[67]. Although these methods have achieved prominent
compression and speedup ratios, they all reduce the
computation from the model dimension but fail to exploit the
redundancy in the spatial dimension during image editing.
Besides, these methods require re-training the compressed
model to maintain performance, while our method can be
directly applied to existing pre-trained models. We show that
our method can be combined with model compression [5]
to achieve a ∼ 50× MACs reduction in Section 4.2.

Sparse computation. Sparse computation has been widely
explored in the weight domain [68], [69], [70], [71], input
domain [72], [73], and activation domain [23], [74], [75],
[76]. For activation sparsity, RRN [77] utilizes the sparsity
in the consecutive video frame difference to accelerate video
models. However, their sparsity is unstructured, which
requires special hardware to reach its full speedup potential.
Several works instead use structured sparsity. Li et al. [78] use
a deep layer cascade to apply more convolution layers on the
hard regions than the easy regions to improve the accuracy
and speed of semantic segmentation. To accelerate 3D object
detection, SBNet [23] uses a spatial mask, either from priori
problem knowledge or an auxiliary network, to sparsify
the activations. It adopts a tiling-based sparse convolution
algorithm to handle spatial sparsity. Recent works further
integrate the spatial mask generation network into the sparse
inference network in an end-to-end manner [79] and extend
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the idea to different tasks [80], [81], [82], [83]. Compared to
SBNet [23], our mask is directly derived from the difference
between the original image and the edited image. Addition-
ally, our method does not require any auxiliary network or
extra model training. We also introduce other optimizations,
such as normalization removal, kernel fusions and attention
query pruning, to better adapt our engine for image editing.

3 METHOD

We build our method based on the following observation:
during interactive image editing, a user often only changes
the image content gradually. As a result, only a small subset
of pixels in a local region is being updated at any moment.
Therefore, we can reuse the activations of the original image
for the unedited regions. As shown in Figure 3, we first
pre-compute all activations of the original input image.
During the editing process, we locate the edited regions by
computing a difference mask between the original and edited
image. We then reuse the pre-computed activations for the
unedited areas and only update the edited regions by apply-
ing convolutional filters to them. In Section 3.1, we show the
sparsity in the intermediate activations and present our main
algorithm. In Section 3.2, we discuss the technical details
of how our Sparse Incremental Generative Engine (SIGE)
supports the sparse inference and converts the theoretical
computation reduction to measured speedup on hardware.

3.1 Activation Sparsity

Preliminary. First, we closely study the computation within a
single layer. We denote Aoriginal

l and Aedited
l as the input tensor

of the original image and edited image to the l-th convolution
layer Fl, respectively. Wl and bl are the weight and bias of
Fl. The output of Fl with input Aedited

l could be computed
in the following way due to the linearity of convolution:

Fl(A
edited
l ) = Wl ∗Aedited

l + bl

= Wl ∗ (Aedited
l −A

original
l ) + (Wl ∗Aoriginal

l + bl)

= Wl ∗∆Al︸︷︷︸
sparse

+Fl(A
original
l )︸ ︷︷ ︸

pre-computed

,

where ∗ is the convolution operator and ∆Al =

Aedited
l − A

original
l . If we have already pre-computed

all the Fl(A
original
l ), we only need to compute Wl ∗ ∆Al.

Naïvely, computing Wl ∗∆Al has the same complexity as
Wl ∗Aedited

l . However, since the edited image shares similar
features with the original image given a small edit, ∆Al

should be sparse. Below, we discuss different strategies to
leverage the activation sparsity to accelerate model inference.

Our first attempt was to prune ∆Al by zeroing out
elements smaller than a certain threshold to achieve the
target sparsity. Unfortunately, this pruning method fails to
achieve measured speedup due to the overheads of the on-
the-fly pruning and irregular sparsity pattern.

Structured sparsity. Fortunately, user edits are often highly
structured and localized. As a result, ∆Al should also share
the structured spatial sparsity, where non-zero values are
mostly aggregated within the edited regions, as shown in Fig-
ure 4. We then directly use the original and edited images to
compute a difference mask and sparsify ∆Al with this mask.

3.2 Sparse Engine SIGE

But how could we leverage the structured sparsity to
accelerate Wl∗∆Al? A naïve approach is to crop a rectangular
edited region out of ∆Al for each convolution and only
compute features for the cropped regions. Unfortunately, this
naïve cropping method works poorly for the irregular edited
regions (e.g., the example shown in Figure 4).

Tiling-based sparse convolution. Instead, as shown in Fig-
ure 5(a), we use a tiling-based sparse convolution algorithm.
We first downsample the difference mask to different scales
and dilate the downsampled masks (width 1 for diffusion
models and 2 for GauGAN). Then we divide ∆Al into
multiple small blocks of the same size spatially and index
the difference mask at the corresponding resolution. Each
block index refers to a single block with non-zero elements.
We then gather the non-zero blocks (i.e., active blocks) along
the batch dimension and feed them into the convolution
Fl. Finally, we scatter the output blocks into a zero tensor
according to the indices to recover the original spatial
size and add the pre-computed residual Fl(A

original
l ) back.

The gathered active blocks overlap with width 2 for 3 × 3
convolution with stride 1 to ensure the output blocks of the
adjacent input blocks are seamlessly stitched together [23].

This pipeline in Figure 5(a) is equivalent to a simpler
pipeline in Figure 5(b). Instead of gathering ∆Al, we could
directly gather Aedited

l . The convolution needs to be computed
with bias bl. Besides, we need to scatter the output blocks into
Fl(A

original
l ) instead of a zero tensor. Thus, we do not need

to store A
original
l anymore, which further saves memory and

removes the overheads of addition and subtraction. Figure 3
visualizes the pipeline.

However, the aforementioned pipeline still fails to pro-
duce a noticeable speedup due to extra kernel calls and
memory movement overheads in Gather and Scatter.
For example, the original dense 3× 3 convolution with 128
channels and input resolution 256 × 256 takes 0.78ms on
NVIDIA RTX 3090. The sparse convolution using pipeline
Figure 5(b) on the example shown in Figure 4 (15.5% edited
regions) still needs 0.42ms in total, with the Gather and
Scatter operations accounting for a significant overhead
of 0.17ms (41%). To mitigate these overheads, we further
optimize SIGE by pre-computing normalization parameters
and applying kernel fusion. Additionally, we extend SIGE to
support attention layers.

Pre-computing normalization parameters. For batch
normalization [84], it is easy to remove the normalization
layer during inference time since we can use pre-
computed mean and variance statistics from model training.
However, recent generative models often use instance
normalization [85], [86] or group normalization [87], [88],
which compute the statistics on the fly during inference.
These normalization layers incur overheads as we need to
estimate the statistics from the full-size tensors. However,
as the original and edited images are quite similar given a
small user edit, we assume A

original
l ≈ Aedited

l . This allows us
to reuse the statistics of Aoriginal

l for the normalization instead
of recomputing them for Aedited

l . Thus, normalization layers
could be replaced by simple Scale+Shift operations with
pre-computed A

original
l statistics.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMMMMM YYYY 5

(a) Residual pipline (b) Improved pipeline

Conv   
w/o Bias

Fl ⊕Gather Scatter⊖
Indices Indices

Aedited
l

Aoriginal
l ΔAl

Fl(Aoriginal
l )

Conv FlGather Scatter

Indices Indices

Aedited
l

Fl(Aoriginal
l )

Fig. 5: Titling-based sparse convolution pipelines. (a) We first compute the activation difference ∆Al and gather the active blocks along the batch dimension from
it according to the indices reduced from the difference mask. We then feed the blocks into the convolution Fl without bias, scatter the output into a zero tensor, and add
the residual Fl(A

original
l ) back. (b) We directly gather the blocks from Aedited

l without computing ∆Al. Fl is computed with bias. We scatter the output into Fl(A
original
l )

instead of a zero tensor.

