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SC-DepthV3: Robust Self-supervised Monocular
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Abstract—Self-supervised monocular depth estimation has shown impressive results in static scenes. It relies on the multi-view
consistency assumption for training networks, however, that is violated in dynamic object regions and occlusions. Consequently, existing
methods show poor accuracy in dynamic scenes, and the estimated depth map is blurred at object boundaries because they are usually
occluded in other training views. In this paper, we propose SC-DepthV3 for addressing the challenges. Specifically, we introduce an
external pretrained monocular depth estimation model for generating single-image depth prior, namely pseudo-depth, based on which
we propose novel losses to boost self-supervised training. As a result, our model can predict sharp and accurate depth maps, even
when training from monocular videos of highly dynamic scenes. We demonstrate the significantly superior performance of our method
over previous methods on six challenging datasets, and we provide detailed ablation studies for the proposed terms. Source code and
data have been released at https:/github.com/JiawangBian/sc_depth_pl

Index Terms—Monocular Depth Estimation, Unsupervised Learning, Self-supervised Learning, Knowledge Distillation
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1 INTRODUCTION

ONOCULAR depth estimation [2] has attracted great at-
Mtention in computer vision. It provides valuable cues for
various downstream tasks, such as semantic image segmenta-
tion [3], salient object detection [4], 3D reconstruction [5], novel
view synthesis [6], and visual odometry [1], [7]. Early work [2],
[8] solves the monocular depth estimation problem by using
supervised learning. However, these methods rely on ground-truth
depth labels that are not always available in real-world scenes.
To address this limitation, self-supervised monocular depth esti-
mation methods were proposed and showed that a depth network
could be trained from stereo image pairs [9] or monocular videos
with ego-motions [10] without the need for ground-truth depth
labels. We focus on self-supervised learning of monocular depth
from videos since only a single camera is required to collect
training data in this setup, which has great potential for advancing
real-world applications.

Self-supervised methods typically rely on the multi-view con-
sistency assumption for training networks, e.g., the photometric
loss [10] and geometry consistency loss [1] that were used in
previous methods. This assumption provides effective constraints
for learning scene geometry, while it is violated at regions with
occlusion (e.g., object boundaries) and moving objects. Therefore,
existing methods often show only excellent results in (almost)
static scenes such as KITTI [11] and NYUv2 [12] datasets.
When training on more challenging dynamic datasets that have
an amount of fast-moving objects, previous state-of-the-art meth-
ods [1], [13], [14] show poor accuracy. Moreover, the estimated
depth map is blurred at object boundaries because they are usually
occluded in other training views. We illustrate several examples of

e First two authors contributed equally. J.-W. Bian is the corresponding
author. He is with the University of Oxford, United Kingdom;

L. Sun and 1. Reid are with The University of Adelaide, Australia;

H. Zhan is with the OPPO US Research Center, United States.

W. Yin is with the DJI Technology, China;

C. Shen is with Zhejiang University, China.

Part of this work was done when J.-W. Bian, H. Zhan, W. Yin, and C. Shen
were with the University of Adelaide;

qualitative monocular depth results in Fig. 1.

To address the issues caused by moving objects and occlu-
sions, existing approaches usually detect these bad regions and
then exclude them from training. The methods can be categorized
into four classes according to how they detect dynamic regions,
involving in the prediction-based [10], semantic-based [15]-[18],
flow-based [19]-[22], and geometry-based [1]. These methods
can reduce corruption from noisy losses during training and
generally improves overall accuracy, however, it leads to poor
results on dynamic regions at inference time because these regions
are not sufficiently regularized in training. There are also more
sophisticated approaches [23], [24] that model the velocity of
each moving object in multiple views, but they rely on solving
a challenging problem in themselves.

We propose SC-DepthV3 in this paper, which addresses the
above-mentioned issues by leveraging external single-image con-
straints. Specifically, we leverage an off-the-shelf monocular depth
estimation model [25] to generate the single-image depth prior,
which we term pseudo-depth. Based on it, we propose effective
losses to constrain the depth estimation network in self-supervised
learning. Here, we use LeReS [25] for generating pseudo-depth,
which is trained in large-scale datasets with supervised learning
and enables zero-shot generalization in previously unseen data.
The excellent qualitative results have been demonstrated in [25],
while we find that pseudo-depth may show low quantitative
accuracy. Fig. 3 gives an example, where we visualize the error
map of pseudo-depth by comparing it with the ground truth. This
phenomenon makes supervised zero-shot methods unsuitable for
accuracy-sensitive tasks such as visual SLAM and 3D Reconstruc-
tion. Furthermore, as pseudo-depth is not quantitatively accurate,
it is non-trivial to use it for boosting self-supervised learning. In
this paper, our technical contribution is designing effective losses
that use imperfect pseudo-depth. It is also worth mentioning that
although we use external depth estimation networks, they are only
trained once and can be used as off-the-shelf tools in new scenes.
Therefore, in practice, our method does not add extra cost to purely
self-supervised methods.
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Fig. 1. Qualitative monocular depth estimation results on six datasets. We compare our method (third row) with SC-Depth [1] (second row), which
is one of the previous state-of-the-art self-supervised methods. Compared with it, our method enables more robust learning in dynamic scenes (left
three columns) and generates sharper depth maps, particularly at object boundary areas.

