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Abstract—Most of the existing learning-based deraining methods are supervisedly trained on synthetic rainy-clean pairs. The domain
gap between the synthetic and real rain makes them less generalized to complex real rainy scenes. Moreover, the existing methods
mainly utilize the property of the image or rain layers independently, while few of them have considered their mutually exclusive
relationship. To solve above dilemma, we explore the intrinsic intra-similarity within each layer and inter-exclusiveness between two layers
and propose an unsupervised non-local contrastive learning (NLCL) deraining method. The non-local self-similarity image patches as the
positives are tightly pulled together and rain patches as the negatives are remarkably pushed away, and vice versa. On one hand, the
intrinsic self-similarity knowledge within positive/negative samples of each layer benefits us to discover more compact representation; on
the other hand, the mutually exclusive property between the two layers enriches the discriminative decomposition. Thus, the internal
self-similarity within each layer (similarity) and the external exclusive relationship of the two layers (dissimilarity) serving as a generic
image prior jointly facilitate us to unsupervisedly differentiate the rain from clean image. We further discover that the intrinsic dimension of
the non-local image patches is generally higher than that of the rain patches. This motivates us to design an asymmetric contrastive loss
to precisely model the compactness discrepancy of the two layers for better discriminative decomposition. In addition, considering that the
existing real rain datasets are of low quality, either small scale or downloaded from the internet, we collect a large-scale real dataset
under various rainy weathers that contains high-resolution rainy images. Extensive experiments on different real rainy datasets
demonstrate that the proposed method obtains state-of-the-art performance in real deraining. Both the code and the newly collected

datasets will be available at https://owuchangyuo.github.io.

Index Terms—Image deraining, non-local, contrastive learning, unsupervised learning.

1 INTRODUCTION

HE existing high-level computer vision tasks such as image
Tsegmentation [7], and object detection [54] have achieved
significant progress in recent years. Unfortunately, their perfor-
mance would suffer from degradation under the rainy weather
[2], [35], [45]. To alleviate the influence of the rain, numerous
full-supervised deraining methods have been proposed [20], [88],
[98]. Although they can achieve good results on simulated rainy
image, they cannot well generalize to the real rain because of the
domain gap between the simplified synthetic rain and complex real
rain [93]. The goal of this work is to remove the real rain in an
unsupervised manner.

To handle the real-world complex rainy images, the
optimization-based methods are firstly proposed with hand-crafted
priors such as sparse coding [56], low-rank [5] and Gaussian
mixture model [49]. However, these hand-crafted priors are of
limited representation ability, especially for highly complex and
varied rainy scenes. To rectify this weakness, the learning-based
CNN methods [20], [44], [47], [88] have made great progresses.
The researchers starting from the supervised learning methods try
their best to simulate the rain as real as possible with sophisticated
models, such as additive model [39], screen blend model [56],
heavy rain model [88], comprehensive rain model [31], rendering
model [28], and learned rain models [59], [72], [93] to name a few.

However, real rain is related with various factors which is
impossible to be comprehensively considered. The appearance
of the rain is closely associated with the camera exposure time
(length), rainfall amount (density), raindrop size (width), wind
direction (angle), and distance (haze/veiling). In Fig. 1, we show
the representative rains from our collected real rainy images. The
real rain contains not only the rain streaks which are easier to be

simulated, but also the complex veiling and haze artifacts. The
veiling and haze are highly correlated with the scene semantics such
as the depth, which makes it difficult to be accurately simulated.

Consequently, there inevitably exist domain gap between these
synthetic rain models and real rain degradation, which makes the
supervised methods less generalize well to the real rain. To illustrate
this issue, we provide the deraining results of representative
supervised method JORDER-E [87] on real rain images in Fig.
2. Although JORDER-E has achieved very impressive results on
synthetic rain, it is less effective for the complex real rains with
diverse appearances. The oversmooth phenomenon can be observed
clearly in Fig. 2(b), mainly due to the gap between the real test and
synthetic heavy rain.

Latter, the semi-supervised deraining methods have been
proposed to effectively improve the robustness for real rain [33],
[55], [78], [80], [92], [93], where they employ the simulated labels
for good initialization and unlabeled real rain for generalization.
Their performances still depend on the distribution gap between
the simulated and real rainy images to some extent. Once the
distributions are of large distance, the semi-supervised deraining
result by SSIR [78] would be less satisfactory, as shown in Fig. 2(c).
The unsupervised methods have raised more attentions for real rain
removal, mainly including the CycleGAN-based unpaired image
translation methods [14], [36], [80], [101] and the optimization-
model driven deep prior network [96]. In Fig. 3, we summarize the
development of the single image deraining methods. The previous
methods including the unsupervised ones mainly pay attention to
the property of the image or rain layer independently, yet seldom
consider the mutually exclusive relationship between the two layers.

To overcome these problems, we formulate the image deraining
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Fig. 2. The influence of the domain gap between the synthetic and real rain. (a) Real rain images. (b) The supervised JORDER-E [87] usually

over-smoothes the image details. (c) The semi-supervised SSIR [78] contains obvious rain residuals. (d) The proposed unsupervised ANLCL can
remove not only the rain streaks but also real-world veiling/haze, meanwhile well preserve image structures. Please zoom in for better visualization.

into a novel non-local contrastive decomposition framework, which
aims at decomposing the rainy image into two distinguishable
layers: clean image layer and rain layer, as shown in Fig. 4. On one
hand, we not only take advantage of the non-local self-similarity
properties within both image and rain layers, benefiting us to learn
compact representation for each layer; on the other hand, we model
the mutually exclusive relationship between the two layers so as
to enrich the discriminative representation. Thus, the internal self-
similarity within each layer and the external exclusive relationship
of the two layers allow us free from the supervision, and jointly
facilitate us to differentiate the rain from clean image. Note that,
we equally treat the image and rain layers as both positive and
negative, and propose the bidirectionally symmetric contrastive
learning for better decomposition.

To the best of our knowledge, we are the first to incorporate non-
local self-similarity into contrastive learning for positive/negative
sampling. The advantage of the proposed non-local sampling
is twofold. First, the non-local self-similarity sampling strategy
would naturally guarantee more compact clusters for positives
and negatives respectively, which would benefit us to differ the
positives from negatives. Second, these positive non-local patches
are the samples searched from real images with diverse variable
information, not manually generated fake samples, which would
provide more faithful information for representation. Moreover,
compared with the image-level samples, the patches would greatly
enrich the sample numbers for better contrastive learning. Note
that, the non-local strategy is not only applicable for the positive
samples, but also beneficial to the negative samples. In addition,
we provide an guidance of how to design a good encoder for better
embedding in contrastive learning.