Original Edited Difference Mask
Input Activation Difference 

|Aoriginal − Aedited |
Output Activation Difference 

|Attn(Aoriginal) − Attn(Aedited) |
Difference Mask 

(Resolution )16 × 16
Fig. 6: The input and output activation differences of a 16 × 16 self-attention layer in the DDPM model. Left: Detailed edit example with the difference mask. Right:
Activation differences with the downsampled difference mask. Attn is the self-attention layer. Brighter colors refer to larger differences. Both the input and output
differences match the mask well.

Kernel fusion. As mentioned before, both the Gather and
Scatter operations introduce significant data movement
overheads. To reduce it, we fuse several element-wise op-
erations (Scale+Shift and Nonlinearity) into Gather
and Scatter [23], [89], [90] and only apply these element-
wise operations to the active blocks (i.e., edited regions).
Furthermore, we perform the in-place computation to reduce
the number of kernel calls and memory allocation overheads.

In Scatter, we need to copy the pre-computed activa-
tion Fl(A

original
l ). This copying operation is highly redundant,

as most elements from Fl(A
original
l ) do not involve any

computation given a small edit and will be discarded in
the next Gather. To reduce the tensor copying overheads,
we fuse the Scatter with the following Gather by directly
gathering the active blocks from Fl(A

original
l ) and the input

blocks to be scattered. Sometimes, the residual connection in
the ResBlock [91] contains a shortcut 1 × 1 convolution to
match the channel number of the residual and the ResBlock
output. We also fuse the Scatter in the shortcut branch,
main branch, and the residual addition together to avoid the
tensor copying overheads in the shortcut Scatter. Please
refer to Appendix A for more details.

Extension to attention layers. Recent models have adopted
attention layers to enhance the image quality [92], [93]
and controllability [3]. These attention layers could model
long-range dependencies across image regions, potentially
introducing non-local changes. However, when the edited
region is small, it only has limited impacts on the unedited
areas. Figure 6 illustrates the difference maps for both the
input and output activations of a 16 × 16 self-attention
layer in the DDPM model, both of which closely match
the difference mask. This indicates that user edits often
change activations locally, even with attention layers, and
our method’s assumption still holds.

Based on this observation, we extend SIGE to attention
layers. Figure 7 illustrates the difference between the vanilla
and SIGE self-attention layer. As the unedited regions
remain mostly unchanged, there is no need to compute

the attention map for these areas. In our pipeline, Gather
selectively prunes the unedited regions, only preserving the
edited ones. After the Q, K, and V convolutions, we only
scatter the keys and values back into the original activations.
Thus, the query token number is reduced according to the
edit ratio, and more importantly, it also reduces the size of
the attention map correspondingly. Such memory reduction
can lead to almost linear speedup even on an NVIDIA RTX
3090 GPU, as shown in Figure 1 and Figure 9.

4 EXPERIMENTS

Below we first describe our experiment setups, including
models, baselines, datasets, and evaluation protocols. We
then discuss our main qualitative and quantitative results.
Finally, we include a detailed ablation study regarding the
importance of each algorithmic design.

4.1 Setups

Models. We conduct experiments on the following four
models, including diffusion models and GAN-based models,
to explore the generality of our method.
• DDPM [2] is a diffusion probabilistic model that models the

data distribution through an iterative denoising process. It
adopts a U-Net [94] backbone for the denoising network.
For fast sampling, we use DDIM [1] sampler to reduce the
number of denosing steps from 1000 to 100.

• Progressive Distillation (PD) [15] adopts network distilla-
tion [95] to progressively reduce the number of steps for
diffusion models.

• Stable Diffusion (SD) [3] is a text-to-image latent diffusion
model [3]. It uses a VAEGAN-based autoencoder to
compress the image to a compact latent and applies the
diffusion model in the latent space. The model includes
multiple cross-attention layers to support text conditioning.

• GauGAN [4] is a paired image-to-image translation model
which learns to generate a high-fidelity image given a
semantic label map.
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(b) SIGE self-attention layer
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[B, H W, H W ]
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Fig. 7: The original self-attention layer vs. SIGE self-attention layer. All convolutions are 1 × 1, with batch size B, and the number of input and hidden channels
C and C′, respectively. The height and width of the input are represented by H and W . N denotes the number of active blocks, and h and w denote the height
and width of the active blocks. For simplicity, we omit the original activation and active indices input to Gather and Scatter. The original pipeline computes the
attention map for all query tokens. Our SIGE pipeline instead first gathers the active blocks and feeds them to the Q, K, and V convolutions. Then, only the keys
and values are scattered back. Thus, only the edited query tokens are preserved, so the attention map size is reduced. After the Out Conv, the result tensor is scattered
back into the original activation to obtain the final output.

Baselines. We compare our methods against the following
baselines:
• Patch. We crop the smallest patch covering all the edited

regions, feed it into the model, and blend the output patch
into the original image.

• Crop. For each convolution Fl, we crop the smallest
rectangular region that covers all masked elements of the
activation Aedited

l , feed it into Fl, and scatter the output
patch into Fl(A

original
l ).

• P% Pruning. We uniformly prune P% model weights
without further fine-tuning. This is fair as our method
uses pre-trained weights without fine-tuning. Since the
fine-grained pruning is unstructured, it requires special
hardware to achieve measured speedup, so we do not
report MACs for this baseline.

• 0.19 GauGAN. We reduce each convolution layer of
GauGAN to 19% channels (21× MACs reduction) and
train it from scratch.

• GAN Compression [5]. A general-purpose compression
method for conditional GANs. GAN Comp. (S) means
GAN Compression with a larger compression ratio.

• 0.5 Original means linearly scaling each layer of the
original model to 50% channels, and we only use this to
benchmark our efficiency results.

Datasets. We use the following three datasets:
• LSUN Church. We use the LSUN Church Outdoor

dataset [12] and follow the same preprocessing steps as
prior works [2], [42]. To automatically generate a stroke
editing benchmark, we first use Detic [96] to segment the
images in the validation set. For each segmented object,
we use its segmentation mask to inpaint the image by
CoModGAN [97] and treat the inpainted image as the
original image. We generate the corresponding user strokes

by first blurring the masked regions with the median filter
and quantizing it into 6 colors following SDEdit [11]. We
collect 454 editing pairs in total (431 synthetic + 23 manual).
We evaluate DDPM [1], [2] and PD [15] on this dataset.

• Cityscapes. The dataset [13] contains images of German
street scenes. The training and validation sets consist of
2,975 and 500 images, respectively. Our editing dataset has
1,505 editing pairs in total. We evaluate GauGAN [4] on
this dataset.