The key to solving the dynamic region issue is the proposed
Dynamic Region Refinement (DRR) module. The method is
inspired by an observation, i.e., we find that pseudo-depth main-
tains excellent depth ordinal (the further/nearer relations) between
any two objects or pixels. To capitalize on these findings, we
propose to extract the “ground-truth” depth ordinal information
between dynamic and static regions (from pseudo-depth) and use
it to regularize the self-supervised depth estimation in dynamic
regions. Specifically, we sample point pairs between two regions
and apply depth ranking loss [26]. This is effective because the
static backgrounds have already been well-supervised by multi-
view losses, and the dynamic regions could be uniquely localized
by sampling sufficient point pairs between dynamic and static
regions. Our method is also based on the fact that the depth
ordinal in pseudo-depth is sufficiently accurate [25]. Furthermore,
to segment dynamic regions from static backgrounds, we use
the self-discovered mask that was proposed in SC-Depth [1] and
generated by computing forward-backward depth inconsistency in
self-supervised training, so the external segmentation networks are
not required. Fig. 4 illustrates the proposed DRR module.

Moreover, we observe that pseudo-depth shows smooth local
structures and clean object boundaries. This motivates us to pro-
pose a Local Structure Refinement (LSR) module to improve the
self-supervised depth estimation w.r.z. depth details. The proposed
module contains two parts. On the one hand, we extract the surface
normal from both pseudo-depth and network-predicted depth, and
we constrain them to be consistent by applying a normal matching
loss. This improves the overall depth significantly. On the other
hand, we constrain depth estimation at object boundary areas by
applying our proposed relative normal angle loss. More specif-
ically, we sample point pairs around image edges and enforce
their relative normal angles to be consistent between pseudo-
depth and self-supervised depth. As a result, our method improves
qualitative depth estimation results significantly, particularly at
object boundaries. Fig. 1 shows several examples of the qualitative
depth estimation results.

Our contributions are as follows:

e We propose SC-DepthV3 for robust self-supervised learn-
ing of monocular depth in highly dynamic scenes, which
allows for predicting accurate and sharp depth maps.

e We propose Dynamic Region Refinement (DRR) and Lo-
cal Structure Refinement (LSR) modules, which are based
on pseudo-depth to boost self-supervised learning.

e We conduct comprehensive experiments and ablation stud-
ies on six challenging datasets. The results demonstrate the
efficacy of our proposed methods.

2 RELATED WORK

Self-supervised Monocular Depth Estimation. Garg et al. [9]
proposed to train monocular depth estimation models on stereo
image pairs by using the photometric loss. Zhou et al. [10]
proposed to train the depth estimation model on videos by jointly
training a pose estimation model. Following them, many advanced
techniques [1], [13], [14], [17], [19], [22], [27]-[30] were pro-
posed to boost the performance. However, multi-view ambiguities
make the self-supervised method hard to handle dynamic objects
and object boundaries. Previous methods either excluded these
regions from training [1], [15], [16], [19] or modeled the object
motions [23], [24], but both solutions have their drawbacks. More
specifically, simply excluding dynamic regions would result in
poor accuracy on these regions at the inference time, and modeling
each object’s motion is ill-posed and may not be robust in dynamic
scenes. Compared with them, our method leverages pretrained
single-image prior for resolving multi-view ambiguities, leading
to a SOTA self-supervised depth estimation method. More recent
methods include [31]-[33].

SC-Depth Series Methods. This paper is the third version of the
SC-Depth series methods. In the SC-Depth [1], we addressed the
scale inconsistency issue, so our method enables scale-consistent
depth estimation over the video, which is beneficial to video-
based tasks such as Visual SLAM. In the SC-DepthV2 [30], we
analyzed the rotation issue in videos that are captured by handheld
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Fig. 2. Method overview. Firstly, given a training sample (i.e., I, and I, two images), we follow SC-Depth [1] to compute self-supervised losses
Lseir (Eqn. 6), which is described in Sec. 3.1. Secondly, we generate pseudo-depth PD, using a pretrained depth estimation network, which is
discussed in Sec. 3.2. Finally, we propose DRR and LSR modules to constrain the network prediction (D,) by using PD,, which are presented in

Sec. 3.3 and Sec. 3.4, respectively.

cameras, and we proposed an auto-rectify network to handle the
large rotation. The V1 and V2 have shown great accuracy in both
indoor and outdoor scenes. However, their predicted depth maps
are blurred at object boundaries, and they suffer in highly dynamic
scenes. In this paper, we propose SC-DepthV3 address the issue
of dynamic objects and blurred object boundaries.

Zero-shot Monocular Depth Estimation. Many existing methods
leverage large-scale datasets and supervised training [25], [34]-
[40] to train monocular depth estimation models towards zero-
shot generalization on unseen data. For example, [34]-[39] col-
lect stereo images/videos from the internet and use geometric
reconstruction tools [41], [42] to generate dense ground-truth
depth labels. [40] export perfect ground-truth depths from the
synthetic 3D movies [43]. Recently, LeReS [25] and DPT [44]
achieve the state-of-the-art performance. However, note that their
predicted depths are scale-shift-invariant, due to the high diversity
of different scenes, which show low quantitative accuracy in out-
of-distribution data and cannot be used for 3D reconstruction.
Nevertheless, we find that their predicted depths carry good
attributes that could be leveraged for boosting self-supervised
learning of monocular depth estimation. Compared with these
methods, our method enables consistent and accurate depth es-
timation for video-based tasks such as Visual SLAM, which
has been demonstrated in SC-Depth [1], thanks to the scale-
consistency constraints.

