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An Effective Motion-Centric Paradigm for 3D
Single Object Tracking in Point Clouds
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Abstract—3D single object tracking in LiDAR point clouds (LIDAR SOT) plays a crucial role in autonomous driving. Current
approaches all follow the Siamese paradigm based on appearance matching. However, LiDAR point clouds are usually textureless and
incomplete, which hinders effective appearance matching. Besides, previous methods greatly overlook the critical motion clues among
targets. In this work, beyond 3D Siamese tracking, we introduce a motion-centric paradigm to handle LiDAR SOT from a new
perspective. Following this paradigm, we propose a matching-free two-stage tracker M2-Track. At the 15¢-stage, M 2-Track localizes
the target within successive frames via motion transformation. Then it refines the target box through motion-assisted shape completion
at the 2"?-stage. Due to the motion-centric nature, our method shows its impressive generalizability with limited training labels and
provides good differentiability for end-to-end cycle training. This inspires us to explore semi-supervised LiDAR SOT by incorporating a
pseudo-label-based motion augmentation and a self-supervised loss term. Under the fully-supervised setting, extensive experiments
confirm that M 2-Track significantly outperforms previous state-of-the-arts on three large-scale datasets while running at 57FPS (~ 3%,
~ 11% and ~ 22% precision gains on KITTI, NuScenes, and Waymo Open Dataset respectively). While under the semi-supervised
setting, our method performs on par with or even surpasses its fully-supervised counterpart using fewer than half labels from KITTI.
Further analysis verifies each component’s effectiveness and shows the motion-centric paradigm’s promising potential for auto-labeling
and unsupervised domain adaptation. The code is available at https:/github.com/Ghostish/Open3DSOT.

Index Terms—Single Object Tracking, Point Cloud, LiDAR, Motion, Semi-supervised Learning.
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1 INTRODUCTION

S Ingle Object Tracking (SOT) is a basic computer vision

problem with various applications, such as autonomous —-v;m Crop ﬁ; .
driving [1], [2], [3] and surveillance system [4]. Its goal is to | Contzgg = - 1
keep track of a specific target across a video sequence, giVen  previous FrametBox ~_ Canonical Shared =
only its initial state (appearance and location). R g }
Existing LiDAR-based SOT methods [5], [6], [7], [8], - — SN i Brrorprone.
[9], [10] all follow the Siamese paradigm, which has been “ Prediction
widely adopted in 2D SOT since it strikes a balance between Current Frame (a) Matching-based Siamese Paradigm T
performance and speed. During the tracking, a Siamese . cdion
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model searches for the target in the candidate region with 777~
an appearance matching technique, which relies on the =
features of the target template and the search area extracted
by a shared backbone (see Fig. 1 (a)).

Though the appearance matching shows satisfactory N Y — P
results on KITTI dataset [11] for the 3D SOT on cars, we Prediction
observe that the data has the following proprieties: i) the
target’s motion between two consecutive frames is minor,
which ens.ures no qrastlc appearan.ce change; ii) there are Fig. 1. Top. Previous Siamese approaches obtain a canonical target
few/no distractors in the surrounding of the target. How-  template using the previous target box and search for the target in the
ever, the above characteristics do not hold in natural scenes. current frame according to the matching similarity, which is sensitive
Due to self-occlusion, significant appearance changes may to distractors. Bottom. Our motion-centric paradigm learns the relative

. .. . R ¢ target motion from two consecutive frames and then robustly localizes
occur in consecutive LiDAR views when objects move fast, g target in the current frame via motion transformation. Besides fully-

or the hardware only supports a low frame sampling rate.  supervised learning, the motion-centric nature also shows preferable
properties for semi-supervised learning.
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the target’'s movements among successive frames are also
critical for effective tracking, because it provides spatial
and temporal clues while being insensitive to occlusion and
distractors. Knowing this, researchers have proposed vari-
ous 2D Trackers to temporally aggregate information from
previous frames [12], [13]. However, the motion information
is rarely explicitly modeled since it is hard to be estimated
under the perspective distortion. Fortunately, 3D scenes
keep intact information about the object motion, which can
be easily inferred from the relationships among annotated
3D bounding boxes (BBoxes)'. Although 3D motion matters
for tracking, previous approaches have greatly overlooked
it. Due to the Siamese paradigm, previous methods have
to transform the target template (initialized by the object
point cloud in the first target 3D BBox and updated with
the last prediction) from the world coordinate system to its
own object coordinate system. This transformation ensures
that the shared backbone extracts a canonical target feature,
but it adversely breaks the motion connection between
consecutive frames.

Based on the above observations, we propose to tackle
3D SOT from a different perspective instead of sticking to
the Siamese paradigm. For the first time, we introduce a
new motion-centric paradigm that localizes the target in
sequential frames without appearance matching by explic-
itly modeling the target motion between successive frames
(Fig. 1 (b)). Following this paradigm, we design a novel
two-stage tracker M?-Track (Fig. 2). During the tracking,
the 1%'-stage aims at generating the target BBox by pre-
dicting the inter-frame relative target motion. Utilizing all
the information from the 1¢-stage, the 2"?-stage refines the
BBox using a denser target point cloud, which is aggregated
from two partial target views using their relative motion.
We evaluate our model on KITTI [11], NuScenes [14] and
Waymo Open Dataset (WOD) [15], where NuScenes and
WOD cover a wide variety of real-world environments
and are challenging for their dense traffics. The experiment
results demonstrate that our model outperforms the existing
methods by a large margin while running faster than the
previous top-performer [7]. Besides, the performance gap
becomes even more significant when more distractors exist
in the scenes. Furthermore, we demonstrate that our method
can directly benefit from appearance matching when inte-
grated with existing methods.

Apart from M2-Track impressive performance under the
fully-supervised setting, its motion-centric nature also helps
to ease the difficulties of insufficient annotations: 1) Instead
of appearance, it models the relative target motion, which
can be easily synthesized from only a few labeled data; 2) It
does not rely on a “cropped” template to do tracking due to
its matching-free nature, enabling natural gradient flow for
the cycle training (i.e., tracking targets forward-backward
symmetrically in time without the requirements of labels
at intermediate frames). Based on the above observations,
we address the challenges of semi-supervised LiDAR SOT
with a motion-centric framework, which we dub SEMIM.
Inspired by previous works [16], [17], SEMIM trains M 2
Track under SSL setting using pseudo labels. Considering

1. This is greatly held for rigid objects (e.g., cars), and it is approxi-
mately true for non-rigid objects (e.g., pedestrian).

2

the motion-centric nature, we first design a pseudo-label-
based motion augmentation to automatically “annotate” the
unlabeled sequences by putting the annotated objects into
unseen backgrounds. Although pseudo labels are noisy,
they provide a reasonable approximation of the ground
truth target locations. Treating the pseudo labels as anchors,
we transform the annotated objects into unlabeled frames
using a delete-cut-paste operation (see Fig. 7). Compared
to random pasting [18], our strategy remains appropriate
target motion, and reduces undesired object collision across
frames. Thanks to the matching-free nature, we incorporate
a cycle-consistent loss in SSL training, which complements
the supervision signal of pseudo labels. On the one hand,
the cycle-consistent loss ensures the tracking is consistent
when input frame pairs are flipped along time, reducing
the negative influence of noisy pseudo labels. On the other
hand, using pseudo labels prevent the cycle-consistent loss
from falling into the degenerate solution (i.e., the “zero-
motion”). The experiments on the KITTI [11] dataset show
that SEMIM achieves exciting results when even trained
with fewer than 400 frames, outperforming the baseline by
> 20% in precision. For car objects, SEMIM only needs 26%
labels to perform on par with the 100%-supervised baseline
and even surpasses it when more labels are available. Only
using labeled data from KITTI [11], we further test SEMIM’s
tracking performance on Waymo Open Dataset [15], which
shows SEMIM'’s great potential for offline auto-labeling and
unsupervised domain adaptation.

In summary, our main contributions are as follows:
1) A novel motion-centric paradigm for real-time LiDAR
SOT, which is free of appearance matching. 2) A specific
second-stage pipeline named M2-Track that leverages the
motion-modeling and motion-assisted shape completion. 3)
State-of-the-art online tracking performance with significant
improvement on three widely adopted datasets (i.e., KITTI,
NuScenes and Waymo Open Dataset). 4) Formulation of the
semi-supervised LiDAR SOT problem for the first time and
impressive SSL performance.