• LAION. We select a random subset of 1,000 images from
LAION-5B [14] that meet or exceed 1024× 1024 resolution.
These images are then center-cropped and resized to
512× 512 resolution. Next, we randomly occlude between
1% and 25% of the image area using circular masks. We
use Stable Diffusion [3] to inpaint the region and evaluate
the visual quality of the output.

Please refer to Appendix B for more details about the
benchmark datasets.

Metrics. Following previous works [4], [5], [11], we use the
standard metrics Peak Signal Noise Ratio (PSNR, higher is
better), LPIPS (lower is better) [98], and Fréchet Inception
Distance (FID, lower is better) [99], [100]† to evaluate the
image quality. For Cityscapes, we additionally adopt a
semantic segmentation metric to evaluate the generated
images. Specifically, we run DRN-D-105 [101] on the gen-
erated images and compute the mean Intersection over
Union (mIoU) of the segmentation results. Generally, a higher
mIOU indicates that the generated images look more realistic
and better align with the input.

Implementation details. We use DDIM sampler [1] for both
DDPM and Stable Diffusion (SD). Specifically, the number

†. We use clean-fid for FID calculation.

https://github.com/GaParmar/clean-fid
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Model Method
MACs PSNR (↑) LPIPS (↓)

FID (↓) mIoU (↑)
Value Ratio with G.T. with Orig. with G.T. with Orig.

DDPM

Original 249G – 26.8 – 0.069 – 65.4 –

40% Pruning – – 24.9 31.0 0.991 0.101 72.2 –

Patch 72.0G 3.5× 26.8 40.6 0.076 0.022 66.4 –

Ours 65.3G 3.8× 26.8 52.4 0.070 0.009 65.8 –

Original 66.9G – 21.9 – 0.143 – 90.0 –

PD 40% Pruning – – 21.6 37.6 0.164 0.051 101 –

Ours 32.5G 2.1× 21.9 60.7 0.154 0.003 90.1 –

GauGAN

Original 281G – 15.8 – 0.409 – 55.4 62.4

GAN Comp. [5] 31.2G 9.0× 15.8 19.5 0.412 0.288 55.5 61.5

Ours 30.7G 9.2× 15.8 26.5 0.413 0.113 54.4 62.1

0.19 GauGAN 13.3G 21× 15.5 18.6 0.424 0.322 57.9 53.5

GAN Comp. (S) 9.64G 29× 15.7 19.1 0.422 0.310 50.4 57.4

GAN Comp.+Ours 7.06G 40× 15.7 19.2 0.416 0.299 54.6 60.0

Original 805G – 19.3 – 0.153 – 27.2 –

Stable Diffusion 50% Pruning – – 20.5 20.7 0.172 0.149 36.6 –

Ours 387G 2.1× 19.2 19.9 0.157 0.126 26.8 –

TABLE 1: Quantitative evaluation. MACs measures the average computation for a single model forward over the entire dataset. PSNR/LPIPS with G.T. means computing
the metrics with the ground-truth images, and with Orig. means computing with the generated samples from the original model. P% Pruning: Uniformly pruning
P% model weights without fine-tuning. Patch: Cropping the smallest image patch that covers all the edited regions and blending the output patch into the original image.
0.19 GauGAN: Uniformly reducing each layer of GauGAN to 19% channels and training from scratch. GAN Comp. (S): GAN Compression with a larger compression
ratio. For all models, our method outperforms other baselines with less computation.

of total denoising steps for DDPM, SD, and Progressive
Distillation (PD) are 100, 50, and 8, respectively, and we use
50, 40, and 5 steps for SDEdit [11]. We dilate the difference
mask by 5, 5, 2, 5, and 1 pixels for DDPM, SD, PD with
resolution 128, PD with resolution 256, and GauGAN,
respectively. For SD decoder, we dilate the difference mask
by 45 pixels. Besides, we apply SIGE to all convolutional
layers whose input feature map resolutions are larger than
32× 32, 16× 16, 8× 16 and 16× 32 for DDPM, PD, original
GauGAN, and GAN Compression, respectively. For SD, we
apply SIGE to all convolutional layers and attention layers
except ones in the middle stages. As the attention layers in
DDPM and PD only consume a small portion of the overall
latency, we do not apply SIGE to them. For diffusion models,
we pre-compute and reuse the statistics of the original
image for all group normalization layers [87]. For GANs, we
pre-compute and reuse the statistics of the original image
for all instance normalization layers [85] whose resolution
is higher than 16× 32. For all models, the sparse block size
for 3 × 3 convolution is 6, and 1 × 1 convolution is 4. All
results are measured with FP32 precision.

4.2 Main Results

Image quality. We report the quantitative results of applying
our method to DDPM [1], [2], PD [15], GauGAN [4], and
Stable Diffusion [3] on SDEdit [11] image editing and text-
guided inpainting in Table 1. Figure 8 shows some qualitative
results. For PSNR and LPIPS, with G.T. means computing
the metric with the ground-truth images. With Orig. means
computing the metric with the samples generated by the
original model. On LSUN Church, we only use 431 synthetic
images for the PSNR/LPIPS with G.T. metrics, as manual edits
do not have ground truths. For the other metrics, we use
the entire LSUN Chur ch dataset (431 synthetic + 23 manual
edits). On Cityscapes, we view the synthetic semantic maps

as the original input and the ground-truth semantic maps
as the edited input for the PSNR/LPIPS with G.T. metrics,
which has 1505 samples. For the other metrics, we include the
symmetric edits (view the ground-truth semantic maps as the
original inputs and synthetic semantic maps as the edited in-
puts), with 3010 samples in total. For the models with method
Patch and Ours, whose computation is edit-dependent, we
measure the average MACs over the whole dataset.

For SDEdit with DDPM and PD, our method outperforms
all baselines consistently and achieves results on par with
the original model. The Patch inference fails when the
edited region is small as the global context is insufficient.
Although our method only applies convolutional filters to
the local edited regions, it can reuse the global context
stored in the original activations. Therefore, it performs
the same as the original model. For GauGAN, our method
also performs better than GAN Compression [5] with an
even larger MACs reduction. When applying it to GAN
Compression, we further achieve a ∼ 40× MACs reduc-
tion with minor performance degradation, beating both
0.19 GauGAN and GAN Comp. (S). For Stable Diffusion,
SIGE reduces its computation by 2.1× on average while
maintaining LPIPS [98] and FID [99], [100]. As illustrated
in Figure 8, although 50% Pruning achieves higher PSNR
values, it significantly lags in visual quality compared to
both the original model and our method. In addition to the
automatically generated inpainting examples, we manually
curate two 512 × 1024 examples on image inpainting and
image-to-image translation in Figure 9. Our method closely
mirrors the original model’s results while reducing the cost
by 4 ∼ 5×.