This work is an extension of our earlier publication in CVPR
2022 [94]. The main extensions are three folds. In this work, we
further analyze the intrinsic dimension discrepancy between the
image and rain non-local clusters. Different from the previous
version where we equally treat the image and rain samples
in the decomposition, in this work we design an asymmetric
contrastive loss to precisely model the compactness discrepancy
of the two layers for better discriminative decomposition. Second,
we construct a large-scale high-quality real rainy image dataset
with diverse rain appearances through field collection, considering
that most of the existing real rain datasets are collected from the
internet with poor quality or with limited scenes. Third, more
qualitative and quantitative experiments including the advantage of
non-local sampling and promotion for downstream detection are
conducted. We demonstrate that the ANLCL is a general prior and
can be generalized to other bad weathers tasks and also embedded
into previous methods with sufficient improvement. Overall, our
contributions can be summarized as follow:

o We formulate the single image rain removal into an unsupervised
contrastive decomposition framework, and propose a novel
non-local contrastive learning (NLCL) deraining method which
simultaneously explore the intrinsic intra-similarity within each
layer and inter-exclusiveness between two layers. Our work is
the first to explicitly consider the exclusive relationship between
the rain and image in the learning network.

e We connect the contrastive learning with the non-local self-
similarity. Instead of the conventional instance/image-level
sampling, we demonstrate that the non-local patch-level sam-
pling strategy naturally endows the positive/negative samples
with more compact and discriminative representation for better
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Fig. 3. The development of the single image deraining methods. The time period up to 2017 is dominated by model-driven optimization methods, with
methods after 2017 dominated by data-driven learning methods: supervised methods, semi-supervised methods and unsupervised methods.

decomposition. In addition, we provide an guidance of how to
design a good encoder for better embedding.

e We discover the asymmetric property within the image and
rain spaces: the intrinsic dimension of the non-local image
patches is generally higher than that of the rain patches. We
extend the symmetric NLCL to asymmetric one by designing
an asymmetric contrastive loss to capture this discrepancy. We
show how this asymmetric property would benefit us to improve
the discriminative representation for better decomposition.

o We release a large-scale high-quality real rain image dataset. Our
images are collected in different rain weathers on the city roads
with diverse rain appearances and abundant traffic elements
annotation. This real dataset would be a good testbed for the
community, especially for the unsupervised deraining methods.
We conduct extensive experiments on both synthetic and real-
world rain datasets, and show that ANLCL outperforms favorably
state-of-the-art methods on real image deraining.

2 RELATED WORK

Single Image Deraining. In Fig. 3, we provide a brief development
of the single image deraining including the supervised, semi-
supervised and unsupervised methods. The interested reader could
refer to survey work [70], [89] for detailed description.

Most of the existing methods are full-supervised which require
a large number of paired rainy and clean images as training samples

[6], [18], [19], [21], [22], [22], [31], [35], [43], [44], [47], [48],
[62], [63], [68], [69], [75], [76], [83], [88], [90], [91], [95], [98]-
[100], [103]. The seminal learning-based CNN works for image

deraining is proposed by Fu el at. [21] and Yang et al. [88]. Fu et al.
[21] introduced the end-to-end CNN with residual learning for rain
streaks removal. JORDER-E [88] jointly learned the rain detection
and removal in a multi-task network with progressive guidance.
Latter, the multi-stage [88], multi-scale [35], density [98], and
attention [47] have been widely utilized for better representation.
The interested readers could refer to survey [89] for comprehensive
description. Among them, the most typical CNN and Transformer
based methods are JORDER-E [87] and IDT [86], respectively.
IDT [86] is a very recently proposed deraining method to capture
the long-range dependencies of the rains. Those works have made

great progress for the community. Unfortunately, the domain gap
between the complex real rain and the simplified synthetic rain
would limit their generalization in real scenes.

The semi-supervised deraining models [32], [33], [78], [80],
[92], [93], [97] are proposed by additionally introducing the real
dataset for better generalization. For example, Wei et al. [78]
proposed the first semi-supervised transfer learning framework
via network structure/weight sharing to better utilize unlabeled
real images. Latter, Yasarla et al. [92] presented the Gaussian
process-based semi-supervised learning for real image deraining.
Recently, Huang et al. [32] developed memory-uncertainty guided
semi-supervised (MUSS) learning framework that is equipped with
memory modules to generate the prototypical (pseudo labels) rain
patterns. Although these semi-supervised methods could alleviate
this issue to some extent, the choice of the synthetic datasets would
heavily determine the final real performance.

Recently, the unsupervised deraining methods have emerged
[14], [36], [80], [94], [96], [101]. Most of the previous unsupervised
works formulated the unsupervised image deraining as the image
generation task via the generative adversarial learning. Wei et al.
[80] extended the classical CycleGAN into the DerainCycleGAN
using unpaired data for real image deraining. Yu et al. [96] took the
prior knowledge of the rain streak into consideration, and connected
the model-driven and data-driven methods via an unsupervised
learning framework. In this work, we propose a novel contrastive
learning framework for unsupervised deraining. Compared with
previous methods, the ANLCL could further take mutual exclusive
relationship between image and rain layers into consideration.
Contrastive Learning. Contrastive learning (CL) has achieved
promising results in unsupervised representation learning [8], [9],
[13], [30], [60], [84]. The main idea is to push the features of
unrelated data (as negatives) and pull the related data (as positives),
so as to learn the representations which are discriminative to the
negatives and invariant between the positives. CL can be effectively
applied by appropriately defining the positives and negatives in
terms of the tasks, including the multi-views [65], [66], temporal
coherence in video sequence [29], augmented transformation [8],
[30], to name a few. Recently, researches have applied the CL
to low-level applications [12], [14], [50], [52], [53], [61], [77],
[81], [85]. Most of the existing CL methods take the clean images



as the positive and the degraded images as the negative samples.
For example, Wu er al. [81] pulled the restored image closer to
ground truth (GT) and pushed them far away from the hazy image
in the representation space within a supervised framework. Latter,
following the similar sampling strategy, the authors [12], [14], [53],
[77] extend it to the unsupervised framework by combined the
adversarial learning with contrastive learning.

Our ANLCL is significantly different from [12], [14], [53],
[77], [81] in two aspects. First, the key positive/negative sampling
strategy is different. The proposed ANLCL take the image layer
and degraded rain layer as the positive and negative, respectively.
Compared with previous clean and degraded image samplings [12],
[14], [53], [771, [81], the image layer is entangled with the degraded
layer which makes it ambiguous to learn the discriminative features
to differ them from each other. On the contrary, the proposed
ANLCL employs explicit disentanglement between the two layers,
in which the two layers are with distinct discrepancy patterns. The
rain layer is relative simpler with repetitive line-patterns and the
image is with meaningfully geometrical structures. Intuitively, the
disentanglement between the rain and image layer would better
facilitate us to achieve the final goal: decouple the rain from the
clean image. Second, the previous CL methods [12], [14], [53],
[77], [81] consistently employ the instance image-level samples for
contrast, while we have explored the intrinsic similarity between the
patches within a single image. Compared with the image samples,
the intrinsic self-similarity within the positive or negative samples
would significantly ease the learning procedure and boost more
compact feature space. Moreover, non-local patches would greatly
enrich the sample numbers for discriminative feature learning.
Image Decomposition for Deraining. According to the estimated
output, we can classify the existing deraining methods into three
categories: image-based, rain (residual)-based, and decomposition-
based. In 2012 to 2017, the image deraining field is dominated by
the image decomposition based model-driven optimization methods
[5]1, [15], [26], [38], [49], [56], [103]. For example, the pioneer
work [38] introduced the dual sparse dictionaries for both rain
and non-rain component representation. The main idea of image
decomposition based deraining is to make the two components
lie on two different subspaces, so as to decouple the rainy image
into the image and rain layer. The advantage of the decomposition-
based method over the single rain/image-based method is that more
domain knowledge can be utilized for better discriminative feature
extraction. Moreover, the relationship between the two components
can be further modeled to benefit from each other.