This paper is an extension of our conference paper
published in CVPR 2022 [19]. In this version, 1) we extend
the motion-centric tracker to handle SSL in LiDAR SOT,
which is left unexplored in previous literature (Sec. 4).
2) Without any modification to the main network ar-
chitecture, we significantly boost the performance of the
original M?2-Track [19] by designing an improved mo-
tion augmentation (Sec. 3.8) and multi-frame ensembling
(Sec. 3.5). 3) We present a more comprehensive analysis
of the motion-centric paradigm by implementing a vanilla
motion-centric tracker (Sec. 3.6) and including extra ablation
study (Sec. 5.2).

2 RELATED WORK

Single Object Tracking. A majority of approaches are built
for camera systems and take 2D RGB images as input [12],
[20], [21], [22], [23], [24]. Although achieving promising
results, they face great challenges when dealing with low
light conditions or textureless objects. In contrast, LIDARs
are insensitive to texture and robust to light variations,
making them a suitable complement to cameras. This in-
spires a new trend of SOT approaches [5], [6], [7], [8],
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Fig. 2. The overall architecture of M/2-Track. Given two consecutive point clouds and the possible target BBox at the previous frame, M?2-Track
first segments the target points from their surroundings via joint spatial-temporal learning. At the 15¢ stage, the model takes in the target points and
obtains a coarse BBox at the current frame via motion prediction and transformation. The coarse BBox is further refined at the 2"¢ stage using
motion-assisted shape completion. A detailed illustration with data flows is presented in the supplementary.

[9], [10] which operate on 3D LiDAR point clouds. These
3D methods all inherit the Siamese paradigm based on
appearance matching. As a pioneer, [5] uses the Kalman
filter to heuristically sample a bunch of target proposals,
which are then compared with the target template based
on their feature similarities. The proposal which has the
highest similarity with the target template is selected as the
tracking result. Since heuristic sampling is time-consuming
and inhibits end-to-end training, [6], [8] propose to use a
Region Proposal Network (RPN) to generate high-quality
target proposals efficiently. Unlike [8] which uses an off-the-
shelf 2D RPN operating on bird’s eye view (BEV), [6] adapts
SiamRPN [24] to 3D point clouds by integrating a point-
wise correlation operator with a point-based RPN [25]. The
promising improvement brought by [6] inspires a series of
follow-up works [7], [9], [10], [26]. They focus on either
improving the point-wise correlation operator [7] by feature
enhancement, or refining the point-based RPN [9], [10], [26]
with more sophisticated structures.

The appearance matching achieves excellent success in 2D
SOT because images provide rich texture, which helps the
model distinguish the target from its surrounding. However,
LiDAR point clouds only contain geometric appearances
that lack texture information. Besides, objects in LiDAR
sweeps are usually sparse and incomplete. These bring
considerable ambiguities which hinder effective appearance
matching. Recently, some publications [27], [28] have made
advancements in Siamese tracking by leveraging temporal
information from multiple frames to enhance the target
template. However, they still suffer from matching ambi-
guities since they cannot explicitly model the target motion.
Unlike existing 3D approaches, our work no more uses any
appearance matching. Instead, we examine a new motion-
centric paradigm and show its great potential for LiDAR
SOT.

3D Multi-object Tracking / Detection. In parallel with
3D SOT, 3D multi-object tracking (MOT) focuses on track-
ing multiple objects simultaneously. Unlike SOT where the
user can specify a target of interest, MOT relies on an
independent detector [18], [25], [29] to extract potential

targets, which obstructs its application for unfamiliar objects
(categories unknown by the detector). Current 3D MOT
methods predominantly follow the “tracking-by-detection”
paradigm, which first detects objects at each frame and then
heuristically associates detected BBoxes based on objects’
motion or appearance [30], [31], [32], [33], [34]. Recently,
[35] proposes to jointly perform detection and tracking by
combining object detection and motion association into a
unified pipeline. In addition to using uni-modal approaches,
there has been a recent emergence of methods that leverage
both LiDAR and camera data to perform 3D MOT [36], [37],
[38]. These multi-sensor fusion techniques offer increased
robustness to occlusion and object misdetection, thanks to
the redundancy provided by combining data from multiple
sensors. Our motion-centric tracker draws inspiration from
the motion-based association in MOT. But unlike MOT,
which applies motion estimation on detection results, our
approach does not depend on any detector and can leverage
the motion prediction to refine the target BBox further.

Spatial-temporal Learning on Point Clouds. Our method
utilizes spatial-temporal learning to infer relative motion
from multiple frames. Inspired by recent advances in natural
language processing [39], [40], [41], there emerges methods
that adapt LSTM [42], GRU [43], or Transformer [44] to
model point cloud videos. However, their heavy structures
make them impractical to be integrated with other down-
stream tasks, especially for real-time applications. Another
trend forms a spatial-temporal (ST) point cloud by merging
multiple point clouds with a temporal channel added to
each point [1], [45], [46]. Treating the temporal channel as an
additional feature (like RGB or reflectance), one can process
such an ST point cloud using any 3D backbones [47], [48]
without structural modifications. We adopt this strategy to
process successive frames for simplicity and efficiency.

Semi-/Un-Supervised Learning in Point Clouds. The semi-
/un- supervised learning has been studied in various point
cloud tasks, such as object detection [16], [17], semantic
segmentation [49], [50] and scene flow estimation [51], [52].
Most of these methods first use the supervision from labeled
data (either given or manually synthesized) to generate
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pseudo labels for unlabeled data. Guided by the pseudo
labels, they then train their models on unlabeled data by ap-
plying consistent regularization with the help of the teacher-
student framework [16], [17] or contrastive learning [50].
However, these techniques cannot be directly adopted to
handle LiDAR SOT, which is dominated by matching-based
approaches. Current LiDAR SOT approaches heavily rely
on annotated target bounding boxes (bboxes) to generate
search regions around the targets as the training samples.
For the tracking task, it is not practical to search for the
target in a whole LiDAR point cloud, because most of the
regions in the scene are redundant and may distract correct
tracking. For this reason, poor pseudo labels greatly amplify
the training noise for the tracker because they may lead to
meaningless search regions. In our work, we relieve this
issue by correcting the pseduo labels with a delete-cut-paste
operation, which not only reduces the noise of pseudo labels
but also augments target motion in favor of the motion-
centric tracker.

Unsupervised Learning in 2D Tracking. To train a 2D
tracker without labels, some methods construct template-
search pairs from still frames to explore the self-supervised
signals of the videos in the spatial dimension [53], [54].
However, these approaches are sensitive to appearance
change, which is common in LiDAR data. And the aug-
mentation strategies of these methods are only applicable
to 2D images, which have a very limited range and regular
structures. Another trend relies on the cycle consistency in
the temporal dimension [55], [56]. Since matching-based
methods select target templates with an indifferentiable
cropping operation, the cycle tracking errors are not cor-
rectly penalized. For 2D trackers, this could be alleviated
with a more sophisticated region-masking operation [56].
By contrast, the matching-free nature of the motion-centric
paradigm naturally helps us avoid this problem.

3 MoTIoN-CENTRIC LIDAR SOT
3.1 Problem Statement

Given the initial state of a target, our goal is to localize the
target in each frame of an input sequence of a dynamic 3D
scene. The frame at timestamp ¢ is a LiDAR point clouds
P, € RV X3 with N, points and 3 channels, where the point
channels encode the zyz global coordinate. The initial state
of the target is given as its 3D BBox at the first frame P;.
A 3D BBox B; € R7 is parameterized by its center (zyz
coordinate), orientation (heading angle # around the up-
axis), and size (width, length, and height). For the tracking
task, we further assume that the size of a target remains
unchanged across frames even for non-rigid objects (for a
non-rigid object, its BBox size is defined by its maximum
extent in the scene). For each frame P;, the tracker outputs
the amodal 3D BBox of the target with access to only history
frames {P; }i_;.