Model efficiency. For real-world interactive image
editing applications, inference acceleration on hardware
is more critical than computation reduction. To verify the
effectiveness of our proposed engine, we measure the
speedup of the edit examples shown in Figure 8 for DDPM,
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Original

Original

Original

Original

Original

Original

15.5% Edited DDPM+SDEdit:
249GMACs  FID: 65.4

Patch:
187G (1.3×)  FID: 66.4

7.19% Edited

1.20% Edited

Ours:
78.9G (3.2×)  FID: 65.8

PD+SDEdit:
66.9GMACs  FID: 90.0

Ours:
37.6G (1.8×)  FID: 90.1

1.18% Edited

8.24% Edited

13.5% Edited

GauGAN:
281GMACs  mIoU: 62.4

GauGAN:
281GMACs  mIoU: 62.4

GauGAN:
281GMACs  mIoU: 62.4

Ours:
15.3G (18×)  mIoU: 62.1

Ours:
46.6G (6.0×)  mIoU: 62.1

Ours:
69.8G (4.0×)  mIoU: 62.1

GAN Comp.:
31.2G (9.0×)  mIoU: 61.5

GAN Comp.:
31.2G (9.0×)  mIoU: 61.5

GAN Comp.:
31.2G (9.0×)  mIoU: 61.5

GAN Comp.+Ours:
5.59G (50×)  mIoU: 60.1

GAN Comp.+Ours:
8.54G (33×)  mIoU: 60.1

GAN Comp+Ours:
10.8G (26×)  mIoU: 60.1

DDPM+SDEdit:
249GMACs  FID: 65.4

DDPM+SDEdit:
249GMACs  FID: 65.4

Ours:
51.8G (4.8×)  FID: 65.8

Ours:
33.4G (7.5×)  FID: 65.8

Patch:
62.2G (4.0×)  FID: 66.4

Patch:
31.1G (8.0×)  FID: 66.4

PD+SDEdit:
66.9GMACs  FID: 90.0

PD+SDEdit: 
66.9GMACs  FID: 90.0

Ours:
29.4G (2.3×)  FID: 90.1

Ours:
24.5G (2.7×)  FID: 90.1

Prompt: Wolverine Hd Wallpaper Posted By Samantha Walker

Prompt: 25cm Empire Shade in Stone Grey Longford Gingham

Original 3.68% Masked Stable Diffusion:
805GMACs  FID: 22.4

50% Pruning:
FID: 30.9

Ours:
267G (3.0×)  FID: 22.1

Original 3.68% Masked Stable Diffusion:
805GMACs  FID: 22.4

50% Pruning:
FID: 30.9

Ours:
267G (3.0×)  FID: 22.1

Fig. 8: Qualitative results of our method under different edit or mask sizes. MACs measure the computation for a single model forward. Our method well preserves the
visual fidelity of the original model without losing global context. On the contrary, Patch (cropping the smallest image patch that covers all the edited regions and
scattering the output patch back into the original image) performs poorly because of the lack of global context when the edit is small.

PD and GauGAN and 9 for Stable Diffusion on five devices,
including NVIDIA RTX 3090, NVIDIA RTX 2080Ti, Intel
Core i9-10920X CPU, and Apple M1 Pro CPU and GPU,

with different computational powers. We use batch size 1 to
simulate real-world use. For GPU devices, we first perform
200 warm-up runs and measure the average latency of the
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11.6% MaskedOriginal

Stable Diffusion:
1855GMACs  369ms

Ours:
514GMACs (3.6×)  95.0ms (3.9×)

Prompt: A photograph of a horse on a grassland.

(a) Image Inpainting

Original 2.8% Edited

Stable Diffusion+SDEdit:
1855GMACs  369ms

Ours:
353GMACs (5.3×)  76.4ms (4.8×)

Prompt: A fantasy beach landscape, trending on artstation.

(b) Image Editing

Fig. 9: Qualitative results of Stable Diffusion [3]. The computation and latency are measured for a single diffusion step on NVIDIA RTX 3090. For image inpainting, with
11.6% masked regions, our method reduces the computation by 3.6×, resulting in a 3.9× speedup. For image editing, we reduce the computation by 5.3×, achieving a
4.8× speedup with a 2.8%-area edit.

Model Edit Size Method
MACs 3090 2080Ti Intel Core i9 M1 Pro CPU M1 Pro GPU

Value Ratio Value Ratio Value Ratio Value Ratio Value Ratio Value Ratio

DDPM

–
Original 248G – 37.5ms – 54.6ms – 609ms – 12.9s – 183ms –

0.5 Original 62.5G 4.0× 20.0ms 1.9× 31.2ms 1.8× 215ms 2.8× 3.22s 4.0× 90.5ms 2.0×

1.20%
Crop 32.6G 7.6× 15.5ms 2.4× 29.3ms 1.9× 185ms 3.3× 1.85s 6.9× 52.1ms 3.5×

Ours 33.4G 7.5× 12.6ms 3.0× 19.1ms 2.9× 147ms 4.1× 1.96s 6.6× 39.5ms 4.6×

15.5%
Crop 155G 1.6× 30.5ms 1.2× 44.5ms 1.2× 441ms 1.4× 8.09s 1.6× 144ms 1.3×

Ours 78.9G 3.2× 19.4ms 1.9× 29.8ms 1.8× 304ms 2.0× 5.04s 2.6× 75.8ms 2.4×

PD256

–
Original 119G – 35.1ms – 51.2ms – 388ms – 6.18s – 178ms –

0.5 Original 31.0G 3.8× 29.4ms 1.2× 43.2ms 1.2× 186ms 2.1× 1.72s 3.6× 151ms 1.2×

1.20% Ours 25.9G 4.6× 18.6ms 1.9× 26.4ms 1.9× 152ms 2.5× 1.55s 4.0× 59.9ms 3.0×

15.5% Ours 48.5G 2.5× 21.4ms 1.6× 30.7ms 1.7× 250ms 1.6× 3.22s 1.9× 73.3ms 2.4×

GauGAN

–
Original 281G – 45.4ms – 49.5ms – 682ms – 14.1s – 151ms –

GAN Compression 31.2G 9.0× 15.1ms 3.0× 25.0ms 2.0× 333ms 2.1× 2.11s 6.7× 75.3ms 2.0×

1.18%
Ours 15.3G 18× 8.11ms 5.6× 19.3ms 2.6× 114ms 6.0× 0.990s 14× 29.1ms 5.2×

GAN Comp.+Ours 5.59G 50× 8.72ms 5.2× 16.2ms 3.1× 53.1ms 13× 0.370s 38× 25.6ms 5.9×

13.5%
Ours 69.8G 4.0× 17.8ms 2.5× 27.1ms 1.8× 238ms 2.9× 4.06s 3.5× 89.1ms 1.7×

GAN Comp.+Ours 10.8G 26× 10.0ms 4.5× 17.4ms 2.8× 94.4ms 7.2× 0.741s 19× 45.5ms 3.3×

–
Original 1855G – 369ms – – – 8.93s – – – – –

Stable 0.5 Original 593G 3.1× 279ms 1.3× – – 6.79s 1.3× – – – –

Diffusion 2.78% Ours 353G 5.3× 76.4ms 4.8× – – 1.37s 6.5× – – – –

11.5% Ours 514G 3.6× 95.0ms 3.9× – – 2.35s 3.5× – – – –

TABLE 2: Measured computation and latency for a single model forward on different devices. The detailed edit examples are shown in Figure 8 and 9. 0.5 Original:
Linearly scaling each layer of the model to 50% channels. Crop: For each convolution, we find the smallest patch covering the masked elements, crop it out, feed
it into the convolution and scatter the output patch into the original image activation. Our method could reduce up to 18× MACs and achieve up to 5.6×, 2.9×,
6.0×, 14×, and 5.2× latency reductions on NVIDIA RTX 3090, 2080Ti, Intel Core i9-10920X and M1 Pro CPU and GPU. With GAN Compression, we could further
speed up GauGAN by 9.5× on Intel Core-i9 and 38× on Apple M1 Pro CPU.

next 200 runs. For CPU devices, we perform 10 warm-up
runs and 10 test runs, repeat this process 5 times and report
the average latency. The results are shown in Table 2.