With the advent of the end-to-end CNN, it is intuitive to employ
the CNN directly mapping the rainy image to clean image [20],
[63], [86], due to its simplicity and powerful representation. Latter,
considering the rain can be regarded as the sparse residual error,
the researchers have proposed the rain-based residual learning
methods [18], [21], [47] which significantly reduce the training
difficulty. However, both the rain-based and image-based method
have ignored the relationship between the two components. The
decomposition-based CNN methods have achieved state-of-the-
art performance such as the well-known JORDER [87], [88]
and RCDNet [71]. In [87], the rain layer is estimated as the
location guidance for the image layer estimation, which serve as
a rain and non-rain region attention for better image estimation.
Wang et al. [71] proposed an interpretable network architecture
by unfolding the decomposition model into a rain convolutional
dictionary network (RCDNet).

In this work, we advance the image decomposition paradigm

4

from two aspects. First, we bridge contrastive learning with the
decomposition framework. Compared with previous work, the
proposed method not only exploits both the image and rain
properties, but also take the mutual exclusion relationship between
the two layers into consideration. The contrastive learning could
naturally model both the intra-similarity within each layer (self-
similarity) and inter-exclusiveness between two layers (dissimilar-
ity). Second, most of the existing learning-based decomposition
deraining methods require the synthetic clean and degraded pair
in a supervised manner. On the contrary, the proposed method
explores the self-similarity and dissimilarity as a generic prior
via unsupervised learning, which ensures the proposed method
generalize well for the real rain.

Non-local Self-similarity. The nonlocal prior reveals a general
image property that the similar small patches tend to recurrently
appeared within a single image. This generic property could provide
group sparsity of the image with structural representation. The self-
similarity serves as a powerful image prior model, which has been
demonstrated in various image restoration techniques including
filtering methods [4], [17], sparse optimization models [27], [57],
and deep neural networks [3], [51], [74]. Beneficial from capturing
the correlation among the self-similarity patches, these non-local
based methods have achieved the state-of-the-art performances
at that time, such as the BM3D in denoising [17], WNNM in
restoration [27], and kernelGAN in blind super-resolution [3]. The
self-similarity is a very generic prior for unsupervised learning.
For example, Krull et al. [41] learned to predict the center pixel
according to its local neighborhood, which made use of the
redundant property of the images while the random noise can
be removed during the self-regression procedure. In this work, we
further show that the non-local self-similarity can be served as
powerful prior for unsupervised learning, and how it benefits the
contrastive learning in terms of the positive/negative sampling, and
boosts the performance in low-level image deraining task.

3 FIELD COLLECTION REAL RAIN DATASET

The datasets play an important role in deep learning era. The
researchers have made great progress to provide numerous rain
datasets, mainly including the synthetic and real rains. We summary
the existing typical rain datasets in Table 1. Most of the existing
datasets are synthetic-based. The pioneer work was proposed by
Nayar and Garg [23], [24] with geometric and photometric analysis
for real rain appearance. According to the photometric model, Fu
et al. [21] mimicked the rain imaging procedure via Photoshop.
Further, Yang er al. [88] and Hu et al. [31] took the out-of-
focus veiling, distant haze effect, and close rain occlusion into
a comprehensive rain model. These synthetic models have greatly
promoted the development of this field. Although these complicated
synthetic models can simulate the rain effect to some extent, there
still suffers from the domain shift issue between the synthetic and
real rain. To handle the real complex rain, there are several real
rain datasets in recent years. We describe the proposed real rain
dataset and compare with previous datasets in three aspects.

Collection and Resolution: Most of the existing real rain datasets
are collected from the internet. The internet collected rainy images
come from a variety of different sources including television/films,
cartoon/artistic, surveillance video and so on. The resolution of
these images are vastly different, ranging from 6000*3500 to
250*%180. Most of the internet collected rainy images are with
relative small size. We report the average resolution of each dataset



TABLE 1
Summary of existing synthetic and real rain datasets.

Category Datasets Publish Collection Format Resolution Number Orientation Annotation Highlight Limitation
Rain100 [£8] 2017CVPR Synthetic Image 481%321 2000 None No Multiple rain layers accumulation Unrealistic rain
Syntheti “lear rain streaks g ated fr
ynietic Rain14000 [21] 2017CVPR Synthetic Image 512%384 14000 None No Clear rain streaks generated from Domain gap between real and synthetic
Photoshop with diverse directions
Boundi High-quality and resolution i 4 . "
RainCityscape [31] 2019CVPR Synthetic Image 2048%1024 10620 Driving ounding ign-quatity 'l,n YES.O ution lmtzge Domain gap between real and synthetic
Box Abundant object with annotation
Boundi Rain with mist; Low-resolution; Rare rain streaks
RIS [46] 2019CVPR Internet Video 640+368 154 Surveillance ounding amwiiimist owresoution: fare rain sireaks
Box Abundant objects with annotation Compression artifacts; Limited scenes
SPA-Data [73] 2019CVPR iPhone/ Video 5124512 170 Surveillance No Paired real rainy amjl clean }mage ) L.ess heavy rain; Limited ‘backgmunds
Real YouTube generated from aligned video (buildings) and foreground objects; Watermarks
NR-IQA [52] 2020TCSVT Internet Image 1000%680 206 None No Lossless compression format Limited images; Uneven image resolution
o N termarks; Ul ima lution;
Real3000 [97] 20211CCV Internet Image 942%654 3000 None No Rain with different appearances umen?us W er@qr S neyen ?mqg‘e resolution,
Mixed up with synthetic rain (Cartoon)
Paired real rainy and clean imz Heavy compression artifacts; Mismatch
PairedRain [ 1] 2022ECCV YouTube Video 666339 101 Surveillance No uired real rainy and clean image cavy compression artifacts; Mismate
captured from different times between paired images; Limited scenes
SSID [32] 2022TPAMI Internet Video/Image 1280%720 180/950 None No Large diversity of rain scenes Compression artifacts; Watermarks
. Very clear rain with diverse appearances; . .
Sony Bound: ‘Without clean and degraded pairs
FCRealRain - ony Image 4240%2400 4000 Driving OUNANE | High-quality image without compression; Hhout clean and degraced pairs
ILCE-6400 Box . . . for unsupervised training only
Abundant object with annotation

in Table 1. Note that, SPA-Data does not report the size of the
original video, where we list the cropped size 512*512 instead. We
can observe that resolution of the real datasets are mostly less than
that of 720p. In this work we collect the real rain images under rainy
weathers with the Sony ILCE-6400 Camera. We empirically set the
shutter speed between [1/160, 1/60], aperture as f/5.6, and focal
length as 50mm. The spatial resolution is consistent 4240*2400,
slightly larger than the standard 4K (3840%2160), which offers
more details for both the background and rain.