Knowledge Transfer. Our method is also related to knowledge
transfer approaches, because the proposed method can be regarded
as transferring the knowledge of pretrained monocular depth
estimation models [25] to our self-supervised trained models.
However, we argue that our method is very different from previous
knowledge transfer or distillation methods. On the one hand,
knowledge is often transferred by finetuning pretrained models
in new datasets [45], which is not our case and cannot solve the
challenges in our problem. The main issue in our problem is the
imperfect self-supervised loss, so even if we finetune pretrained
models (i.e., it provides a good initialization), the model would
become worse and worse with training due to the deficient self-

supervised loss functions. On the other hand, knowledge transfer
could also be achieved by conducting semi-supervised learning
on mixed datasets. Specifically, we can train models on both
previous large-scale datasets with ground-truth labels and new
datasets without annotations, and then we apply supervised loss
in the former and self-supervised loss in the latter. However, this
involves new challenges of mix-data training, long training time,
and the maintenance of large-scale previous data. In contrast, our
method is more elegant than semi-supervised training, since the
teacher model is trained only once on large-scale datasets and can
be used as an off-the-shelf tool to generate pseudo-depth in new
scenes. Moreover, our student model shows significantly higher
accuracy than the teacher model, which is rare in the field of
knowledge distillation.

3 METHOD

Fig. 2 illustrates an overview of the proposed method. First,
our method is based on SC-Depth [1] for basic self-supervised
training, which we describe in detail in Sec. 3.1. Second, we
discuss the single-image depth prior in Sec. 3.2 that is generated
by using the off-the-shelf monocular depth estimation methods
and used in our method for generating auxiliary supervision
signals. Finally, we describe the Dynamic Region Refinement
(DRR) in Sec. 3.3 and Local Structure Refinement (LSR) modules
in Sec. 3.4, respectively, which are the proposed terms to boost
self-supervised training.

3.1 Self-supervised Depth Learning (SC-Depth)

In the self-supervised learning framework, a monocular depth
estimation network (DepthNet) and a relative 6-DoF camera pose
estimation network (PoseNet) are jointly trained on a large number
of monocular videos. First, given a consecutive image pair (I,
Iy) randomly sampled from a training video, we predict their
depths (D, Dp) by forwarding the DepthNet and estimate their
relative 6-DoF camera pose P,; by forwarding the PoseNet. Then,
we generate the warping flow between two images using the
predicted depth and pose, followed by synthesizing the I’ using
the flow and I via bi-linear interpolation. Finally, we penalize the
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color inconsistencies between I, and [ (’l and we also constrain
the geometry consistency between D, and D, which back-
propagates the gradients to the networks. The objective function
is described below.

First, we use the geometry consistency loss L¢ [1] to encour-
age the predicted depths (D, D) to be consistent with each other
in 3D space. Formally,

Lg = (H

Z Dyire(p

peEVY

V]

where V' stands for valid points that are projected inside the image.
Dy stands for the pixel-wise depth inconsistency between D,
and Dy, which is detailed explained in [1]. With it, we can obtain
the self-discovered mask:

My =1 — D, (@)

which assigns lower weights to dynamics and occlusions than
static regions, since the former is geometrically inconsistent across
multiple views. We use this mask in our proposed DRR mod-
ule( Sec. 3.3) to localize dynamic regions.

Second, we use the weighted photometric loss L% to constrain
the warping flow between I, and I that is generated by the D,
and P,;. Formally,
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where I’ is synthesized from I, using the warping flow, and
SSIM [46] is a widely-used metric to measure image similarity.
We set A to 0.15 as in [1].

Third, we use the edge-aware smoothness loss to regularize
the predicted depth map. Formally,

Lg= Z(e—wa(p) - VD,(p))?,

p

P
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where V is the first derivative along spatial directions, which
guides smoothness by image edges.
Overall, our objective function is formulated as follows:

Lsey = aL¥ + BLg + vLs. (6)

We set « = 1, 8 = 0.5, and v = 0.1 as in [1]. Note that we
will replace Lg with the proposed normal loss Ly in Sec. 3.4.
Moreover, we also use the auto-masking and per-pixel minimum
reprojection loss that are proposed in [13] to filter stationary and
non-best points during training.

3.2 Single-Image Depth Prior

Our idea is to leverage the pretrained monocular depth estimation
network for generating single-image depth prior, which is then
used to boost self-supervised learning. Here we use LeReS [25]
to generate pseudo-depth, which is trained on large-scale datasets
with ground-truth depth labels. Thanks to the supervised training
on large-scale data, it shows excellent zero-shot generalization
performance on unseen scenes. Note that LeReS was not trained
on datasets that we use in this paper for evaluation. An example of
LeReS outputs is shown in Fig. 3, where it shows plausible visual
results on the DDAD dataset but poor quantitative accuracy.

(b) Pseudo-depth

(c) Error map (mean AbsRel=0.358)

Fig. 3. Visualization of pseudo-depth (LeReS [25]) on the DDAD dataset.
For the error map, we show the AbsRel error, and we use the nearest
interpolation for pixels where the ground-truth depth labels (sparse
LiDAR points) are unavailable. It shows that LeReS [25] can generalize
to previously unseen data with plausible visual results (b), however, high
quantitative accuracy is not guaranteed. Here “AbsRel=0.358" is aver-
aged over all testing images. This indicates that our idea of leveraging
pseudo-depth for boosting self-supervised training is motivated, and it is
also non-trivial to use it.

These phenomena echo our motivation, i.e., pseudo-depth is
not accurate enough but has potential that can be leveraged for
boosting self-supervised learning. More specifically, we find that
the good visual results are contributed to several aspects, including
(a) correct depth ordinal (nearer/further relation) between objects;
(b) excellent smoothness in predicted depth; (c) sharp depth
prediction at object boundaries.

Therefore, based on the above observation, we propose two
modules to extract effective supervision signals from pseudo-
depth. First, we propose a Dynamic Region Refinement (DDR)
module that regularizes self-supervised training with a depth rank-
ing constraint, particularly boosting depth prediction on moving
objects. Second, we propose a Local Structure Refinement (LSR)
module that constrains the smoothness and object boundaries of
the predicted depth. The proposed two modules are presented in
Sec. 3.3 and Sec. 3.4, respectively.