The original Progressive Distillation [15] can only gener-
ate 128× 128 images, which is too small for real use. We add
some extra layers to adapt the model to resolution 256× 256.
For the Crop baseline, we also pre-compute the normalization
parameters for fair comparisons. When the edit pattern is
like a rectangle, this baseline reduces similar computation
with ours (e.g., the first example of DDPM in Figure 8).
However, the speedup is still worse than ours on various
devices due to the large memory index overheads in native

PyTorch. When the edited region is far from a rectangle
(e.g., the third example of DDPM), the cropped patch has
much redundancy. Therefore, even though only 15.5% areas
are edited, the MACs reduction is only 1.6×. For Stable
Diffusion, as mentioned in Section 3.2, by selectively pruning
unedited queries, SIGE reduces the attention map size and
memory overheads in attention layers. For 512× 1024 image
editing example in Figure 9, the first self-attention layer
of the diffusion network takes 64 × 128 input, resulting in
an 8192 × 8192 attention map. SIGE reduces the attention
map size to 672 × 8192 (12× smaller). Therefore, it can
achieve a similar speedup ratio to the computation reduction
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even on GPUs. SIGE achieves up to 5.6×, 2.9×, 6.0×, 14×,
and 5.2× speedups on RTX 3090, 2080Ti, Intel Core i9-
10920X, Apple M1 Pro CPU and GPU, respectively. When
applied to GAN Compression, SIGE achieves 9.5× and 38×
latency reductions on Intel Core i9 and Apple M1 Pro CPU,
respectively. Additionally, we apply SIGE to the encoder
and decoder part of Stable Diffusion. For the image editing
example in Figure 9, this results in an 8× speedup for the
encoder and a 5× speedup for the decoder.

Large edits. In Figure 10, we further analyze the DDPM’s
and GauGAN’s computation/latency vs. edit ratio curves on
both NVIDIA RTX 3090 and Intel Core i9. On both devices,
computation and latency scale linearly with the edit ratio.
For the RTX 3090, our method delivers speed improvements
up to edit ratios between 65% and 75%. On the Intel Core
i9, the ceiling is approximately 45%. Figure 11 showcases
examples with large edit ratios exceeding 50%, where SIGE
still matches the original model in visual quality. Moreover,
in real-world applications, users can break down large edits
into smaller increments. Our method facilitates fast updates
as these incremental edits are applied, as discussed below.

Sequential edits. In Figure 12, we show the results of
sequential edits with our method. Specifically, One-time Pre-
computation performs as well as the Full Model, demonstrating
that our method can be applied to multiple sequential edits
with only one-time pre-computation in most cases. Moreover,
for extremely large edits, we could use SIGE to incremen-
tally update the pre-computed features (Incremental Pre-
computation) and condition the later edits on the recomputed
one. Its results are also as good as the full model.

4.3 Ablation Study
Below we perform several ablation studies to show the

effectiveness of each design choice.

Memory usage. The pre-computed activations of the original
image require additional memory storage. We profile the
peak memory usage of the original model and our method in
PyTorch. Our method only increases the peak memory usage
of a single forward for DDPM [2], PD [15], GauGAN [4],
and GAN Compression [5] by 0.1G, 0.1G, 0.8G, and 0.3G,
respectively with FP32 precision. Specifically, it needs to store
additional 169M, 56M, 239M, 275M, and 120M parameters
for DDPM, PD, Stable Diffusion [3], original GauGAN and
GAN Compression, respectively, for a single forward. For
the diffusion models, we need to store activations for all
iteration steps (e.g., 50 for DDIM sampler [1] and 5 for
PD). However, data movement and kernel computation are
asynchronous on GPU, so we could store the activations
in CPU memory and load the on-demand ones on GPU to
reduce peak memory usage.

Speedup of each design. Table 3 shows the effectiveness of
each optimization we add to SIGE. For DDPM on RTX 2080Ti,
naïvely applying the tiling-based sparse convolution can
reduce the computation by 7.6×. Still, the latency reduction
is only 1.6× due to the large memory overheads in Gather
and Scatter. Pre-computing the normalization parameters
can remove the latency of normalization statistics calculation
and reduce the overall latency to 29.6ms. Fusing element-
wise operations into the Gather and Scatter can remove
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Fig. 10: Computation/latency vs. edit ratio curves of SIGE for DDPM and GauGAN.
The black dashed line represents the performance of the original model. Both
computation and latency scale linearly with the edit ratio. On NVIDIA RTX 3090,
our method attains speedups for edits up to 75%, and on Intel Core i9, up to 45%.

redundant operations in the unedited regions and also
reduce the memory allocation overheads (about 9ms). Finally,
fusing the Scatter and Gather to Scatter-Gather and
Scatter in the shortcut branch and main branch can further
reduce about 1.6ms tensor copying overheads, achieving a
2.9× speedup. For Stable Diffusion [3] on RTX 3090, both the
computation reduction (1.6×) and the speedup (1.1×) are
poor without our SIGE attention, as the large attention map
incurs significant memory overheads. With our SIGE atten-
tion, we achieve a 5.3× MACs reduction. Moreover, as we
prune the unedited query tokens to reduce the attention map
size accordingly, the memory overheads decrease correspond-
ingly. Therefore, the speedup is much more prominent (4.8×).

Experiments with TensorRT. Real-world model deployment
also depends on deep learning backends with optimized
libraries and runtimes. To demonstrate the effectiveness
and extensibility of SIGE, we also implement our kernels
in a widely-used backend TensorRT‡ and benchmark the
DDPM latency results on RTX 2080Ti in Table 4. Specifically,
our speedup ratio becomes more prominent with TensorRT
compared to PyTorch, especially for small edits, as TensorRT
better supports small convolutional kernels with higher
GPU utilization than PyTorch.

Dilation hyper-parameter. We show the results of our
method with different dilation on GauGAN in Figure 13.
Increasing the dilation incurs more computations but also
slightly improves the image quality. Specifically, the shadow
boundary of the added car fades as the dilation increases.
We choose dilation 1 since the image quality is almost the
same as 20 while delivering the best speed.

5 CONCLUSION & DISCUSSION

For image editing, existing deep generative models often
waste computation by re-synthesizing the image regions
that do not require modifications. To solve this issue, we
have presented a general-purpose method, Spatially Sparse

‡. We benchmark the results with TensorRT 8.4.
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Original 51.3% Edited
DDPM+SDEdit:

249GMACs
Ours:

162G (1.5×)
PD+SDEdit:
66.9GMACs

Ours:
57.8G (1.2×)

Original 60.0% Edited GauGAN: 281GMACs Ours: 193G (1.5×)
Fig. 11: Qualitative results of SIGE with large edits. With 50 ∼ 60% edits, SIGE can still preserve visual fidelity of the original model without losing global context while
reducing the computation by up to 1.5×.