Format and Number: The real rain dataset collection is difficult,
since it heavily depends on the precipitation with high degree of
randomness. Moreover, the rain would cause inconvenient for the
collection, due to possible damage to the electron device. That is
the main reason why the number of the rainy images in previous
dataset is relative small. It is worth noting that in this work we
consistently report the source number of each dataset for fair
comparison. The augmentation to enlarge the number such as the
spatial patch cropping or temporal frame extraction is not reported.
In Table 1, we can observe that the image/video number in synthetic
rain dataset is significantly larger than that of the real rain dataset,
because of the low cost of the synthetic dataset. There are two
common formats to construct the real rain dataset: image and video.
The number of the videos clip is usually small, such as 154 in RIS
[46], 170 in SPA-Data [73], 101 in PairedRain [ 1], and 180 in SSID
[32]. Nevertheless, the video clips can be further extracted as the
image frame, although there is temporal redundancy between each
frame. In this work, we collect a relative large dataset with 4000
high-resolution source real rain images, which contains diverse
scenes and different rain patterns.

Highlight and Limitation: The synthetic rain datasets could
controllably generate diverse rains on high-quality images with
large number samples. Moreover, the synthetic datasets could easily
provide the paired clean and degraded images. These large-scale
paired synthetic datasets can be well utilized by supervised learning
with powerful representation. However, real rain is much more
complex with the domain shift between them, which makes the
synthetic trained model less robust to the real rain. Thus, the real
rain datasets have been proposed to advance the complex real rain
removal in the real-world. The SPA-Data [73] and PairedRain [1]
try to construct real rainy and clean paired images from the videos,
which offers a new path to the single image real rain removal.

Existing real datasets are mostly downloaded from the internet
such as Youtube. The main problem of these real rainy dataset
is that they are collected from the internet which have been

unexpectedly compressed during the streaming [!], [32], [46].
The compressed videos would, on one hand result in the blocking
artifacts, and on the other hand weaken the rain features. The second
problem is the unexpected watermarks in the internet videos. These
numerous watermarks [1], [73] may lead to a learning bias during
the training procedure. What is worse, some real datasets are not
well cleaned with the fake images such as cartoon or portrait. The
third problem is the limited number and scene in the dataset. Most
of the real rain datasets are less than 1000 source image/videos
which can not match the powerful representation ability of the
network. Last but not least, most of the real datasets are designed
mainly for low-level image deraining, but not for downstream tasks
as such detection, except for the RIS [46]. These datasets do not
face specific application such as the typical driving or surveillance,
which restricts their further applications.

In this work, the proposed dataset is Field Collection Real
Rain (FCRealRain) with high-quality images and diverse rain
appearance. Moreover, the FCRealRain focuses on the driving
scenes, which contains abundant object on the street. We have
provided the bounding box annotation for six typical categories:
people, car, bus, motorcycle, traffic light and traffic sign. Thus,
the downstream detection can be further employed to validate the
effectiveness of the image deraining. It is worth noting that most
of existing real datasets only contain the real rainy images without
the corresponding clean ground truth, including the proposed
FCRealRain.

4 ASYMMETRIC NON-LOCAL CONTRASTIVE DE-
COMPOSITION FOR IMAGE DERAINING
4.1 Contrastive Image Decomposition Framework

Given a rainy image O, our goal is to decompose the rainy image
into a clean background layer B and a rain layer R. The degradation
procedure can be formulated as:

O=B+R @)
Thus, the image deraining task can be formulated as an ill-posed
inverse problem with following optimization function:

Edecom = HB +R*0||%+5Pb(3)+)\R(R>, (2)
where the first term is self-consistent loss, namely the data fidelity
term, P, and P, denote the prior knowledge for the clean image
and rain streaks, respectively. Thanks to the sparsity of the rain
streaks in space, in this work, we regularize the rain layer with the
Ly constraint: P,.(R) = ||R||1 favoring the rain streaks with large
discontinuities. On the other hand, for the clean images, we employ
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Fig. 4. Motivation illustration of the proposed method. (a) Overview of the proposed contrastive decomposition framework for image deraining.
Most previous methods model the property of the image layer and rain layer independently in a supervised manner. In this work, we go further by
considering the mutually exclusive relationship between the two layers for better decomposition. (b)-(f) illustrate the difference between proposed
method and previous contrastive learning. (c) contrastive learning is difficult to well decouple the two components. (d) The NLCL exploits the non-local
self-similarity to improve the positive/negative sampling with discriminative representation; on the other hand, the contrastive decomposition would
take the bidirectional contrastive learning for better decomposition. (e) In this work, we further take the fine-grained asymmetric property between the

rain and image layers into consideration to obtain more compact low-dimensional manifold for each non-local clusters.

the adversarial loss [25] to learn the distribution mapping differing
the rainy image from clean image:

Py(B) = Eg [logD(B)] + Eo [log(1 — D(Gg(0)))],  (3)

where D is the discriminator, and Gp is the generator for the
clean image. The proposed decomposition-based architecture is
shown in Fig. 4(a), which consists of two branches to restore the
background (Gg) and extract the rain (Gg), respectively. Moreover,
we enforce the unsupervised loss on the decomposition framework
to optimize the decoupled two components. Note that, the proposed
method can be regarded as the integration of the model-driven
optimization method and data-driven learning network [96]with
both the good generalization endowed by the unsupervised loss
and good representation endowed by the deep network.

Most of the existing restoration methods follow the decom-
position framework in Eq. (2) with different hand-crafted [49] or
learned priors [96], where they only consider the clean image or
rain layer separately. That is to say, Equation (2) mainly focuses on
modelling of the statistical property of the signal itself. However, it
has neglected the relationship between clean image B, rain layers
R, and observed image O. In this work, we argue the contrastive
relationship among these components can further help to distinguish
them from each other. We introduce the contrastive learning to
model the relationship between different components for better
decomposition. Thus, the overall objective function including the
decomposition constraint and contrastive loss is formulated as:

£ove’r‘all = ‘Cdecom + Econtrastive <37 R7 0) (4)

Motivation of Asymmetric Non-local Contrastive Learning:
The contrastive learning has been preliminarily studied in low-level

image dehazing [81] and deraining [12], as shown in Fig. 4(c). The
existing methods simply take the clean images as the positive and
the degraded rainy/hazy images as the negative samples. To differ
the clean from the degraded images, these models are enforced
to attend on the subtle degradations over the whole image. It is
especially difficult for the light rain/haze conditions where the
degradations are hard to be observed. Moreover, the degradation
is entangled with the clean background in the negative samples.
Thus, it is easily for the conventional contrastive learning methods
to obtain the over-smooth or leave the residual results as shown in
Fig. 4(c).

In Fig. 4(d), we show the schematic diagram of our non-
local contrastive learning. Compared with previous methods, the
proposed method takes the estimated clean image and estimated
rain as the positive/negative, and verse vice. The disentangled image
and rain would significantly reduce the learning difficulty, since the
rain and image layers have distinct yet different features. Moreover,
we exploit the intrinsic non-local self-similarity within each layer,
such as similar patch sampling strategy would further increase the
compactness of the contrastive samples of each layer. Overall, the
disentangled sample choice and non-local sampling strategy of the
proposed method would naturally enlarge the discrepancy between
the inter-class samples and simultaneously enhance the compact
intra-class samples for better rain and image decomposition.