3.2 Motion-centric Paradigm

Given an input LiDAR sequence and the 3D BBox of the tar-
get in the first frame, the motion-centric tracker aims to lo-
calize the target frame by frame using explicit motion mod-
eling. Unlike previous LiDAR SOT methods, which track
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Fig. 3. Stage I. Taking in the segmented target points P;_ ; and the
target BBox B;_; at the previous frame, the model outputs a relative
target motion state (including an RTM M;_1 ¢ and 2D binary motion
state logits), a refined target BBox B;_1 at the previous frame, and a
coarse target BBox B; at the current frame.

targets via appearance matching, a motion-centric tracker
predicts the “relative target motion (RTM)” and localizes
the target by motion transformation. RTM is a rigid-body
transformation that is defined between two target bounding
boxes. Since objects of interest are always aligned with the
ground, we only consider 4DOF RTM, which comprises a
translation offset (Ax, Ay, Az) and a yaw offset Af. Given
a known target state at time ¢ (the target bbox B; in frame
P;) and a new incoming frame P, at time t' (¢’ > t), a
motion-centric tracker first predicts the RTM of the given
target between P; and Py, and then obtains the target bbox
By at Py via rigid-body transformation. The whole process
can be formulated as a function F:

]: . RNt/XC % RN‘XC % R7 — R7,
g:RNtIXC XRNtXC XR7}—>R4, (1)
By = F(Py, Py, By) = Transform(B;, G(Py, Py, By)),

where G predicts the 4DOF RTM and “Transform” applies
rigid-body transformation on B; using the predicted RTM.

3.3 M?2-Track: Motion-Centric Tracking Pipeline

Following the motion-centric paradigm, we design a two-
stage motion-centric tracking pipeline M2-Track (illustrated
in Fig. 2). M2-Track first coarsely localizes the target through
target segmentation and motion transformation at the 1%
stage, and then refines the BBox at the 2"? stage using
motion-assisted shape completion. More details of each
module are given as follows.

Target segmentation with spatial-temporal learning

To learn the relative target motion, we first need to segment
the target points from their surrounding. Taking as inputs
two consecutive frames P, and P;_; together with the
target BBox B;_i, we do this by exploiting the spatial-
temporal relation between the two frames (illustrated in
the first part of Fig. 2). Similar to [45], [57], we construct
a spatial-temporal point cloud P;_;, € RWVe-1+No)xd —
{p; = (mi,yi,zi,ti)}f:‘{ﬁm from P;_y and P; by adding
a temporal channel to each point and then merging them
together. Since there are multiple objects in a scene, we have
to specify the target of interest according to B;_;. To this
end, we create a prior-targetness map S;_1; € RNe—1+N:
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Fig. 4. Stage Il. Taking the segmented target points P;_1,: and the
coarse target BBox B; as inputs, the model regresses a refined target
BBox B; on a denser point cloud, which is merged from two partial target
point clouds according to their relative motion state.

to indicate target location in P;_; ., where s; € Si_1; is
defined as:

0 ifp;isinP;_1 and p; is notin B;_1
si=+¢ 1 if p; isin P;_1 and p; isin B;_1 )

Intuitively, one can regard s; as the prior-confidence of
p; being a target point. For a point in P;_;, we set its
confidence according to its location with respect to B;_;.
Since the target state in P; is unknown, we set a median
score 0.5 for each point in P;. Note that S;_; ; is not 100%
correct for points in P;_ since B;_; could be the previous
output by the tracker. After that, we form a 5D point cloud
by concatenating P;—1+ and S;—1 ¢ along the channel axis,
and use a PointNet-based segmentation network [48] to
obtain the target mask, which is finally used to extract a
spatial-temporal target point cloud P;_; ; € ROMe-1+Me)x4,
where M;_; and M, are the numbers of target points in
frame (¢ — 1) and ¢ respectively.

Stage I: Motion-Centric BBox prediction

As shown in Fig. 3, we encode the spatial-temporal target
point clouds P;_;; into an embedding using a PointNet
encoder. A multi-layer perceptron (MLP) is applied on
top of the embedding to obtain the motion state of the
target, which includes a 4D RTM M,;_; ; and 2D binary
classification logits indicating whether the target is dynamic.
To reduce accumulation errors while performing frame-by-
frame tracking, we generate a refined previous target BBox
B:_1 by predicting its RTM with respect to B;_; through
another MLP (More details are presented in the supple-
mentary). Finally, we can get the current target BBox B; by
transforming B;_; using M;_; ; if the target is classified as
dynamic. Otherwise, we simply set B; as B;_;.

Stage II: BBox refinement with shape completion
Inspired by two-stage detection networks [29], [58], we
improve the quality of the 1'-stage BBox B3, by additionally
regressing a relative offset, which can be regarded as an
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Fig. 5. Combining Motion- and Matching-based Models. We utilize a
Siamese tracker to search for the target in a small neighborhood around
the output of the motion-based tracker.

RTM between B; and the refined BBox B; (illustrated in
Fig. 4). Unlike detection networks, we refine the BBox via
a novel motion-assisted shape completion strategy. Due to
self-occlusion and sensor movements, LiDAR point clouds
suffer from great incompleteness, which hinders precise
BBox regression. To mitigate this, we form a denser target
point cloud by using the predicted motion state to aggregate
the targets from two successive frames. According to the
temporal channel, two target point clouds P;_; € RM:-1%3
and P, € RM*?® from different timestamps are extracted
from P;_; +. Based on the motion state, we transform P;_;
to the current timestamp using M; ;. if the target is
dynamic. The transformed point cloud (identical as Py if
the target is static) is merged with P; to form a denser point
cloud :ﬁt € RMe—1+Mi)x3  Gimilar to [1], [29], we trans-
form P; from the world coordinate system to the canonical
coordinate system defined by B;. We apply a PointNet on
the canonical P; to regress another RTM with respect to B;.
Finally, the refined target BBox B; is obtained by applying a
rigid-body transformation on B; using the regressed RTM.

3.4 Box-aware Feature Enhancement

As shown in [7], LIDAR SOT directly benefits from the part-
aware and size-aware information, which can be depicted
by point-to-box relation. Inspired by [7], we construct a
distance map C;—1 € RY=1X9 by computing the pairwise
Euclidean distance between P;_; and 9 key points of B;_;
(eight corners and one center arranged in a predefined order
with respect to the canonical box coordinate system). After
that, we extend C;_; to size (N;—1 + Ny) x 9 with zero-
padding (for points in P;) and additionally concatenate it
with P;_1+ and S;_1 +. The overall box-aware features are
then sent to the PointNet segmentation network to obtain
better target segmentation. Besides outputting the segmen-
tation results, we further predict the box-aware feature for
each point, which is supervised by its corresponding ground
truth. During Stage I and Stage II, we also concatenate the
predicted box-aware features along with the point coordi-
nates to construct the inputs to PointNet.
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3.5 Multi-frame Ensembling

Although M?-Track always takes two consecutive frames
(t — 1 and ¢?) as inputs in the formulation, it can also learn
RTMs from frame pairs with time intervals larger than 1,
which inspired us to improve the tracking results using
multiple frames. Assuming that we already know the target
tracklet {B;_,,}Y_; from time (¢ — N) to (¢t — 1), we can
obtain N target proposals in time ¢ by applying M2-Track
on different time intervals:

Proposals = {F (P, Pi—n, Bi—n) th1 €

where F is the tracker function defined in Eqn. (1), which is
implemented as an M?-Track.

After obtaining N proposals, we check the number of
points in each proposal and select the proposal with the
maximum number of points as the final prediction.

3.6 M-Vanilla: Proof-of-concept Implementation

To showcase the effectiveness of the motion-centric
paradigm, we also introduce a proof-of-concept tracker
named M-Vanilla, which strictly adopts an architecture
depicted in the lower part of Fig. 1. M-Vanilla closely
resembles Stage I in M?2-Track, with the distinction that
it takes both foreground and background points as inputs
and omits the motion classification branch. Given two con-
secutive frames P; and P;_; together with the previous
target BBox B;_1, we first construct a spatial-temporal point
cloud as described in Sec. 3.3, and further enhance this
spatial-temporal point cloud with the box-aware features as
described in Sec. 3.4. After that, we directly pass the spatial-
temporal point cloud through a mini-PointNet [48] to obtain
the 4D RTM without any target segmentation. Finally, M-
Vanilla transforms the previous target BBox B;_; using the
predicted RTM to obtain the current target BBox ;.

3.7 Combining Motion- and Matching-based Models

While motion modeling aids in reducing appearance am-
biguities, appearance matching plays a crucial role in cap-
turing fine-grained patterns necessary for achieving highly-
precise target localization. To achieve both robust and accu-
rate tracking, we further investigate a simple combination of
motion- and matching-based models as illustrated in Fig. 5.
Given two consecutive frames P; and P;_; together with
the previous target BBox B;_;, we first employ a motion-
centric tracker to obtain a target BBox Bjotion at time t.
Subsequently, we enlarge By,otion by a small margin and
collect points inside it to generate a search area Pscqrch,
which is then normalized to the object coordinate system
defined by B,,otion. Simultaneously, we use the previous
target BBox B;_; to crop the previous frame P;_; and
center the cropped point cloud to create a target template
Premp- The search area Pyeqren, and the target template
Ptemp are then sent to a Siamese tracker to refine By, otion DY
appearance matching, yielding the final target BBox Binai.