Original 34.2% Edited 40.8% Edited 49.0% Edited

Full Model

One-time
Pre-computation

Incremental
Pre-computation

249GMACs  37.5ms 249GMACs  37.5ms 249GMACs  37.5ms

116GMACs (2.1×)
25.6ms (1.5×)

116GMACs (2.1×)
25.6ms (1.5×)

135GMACs (1.8×)
28.5ms (1.3×)

159GMACs (1.6×)
32.0ms (1.2×)

66.2GMACs (3.8×)
17.2ms (2.2×)

53.1GMACs (4.7×)
15.7ms (2.4×)

Fig. 12: Sequential editing results with SIGE. The computation and latency are
measured on NVIDIA RTX 3090 for a single forward. Full Model means the
results with the full model. One-time Pre-computation means we pre-compute the
original image features for all the edit steps. Incremental Pre-computation means we
incrementally update the pre-computed features with SIGE before the next edit
step. The image quality of all methods is quite similar.

Inference (SSI), to selectively perform computation on edited
regions, and Sparse Incremental Generative Engine (SIGE)
to convert the computation reduction to latency reduction
on commonly-used hardware. We have demonstrated the
effectiveness of our approach in various hardware settings.

Limitations. As discussed in Section 4.3, our method requires
extra memory to store the original activations, which slightly
increases the peak GPU memory usage. It may not work
on certain memory-constrained devices, especially for the
diffusion models (e.g., DDPM [1]), since our method requires

Models MACs
Optimizations Latency

Sparse Norm. Elem. Sct. Attn. Value Ratio

249G 54.6ms –

✓ 34.0ms 1.6×

DDPM 32.6G ✓ ✓ 29.6ms 1.8×

(7.6×) ✓ ✓ ✓ 20.7ms 2.6×

✓ ✓ ✓ ✓ 19.1ms 2.9×

1855G 369ms –

SD 1193G (1.6×) ✓ ✓ ✓ ✓ 335ms 1.1×

353G (5.3×) ✓ ✓ ✓ ✓ ✓ 76.4ms 4.8×

TABLE 3: Ablation study of each optimization. Sparse: Using tiling-based sparse
convolution. Norm.: Pre-computing normalization parameters. Elem.: Fusing
element-wise operations. Sct.: Fusing Scatter to reduce the tensor copying
overheads. Attn.: Using SIGE attention layers. With all optimizations, we could
reduce the latency of DDPM by 2.9× on NVIDIA RTX 2080Ti and Stable Diffusion
by 4.8× on RTX 3090.

Method Edit Size
MACs PyTorch TensorRT

Value Ratio Value Ratio Value Ratio

Original – 249G – 54.6ms – 47.7ms –

1.20% 33.4G 7.5× 19.1ms 2.9× 14.4ms 3.3×

Ours 7.19% 51.8G 4.8× 22.1ms 2.5× 18.6ms 2.6×

15.5% 78.9G 3.2× 29.8ms 1.8× 26.9ms 1.8×

TABLE 4: Latency comparisons of DDPM on RTX 2080Ti between PyTorch and
TensorRT. The speedup ratio is larger in TensorRT than PyTorch, especially when
the edit size is small.

storing activations of all denoising steps. However, recent
advancements of few-step samplers [1], [43], [44], [102], [103],
[104], [105] and low-precision inference [106], [107] have
lowered the memory threshold and make it possible to apply
our method to diffusion models.

We assume the text input is fixed when applying SIGE to
Stable Diffusion [3]. For text changes, our method requires
recomputing the cached activations, potentially limiting
its use cases. Besides, our current method cannot handle
text-to-image generation, since even minor adjustments to
the text can lead to significant global changes. We leave this
as future work.

Our engine has limited speedup on convolutions with low
resolution. When the input resolution is low, the active block
size needs to be even smaller to get a decent sparsity, such as
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Original

8.24% Edited

GauGAN:
281GMACs mIoU: 62.4

Ours (Dilation=1)
46.6GMACs (6.04×) mIoU: 62.1

GAN Comp.
31.2GMACs (9.01×) mIoU: 61.5

GAN Comp.+Ours (Dilation=1)
8.54GMACs (33.0×) mIoU: 60.1

GAN Comp.+Ours (Dilation=5)
9.54GMACs (29.5×) mIoU: 60.0

GAN Comp.+Ours (Dilation=10)
11.0GMACs (25.7×) mIoU: 59.9

GAN Comp.+Ours (Dilation=20)
13.0GMACs (21.6×) mIoU: 60.0

Ours (Dilation=5)
57.8GMACs (4.87×) mIoU: 62.0

Ours (Dilation=10)
74.7GMACs (3.77×) mIoU: 62.0

Ours (Dilation=20)
96.9GMACs (2.90×) mIoU: 62.2

Fig. 13: Visualization results of different dilation sizes on GauGAN. Although without mIoU improvement, increasing the dilation could smoothly blend the boundary
between the edited region and unedited regions to improve the image quality slightly. Specifically, the shadow boundary of the added car fades when dilation increases.
However, it will incur more computations.

1 or 2. However, such extremely small block sizes have bad
memory locality and will result in low hardware efficiency.

Besides, we sometimes observe some noticeable
boundaries between the edited regions and unedited regions
in our generated samples of GauGAN [4]. This is because,
for GauGAN model, the unedited regions also change
slightly when we perform normal inference. However, since
our method does not update the unedited region, there may
be some visible seams between the edited and unedited
areas, even though the semantics are coherent. Dilating the
difference mask would help reduce the gap.

In most cases, the edit will only update the edited regions.
However, sometimes the edit will also introduce global
illumination changes such as shadow and reflection. For
this case, as we only update the edited areas, we cannot
update the global changes outside them accordingly.

Societal impact. In this paper, we investigate how to update
user edits locally without losing global coherence to enable
smoother interaction with the generative models. In real-
world scenarios, people could use an interactive interface
to edit an image, and our method could provide a quick and
high-quality preview for their edits, which eases the process
of visual content creation and reduces energy consumption,
leading to a greener AI application. The reduced cost also
provides a good user experience for lower-end devices, which
further democratizes the applications of generative models.

However, our method can be utilized by malicious
users to generate fake content, deceive people, and spread
misinformation, which may lead to potential negative
social impacts. Following previous works [11], we explicitly
specify the usage permission of our engine with proper
licenses. Additionally, we run a forensics detector [108] to
detect the generated results of our method. On GauGAN,
our generated images can be detected with 97.2% average
precision (AP). However, on DDPM [1], [2] and Progressive
Distillation [15], the APs are only 56.6% and 52.4%. Such
low APs are caused by the model differences between GANs
and diffusion models, as observed in SDEdit [11]. We believe
developing forensic methods for diffusion models is a critical
future research direction.
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APPENDIX A
KERNEL FUSION

As mentioned in Section 3.2, we fuse Scatter and the
following Gather into a Scatter-Gather operator and
fuse Scatter in the shortcut, main branch, and residual
addition together into Scatter with Block Residual.
The detailed fusion pattern is shown in Figure 14. For
simplicity, we omit the element-wise operations (e.g.,
Nonlinearity and Scale+Shift). Below we elaborate
on each fusion design. Please refer to our code for the
detailed implementation.