In Fig. 4(e), we further extend the NLCL to its asymmetric
version. The NLCL equally treats the rain and image layer within
the non-local contrastive decomposition. However, this is not true,
since the image patch contains diverse patterns, such as the complex
textures and sharp edges while the rain patches are much more
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simpler with line-pattern streaks or veiling. That is to say, the
image patches space may lie on higher-dimensional manifold while
the rain patches space may lie on lower-dimensional manifold with
high-probability (Detailed analysis in Section 4.3). This intuitive
observation motivates us to model the compactness difference cue
of the rain and image patch into the contrastive decomposition, so
as to better differ the rain from image.

The overview architecture of the proposed method is shown
in Fig. 5(a). Next, we will first describe how we construct the
contrastive relationship among each component B, R, and O
(Section 4.2). Finally, we will presents positive/negative sampling

strategy (Section 4.4) and design encoders in details (Section 4.5).

4.2 Joint Layer and Location Contrastive

Layer Contrastive: First, the clean image B and the rain layer
R are vastly different, in which the rain streaks are simple and
directional line-pattern, while the natural images are complex yet
meaningful structures such as edges and textures. The dissimilarity
between the B and R, as two different categories, can be well
modelled by CL as negative pairs. And it is very reasonable to
take the patches in the same image as the positive samples. The
important sampling strategy and encoder in CL will be discussed
in next subsection. In Fig. 5(b), we consider the image and rain
layer as the equally symmetric two components. Thus, referring to
the rain patches pg. as negatives, while the background patches as
the positives 7% and vice verse. We propose the bidirectionally
symmetric layer contrastive learning between the two layers B and
R which can be formulated as:

Ngp N,
2 eXP(fB f/7)
L ayerCon — .
e Ny kzg el fo/)
%’E % eXl)(fR "SR, /7)
m=1j=1 1—1exp(fR fB/T)

where fp = Ep (I’Bi)’,fR,- = FEp (PR,)j 7 denotes the scale
temperature parameter [8]. The first term in Eq. (5) is the image
positive and rain negative layer contrastive, and the second term

is the rain positive and image negative layer contrastive. Here, we
regard the image and rain layer as two equal components. Thus, the
bidirectional layer contrastive could facilitate us to better push one
layer away from each other, and pull each layer further to different
clusters. E'p is the encoder of contrastive network. The features
[, are extracted from the non-local patches pp of pp , while the
Sr,, are extracted from the non-local patches pg of p R;- Np and
Np denote the sample numbers of positives and negatives.
Location Contrastive: Second, we can observe that the clean
image B and the observed image O are visually close to each other,
since the rain streaks R are much simpler than B. The similarity
between patches of the same location in B and O, as the same view,
can be well modelled as the positive samples. Consequently, we
set the patches with different locations as the negative samples. In
Fig. 5(c), for location contrastive, there should be only one positive
sample, since the location correspondence is exactly one-to-one.
The encoder of image generator E, is utilized to extract the patch
features, denoted as vo, = Eg, (py,). and vg, = Eg, (pp,). Thus,
the location contrastive loss is formulated as:
EN exp(vo; v, /T)

=1 exp(vo, s, /7')—|—ZJ,1 exp(v0j~v1;i/’r) ’

‘CLDCCOTL = (6)

where N is the negative sample numbers. The location contrastive
constrains the restored background patches pp. at location i to
be related (positive) with the corresponding input patches p,. in
comparison to other random patches py, , so as to retain the image
content. Overall, the layer contrastive is to remove the rain from
the image layer, while the location contrastive is to preserve the
image content in the removal. The two contrastive losses compete
with each other to obtain the balance.

4.3 Asymmetric Layer Contrastive

Although the joint layer and location contrastive decomposes image
and rain layer by intrinsic feature discrepancy, the compactness
discrepancy between each layer is not fully considered. In this
work, we extend the symmetric contrastive decomposition to the
asymmetric contrastive decomposition. Specifically, we discover
that the dimension of image space is generally higher than that
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of rain space, which reveals that the image patches contain more
diverse and complex structures and patterns. In other words, the
compactness between rain patches should be tighter than that of
image patches. To this end, we employ the entropy, rank and T-
SNE as the different ways to both quantitatively and qualitatively
analyze both the image and rain patches, which helps to verify the
asymmetric property between image and rain layer.

We select the typical 16%16 patches from both clean image
layer and rain layer in Fig. 6(a), mainly including six categories:
smooth, texture, edges regions of image, and rain streak and
veiling regions of the rain. Note that each category contains 100
samples to statistically compute the indexes. We first calculate
the entropy of each category patches and make comparison in
Fig. 6(b). The entropy is to evaluate the degree of randomness
(complexity) in the patch by the definition —sum(p. * log2(p))
where p is the probability of normalized histogram count. It is
obvious that the entropies of edge and texture patches, except
for smooth patches, are generally higher than those of rain streak
and veiling patches. This is very reasonable since the image layer
has diverse and complex structural patterns. We also conduct
singular value decomposition (SVD) and T-SNE visualization of
each category patch cluster. In Fig. 6(c), we show the singular
value decomposition curve of each category is slightly different
from each other. Moreover, the low-rankness of each category
is exactly in proportion to the entropy. In Fig. 6(d), we perform
the T-SNE to visualize the two-dimensional distribution of these
different patches.

This motivates us to utilize the fine-grained discrepancy
property between the image and rain which could further offer
us abundant cues to better distinguish them. To this end, we
extend the symmetric layer contrastive to its asymmetric version
by additionally consider the margin loss between the image and
rain patches. When sampling image patches with higher entropy

than rain patches, we enforce the margin loss between B and R:
NR Ng

‘CMargin = Z Z [E+77(|lfR, _ij)||2 - Hme _fB,,

i,j=1m,n=1

’]

+>

(N
where [z]+ = max(z,0) denotes the standard hinge loss, € is the
pre-defined margin usually set as 1. n € {1, —1} is to indicate
whether the entropy of image patches is larger or smaller than that
of the rain patches. The physical meaning of Eq. (7) is to make
the distance of the rain patches maintain a large margin over the
distance of the image patches. Note that, in each batch, we need

pre-calculate the entropy of the chosen image and rain patches.

In order to accommodate with symmetric contrastive loss,
we further translate marginal loss Eq. (7) into the asymmetry
contrastive loss as follow:

n

. 11 ( YA YN exp(fg, - fr,/T) )

AsyCon — — 77 a7 )
Nr Np \ S"02, S0% exp(fy, f3,/7)

where the parameters and functions in Eq. (8) have the same
meaning as Eq. (5). Note that, the goal of the symmetric contrastive
loss in Eq. (5) is to equally minimize the distance within the
rain/image space, while enlarge the distance between the rain and
image space, while the goal of the asymmetric contrastive loss in
Eq. (8) is to regularize the distance between each space according
to different contents. The asymmetric contrastive loss would further
capture the fine-grained compactness discrepancy and improve the
discriminative representation between two layers.