In this setting, the motion tracker provides a reliable
initialization of the target location, reducing distractors and
thus ensuring more accurate appearance matching in the
Siamese tracker. Please refer to Sec. 5.2.4 for related experi-
ments.

3.8

To encourage the model to learn various motions during
the training, we randomly flip both targets’ points and
BBoxes in their horizontal axes and rotate them around their
up-axes by Uniform[—10°,10°]. We also randomly translate
the targets by offsets drawn from Uniform [-0.3, 0.3] meter.
In our conference paper [19], the above augmentation is
applied to all training samples. While synthesized motion
reduces the motion bias in the data and thus improves
the model’s generalizability, realistic motion in the original
data is also valuable since it depicts real object movement
in natural scenes. However, realistic motion, especially the
static one, is submerged by such an augmentation. We
alleviate this problem with a coin-flip test, where we use
augmented data with probability p < 1 while keeping
the original one with chance 1 — p. In our experiments,
p is empirically set to 0.5. Though simple, such a coin-
flip test significantly boosts the performance of M?2-Track
(Tab. 3). Inspired by [51], we further augment the training
data by flipping point cloud sequences along the temporal
dimension, which avoids biasing the model in favor of only
the forward motion. Because it doubles the motion space,
such a temporal-flipping strategy is very helpful when the
labeled data is very limited (e.g., under the semi-supervised
setting).

Improved Motion Augmentation

3.9

Loss functions. The loss function contains classification
losses and regression losses and is defined as:

Implementation Details

Em :/\1 Ecls_target + >\2£cls_motion + )\BLreg_box_aware+
/\4(£reg_moti0n + ['reg_reﬁne_prev + [-:reg_lst + ‘Creg_an )(4)
Eds_target and Ls_motion are standard cross-entropy losses for
target segmentation and motion state classification at the
1%t-stage (Points are considered as the target if they are
inside the target BBoxes; A target is regarded as dynamic if
its center moves more than 0.15 meter between two frames).
All regression losses are defined as the Huber loss [59]
between the predicted and ground-truth RTMs (inferred
from ground-truth target BBoxes), where Lcg motion is for
the RTM between targets in the two frames; Lreg refine_prev
is for the RTM between the predicted and the ground-truth
BBoxes at timestamp (t — 1); Lreg 15t / Lreg 2nd is for the
RTM between the 1%¢ / 2"¢-stage and ground-truth BBoxes;
ﬁreg_box_aware is the regression loss for the predicted 9D box-
aware features. We empirically set Ay = Ay = 0.1 and
Az =X =1
Network input. Since SOT only takes care of one target in
a scene, we only need to consider a subregion where the
target may appear. Basically, the input to M?-Track is a
frame pairs. For two consecutive frames at (¢t — 1) and ¢
timestamp, we choose the subregion by enlarging the target
BBox at (¢t — 1) timestamp by 2 meters. We then sample
1024 points from the subregion respectively at (¢ — 1) and ¢
timestamp to form P;,_; and P,. To simulate testing errors
during the training, we feed the model a perturbed BBox by
adding a slight random shift to the ground-truth target BBox
at (t—1) timestamp. To achieve multi-frame ensembling, we
use a frame and its previous N > 2 frames to build each
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Algorithm 1 Workflow of our pseudo-label-based motion
augmentation

Input: Labeled data {SZ,TZ}N 1- an unlabeled frame pair (P, Pf,)
and the pseudo target bboxes By, By, the scale factor v for
deletion.

: i ¢ RandInt(min = 1, mazx = N*)

: ¢ + RandInt(min = 1, maz = length(S!) —

: t/ (—t/} (tz—tl)

: Pﬁ,,P — SHt, 1, SHE)]

Bi,, v (—Tl[t’] Tt

:forj=1,2do
P <—Delete(73t Bi ),

. end for

: forj=1,2do

10: Ot} +— CutAndCenter (P! Bl )

t/ K
11: end for
12: for j =1,2do
13: P+ TransformAndPaste((’)t/ P, B, )

14: B“ — Reszze(Bf ,Bll )
15: end for ’
Output: P, Py B}

t12

to/

(t2 —t1))

u
By,

input, making the network aware of RTMs with various
time intervals.

Training & inference. We train our models using the Adam
optimizer with batch size 256 and an initial learning rate
0.001, which is decayed by 10 times every 20 epochs. The
training takes ~ 4 hours to converge on a V100 GPU for the
KITTI Cars. During the inference, the model tracks a target
frame-by-frame in a point cloud sequence given the target
BBox at the first frame.

4 SEMI-SUPERVISED LIDAR SOT
4.1 Semi-supervised Setting

In the semi-supervised learning (SSL) setting, we have
access to a set of labeled sequences {S!,7}}Y',, where

= {B},;}I_, is the ground truth tracklet for the i-th
labeled target and S} = {P; ;}{_, is the corresponding point
cloud sequence. Along with labeled data, we have a set of
unlabeled sequences {SY, “l}fv ", where only the first tar-
get bbox BY'; is avallable for the i-th unlabeled sequence. N'
and N are the number of labeled and unlabeled sequences,
respectively. We aim at dealing with LiDAR SOT under a
challenging condition, where N! < N*.

4.2 SEMIM

Leveraging the motion-centric tracker, SEMIM is a training
pipeline that accomplishes semi-supervised LiDAR SOT. As
shown in Fig. 6 (a), following the standard pseudo-labeling
setup, SEMIM consists of two training stages: (1) the pre—
training stage, (2) and the mixed-training stage. For the
pre-training stage SEMIM pre-trains an M?2-Track on the
labeled data {S!, 7} 1 using the fully-supervised loss.
After that, we run the pre-trained model on the unlabeled
data {S}", B;})¥] to obtain pseudo labels {7;*}]. In the
mixed-training stage, SEMIM trains another M? Track from
scratch on the mixed dataset {S! ,’Tl} VLU S TN
using both ground-truth and pseudo labels.

In general, due to insufficient annotations, the pseudo
labels generated by the pre-trained model are too noisy

7

to provide reliable supervision signals. Since LiDAR SOT
approaches rely on the previous prediction to decide the
search region of the incoming frame, the noise in pseudo
labels is accumulated frame-by-frame, making the pseudo
labels even more unreliable. Thanks to the motion-centric
nature, SEMIM addresses this with a pseudo-label-based
motion augmentation and a cycle-consistent loss term.

4.2.1 Pseudo-Label-Based Motion Augmentation

As shown in Fig. 7 (a), although pseudo labels (in the form
of bboxes) do not perfectly fit the underlying targets due to
the inevitable noise, they provide a reasonable approxima-
tion of the RTMs, which are useful for training a motion-
centric tracker. Based on this observation, we propose a
pseudo-label-based motion augmentation, which aims at
(1) reducing the misalignment between the pseudo labels
and the targets of interest, (2) and keeping the RTMs among
pseudo labels.