A.1 Scatter-Gather Fusion

When a Gather directly follows a Scatter, we could
fuse these two operators into a Scatter-Gather to avoid
copying the entire original activation Fl(A

original
l ). As shown

in Figure 15(a), in the original pipeline, the black blocks are
copied from the original activation and then discarded by
Gather, which incur redundant data movement. To address
this issue, we pre-build a Scatter Map to track the data source
(Figure 15(b)). For example, if the data at position (h,w)
in the Scatter output comes from the original activation,
then Scatter Map will store NULL at (h,w) (gray blocks).
Otherwise, it will store a triple at this position (non-gray
blocks). The first element of the triple indicates the block
ID that the data come from, while the latter two indicate
the offsets of the data within the block. Note that the pre-
computation is cheap and only needs to be computed once for
each resolution. Therefore, in the fused Scatter-Gather,
we could use the Scatter Map to index and fetch the data
directly from either the input blocks or the original activation,
given the Gather indices. For example, if we want to fetch
the data at location (h,w), we will look up this position in the
Scatter Map. If it is NULL, we would fetch the data at location
(h,w) in the original activation. Otherwise, we will fetch
data in the input blocks indexed by the triple. In this way,
we could avoid copying the unused regions in Scatter.

A.2 Shortcut Scatter Fusion

The 1× 1 convolution in the shortcut branch consumes
much less computation than the convolution in the main
branch. Therefore, the overheads of Gather and Scatter
weigh more in the shortcut branch. We fuse the Scatter
in the shortcut branch and main branch along with residual
addition into Scatter with Block Residual to reduce
these overheads. Specifically, as shown in Figure 14, we first
scatter Fl+1 output into the pre-computed Fl+1(A

original
l ) +

Fs(A
original
l ) and add the original residual Fs(A

original
l ) only at

the scattered locations correspondingly according to Indices.
Then we calibrate the resulting feature map with Fs output
by adding the residual difference Fs(A

edited
l ) − Fs(A

original
l )

at the scattered locations indexed by Shortcut Indices in place.

APPENDIX B
BENCHMARK DATASETS

Below, we elaborate on how we build the synthetic
datasets.

Method
MACs PSNR (↑) LPIPS (↓)

mIoU (↑)
Value Ratio w/ G.T. w/ Orig. w/ G.T. w/ Orig.

Original 281G – 15.9 – 0.414 – 57.3

GAN Comp. [5] 31.2G 9.0× 15.8 19.1 0.417 0.329 56.3

Ours 30.7G 9.2× 15.9 27.5 0.425 0.076 56.1

0.19 GauGAN 13.3G 21× 15.4 18.4 0.427 0.356 49.5

GAN Comp. (S) 9.64G 29× 15.8 18.9 0.422 0.344 51.2

GAN Comp.+Ours 7.06G 40× 15.8 18.8 0.429 0.345 52.4

TABLE 5: Quality evaluation of GauGAN at the edited regions. PSNR/LPIPS w/
G.T. means computing the metrics with the ground-truth images, and w/ Orig.
means computing with the generated samples from the original model. 0.19
GauGAN: Reducing each layer of GauGAN to 19% channels and training from
scratch. GAN Comp. (S): GAN Compression with larger compression ratio. Our
method matches the performance of GAN Compression [5]. When applying it to
GAN Compression, our method demonstrates comparable results to GAN Comp.
(S) with less computation, achieving a 40× MACs reduction.

LSUN Church. Figure 16(a) shows some examples of our
synthetic edits on LSUN Church. The average edited area
of the whole dataset is 13.1%. The detailed distribution is
shown in Figure 17a.

Cityscapes. We collect 27 foreground object semantic masks
from the validation set. The objects include 4 bicycles, 1
motorcycle, 7 cars, 6 trucks, 3 buses, 5 persons, and 1 train.
Figure 18(a) visualizes some collected semantic masks. We
generate the edits by randomly pasting one of these objects
to the ground-truth semantic maps with augmentation. The
augmentation includes random horizontal flip, resize (scale
factor in [0.8, 1.2]), and translation ([−32, 32] for vertical one
and [−64, 64] for horizontal one). To make the synthetic edits
more reasonable, when the scale factor is larger than 1, the
vertical translation can only be positive. Otherwise, it can
only be negative. Figure 16(b) shows some edit examples.
The average edited area of the entire dataset is 4.77%. The
detailed distribution is shown in Figure 17b.

LAION. We automatically construct our inpainting masks
by overlaying circles of random sizes at arbitrary positions.
Additional mask examples are displayed in Figure 18(b).

APPENDIX C
ADDITIONAL RESULTS

Quality results at the edited regions. In Table 1, we show
the quantitative quality results of our method. For DDPM
and PD, the unedited areas in the generated images keep the
same as the input images due to the mask trick in SDEdit [11].
For GauGAN, the generated unedited regions vary across
different methods. In this case, the image quality in these
areas will influence the metrics we report in Table 1. We
also include the quantitative quality results of GauGAN
at the edited regions in Table 5. Our method could still
preserve the image quality of the original GauGAN and
match the performance of GAN Compression [5]. When
applied to GAN Compression, it reduces 40× MACs on
average, achieving results on par with GAN Comp. (S) with
less computation.

Additional visualization. In Figure 19, we show more visual
results of DDPM [1] and Progressive Distillation [15] on
LSUN Church [12]. Besides LSUN Church, we addition-
ally apply SIGE to DDPM on CelebA [109] and AFHQ

https://github.com/lmxyy/sige
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Fig. 14: Visualization of kernel fusion in DDPM [1] ResBlock [91]. We omit the element-wise operations for simplicity and follow the notations in Section 3. As the kernel
sizes of the convolution in the shortcut branch and main branch are different, their reduced active block indices are different (Indices and Shortcut Indices). To reduce the
tensor copying overheads in Scatter, we fuse Scatter with the following Gather into Scatter-Gather and fuse the Scatter in the shortcut, main branch, and
residual addition into Scatter with Block Residual. We pre-compute an additional Scatter Map for the Scatter-Gather kernel.
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(a) Original Pipeline (b) Scatter Map Visualization (c) Fused Scatter-Gather Pipeline

Pre-Computed

Fig. 15: Scatter-Gather fusion visualization. (a) The original pipeline of a Gather directly follows a Scatter. The indices indicate the top left corner of the
Scatter/Gather position (zero-based). The black blocks are discarded by the Gather, which incur redundant data movement. (b) We pre-compute the Scatter
process and get a Scatter Map, which tracks the data source during Scatter. If the input data come from the original activation, it stores NULL at this location (gray
blocks). Otherwise, it will store a triple locating the data in the input blocks (non-gray blocks). (c) In the fused Scatter-Gather kernel, we directly use the Scatter Map
to index and fetch the data from the input blocks and the original activation, avoiding copying the entire original feature map.