4.4 Non-local Sampling Strategy

In contrastive learning, the negatives are the samples which
should be discriminated by the learned representations, while
the positives are highly related and possess the invariance in
the learned representations. The previous methods usually use
the augmentations to construct the single instance positives and
randomly sampling as the negatives [8]. Note that, the self-
similarity is a generic and powerful prior knowledge. In this work,
we introduce the non-local self-similarity to automatically select
both positive and negative samples within a single image. We
employ the block matching [17] with Lo Euclidian distance to
measure the dissimilarity/similarity in image space:

Dist(p;,p;,,) = |Ip; —Pm”z: &)
where p; is the query patch, p, , are the searched patches in the
support set 2. We take the top-k smallest Dis#() as the similar
patches, while the top-k largest Dist() can be regarded as the
dissimilar patches. On one hand, the non-local sampling with
similar structures would greatly ease the learning difficulty. On the
other hand, the small perturbation within the similar samples would
further improve the diversity. Moreover, the patches cropped from
the image itself would provide more reliable representation learning.
The non-local sampling strategy can be applied for sampling the
positive and negative. Here we briefly describe how we use the
non-local sampling in very flexible ways.

Non-local Sampling in Layer Contrastive. In layer contrastive,
the clean image and rain streaks can be regarded as two distinct
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categories where they have intra-class similarity and inter-class
dissimilarity. Our principle is that the positive samples (clean image
patches in B) should be pulled together as much as possible, so is
the negative samples (rain streak patches in R) which can also be
pulled together. That is to say, we enforce the non-local sampling
on both the positive and negative samples. Compared with single
positive instance, the multiple non-local positive samples would
benefit us to improve the feature representation. The recent research
has also shown that positives from multiple instances could improve
the representations if sampled appropriately (with supervised labels
[40] or multiple modalities [29]). Moreover, compared with the
random negative samples, the non-local sampling could additionally
model the relationship within the samples.

To illustrate this, Fig. 7 shows different sampling strategies:
random, neighborhood, non-local. The random sampling means we
randomly select the patches from the whole image as the positive
samples. The neighborhood sampling denotes that the positive
samples are sampled from the surrounding patch neighbours with
high similarity. Note that, compared with the non-local sampling
strategy, the asymmetric non-local is still based-on non-local
sampling with additionally asymmetric loss constraint.

In Fig. 7(a)-(c), we provide the distance within image patches,
distance within rain patches, and distance between the rain and
image patches. Compared with random sampling or neighbour
sampling, the distances of non-local positives decrease rapidly,
and converge at a relatively lower level, which indicates the self-
similarities are gradually learned and the patches are more relevant
in the restoration procedure. On the contrary, the distance between
the rain and image patches are gradually enlarged which means
the two components are gradually decoupled. These results con-
vincingly validates superiority of the proposed non-local sampling
strategy. Second, the proposed asymmetric loss could further reduce
the intra-class similarity and inter-class dissimilarity than that of
the non-local sampling. This is because that the asymmetric loss
would adaptively learn the compactness distance for each cluster. In
addition, we show the progressive deraining results in Fig. 7(d) and
7(e) for non-local and other sampling. With the increasing epoch,
the rain and image are gradually decoupled while the neighborhood
sampling would leave slightly residual rain streak in the image.
Non-local Sampling in Location Contrastive. The observed
image O and clean image B are very similar to each. In location
contrastive, the goal is to retain the image content and remove the
rain streaks in observed image, which is exactly a image-to-image
translation task. Thus, we follow the CUT [61] by setting the
patches of the same location in B and O as the positive samples

Image
Encoder

Encoder

Discriminator

Rain Streaks

Clean Image

Fig. 8. Effectiveness of the discriminator encoder. The first row shows
the features extracted from image encoder. Although the extracted
features in two different images are clear, the image generator has nearly
no response to the rain streaks. The second row shows the features
extracted from the discriminator encoder. The extracted features in two
images and rain streaks are both clear and discriminative. This strongly
supports the effectiveness of the discriminator serving as the encoder for
the image and rain layers.

with a large batch size. The previous methods including CUT
randomly select the different patches as the negative. However, it is
more reasonable that the more dissimilar from the positive sample,
the better the negative sample is. This motivates us to still use
the non-local sampling strategy to construct the negative patches.
Instead of calculating the nearest top-k samples, we choose the
farthest top-k samples (the largest distance) which means they are
mostly different from the target positive. We name this negative
sampling as the reverse non-local sampling.

4.5 Choice of Feature Encoder

In contrastive learning, the feature encoder is to map the inputs
to the embedding low-dimensional feature representation space
that facilitates the measurement of the distances between positive
and negative samples. It has been recognized that for different
CL tasks, the choice of the encoder would vastly influence the
final performance [42]. In this work, we also demonstrate that
the encoder is indeed tasks dependent for low-level restoration
tasks, and explore different encoders for both the layer and location
contrastive constraints intuitively and experimentally.

As for the layer contrastive, the goal is to differ the rain streaks
from the clean image, which has been analyzed that this is analog
to a classification problem. That is to say, the encoder of the layer
contrastive should extract the high-level semantic about the category
information. The discriminator is in line with the layer contrastive
encoder, which can differ the image from non-image component
including the rain streaks. As for the location contrastive, the clean
image and the observed rainy image are very similar to each other,
in which the clean image is the dominant component in rainy image.
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TABLE 2
Quantitative comparisons with SOTA unsupervised methods on synthetic
and real datasets.

RainCityscapes [31] SPA [73]
Methods PSNR | SSIM | NIQE | PSNR | SSIM | NIQE
DSC [56] 2491 | 07603 | 6.17 | 33.71 | 09127 | 9.82
DIP [67] 2245 | 0.6936 | 7.86 | 3036 | 0.8422 | 9.97
CycleGAN [102] | 24.86 | 0.7906 | 3.68 | 33.54 | 09127 | 6.67
UDGNet [96] 25.16 | 0.8749 | 531 | 29.67 | 0.9299 | 9.50
CUT [61] 2521 | 0.8225 | 4.08 | 32.97 | 0.9434 | 9.60
DCD-GAN [14] | 25.18 | 0.8270 | 3.73 | 29.23 | 0.9195 | 8.47
NLCL [94] 2646 | 0.8666 | 3.67 | 33.82 | 0.9468 | 9.55
DeCycleGAN [79] | 26.99 | 0.8670 | 4.86 | 34.16 | 0.9436 | 9.02
ANLCL 2742 | 09123 | 3.72 | 35.07 | 0.9505 | 8.46

In other words, the encoder of the location contrastive should well
extract the image features. The image generator can satisfactorily
achieve this goal.

To verify our hypothesis, Fig. 8 visualizes the embedded
features map encoded by different encoders: image generator and
discriminator. The first row shows the features extracted from image
encoder, and the second row shows the features extracted from

discriminator encoder. We select two different clean images and two
different rain streaks as the example. We can observe that the image
generator could effectively extract the image structures, while it
cannot extract any informative information from the rain streaks. On
the contrary, the line patterned rain streaks and image structure can
be clearly observed in the features extracted by the discriminator
encoder. The discriminator focuses on the distinguishable features
of image and non-image factors to perform the classification task,
which matches the layer contrastive learning task better.