The workflow. We first introduce a delete-cut-paste operation
that puts an object from one frame to another while avoiding
collision. The delete-cut-paste operation takes as input two
points-box pairs: a destination pair (Pgest, Baest) and a
source pair (Psre, Bsre). It first delete the points inside the
destination bbox Bges: from the point cloud Pgest, leaving
only the background outside Bges:. During the implemen-
tation, we scale up the size of Bges: by v to include more
potential target points for better deletion. After that, its uses
the source B, bbox to cut out the points in the source point
cloud Ps,, obtaining an object point cloud Os, inside Bsy..
Finally, its pastes Qg into Pges in the position of Bgest,
which is then resized accordingly to fit the pasted object.
The whole workflow of our pseudo-label-based motion
augmentation is given in Alg. 1. For any two frames in the
same unlabeled sequence, we sample another two frames
with the same interval from any labeled sequence and use
the delete-cut-paste operation to replace the points inside the
pseudo boxes. Note that the same interval is needed to
ensure consistent object appearance after pasting. During
the training, we apply this augmentation to each unlabeled
frame pair with probability p < 1, enabling the network to
see both original and augmented pseudo-labeled data.
Comparison with similar techniques. Our pseudo-label-
based motion augmentation relies on the delete-cut-paste
operation, which is similar to the random pasting that has
been widely adopted in the 3D detection and 2D tracking
tasks [18], [53]. Random pasting directly puts the object
points and the corresponding bboxes into another frame.
Without using anchors, random pasting cannot handle ob-
ject collision and is likely to put objects in meaningless areas
since LiDAR frames have an extensive range (see Fig. 7),
which may harm the training. In contrast to random pasting,
[60] proposed a rendering-based augmentation framework
to avoid the collision. Nevertheless, [60] deals with each
frame independently and thus the same object pasted in
different frames may have unreal motion. By contrast, our
augmentation generates RTMs that are unseen in the labeled
dataset by exploiting the pseudo boxes as the anchors to
paste. With the help of delete-cut-paste, the object points
and the pseudo boxes become perfectly aligned without
collision.
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Fig. 6. (a) The workflow of SEMIM, which performs semi-supervised learning based on pseudo-labeling. (b) On KITTI pedestrians, M2-Track’s
performance drops drastically under low label ratios. SEMIM significantly boosts the performance when labeled data is insufficient.

PL-based

e

o R \
Rl | ISR

Random-Pasting

Fig. 7. (a): An unlabeled frame pair with pseudo labels (PL); (b)(c):
Results of delete-cut-paste on (a) with v = 1 and v = 1.25; (d)(e)(f):
Random pasting causes unrealistic motion and object collision. Red and
Blue denote frames at time ¢ and ¢t-1, respectively.

4.2.2 Semi-supervised Loss Design

After generating pseudo labels by applying the pre-trained
model on unlabeled sequences, we start training another
model using combined data (labeled and unlabeled). For
labeled data, we directly apply the fully-supervised loss de-
fined by Eqn. (4) as the regularization. Treating the pseudo
labels as the ground truths, we can also apply the same
loss term for the predictions of unlabeled data, which yields
L forward that penalizes the forward tracking errors:

(R 1 s
‘Cforward = ﬁ Z‘C’m(ﬁlazl) +)‘WZEM(7?L7 iu)7
i=1 =1

©)
where L,, is the same loss term as Eqn. (4). T/ T;* denotes
the predicted tracklet of labeled / unlabeled data. 7;' and
T." stand for the ground truth and the pseudo tracklets,
respectively. ) is the coefficient to control the weight of the
unlabeled loss term.

I:I Backward Prediction

D Forward Prediction

Fig. 8. Self-supervised cycle-consistent loss, which is naturally differen-
tiable due to the motion-centric nature.

As the number of unlabeled data is much larger than that
of the labeled data, L forward causes significant instability
when individually applied in training because the pseudo
labels are usually noisy. To address this issue, we incorpo-
rate a self-supervised cycle-consistent loss L.y, which is
illustrated in Fig. 8. Given any input triplet (P, Py, By),
the tracker estimates the target bbox By at Py. We then
build another triplet (P;, Py, By) to do the tracking in a
reverse direction. The cycle-consistent loss penalizes the
errors between B, and the backward estimated bbox B;:

Ecycle = Eboz(Btv Bt)a
By = F(Py, P, F(Pu, Pe, B)),

where L, is defined as the huber loss [59] between the
centers and the heading angles of B; and B;:

(6)

Lyoq = huber([z,y, z, sin(0)], 2,7, 2, sin(0)]). (7

And F is the tracker function defined in Eqn. (1). We do not
penalize the bbox size because it is unchanged for the same
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target. For simplicity, we formulate L., on only one input
sample.

By imposing an extra regularization on the cycle consis-
tency, Leycle effectively helps to reduce the noisy influence
of the pseudo labels. But L. also causes instability when
applied to the unlabeled data alone. When the forward
tracking predicts off-course target bboxes, using these in-
accurate bboxes to construct backward triplets introduces
many noisy distractions. With such an ill-posed penalty,
Leycle may eventually degenerate to the “zero motion”
solution. Fortunately, the “zero motion” solution for Lcycie
does not produce a zero Ljforward- One can regard the
pseudo labels in L 4rwara as reasonable anchors that pull
the motion predictions out of zeros. The final loss in SEMIM
can be written as:

Lsemi = »Cfarward + azcyclev (8)

where Ecycle is the average of L.yqe on all the unla‘tgeled
training triplets. Thanks to the motion-centric tracker, Lcycie
is naturally differentiable with respect to the tracker pa-
rameters because no cropping happens during the cycle
training.

5 EXPERIMENTS
5.1 Experiment Setups

Datasets. We extensively evaluate our approach on three
large-scale datasets: KITTI [11], NuScenes [14] and Waymo
Open Dataset (WOD) [15]. We follow [5] to adapt these
datasets for 3D SOT by extracting the tracklets of anno-
tated tracked instances from each of the scenes. KITTI
contains 21 training sequences and 29 test sequences. We
follow previous works [5], [6], [7] to split the training set
into train/val/test splits due to the inaccessibility of the
test labels. NuScenes contains 1000 scenes, which are di-
vided into 700/150/150 scenes for train/val/test. Officially,
the train set is further evenly split into “train_track” and
“train_detect” to remedy overfitting. Following [7], we train
our model with “train_track” split and test it on the val set.
WOD includes 1150 scenes with 798 for training, 202 for
validation, and 150 for testing. We do training and testing
respectively on the training and validation set. Note that
NuScenes and WOD are much more challenging than KITTI
due to larger data volumes and complexities. The LiDAR
sequences are sampled at 10Hz for both KITTI and WOD.
Though NuScenes samples at 20Hz, it only provides the
annotations at 2Hz. Since only annotated keyframes are con-
sidered, such a lower frequency for keyframes introduces
additional difficulties for NuScenes.

Evaluation Metrics. We evaluate the models using the One
Pass Evaluation (OPE) [63]. It defines overlap as the Intersec-
tion Over Union (IOU) between the predicted and ground-
truth BBox, and defines error as the distance between two
BBox centers. We report the Success and Precision of each
model in the following experiments. Success is the Area
Under the Curve (AUC) with the overlap threshold varying
from 0 to 1. Precision is the AUC with the error threshold
from 0 to 2 meters. For fair comparisons, we adhere to
the established practice [5], [6], [7] of training and testing
models separately for each category. To provide an overall

TABLE 1
Comparison among our methods and the state-of-the-art methods on
the KITTI datasets. Mean shows the average result weighed by frame
numbers. * after our methods denotes that models are trained with
improved motion augmentation.

Category Car Pedestrian Van Cyclist Mean
Frame Number 6424 6088 1248 308 14068
SC3D [5] 413 18.2 404 415 312
SC3D-RPN [8] 36.3 17.9 - 432 -
P2B [6] 56.2 28.7 408 321 424
3DSiamRPN [10] | 58.2 35.2 456 361 466
LTTR [61] 65.0 33.2 358 662 487
PTT [9] 67.8 449 436 372 551
2 V2B [26] 705 483 50.1  40.8 584
< BAT [7] 65.4 45.7 524 337 550
A PTTR [62] 65.2 50.9 525 651 584
CAT [28] 66.6 51.6 531 670 589
TAT [27] 72.2 57.4 589 742 647
M-Vanilla* (Ours) | 65.5 56.0 527 671 603
MZ2-Track (Ours) | 65.5 615 538 732 629
MZ2-Track* (Ours) | 71.1 61.8 628 759 665
M?2-Track* 3x (Ours) | 74.7 59.9 63.0 761  67.3
SC3D [5] 57.9 37.8 470 704 485
SC3D-RPN [8] 51.0 47.8 - 81.2 -
P2B [6] 72.8 496 484 447 600
3DSiamRPN [10] | 76.2 56.2 528 490 649
LTTR [61] 77.1 56.8 456 899 658
- PTT [9] 81.8 72.0 525 473 742
2 V2B [26] 81.3 73.5 580 497 752
5 BAT [7] 78.9 74.5 67.0 454 752
& PTTR [62] 77.4 81.6 618 905 778
CAT [28] 81.8 77.7 69.8 901  79.1
TAT [27] 83.3 84.4 692 939 828
M-Vanilla* (Ours) | 79.6 84.6 69.1 926 811
M2-Track (Ours) | 80.8 88.2 70.7 935 834
M?2-Track* (Ours) | 82.7 88.7 785 940 852
M?2-Track* 3x (Ours) | 84.9 88.7 781 942  86.2

metric encompassing all classes, we report the average
results, weighted by the number of frames in each category.