3.3 Dynamic Region Refinement

The key to our proposed dynamic region refinement (DRR) mod-
ule is constraining depth estimation on dynamic regions by enforc-
ing the nearer/further relation w.r.t. the predicted depths on static
regions. Specifically, this is based on two assumptions including
(1) The accurate depth ranking relations between any two pixels
can be extracted from pseudo-depth; (ii) depth prediction on static
regions is sufficiently accurate thanks to the self-supervised losses.
The assumptions are valid, as demonstrated in prior work [13],
[25], so our idea is generally effective. In the proposed DRR
module, we first sample point pairs between dynamic and static
regions, where the segmentation of images is obtained in a self-
supervised manner (Eqn. 2). Then we compute depth ranking loss
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on sampled point pairs to regularize the predicted depth map. The
proposed sampling method and loss function are presented in the
following paragraphs, and Fig. 4 illustrates a training example.

Dynamic-focused Sampling. To sample point pairs between static
and dynamic regions, we need the segmentation of training im-
ages. This could be achieved with the use of pretrained semantic
segmentation networks, e.g., we can assume objects of certain
classes such as vehicles as moving objects and others as static
backgrounds. However, it involves extra data preprocessing and
pretrained networks. Moreover, the dynamic of an object does
not necessarily rely on the semantic classes, e.g., a chair can
be dynamic while a person is moving it around. Instead, we
derive dynamic/static segmentation from the self-discovered mask
(Eqn. 2) that is computed based on the geometric consistency.
It is a soft weight mask and assigns smaller values for depth-
inconsistent regions (dynamics or occlusions) than others (static
regions). To obtain binary segmentation, we propose to rank
weights and pick the lowest 20% as potential dynamic regions,
rather than doing hard thresholding. Here we assume that the ratio
of moving objects pixels is around 20% or less, which is true
in most real-world scenes. Then for each point in the dynamic
regions, we pair it with a point that is randomly sampled from
static regions. Moreover, other than constructing dynamic-static
pairs as discussed above, we also sample point pairs randomly
from the whole image, which serves as an additional global
regularization.

Confident Depth Ranking Loss. We compute the depth ranking
loss on the sampled point pairs in training. The original loss
function was proposed in [26]. Formally, for a pair of points with
predicted depth values [pg, p1], the loss is

040

=0 (7

(po —p1)27

where £ is the ground truth ordinal label, which can be induced by
a ground truth depth map:

¢ (po,p1) = {log(l +exp(—£(po — 1)),

+1,  pi/pi =214+,
C=4q-1,  p5/pi < 1 ®)
0, otherwise.

Here 7 is a threshold, which is 0.03 in previous work [47], and p*
denotes pseudo-depth.

We empirically find that Eqn. 7 is sub-optimal in our method
since pseudo-depth is not as accurate as the ground-truth depth.
Therefore, we have to take the confidence of pseudo-depth ordi-
nals into consideration. Specifically, we observe that the ordinal
is often sufficiently reliable when two points have sufficiently
different depth values, i.e., when p§/pi > 1 or p§/p; < 1,
and otherwise, it may be unreliable when two depth values are
very close, i.e., when p/pf ~ 1.

Based on the above observation, we propose to (a) increase 7
from 0.03 to 0.15 for higher tolerance; and (b) ignore point pairs
that have ¢ = 0. Formally, we reformulate Eqn. 7 as

¢(po,p1) = log(1 + exp(—£(po — p1)))- ©)
Therefore, our Confident Depth Ranking Loss is defined as:
1
Lepr = o > (), (10)
peQ

where (2 stands for the sampled point pairs that have [ # 0.

(a) Training image

(b) Pseudo-depth (c) Network predicted depth during training

Fig. 4. Dynamic region refinement. We sample point pairs between
dynamic and static regions, and then we apply depth ranking loss to
constrain the network-predicted depth (c) during training. The “ground-
truth” depth ordinal is extracted from pseudo-depth (b). To segment
dynamic regions from static backgrounds, we use the self-discovered
mask (Eqn. 2), so there is no extra computational cost.

3.4 Local Structure Refinement

As mentioned above in Sec. 3.2, pseudo-depth provides excellent
depth smoothness. In this section, we propose to leverage such
attributes to regularize the self-supervised depth. Our idea is to
(1) constrain the surface normals that are derived from predicted
depths and pseudo-depths to be matched; and (ii) constrain two
depth maps to be consistent w.r:z. relative normal angles of
sampled point pairs around edges. Here, the first step is focused
on refining the overall depth structures, and the second step is
focused on improving object boundary regions. The details are
provided below.

Normal Matching Loss. The edge-aware depth smoothness loss
(Eqgn. 5) is often used in self-supervised monocular depth esti-
mation, and it is also used in our baseline. Here, we propose to
replace it with the normal matching loss:

1 N
Ly = N;”m —n;ll1,

where n; is the surface normal derived from the predicted depth,
and n] is the normal derived from pseudo-depth. NV stands for the
total number of pixels in the image. The pixel-wise loss function
provides strong supervision for overall depth structures.

an

Edge-aware Relative Normal Loss. Not only do overall structure
refinement, but also we focus on object boundary areas. Specifi-
cally, we sample point pairs around image edges and constrain
the relative normal angles of sampled point pairs to be consistent
with pseudo-depth. Here, we use edge-guided sampling that was
proposed in [47] to construct point pairs (A, B), and we define
the Edge-aware Relative Normal Loss as:

N
1
Lgry = N § [lnai-nBi —nh; gl (12)
=1

where 14 denotes the normal of a sampled point from the
predicted depth, and * denotes pseudo-depth. Combining the edge-
guided sampling and relative normal loss, we can effectively
constrain the depth estimation on object boundary regions.