4.6 Implementation Details

The proposed method facilitates us to unsupervisedly differentiate
the rain from clean image. However, training ANLCL model with
random initialization may not disentangle the image layer from rain
layer. To solve this problem, we employ the two-stage pretrain and
finetune training strategy [96]. First, we utilize supervised deraining
knowledge based on synthetic datasets as the initialization of both
generators, and train the generators and discriminator without the
CL loss. Second, we train the whole ANLCL model with overall
losses using Eq. (4). Since the CL encoder is associated with the
discriminator, the contrastive learning loss will not work until the
well-trained discriminator is obtained.
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TABLE 3
Ablation on different sampling strategies.
Positive Negative | PSNR SSIM
Random Random | 25.83 0.8471
Neighbour Random | 26.03 0.8491
Neighbour Neighbour | 25.97 0.8477
Non-local Random | 26.18 0.8489
Random  Non-local | 26.16 0.8531
Non-local Non-local | 26.46 0.8666

TABLE 4

The choice of different feature encoders.

Encoder PSNR SSIM NIQE
Image Generator |24.86 0.8046 3.83
Image-Rain Generator|24.12 0.8023 3.95
Discriminator 26.46 0.8666 3.67

We utilize the same ResNet architectures [37] for both the
image and rain feature extraction. PatchGAN [34] is employed as
the discriminator. We first calculate the top-k non-local patches
in image space, then obtain the multilayer features [61] from the
encoder, and finally embed the non-local features through a two-
layer MLP with 256 units. The sampling number N, Ng, and Ny
are set as 256, 8, 256. The encoder updating follows the setting
of MoCo [30], using momentum value 0.99 and temperature 0.77.
The balance weights for each loss A, 4, p, o and ~y are set as
0.1,1,1,1,0.01. Due to the high-resolution of FCRealRain, we
first downsample the original image by a factor of 4 and then
randomly crop 256 X 256 patches for training. We adopt Adam
optimizer and train the network with learning rate 0.0001, and
batch size 4 on four RTX 3090 GPUs.

5 EXPERIMENTAL RESULTS
5.1 Datasets and Experimental Settings

We conduct the experiments on both synthetic dataset RainCi-
tyscapes [31], real dataset SPA [73] and proposed FCRealRain. To
simulated the real situation, we split the RainCityscapes with 1400
for training and 175 for testing. Note that we have no access to
the ground truth and can only learn in an unsupervised manner.
For the real SPA dataset, we obtain 2000 rainy images from
SPA for training and 200 rainy images for testing. For a fair

TABLE 5
Effectiveness of each loss in ANLCL.

El Eadv EMS’E ACLocCon [:LayeTCan EAsyC'on PSNR SSIM
- v v v v v 27.07 0.9078
v oo v v v 22.79 0.7948
v v - v v v 26.91 0.8930
v v v - v v 26.45 0.8797
v v v - v 25.83 0.8733
v v v v v - 26.46 0.8666
v v v v - - 24.98 0.8426
v v v - 23.55 0.8132
v v v v v 27.42 0.9123

comparison, we mainly select the unsupervised methods, including
the optimization-based DSC [56], CNN-based DIP [67], GAN-
based CycleGAN [102] and DerainCycleGAN [80], contrastive
learning-based CUT [61] and DCD-GAN [12], and optimization-
driven deep CNN [96]. Furthermore, we compare with state-of-
the-art supervised JORDER-E [87] and AECR-Net [81] on the
real rainy images. We employ full-reference PSNR/SSIM and no-
reference natural image quality evaluator (NIQE) [58] to evaluate
the deraining performance. Moreover, we employ the mean Average
Precision (mAP) to evaluate the downstream object detection for
comprehensive evaluation.

5.2 Comparisons with State-of-the-arts

In Table 2, we report the quantitative results on RainCityscape
and SPA, respectively. These datasets mainly contains the rain
streaks with different visual appearances without the veiling in
heavy rainy images. The quantitative results of NLCL mostly
outperform competing methods, which verifies the effectiveness of
the proposed method. Moreover, the ANLCL has further improved
the results and achieved state-of-the-art performance. We emphasize
that ANLCL is not designed for the quantitative index on rain
streaks. Instead, our philosophy is to unsupervisedly handle the
real rains. To validate this, in Fig. 9, we compare with the state-
of-the-art methods on real-world rainy images of the FCRealRain,
which contains both the rain streak and veiling. The unsupervised
methods are trained and tested on FCRealRain, while the supervised
methods JORER-E and AECR-Net are trained on paired synthetic
datasets. The proposed ANLCL consistently achieves more visual
pleasing results, which not only remove the rain streaks but also
the veiling artifacts meanwhile better preserve the image structure.
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Fig. 12. Visualization comparisons in real snow scenes. ANLCL generalizes well for the snow image with reduced white snow spots.

5.3 Ablation Study

Effectiveness of Non-local Sampling Strategy. In Table 3, we
compare the different sampling strategies for both the positives
and negatives in contrastive learning, including the random sam-
pling, neighbour sampling (8 nearest neighbour patches), and the
proposed non-local sampling. These experiments are all performed
on the layer contrastive. Compared with the random sampling,
the non-local sampling for both the positive and negative could
obviously improve the restoration results. That is to say, the non-
local sampling is favorable to learn the image and rain streaks
similarity, thus indeed reduces the variance within the positives and
negatives, and at the same time enlarge the discrepancy between
them. The neighbour sampling could slightly improve the results,
while the non-local sampling still obtains the best performance.

Choice of Different Feature Encoders. The choice of the encoder
for latent feature space is very important. In Table 4, we test
different encoders for layer contrastive feature embedding. First,
we take the image generator as feature encoder for both the image
and rain layers. Second, we utilize the image generator and rain
generator as feature encoder for the image and rain layer, respec-
tively. Third, we employ the discriminator as the feature encoder
for both the image and rain layers. The discriminator encoder has
achieved the best result, which verifies the discriminator is suitable

Positive Image Layer

Query

Negative Rain Layer

Fig. 13. The visualization of the Top5 non-local searched patches.

to distinguish the image from rain patches. This is reasonable,
since the discriminator is trained to differ the real image from the
generated image including the artifacts.

Effectiveness of Each Loss. In Table 5, we show how each loss
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Fig. 14. Visualization comparisons of object detection results after de-raining. Compared with other methods, ANLCL can preserve more background

details and boost the performance of detection with higher confidence.

TABLE 6
Boosting performance on supervised deraining methods.

TABLE 7
Boosting performance of object detection task on FCRealRain dataset.

Method Baseline Baseline+ANLCL Gain
PReNet [63] 35.16/0.9762 36.34/0.9814 +1.18 / +0.52%
RCDNet [71] | 36.65/0.9805 37.46/0.9869 +0.81 /7 +0.64%

contributes to the final result. The L£1,occon and L qyercon aim to
learn the correlations between the rainy-clean images, and the rain-
image layers. We can observe that the two contrastive losses could
greatly improve the deraining results, and the self-consistency and
adversarial loss are the baseline of our model. £ sparse loss could
slightly improve the performance. The asymmetric contrastive loss
L AsyCon has further improved the results.