5.2 Fully-supervised Learning
5.2.1 Comparison with State-of-the-arts

Results on KITTI. We compare M?2-Track with 11 top-
performance approaches [5], [6], [7], [8], [9], [10], [26], [27],
[28], [61], [62], which have published results on KITTI. To
further demonstrate the potential of the proposed motion-
centric paradigm, we additionally include two variants of
M?-Track in the comparison:

e M-Vanilla is the proof-of-concept motion-centric tracker
as described in Sec. 3.6. It only uses motion modeling
to do the tracking without any bells and whistles.

o M?-Track 3x uses three consecutive frames to do the
tracking using our multi-frame ensembling strategy
in Sec. 3.5. It selects the final target bbox from two
proposals predicted by RTMs in different time intervals.

The comparison is given in Tab. 1. For our methods, we use
* to indicate that the corresponding model is trained with
the improved motion augmentation including the coin-flip
test and temporal flipping (Sec 3.8). Otherwise, the model
is trained using the basic motion augmentation as in our
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Fig. 9. Visualization results. Top: Distractor case in KITTI. Middle: Large motion case in KITTI. Bottom: Case in NuScenes.

conference paper [19]. We keep this notation in the following
experiments.

As shown in Tab. 1, our methods benefits both rigid and
non-rigid object tracking, outperforming current approaches
under all categories mostly by large margins. When com-
paring M?-Track and M>-Track*, we can see significant
improvements for vehicle objects (cars/vans) after using the
improved motion augmentation. We attribute this to coin-
flip test, which helps preserve real static motion and thus
avoids the model being biased toward moving vehicles.
By contrast, the coin-flip test’s improvements on pedestri-
ans and cyclists are minor since these objects are mostly
moving. More analysis about motion augmentation is given
in Sec. 5.2.5. Since distractors are usually more pervasive
for smaller objects, our improvements for pedestrians and
cyclists are more significant than those for vehicle objects
when compared to previous matching-based approaches.
Please refer to the appendix for more details about dis-
tractors. It is indeed exciting to observe that M-Vanilla*
surpasses all the matching-based methods on average, even
with its simple architecture. The only exception is TAT [27],
which employs 8 template frames in its approach. This
outcome serves as strong evidence that our advancements
primarily stem from the effectiveness of the motion-centric
paradigm. Thanks to the multi-frame ensembling, M?2-
Track™ 3x further boosts the performance especially for cars,
achieving the best overall results.

Results on NuScenes & WOD. We select three represen-
tative open-source works: SC3D [5], P2B [6] and BAT [7]
as our competitors on NuScenes and WOD. The results
on NuScenes except for the Pedestrian class are provided

by [7]. We use the published codes of these competitors to
obtain other results absent in [7]. SC3D [5] is omitted for
WOD comparison due to its costly training time. Besides, we
also compare our method with the spatial-temporal tracker
CAT [28] using their published results on NuScenes. As
shown in Tab. 2, M2-Track exceeds all the competitors on
average, mostly by a large margin for each category. On such
two challenging datasets with pervasive distractors and
drastic appearance changes, the performance gap between
previous approaches and M?-Track becomes even larger
(e.g., more than 30% precision gain on Waymo Pedestrian).
Note that for large objects (i.e., Truck, Trailer, and Bus), even
if the predicted centers are far from the target (reflected from
lower precision), the output BBoxes of the previous model
may still overlap with the ground truth (results in higher
success). In contrast, motion modeling helps to improve not
only the success but also the precision by a large margin
(e.g., +10.02% gain on Bus) for large objects. Visualization
results are provided in Fig. 9 and the supplementary.

5.2.2 Tracking Novel Objects

To ensure a fair comparison, both Tab. 1 and Tab. 2 ad-
here to the practice of training a separate model for each
category. Nevertheless, one of the significant advantages of
SOT over MOT lies in its ability to track arbitrary novel
objects. Separately training a model for each category is
not applicable to novel object tracking. In this section, we
evaluate the performance of our model when it is jointly
trained on multiple classes. Additionally, we assess its gen-
eralization ability by applying it to novel objects without
retraining. Specifically, we train a M2-Track* model using
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TABLE 2
Comparison of M2-Track against state-of-the-arts on the NuScenes and Waymo Open Dataset. Mean shows the average result weighed by frame

numbers. Bold and underline denote the best performance and the second-best performance respectively. Improvements over previous
state-of-the-art are shown in ltalic.

Dataset NuScenes Waymo Open Dataset
Category Car Pedestrian Truck Trailer Bus Mean Vehicle Pedestrian Mean
Frame Number 64,159 33,227 13,587 3,352 2,953 117,278 1,057,651 510,533 1,568,184
SC3D [5] 22.31 11.29 30.67 35.28 29.35 20.70 - - -
@ P2B [6] 38.81 28.39 4295 48.96 32.95 36.48 28.32 15.60 24.18
15 BAT [7] 40.73 28.83 45.34 52.59 35.44 38.10 35.62 22.05 31.20
é CAT [28] 43.34 30.68 47.64 57.90 43.30 40.67 - - -
M?2-Track (Ours) 55.85 32.10 57.36 57.61 51.39 49.23 43.62 42.10 43.13
Improvement 112.51 11.42 19.72 1-0.29 18.09 18.56 18.00 120.05 111.92
SC3D [5] 21.93 12.65 27.73 28.12 24.08 20.20 - - -
5 P2B [6] 43.18 52.24 41.59 40.05 27.41 45.08 35.41 29.56 33.51
R5) BAT [7] 43.29 53.32 42.58 44.89 28.01 45.71 44.15 36.79 41.75
g CAT [28] 49.41 56.67 48.10 55.31 41.42 51.28 - - -
P~
M?2-Track (Ours) 65.09 60.92 59.54 58.26 51.44 62.73 61.64 67.31 63.48
Improvement 115.68 14.25 111.44 12.95 110.02 111.45 117.49 130.52 121.73
TABLE 3 TABLE 5
Influence of Motion Augmentation. “Aug” stands for the basic motion Comparison with MOT methods.
augmentation. Coin and Temp. stand for the coin-flip test and the
temporal-flipping augmentation, respectively.
Category | Car Pedestrian
Method | Aug. Coin Temp. | Success Precision AB3D [31] 37.5 17.6
Success PC3T [34] 51.9 23.6
X X X 65.37 78.88 "
BAT[7] v X X 63591 1.78 7699 ] 1.89 M?-Track* (Ours) | 71.1 61.8
P2B [6] X X X 56.20 72.80 AB3D [31] 423 27.3
v X X 55211099 7151/ 1.29 Precision PC3T [34] 59.2 34.1
X X X 65.29 77.12 M2-Track* (Ours) | 82.7 88.7
v X X 65491 0.20 80.81 1 3.69
M2-Track | v v X 69.9314.64 82.0714.95
v/ X v/ 65.11 ] 0.18  78.62 1 1.50
v v v 71147 5.85 82.67 1 5.55 . .
T T that of the separately tuned model by noticeable margins
(2.67% higher in success and 1.42% higher in precision).
TABLE 4 The performance of the jointly trained model on vans and

The performance of M2-Track* (with improved motion augmentation)
for novel object tracking. We compare its performance with the models
separately trained (Sep.) for each class. Blue denotes seen objects
while red denotes unseen objects during the training.

Cat. Car Pedestrian | Van Cyclist | Mean
2 * Yy
MZ-Track™ prome | 6424 6088 | 1248 308 | 14068
S Sep. ‘ 71.14 61.80 ‘ 62.84 75.89 ‘ 66.47
uccess
Joint | 69.80 6447 |5216 69.02 | 6591
Precisi Sep. |82.67 8870 |7845 94.04 | 85.15
recision
Joint |80.86  90.12 | 6483 92.61 | 83.70

car and pedestrian sequences from the KITTI train split.
Subsequently, we evaluate its performance on the KITTI test
split, considering both the seen classes (cars and pedestri-
ans) and the unseen ones (cyclists and vans). The results are
presented in Tab. 4, which also includes the per-class perfor-
mance of the model separately trained on the corresponding
category. As demonstrated in Tab. 4, the jointly trained
model achieves comparable performance on seen classes,
and notably, its performance on pedestrians even exceeds

cyclists is also satisfying, given that the model has never
seen these classes during the training. For unseen vans and
cyclists, while it performs worse than our separately trained
model, the jointly trained model is still comparable to
some top-ranking matching-based methods (e.g., PTTR [62],
CAT [28]), which are also separately tuned. In summary,
our method demonstrates great generalization ability and
can effectively handle novel objects without the need for
retraining.