The proposed Lggrn is similar to the pair-wise normal loss
that is proposed in [25], while the latter samples point pairs from
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edges, planes, and whole images. In contrast, we sample points
solely from edges because sampling from other regions requires
high-quality ground-truth depth. In our case, pseudo-depth is not
accurate enough to maintain high-quality global structures, hence
we only constrain the local structure. We analyze this effect with
a detailed ablation study in Sec. 4.3.

3.5 Training

Losses. Based on the proposed two refinement modules, we
rewrite the overall loss function (Eqn. 6) of our baseline and obtain
the new objective function as:

L=aL¥ +BLg+~vLy + SLcor + €Lpry, (13)

where we set a = 1, 8 = 0.5, and v = § = € = 0.1 in training
based on empirical tuning.

Networks. Our depth and pose networks are the same as previous
work [1], [13], where we use ResNet-18 [48] backbone for both
depth and pose estimation networks. The depth network is a
U-Net structure [49] with a DispNet [10] as the decoder. The
activations are sigmoids at the output layer and ELU nonlinear-
ities [50] elsewhere. We convert the sigmoid output x to depth
with D = 1/(ax + b), where a and b are chosen to constrain D
between 0.1 and 100 units. The pose network accepts two RGB
frames as input and outputs the 6D relative pose. We modify the
first layer of ResNet-18 to have six channels for accepting two-
frame inputs, and features are decoded to 6-DoF parameters via
four convolutional layers.

Training Details. We implement the proposed method using the
PyTorch library [51]. Following [10], [21], [52], we use a snippet
of three sequential video frames as a training sample. The images
are augmented with random scaling, cropping, and horizontal flips
during training. We use the Adam [53] optimizer and set the
learning rate to be 10~*. We initialize the encoder by using the
pre-trained model on ImageNet [54]. We train our networks in
100k iterations on each dataset.

4 EXPERIMENT
4.1

The proposed method focuses on boosting self-supervised monoc-
ular depth estimation in challenging dynamic scenes, so we mainly
evaluate our methods on three dynamic datasets, including DDAD
driving dataset [14], BONN dynamic dataset [55], and TUM
dataset [56] (dynamic object split). Note that these datasets contain
fast-moving objects, which are much more challenging than the
widely-used KITTI [11] and NYUv2 [12] datasets. We assume that
the latter two datasets are almost static in this paper, and we also
report results on them. All the mentioned self-supervised methods
are trained on each dataset individually for a fair comparison.
Moreover, following previous methods, we analyze the depth
results at object boundaries and plane regions in the IBims-1
dataset [57]. In the following paragraphs, the details of each
dataset are described.

Datasets and Evaluation Metrics

DDAD. The dataset contains 200 driving videos that are cap-
tured in urban scenes. The LiDAR scanned point clouds are
provided, which we use to generate sparse ground-truth depths
for evaluation. In this dataset, almost vehicles are moving on

6

the road, and there are fewer stopping cars than KITTI, making
it more challenging to train self-supervised models. We use the
standard training/testing split, which has 150 training scenes
(12650 images) and 50 validation scenes (3950 images). We use
the validation scenes for evaluation. Depth ranges are capped to
at most 200 meters, and images are resized to the resolution of
640 x 384 for training depth and pose networks.

BONN. The dataset contains 26 dynamic indoor videos that have
fast-moving people or other objects. The Kinnect captured depth
maps are provided as the ground truth for evaluation. We manually
find 4 challenging video sequences with fast-moving people (1785
images) for testing, and we use the remaining videos for training.
Depth ranges are capped at 10 meters, and images are resized to
the resolution of 320 x 256 for training networks.

TUM. The dataset provides a collection of indoor videos with
Kinnect-captured depth maps as the ground truth We choose only
videos that belong to the Dynamic Objects category, making sure
that the model is trained in dynamic scenes. There are in total 11
sequences, and we use the last two sequences that contain moving
people (1375 images) for testing. The remaining 9 dynamic videos
are used for training, and images are resized to the resolution of
320 x 256 for feeding to networks.

KITTI. The dataset provides driving videos in urban scenes, and it
is the most widely-used dataset in self-supervised monocular depth
estimation problems. Following previous work [1], [10], [13], [14],
we use the Eigen’s split that has 697 images for testing, and we
use the remaining video sequences for training. Depth ranges are
capped at 80 meters, and images are resized to the resolution of
832 x 256 for training networks. Note that KITTI contains a large
number of stopping cars that help self-supervised methods learn
depth estimation on cars, so the results on this dataset cannot
reflect our main contributions, i.e., robust learning of monocular
depth from dynamic scenes.

NYUv2. The dataset provides a large collection of indoor videos,
and it is widely-used in the computer vision community. There are
654 testing images of static scenes for depth evaluation, and we
use the remaining videos that do not contain testing images for
training neural networks. Images are resized to the resolution of
320 x 256 before feeding to the network. Note that this dataset
contains almost-static scenes.

IBims-1. The dataset provides 100 accurate and dense ground
truths for analyzing depth details, including object boundaries
and planes. Images are collected in different kinds of indoor
environments, and it does not provide a training set. For a fair
comparison with previous work, we use the model trained on the
NYUv2 dataset for all methods.

Depth Evaluation Metrics. We use standard depth evaluation
metrics, including mean absolute relative error (AbsRel), root
mean squared error (RMS), root mean squared log error (RM-
Slog), and the accuracy under threshold (§; < 1.25% i = 1,2, 3).
The detailed definition of these depth metrics can be found in
[2]. Besides, following previous work [1], [10], we multiply
the predicted depth maps by a scalar that matches the me-
dian with that of the ground truth for evaluation, ie., s =
median(Dg)/median(Dpreq), since self-supervised methods
cannot recover the metric scale. For the evaluation on iBims,
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TABLE 1
Self-supervised monocular depth estimation results on the DDAD driving dataset [14]. We segment vehicles and pedestrians as dynamic objects
and consider the remaining regions as static backgrounds. This dataset is more challenging than KITTI due to more complex scenes, fewer
stopping cars, and longer depth ranges (200m vs 80m). Note that DynamicDepth [58] uses two frames for depth estimation.