5.4 Analysis and Discussion

Effectiveness of Layer Contrastive. In Fig. 10(b), we perform
the T-SNE to visualize the distribution of the decomposed image
and rain layer w/ and w/o contrastive constraint. Without the layer
contrastive, the distribution of the red rhombus (image) and the
red pentacle (rain) are divergent. Moreover, they are mixed with
each other which means they are still indistinguishable. On the
contrary, with the layer contrastive, the distribution of the green
rhombus (image) and the green pentacle (rain) are focused and
distinguishable. Based on layer contrastive, the proposed asymmet-
ric contrastive further improves the discriminative representation.
Specifically, the distribution of the blue rhombus (image) and the
blue pentacle (rain) is well disentangled, and the compactness of
blue pentacle (rain) is obviously enhanced comparing with the blue
rhombus (image). Moreover, in Fig. 10(a) and (c), we visualize
several typical decomposition results of both the image and rain
patches. It is observed that the layer contrastive can gradually
facilitate the disentanglement between the rain and image layers.

Generalization to Haze and Snow. The ANLCL is a general prior
for image decomposition, in which we do not rely on the specific
domain knowledge but exploit the intrinsic self-similarity within
each layer and also the discrepancy across different layers. Here,
we demonstrate that the ANLCL can be well applied on other
typical low-level restoration tasks: haze removal and snow removal.
We unsupervisedly re-train the proposed method with real data
collected from the Internet, and choose the state-of-the-arts for
fair comparison: PSD [16] and DA-Dehazing [64] for dehazing,

Method mAP | person car motor  bus tlrgfﬁc m.lfﬁc
ight sign
Rainy Image 67.6 90.1 93.7 46.6 994 36.7 39.1
JORDER-E 63.9 85.6 934 392 995 31.8 33.9
CycleGAN 58.8 73.8 889 48.7 828 30.7 27.9
CUT 61.4 85.6 932 277 99.1 32.5 30.3
UDGNet 64.3 859 925 40.1 99.3 33.8 34.2
DCD-GAN 67.1 824 923 463 995 422 39.9
DeCycleGAN | 68.7 89.5 94.0 48.1 99.5 41.4 39.7
NLCL 69.1 89.6 948 486 99.6 45.0 40.1
ANLCL 69.8 89.9 95.0 482 99.7 45.5 40.5

B e

UDGNet + ANLCL |

UDGNet

Fig. 15. The benefits of the NLCL when applied to UDGNet.

HDCWNet [1 1] and JSTASR [10] for desnowing. Note that, both
the training and test images are all real without ground truth. In
Fig. 11, the ANLCL has obviously enhanced the contrast with
natural appearance. In Fig. 12, we remove noticeable snow in the
real scenes with the details well preserved.

Visualization of Self-similarity Patches. The non-local self-
similarity plays the key important role in the unsupervised
contrastive learning. We visualize the top 5 non-local positives and
negatives of both light and heavy rain conditions in Fig. 13. It can
be observed that the positives and negatives are very similar to that
of the query key patch. Compared with other sampling, these self-
similarity patches are naturally compact which would significantly
facilitates us to learn more discrimination representation. Moreover,
it is worth noting that these self-similar patches are real and reliable
with slight difference, not the conventional augmentation with fixed
transformations. These similar yet different patches are naturally
idea samples for the contrastive learning.

Boosting to Existing Methods. The ANLCL is a general prior



TABLE 8
The model size and inference time under image 256 * 256.

Method DSC JORDER-E DeCycleGAN UDGNet DCD-GAN CUT ANLCL

Size(MB) — 16.7 43.6 5.7 11.4 45.6 2.6

Time(s) 33.95 0.1280 0.0379 0.0170 0.0452 0.0135 0.0098

which can be naturally embedded into the existing methods
including both the supervised and unsupervised methods. Note
that, we only need to enforce the layer contrastive and asymmetric
contrastive loss on the existing methods. Thus, the embedded
ANLCL loss is easy to be embedded and inference friendly which
does not increase any parameters.

For supervised deraining, we choose the state-of-the-art PReNet
[63] and RCDNet [71] as example. In Table 6, we list the
PSNR/SSIM performance of Baseline, Baseline+ANLCL and
Gain. The existing supervised deraining methods obtain a further
improvement after embedded with ANLCL loss. For unsupervised
deraining, we take the unsupervised deraining method UDGNet
[96] as example. In Fig. 15, without the ANLCL loss, although
UDGNet could well remove the rain streaks, the image structures
have been unexpectedly removed along with rain. The result of
UDGNet + ANLCL is much better especially for the structure
preserving such as the text, which further supports the effectiveness
of ANLCL for discriminative image and rain decomposition.
Promotion for Downstream Detection. The proposed dataset
contains the bounding box annotation for rainy image object
detection evaluation. It has been analyzed that not all image
deraining methods are beneficial for the detection and tracking
[2]. In Table 7, we report the mean average precision (mAP) of
mentioned results using YOLOvS on FCRealRain dataset. It is
worth noting that JORDER-E, CycleGAN, CUT, UDGNet would
lead to negative contribution to the detection results. This is
reasonable since the image structure damage outweighes the rain
removal benefit in the deraining procedure. On the contrary, the
ANLCL consistently improves the detection performance for all
categories, except the person. For example, the JORDER-E has
unexpectedly over-smoothed the image details which obviously
weakens the discriminative feature for detection. In Fig. 14, after
the rain removal, ANLCL can further detect the motorcycle while
other competing methods fails. Moreover, the confidence score has
been consistently improved after the ANLCL deraining.

Model Size and Running Time. In inference, the proposed
method ANLCL contains very simple 9 ResNet blocks, in which we
do not employ very complicated architecture. Our goal is to validate
the effectiveness of the non-local contrastive loss for discriminative
image and rain layer decomposition. In Table 8§, we report the
model size and running time of the competing methods. We can
observe that the model size of ANLCL is 2.6M, greatly smaller
the other models. Moreover, the running time is 0.01s for ANLCL
much faster than other methods, making it more applicable.

Influence of the Non-local Sampling Number. We show how
the sampling numbers affect the derain result in Table 9. The
PSNR increases when the positive sizes grow to an appropriate
number, and then decrease since the excessive positives are
somehow dissimilar. 8 positives and 256 negatives obtain the best
performance. The reason is that most of the rain have the similar
line patterns, thus more non-local similar patches can be found
to boost the learning than complex image patches. Moreover, the
sampling number is not the larger the better, since enforcing the
dissimilar patches to be similar may violate the similar assumption.
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TABLE 9
The analysis of optimal sampling number.
Neel 64 128 256 512
Pos
4 2321 26.11 26.19 26.30
8 24.55 2630 26.46 26.42
16 24.54 2596 26.02 26.11
32 23.49 25.02 2540 25.37

6 CONCLUSION

In this paper, we propose a novel asymmetric non-local contrastive
learning method for image real rainy reamoval, which explores
the powerful self-similarity property within the image. Our unsu-
pervised method can automatically decouple the image from the
rain artifacts with good generalization to different real scenes and
tasks. We show that our non-local sampling strategy can be used to
learn meaningful representations for both positives and negatives.
Especially, the proposed non-local sampling strategy enriches the
faithful, diverse and structural representation for both negatives
and positives. Moreover, we propose asymmetric layer contrastive
loss which precisely model the compactness discrepancy for better
discriminative decomposition. In addition, we have contributed a
high-quality field collection real rain dataset for unsupervised
training and testing. Extensive experiments demonstrate that
ANLCL achieves state-of-the-art performance in real rainy scenes.
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