5.2.3 Comparison with MOT Approaches

To further demonstrate the essence of 3D SOT, we compare
our method with 3D MOT approaches under the metrics of
success and precision. We select AB3D [31] and PC3T [34]
as the competitors, which are two representative 3D MOT
methods KITTI MOT leaderboard. For a fair comparison,
we use the ground truth BBoxes to initialize the detection
results for AB3D [31] and PC3T [34] in the first frame instead
of using the outputs from their detectors. After that, we
run AB3D [31]/PC3T [34] on all the test sequences and
then collect the output tracklets for each instance of interest.
Finally, we compute the success and precision by comparing
the output tracklets with the ground truths. As evidenced in
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TABLE 6
Apply M2-Track on Appearance Matching-Based Methods. d denotes
the margin used for search area generation. * after our methods
denotes that models are trained with improved motion augmentation.

Method |  Success Precision

PTT [9] 67.80 81.80

V2B [26] 70.50 81.30

TAT [27] 72.20 83.30

M?2-Track 65.49 80.81
M?2-Track + BAT [7],d =2 | 69.2213.73 81.09 1 0.28
M?2-Track + P2B [6],d =2 | 70211 4.72 81.80 7 0.99

M?2-Track* 71.14 82.67
M?2-Track* + BAT[7],d =2 | 71.80 1 0.66 83521 0.85
M?2-Track* + BAT[7],d =1 | 73.04 1 1.90 85.4412.77

Tab. 5, a substantial performance gap exists between 3D SOT
and 3D MOT, with SOT significantly outperforming MOT.
Since MOT cares about all the objects in the scenes and relies
on a detector to localize the objects, it cannot provide precise
localization for each object as SOT. Moreover, MOT cannot
handle novel objects, which is a significant advantage of
SOT as demonstrated in Sec. 5.2.2.

5.2.4 Combine with Appearance Matching

In this section, we investigate the tracking performance
achieved by combining M?-Track with existing matching-
based approaches using the way described in Sec. 3.7.
Following Sec. 3.7, we first use a well-trained M?-Track to
output an initial target BBox By,otion, and then generate the
search area Pgeqrcn and target template Pkeyyp. Specifically,
we expand the initial BBox B,, by a margin of d meter(s)
and sample 1024 points inside to generate a search area
Psearch- And the target template is merged with the target
point cloud in the first frame and then downsampled to
512 points. Next, we apply a fully-trained matching-based
tracker to the search area and target template, resulting in a
refined target BBox. To evaluate the tracking performance of
this combination, we conducted experiments on KITTI Cars,
as presented in Tab.6. We selected P2B [6] and BAT [7] as
the representative matching-based methods. Both P2B and
BAT are configured with their official settings, except for the
margins used in the search area generation. Specifically, we
considered two different margins: d = 2 (officially adopted
in P2B and BAT) and d = 1.

Tab. 6 confirms that such a simple combination effec-
tively boosts the performance of M?-Track. We also notice
that the improvement becomes less significant as M?-Track
becomes stronger with the improved motion augmentation.
This aligns with our intuition that the matching-based re-
finement becomes less impactful when the initial bounding
box is already accurate. Furthermore, narrowing down the
search area for the matching-based method leads to further
performance improvement (as seen in the last two rows
of Tab. 6), as it reduces the chances of being distracted by
negative matches. Last but not least, our best combination
model (M?-Track* + BAT, d=1) outperforms the top-ranking
TAT [27] by considerable margins. We believe that one
can further boost 3D SOT by combining motion-based and
matching-based paradigms with a more delicate design.
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Fig. 10. Robustness analysis with variant numbers of distractors.

TABLE 7
Analysis of the Segmentation Network in M2-Track. * denotes the
model trained with the improved motion augmentation. Seg. Net.
stands for the segmentation network.

Model | Seg. Net. Success  Precision
M-Vanilla* | - 65.45 79.63
M?2-Track* PointNet [48] 71.14 82.67
M?2-Track* PointNet++ [47] 68.33 82.72
M?2-Track* | PointTransformer [64] 70.97 82.75

5.2.5 Analysis Experiments

In this section, we extensively analyze M?-Track’s per-
formance under various settings regarding the distractor
distribution, data augmentation and model configuration.
All the experiments are conducted on the Car category of
KITTI unless otherwise stated.

Robustness to distractors. Though achieving promising im-
provement on NuScenes and WOD, M?2-Track brings little
improvement on the Car of KITTI. To explain this, we look
at the scenes of three datasets and find that the surroundings
of most cars in KITTI are free of distractors, which are
pervasive in NuScenes and WOD (see the supplementary).
Although appearance-matching-based methods are sensi-
tive to distractors, they provide more precise results than
our motion-based approach in distractor-free scenarios. But
as the number of distractors increases, these methods suffer
from noticeable performance degradation due to ambigui-
ties from the distractors. To verify this hypothesis, we ran-
domly add K car instances to each scene of KITTI, and then
re-train and evaluate different models using this synthesis
dataset. As shown in Fig. 10, M?-Track consistently out-
performs the other two matching-based methods in scenes
with more distractors, and the performance gap grows as
K increases. Thanks to the box-awareness, BAT [7] can aid
such ambiguities to some extent. But our performance is
more stable than BAT’s when more distractors are added.
Besides, the first row in Fig. 9 shows that, when the number
of points decreases due to occlusion, BAT is misled by a
distractor and then tracks off course, while M 2-Track keeps
holding tight to the ground truth. All these observations
demonstrate the robustness of our approach.

Influence of motion augmentation. We improve the per-
formance of M2-Track using the motion augmentation in
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TABLE 8
Number of Frames in Multi-frame Ensembling for A72-Track. All the
models are trained with improved motion augmentation.

Num Frames \ Success  Precision
2 | 7114 82.67
3 74.65 84.93
4 73.20 83.58
5 70.72 81.23

training, which is not adopted in previous approaches. For
a fair comparison, we re-train BAT [7] and P2B [6] using
the same configurations in their open-source projects except
additionally adding motion augmentation. Tab. 3 shows
that motion augmentation instead has an adverse effect
on both BAT and P2B. Our model benefits from motion
augmentation since it explicitly models target motion and
is robust to distractors. In contrast, motion augmentation
may move a target closer to its potential distractors and
thus harm those appearance-matching-based approaches.
We also analyze the effectiveness of the coin-flip test and
the temporal-flipping, which are two enhancements over the
basic motion augmentation. Compared to the basic motion
augmentation, adding the coin-flip test brings noticeable
improvements, especially in terms of success. The temporal-
flipping generates flipped motions, which are usually unre-
alistic in natural scenes. Besides, some of the target motions
synthesized by the basic motion augmentation are also un-
natural. Therefore, adding the temporal-flipping alone to the
basic motion augmentation instead harms its effectiveness.
But the temporal-flipping can also benefit the training when
applied together with the coin-flip test. This reflects that
preserving original target motions in the data is critical for
motion augmentation.

Role of the segmentation network. One major component
in M2-Track is the segmentation network, which plays a
pivotal role in both Stage I and Stage II. For simplicity, we
only choose a PointNet-based segmentation network [48]
for M2-Track. In Tab. 7, we conducted experiments with
more powerful segmentation networks, such as PointNet++
[47] and PointTransformer [64]. Surprisingly, the results
demonstrate that the tracking performance remains rela-
tively insensitive to the choice of segmentation network, and
employing a stronger network does not necessarily lead to
improved performance. Furthermore, it is noteworthy that
even in the absence of the segmentation network, M-Vanilla
achieves comparable performance with M?2-Track while sur-
passing the majority of previous methods in Table 1. These
findings further emphasize that the success of M?2-Track
primarily hinges on effective motion modeling, validating
the significance of our motion-centric paradigm.

Ablations on the frame sampling. Tab. 8 presents the
performance of M?-Track when using different numbers of
frames for the multi-frame ensembling. The first entry in
Tab. 8 (num frames = 2) means that a standard M2-Track
is used without the multi-frame ensembling. The results
indicate that increasing the number of frames does not
necessarily lead to improved performance. With a larger
frame number, the multi-frame ensembling has to predict
relative motion for a longer time interval, making it more
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challenging to achieve accurate results. Overall, the optimal
choice appears to be using three frames, which allows us to
achieve favorable performance while maintaining computa-
tional efficiency.