Full Image Dynamic Static

Methods AbsRel SqRel RMS  RMSlog o1 62 03 AbsRel 01 AbsRel 01

Monodepth2 [13] 0.239  12.547 18.392 0.316 0.752 0.899 0949 | 0.747 0432 | 0.188  0.771
PackNet [14] 0.182 7.945  15.021 0.259 0.828 0.925 0961 | 0.564 0.520 | 0.137 0.843
SGDepth [18] 0.200 7.944  17.149 0.289 0.769 0911 0957 | 0.619 0.446 | 0.170  0.786
DynamicDepth [58] | 0.156 3305 15.612 0.258 0.785 0914 0962 | 0.258 0.612 | 0.149 0.792
SC-Depth [1] 0.169 3.877  16.290 0.280 0.773 0905 0.951 0345 0.546 | 0.155 0.783
Ours w/o DRR 0.153 3.124  15.237 0.252 0.799 0920 0963 | 0259 0.612 | 0.146  0.806
Ours w/o LSR 0.149 3.094 16.198 0.262 0.794 0913 0956 | 0.210 0.666 | 0.146  0.799
Ours 0.142 3.031 15.868 0.248 0.813 0922 0.963 | 0.199 0.697 | 0.140 0.813

TABLE 2

Self-supervised monocular depth estimation results on the BONN dynamic dataset [57]. This dataset is super-challenging because all training and
testing videos contain fast-moving objects, which occupy a large proportion of pixels.

Methods Full Image Dynamic Static
AbsRel RMS 01 d2 03 AbsRel 01 AbsRel o1
Monodepth2 [13] 0.565 2337 0352 0591 0.728 | 0474 0.172 | 0.594  0.383
SC-Depth [1] 0272  0.733 0.623 0.858 0.948 | 0.704 0.166 | 0.180 0.714
SC-DepthV2 [30] | 0.211  0.619 0.714 0.873 0.936 | 0488  0.247 | 0.152  0.803
Ours w/o DRR 0.138 0396 0.885 0951 0974 | 0248 0.690 | 0.106  0.939
Ours w/o LSR 0.130 0382 0.874 0.951 0977 | 0274 0.613 | 0.097  0.937
Ours 0.126 0.379 0.889 0.961 0980 | 0.220 0.720 | 0.102 0.931
TABLE 3

Self-supervised monocular depth estimation results on the TUM dataset [56]. We use the videos under the category of "Dynamic Objects” for
training and testing, in which moving objects occupy a large proportion of pixels in each image.

Methods Full Image Dynamic Static
AbsRel RMS o1 ) 03 AbsRel o1 AbsRel o1

Monodepth2 [13] 0312 1408 0474 0.793 0905 | 0431 0348 | 0.262  0.526
SC-Depth [1] 0.257 0.283 0.616 0814 0909 | 0512 0274 | 0176  0.715
SC-DepthV2 [30] | 0.223  0.282 0.643 0.862 0.932 | 0.283 0.494 | 0.206 0.686
Ours w/o DRR 0.185 1.163 0.744 0.889 0.970 | 0272 0.593 | 0.161 0.775
Ours w/o LSR 0.195 1498 0.715 0864 0.899 | 0264 0575 | 0.174  0.759
Ours 0.163 0.265 0.797 0.882 0937 | 0.165 0.796 | 0.171  0.780

the depth boundary errors (DBE) and planarity errors (PE) are
used to evaluate the accuracy of depth boundaries and planarity
respectively. The detailed definitions of DBE and PE are in [57].

Evaluation on Static/Dynamic Regions. We use MSeg [75] to
generate the semantic segmentation mask of testing images. The
model is trained on a composite dataset, so it is able to generate
segmentation results for both indoor and outdoor driving scenes.
In driving datasets (i.e., KITTI and DDAD), all vehicle and
pedestrian segments are regarded as dynamic objects, and other
regions are regarded as static backgrounds. In indoor datasets (i.e.,
TUM and BONN), we consider all human segments as dynamic

regions. Note that we align the global scale to the ground-truth
depth first, and then we evaluate depth accuracy on static regions,
dynamic regions, and full images, individually.

4.2 Evaluation Results

Results on Dynamic Datasets. We use three dynamic datasets
mentioned above to evaluate the proposed method, and the quan-
titative depth estimation results are reported in Tab. 1, 2, and 3,
respectively. We show the qualitative comparison results in Fig. 5,
and demo videos for depth estimation are in the supplementary. A
more detailed analysis is conducted below.
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Fig. 5. Qualitative depth estimation results. Existing methods show poor results in dynamic scenes (a-c) because they are hard to handle fast-
moving objects during training. Even though they show good accuracy in (d), where models are trained in static scenes, the depth is blurred at
object boundaries. By contrast, our method predicts sharp and accurate depth robustly.

Tab. 1 shows the results on DDAD dataset, where we com-
pare our method with previous state-of-the-art methods, including
Monodepth2 [13], PackNet [14], and SC-Depth [1]. The results
show that our method outperforms previous methods by a large
margin, and particularly on dynamic regions. Note that our method
outperforms PackNet [14], although the latter uses a significantly
larger network backbone than ours. This demonstrates our main
contribution in this paper, i.e., robust learning of monocular depth
in dynamic scenes. Besides, we also report the result without our
proposed DRR and LSR modules. Here our baseline method is a
modified version of SC-Depth, and it incorporates the advantages

of Monodepth2. The results show that the performance of these
models is significantly lower than that of our full model, which
demonstrates the efficacy of our proposed losses.