Dogs§ [110], as shown in Figure 21, respectively. In Figure 20,
we show more visual results of GauGAN on Cityscapes [13].
In Figure 22, we show more visual results of Stable Diffu-
sion [3] on image-to-image translation.

APPENDIX D
LICENSE & COMPUTATION RESOURCES

Here we show all the licenses of our used assets. Our
backbone models DDIM [1], ILVR [33], Progressive Distilla-
tion [15], Stable Diffusion, GauGAN [4] and GAN Compres-
sion [5] is under MIT license, MIT license, Apache license,
CreativeML Open RAIL-M, Creative Commons license and

§. The pre-trained models on CelebA and AFHQ dogs are from
SDEdit [11] and ILVR [33], respectively.

BSD license, respectively. SDEdit is under MIT license. The
license of Cityscapes [13] is here. The CelebA [109] license is
here. AFHQ-Dogs [110] is under Creative Common license.
LSUN Church [12] does not have an explicit license. The
examples in Figure 9(a) and Figure 22 are under Creative
Commons License. The drawing in Figure 9(b) is created by
ourselves, referring to the painting in this link.

Since our method does not involve any model training,
all our generated results are obtained on a single NVIDIA
RTX 3090, which only takes 1 ∼ 2 hours to process all the
test images (∼ 10, 000 in total), including both the original
models and our method. We measure the model latency on
NVIDIA RTX 3090, 2080Ti, Intel Core i9-10920X CPU, and
Apple M1 Pro CPU. On Apple M1 Pro CPU, we use Intel
Anaconda for our Python environment.

https://github.com/ermongroup/ddim
https://github.com/jychoi118/ilvr_adm
https://github.com/google-research/google-research/tree/master/diffusion_distillation
https://github.com/google-research/google-research/tree/master/diffusion_distillation
https://github.com/CompVis/stable-diffusion
https://github.com/NVlabs/SPADE
https://github.com/mit-han-lab/gan-compression
https://github.com/mit-han-lab/gan-compression
https://github.com/ermongroup/ddim/blob/main/LICENSE
https://github.com/jychoi118/ilvr_adm/blob/main/LICENSE
https://github.com/google-research/google-research/blob/master/LICENSE
https://github.com/CompVis/stable-diffusion/blob/main/LICENSE
https://github.com/NVlabs/SPADE/blob/master/LICENSE.md
https://github.com/ermongroup/SDEdit
https://github.com/jychoi118/ilvr_adm
https://github.com/mit-han-lab/gan-compression/blob/master/LICENSE
https://github.com/ermongroup/SDEdit
https://github.com/ermongroup/SDEdit/blob/main/LICENSE
https://www.cityscapes-dataset.com
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/clovaai/stargan-v2/blob/master/LICENSE
https://www.mooyuu.com/uploadfile/2019/1108/20191108063502962.jpg
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Groudtruth Original (Inpainted) Edited Groudtruth Image Groudtruth Semantic Map Edited Semantic Map

(a) LSUN-Church (b) Cityscapes
Fig. 16: Examples of our synthetic edits on (a) LSUN Church and (b) Cityscapes. On LSUN Church, we view the inpainted image as the original image and generate
the edits by quantizing color at the corresponding regions. On Cityscapes, we generate the edits by pasting some foreground objects on the ground-truth semantic maps.
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(b) Cityscapes.

Fig. 17: Detailed edit ratio distribution of our synthetic datasets.

APPENDIX E
CHANGELOG

V1 Initial preprint release (NeurIPS 2022).

V2 Fix the figure display issue on mobile devices.

V3 (a) Add additional method details. (b) Support attention
layers and add the results of Stable Diffusion [3] (Section 3.2
and Figure 8).

V4 Accepted by T-PAMI. (a) Support MPS backend (Table 2).
(b) Curate an inpainting benchmark from LAION-5B [14]
to evaluate Stable Diffusion [3] (Table 1 and Figure 8). (c)
Expanded large editing analysis (Figure 10). (d) Additional
visual results on multiple datasets (Figures 21 and 22).
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Bicycle Bus Motorcycle

CarTruckPerson

Original Original Original Original Original

2.41% Masked 5.12% Masked 10.5% Masked 15.7% Masked 20.1% Masked
(a) Object Semantic Masks (b) Synthetic Inpainting Masks

Fig. 18: (a) Examples of collected foreground object semantic masks on Cityscapes [13]. (b) Mask examples of the synthetic inpainting datasets on LAION-5B [14].
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Fig. 19: More visual results on LSUN Church of SDEdit with DDPM [1] and Progressive Distillation. MACs measure the computation for a single model forward. Prune
40%: Uniformly pruning 40% weights of the model without fine-tuning. Patch: Cropping the smallest image patch that covers all the edited regions of the model input
and blending the model output back to the input image. Our method achieves lower FID with fewer MACs for both DDPM and Progressive Distillation.
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Original Original Original Original

2.65% Edited

GauGAN: 281GMACs mIoU: 62.4 GauGAN: 281GMACs mIoU: 62.4 GauGAN: 281GMACs mIoU: 62.4 GauGAN: 281GMACs mIoU: 62.4

GAN Comp.: 31.2G (9.0×) mIoU: 61.5 GAN Comp.: 31.2G (9.01×) mIoU: 61.5 GAN Comp.: 31.2G (9.01×) mIoU: 61.5 GAN Comp.: 31.2G (9.01×) mIoU: 61.5

0.19 GauGAN: 13.3G (21.2×) mIoU: 53.5 0.19 GauGAN: 13.3G (21.2×) mIoU: 53.5 0.19 GauGAN: 13.3G (21.2×) mIoU: 53.5 0.19 GauGAN: 13.3G (21.2×) mIoU: 53.5

7.04% Edited 2.30% Edited 3.49% Edited

Ours: 22.2G (13×) mIoU: 62.1 Ours: 43.2G (6.51×) mIoU: 62.1 Ours: 22.9G (12×) mIoU: 62.1 Ours: 28.4G (9.9×) mIoU: 62.1

GAN Comp.+Ours: 6.24G (45×) mIoU: 61.5 GAN Comp.+Ours: 8.21G (34×) mIoU: 61.5 GAN Comp.+Ours: 6.29G (45×) mIoU: 61.5 GAN Comp.+Ours: 6.74G (42×) mIoU: 61.5

Fig. 20: More visual results on Cityscapes of GauGAN [4]. 0.19 GauGAN: Uniformly reducing each layer of GauGAN to 19% channels and training from scratch. Our
method could achieve higher mIoU than GAN Compression with fewer MACs. When applying to GAN Compression, our method achieves a 34 ∼ 45× MACs
reduction with a minor mIoU drop.
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(a) CelebA (b) AFHQ Dogs
Fig. 21: Visual results of DDPM [2] on CelebA [109] and AFHQ Dogs [110]. The computation and latency are measured for a single diffusion step on NVIDIA RTX
3090. SIGE reduces the computation of the original by up to 6.3×, achieving an up to 2.4× speedup.
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Fig. 22: Visual results of Stable Diffusion on text-guided image editing. The computation and latency are measured for a single diffusion step on NVIDIA RTX 3090. SIGE
achieves an up to 7.6× speedup under a 1.4% edit.