Tab. 2 and Tab. 3 show the depth estimation results on BONN
and TUM datasets, respectively. These indoor datasets are more
challenging than driving datasets such as DDAD since the ratio
of dynamic regions to the full image of the former is significantly
larger than that of the latter. Consequently, previous methods such
as Monodepth2 [13] and SC-Depth [1] show poor accuracy in
BONN and TUM datasets. Compared with these approaches, our
method presents significantly better results. This is contributed
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TABLE 4
Self-supervised monocular depth estimation results on KITTI [14]. Note that the KITTI dataset has many stopping vehicles that help learn depth on
cars, which is not the case of learning dynamic object depth from dynamic video that we addressed in this paper. Besides, note that PackNet uses
a large backbone, while other methods including ours use the ResNet-18 encoder.

Full Image Dynamic Static
Methods AbsRel SqRel RMS RMSlog 01 d2 03 AbsRel 01 AbsRel 01
Monodepth2 [13] | 0.114  0.848 4.986 0.198 0.869 0.956 0980 | 0.187 0.731 | 0.104 0.884
PackNet [14] 0.109 0.839 4.696 0.188 0.884 0.961 0981 | 0208 0.737 | 0.099 0.901
SGDepth [18] 0.111 0.857 4.739 0.189 0.884 0.962 0.982 | 0209 0.728 | 0.101  0.899
SC-Depth [1] 0.118 0.870 4.997 0.196 0860 0.956 0981 | 0242 0.698 | 0.108 0.878
Ours 0.118 0.756 4.709 0.188 0.864 0.960 0.984 | 0.205 0.703 | 0.108 0.881
TABLE 5 TABLE 6

Monocular depth estimation results on the NYUv2 [12] dataset. Our
method outperforms a majority of supervised methods (first row) and all
the self-supervised methods (second row).

Methods Error | Accuracy T
AbsRel RMS o1 02 03
Make3D [59] 0.349 1.214 | 0.447 0.745 0.897
DepthTransfer [60] 0.349 1.210 - - -
Liu et al. [61] 0.335 1.060 - - -
Ladicky et al. [62] - - 0.542  0.829 0.941
Li et al. [63] 0.232 0.821 | 0.621 0.886  0.968
Roy et al. [64] 0.187 0.744 - - -
Wang et al. [65] 0.220 0.745 | 0.605 0.890 0.970
Eigen et al. [66] 0.158 0.641 | 0.769 0950 0.988
Chakrabarti et al. [67] 0.149 0.620 | 0.806 0.958 0.987
Li et al. [68] 0.143 0.635 | 0.788 0.958 0.991
DORN [69] 0.115 0.509 | 0.828 0.965 0.992
VNL [70] 0.108 0416 | 0.875 0.976 0.994
Zhou et al. [71] 0.208 0.712 | 0.674 0900 0.968
Zhao et al. [72] 0.189 0.686 | 0.701 0912 0.978
Monodepth?2 [13] 0.169 0.614 | 0.745 0946 0.987
SC-Depth [1] 0.159 0.608 | 0.772 0939 0.982
P2Net [73] 0.150 0.561 | 0.796  0.948 0.986
SC-DepthV2 [30] 0.138 0.532 | 0.820 0956 0.989
Monolndoor [74] 0.134 0.526 | 0.823 0.958 0.989
Ours 0.123 0.486 | 0.848 0.963 0.991

to our proposed losses, which enables our method to learn depth
estimation robustly from dynamic videos.

Results on static Datasets. Although our main contribution in
this paper is boosting self-supervised monocular depth in dynamic
scenes, we show that our method is also working well in almost-
static scenes. The results are reported in the widely-used KITTI
driving dataset and NYUv2 indoor dataset. Sampled qualitative
results are illustrated in Fig. 6.

Tab. 4 shows the depth estimation results on KITTI, where our
method is comparable but does not outperform the previous state-
of-the-art methods. The reasons are two folds. First, the dataset

Evaluation of depth boundaries (DBE) and planes (PE) on iBims-1 [57].
All models are trained on NYUv2.

iBims-1
Method - ” -
ESEE EDBE ehg epi & | AbsRell
Monodepth2 [13] 4.269 89.771 10.943  29.327 0.202
SC-DepthV2 [30] 4.206 69.846 7.049  23.109 0.172
Ours w/o LSR 3.138 65.692 3.684 14.696 0.152
Ours 3.001 48.047 2.701 13.372 0.146
TABLE 7

Ablation studies of the proposed DRR on DDAD dataset. RS denotes

random sampling used in [26], and RL denotes ranking loss used in

[26]. The decreased performance demonstrates the effectiveness of
our proposed methods.

Full Dynamic Static
Methods AbsRel 1 AbsRel 01 AbsRel 1
Baseline 0.179 0.753 0.355 0.536 0.163 0.761
B+DRR (Ours) 0.149 0.794 0.210 0.666 0.146 0.799
DRR w/ RS 0.154 0.785 0.219 0.654 0.151 0.790
DRR w/ RL 0.159 0.767 0.214 0.659 0.159 0.765

contains a large number of stopping cars that help self-supervised
methods learn depth on vehicles, so our method is hard to further
improve the performance when previous methods have obtained
good results on dynamic regions. Second, PackNet [14] uses a
large network backbone, while other methods, including ours, use
ResNet-18, which is much smaller than the former. Overall, we
argue that the existing methods have reached a bottleneck in the
KITTI dataset, and due to the low impact of dynamic objects
on self-supervised learning here, our method is hard to further
improve the performance. Moreover, we show qualitative results
in Fig. 6 (a), which shows that our method generates sharper depth
maps than other methods.

Tab. 5 shows the depth results on NYUv2, where we compare
our method with previous state-of-the-art methods such as SC-
DepthV2 [30] and Monolndoor [74]. The results show that our
method outperforms previous approaches significantly. This is
mainly contributed to the single-image depth prior, which we use
to constrain the normal smoothness and sharp object boundaries
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Fig. 6. Qualitative monocular depth estimation results on static datasets. Our method allows for generating sharper depth maps than previous

methods—See object boundaries.

TABLE 8
Ablation studies of the proposed LSR on DDAD dataset. EDS denotes
edge-aware depth smoothness [1], and RS denotes additional random
sampling beside edge-based sampling. The decreased performance
demonstrates the importance of our proposed methods.

TABLE 9
Evaluation results on DDAD dataset. We compare different methods for
generating pseudo-depth. “+Self” means training models with our
proposed self-supervised method.

Full Image Dynamic Static
Full Dynamic Static Methods AbsRel o1 AbsRel 1 AbsRel 81

Methods AbsRel 51 AbsRel 51 AbsRel 51 DPT [44] 0224 0632 | 0296 0492 | 0220 0.636
Baseline 0179 0753 | 0355 03536 | 0163 0761 DPT+Self 0151 0788 | 0218 0.662 | 0147  0.791

LeReS(Res50) [25] 0385 0411 | 0354 0380 | 0390  0.402
LSR (Ours) 0.142 0.813 0.199 0.697 0.140 0.813

LeReS(ResS0)+Self 0.147 0797 | 0188 0726 | 0145  0.798
LSRw/EDS | 0.148 0793 | 0200 0694 | 0.145  0.796 LeReS(Res101) [25] 0358 0434 | 0341 0386 | 0363 0424
LSR w/ RS 0.146 0.802 0.200  0.688 0.143 0.806 LeReS(Res101)+Self (Ours) | 0.142  0.813 | 0.199  0.697 | 0.140  0.813

of predicted depths. The qualitative results are shown in Fig. 6 (b)
and Fig. 5 (d), and the quantitative evaluation results on object
boundaries are summarized in Tab. 6,

Depth Quality at Object Boundaries. Tab. 6 shows the detailed
analysis of depth results on the IBims-1 dataset, where we com-
pare our method with Monodepth2 [13] and SC-DepthV2 [30]. All
models are trained on NYUv2 for a fair comparison. The AbsRel
metric shows the overall accuracy of depth estimation results on
full images, and other metrics reflect the detailed depth quality
at object boundaries and plane regions. The results show that
our method significantly outperforms previous methods. We also
remove the proposed LSR from our full model for ablation study
purposes, and the results in Tab. 6 show that the performance is
clearly degraded. This demonstrates the efficacy of our proposed
LSR module. The qualitative depth estimation results on the
IBims-1 dataset are illustrated in Fig. 5 (d).

4.3 Ablation Studies

We have shown results with and without our proposed DRR and
LSR in Tab. 1, 2 and 3. The results demonstrate the efficacy of the
proposed modules. In this section, we make a more detailed analy-
sis of the proposed methods, and we also discuss the performance
by using different methods to generate pseudo-depth.

Dynamic Region Refinement. The proposed DRR module con-
sists of dynamic-focused sampling and confident depth ranking
loss. We make ablation studies by comparing our method with
random sampling (RS) and original ranking loss (RL) that are
used in [26]. Tab. 7 shows the evaluation results, which show
that the performance is significantly degraded when replacing our
proposed terms with the existing methods. This demonstrates the
efficacy of our proposed methods.

Local Structure Refinement. The proposed LSR module consists
of normal matching loss and edge-guided relative normal ranking
loss. The ablation study results are summarized in Tab. 8. We re-
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place the normal matching loss with edge-aware depth smoothness
loss (EDS), and we also add random sampling (RS) to the edge-
guided sampling. These variants degenerate the depth accuracy,
which demonstrates that our proposed methods are better than
existing solutions.

Pseudo-depth. We use LeReS [25] (ResNet-101) in this paper
for generating pseudo-depth, while it is also possible to use
other monocular depth estimation networks. Tab. 9 shows the
ablation study results on DDAD dataset, where we also include
DPT [44] and ResNet-50 version of LeReS. The results show
that the pseudo-depths that are generated by all three variants
are not accurate in the DDAD dataset. However, when applying
our proposed method that uses pseudo-depth for training self-
supervised models, high-accuracy depth estimation results can
be obtained. This demonstrates that our proposed method is not
limited to one specific method for generating pseudo-depth. The
results also show that our method with LeReS (ResNet-101) [25]
outperforms other variants, including DPT. We hypothesize that
the reason is that our method incorporates the normal information
in training which is shared with LeReS but not with DPT.

Discussion. We use pseudo-depth to boost self-supervised monoc-
ular depth estimation, which somewhat degrades our claim of self-
supervised learning. However, in practice, the monocular depth
estimation models such as [25], [44] are only trained once in large-
scale datasets and can be used as off-the-shelf tools in new unseen
scenes, so our method has almost no extra cost compared to pure
self-supervised depth estimation methods [1], [13].

5 CONCLUSION

We propose SC-DepthV3 for robust self-supervised learning of
monocular depth from challenging dynamic videos. The key to
our method is that we use pseudo-depth, which is generated by a
pretrained monocular depth estimation network, for addressing the
challenges in self-supervised monocular depth estimation frame-
work. More specifically, we address the issues of dynamic objects
and blurred object boundaries. As a result, our proposed method
can predict sharp and accurate depth maps, even when the model is
trained from highly dynamic videos. We comprehensively evaluate
our method on six challenging datasets, including both dynamic
and static scenes. The results show that our method significantly
outperforms previous alternatives, and the ablation study results
demonstrate that the proposed modules are effective.
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