Ablations on model components. In Tab. 9, we conduct
an exhaustive ablation study on both KITTI and NuScenes
to understand the components of M2-Track. Specifically,
we respectively ablate the box-aware feature enhancement,
previous BBox refinement, binary motion classification and 274
stage from M?-Track. In general, the effectiveness of the
components varies across the datasets, but removing any
one of them causes performance degradation. The only
exception is the binary motion classification used in the 1%
stage, which causes a slight drop on KITTI in terms of
success. We suppose this is due to the lack of static objects
for KITTT’s cars, which results in a biased classifier. Besides,
Tab. 9 shows that M?-Track keeps performing competitively
even with module ablated, especially on NuScenes. This
reflects that the main improvement of M?2-Track is from
the motion-centric paradigm instead of the specific pipeline
design.

5.3 Semi-supervised Learning

Implementation Details. For the pre-training, we train an
M?2-Track for 60 epochs. After that, we use the last model
to generate the pseudo labels on unlabeled data. During the
mixed-training stage, we clip the gradients whose norms
are greater than 1 to avoid exploding gradients in the
cycle training. The possibility p for applying the pseudo-
label-based motion augmentation is set to 0.5. The scale
factor y in delete-cut-paste operation is set to 1.25. A and «
in Eqn. (5) and Eqn. (8) are empirically set to 0.1. Other
training configurations are kept the same as those in the
fully-supervised experiments.

5.3.1 Results on KITTI

We first use the KITTI dataset to evaluate our online tracking
performance under the SSL setting. Each scene in the KITTI
training set contains multiple track sequences. We obtain
our labeled and unlabeled training sets by dividing the
KITTI training scenes 0-16 into two non-overlapping sub-
splits with a breakpoint k, where we retain the labels in
scenes 0-k and drop the annotations in the scenes (k+1)-16.
Results on Cars. We first evaluate SEMIM for cars in
Tab. 10, which are the most common objects in autonomous
driving. For comparison, we set up two baselines M?2-
Track and M?2-Track*, which are fully trained using par-
tial data under different labeled ratios. Being consistent
with Tab. 1, M2-Track/M?2-Track* is trained with the ba-
sic/improved motion augmentation. Since the improved
motion augmentation more than doubles the data, We find
that its effectiveness becomes more significant when the
training data is limited, greatly benefiting the pre-training
stage of SEMIM. Under the SSL setting, SEMIM consistently
improves the performance of the baselines under all labeled
ratios. With only 1% labels, SEMIM amazingly boosts its
M?-Track*’s poor performance by 16.7%/20.9% in terms of
success/precision, demonstrating its ability to compensate
for the lack of labels. Surprisingly, SEMIM only needs 26%
labels to perform on par with its 100%-supervised baseline,
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TABLE 9

Results of M2-Track when different modules are ablated. The last row denotes the full model. Bold denotes the largest change.

Box Aware Prev Box Motion Stage-Il ‘ Kitti ‘ NuScenes
) . ge
Enhancement Refinement Classification ‘ Success Precision ‘ Success Precision

v v v 62.00 349 7615 4.66 | 53.68 | 2.17 6247 | 2.62
v v v 6423 | 1.26 78.12]2.69 | 5470 1.15 61.94 ] 3.15
v v v 65741025 8029052 | 5488097 64.40] 0.69
v v v 61.29 | 420 77.31]3.50 | 54.66 ] 1.99 64.15] 0.94
v v v v 65.49 80.81 55.85 65.09

TABLE 10

Tracking Results on KITTI Cars with different label ratios. Frame number shows the number of labeled frames used for training. Improvement

denotes SEMIM’s improvement over the baseline M2-Track*.

14

Breakpoint (k) 0 2 4 8 16
Metric Method (Frame) 243 (1%) 3956 (20%) 5137 (26%) 10266 (53%) 19522 (100%)
P2B [6] - 423 - - 56.2
@ BAT [7] - 43.8 - - 65.4
[}
§ M?2-Track 7.6 51.2 56.8 63.9 65.5
53 M?2-Track* 12.7 60.6 63.5 67.3 71.1
M?2-Track* w/ SEMIM 29.4 65.2 67.4 70.3 -
Improvement 116.7 14.6 13.9 13.4 -
P2B [6] - 57.2 - - 72.8
g BAT [7] - 56.2 - - 78.9
§ M?2-Track 5.8 65.2 71.1 77.0 80.8
& M?2-Track* 13.8 76.2 78.9 80.0 82.7
M?2-Track* w/ SEMIM 34.7 79.9 81.4 83.0 -
Improvement 120.9 13.7 12.5 13.0 -
TABLE 11
Tracking Results on KITTI Pedestrians with different label ratios.
Breakpoint (k) 2 8 12 14 16
Metric Method (Frame) 314 (7%) 446 (10%) 770 (17%) 1821 (40%) 4600 (100%)
P2B [6] - - - - 28.7
2 BAT [7] - - - - 457
[0}
g M?-Track 4.8 6.2 11.6 51.1 61.5
99) M?-Track* 18.8 25.6 35.9 55.0 61.8
M?2-Track* w/ SEMIM 50.5 49.9 56.1 63.7 -
Improvement 131.7 124.3 120.2 18.7 -
P2B [6] - - - - 49.6
§ BAT [7] - - - - 745
g M?-Track 9.7 138 303 75.8 88.2
& M?-Track* 40.3 48.5 59.0 82.8 88.7
M?2-Track* w/ SEMIM 79.8 79.0 84.1 90.8 -
Improvement 139.5 130.5 125.1 18.0 -

and achieves state-of-the-art results when more labels are
available. We also notice that SEMIM’s improvement over
the baseline also consistently decreases as the number of
labels increases. This is reasonable because more labeled
data produces less noisy pseudo labels and provides more
supervision to relieve overfitting. Last but not least, even
without any SSL techniques, our method shows better gen-
eralizability with limited training data when compared to
previous matching-based approaches.

Results on Pedestrians. Besides rigid objects, SEMIM also
works on deformable objects like pedestrians. Different
from cars, pedestrians usually cluster together, which is
likely to distract the tracker. Besides, the total amount of

labeled pedestrians is much smaller than that of cars in
KITTI, making the task more challenging. Overall, Tab. 11
shows a similar trend as Tab. 10. But we notice that
SEMIM’s improvement for pedestrians is even more signif-
icant. Trained with only 7% labeled data (only 314 frames),
the baseline M2-Track failed to learn any meaningful in-
formation from the data, achieving only 4.8%/9.7% in
terms of success/precision. Even with the improved motion
augmentation, M?-Track* cannot achieve satisfying results
(18.8%/40.3%) due to extremely limited training samples.
After applying SEMIM, the model’s performance is signif-
icantly enhanced to 50.5%/79.8%, even surpassing 100%-
supervised P2B [6] and BAT [7]. We attribute this im-



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, OCTORBER 2022

TABLE 12
Results on WOD validation set. v//X indicates the datasets used in the
training. Improvement denotes improvement over the KITTI-pretrained

M?2-Track*.
Method ‘ D Litti Dgal ’Dimm D vin ‘ Success  Precision

P2B [6] X X v X 28.32 35.41
BAT [7] X X v X 35.62 44.15
M?2-Track X X v X 43.62 61.64
M?2-Track* | v X X X | 3575 44.54
M?-Track* UDA v X X v 45.88 56.50
Improvement - - - 110.13 111.96
M?2-Track* Offline v v X X 46.68 58.46
Improvement - - - - 110.93 113.92

TABLE 13

Ablation Study with 20% labels (3956 labeled frames) on KITTI Cars.
PL stands for pseudo labels. CC./Pseudo Aug. stands for the
cycle-consistent loss and the pseudo-label-based motion
augmentation, respectively.

Model | CC. Pseudo Aug. | Success Precision
M2-Track w/oPL | - - | 51.21 65.21
X X 49.52 65.56
v X 56.02 71.81
2.
M*-Trackw/PL |y v 58.85 75.63
v v 59.09 75.79

provement to the pseudo-label-based motion augmentation
in SEMIM, which covers sufficient motion priors of slow-
moving objects. As we expected, SEMIM also surpasses
the powerful 100% supervised M2-Track* with only 40%
labels. Please refer to the appendix for visualization results
of SEMIM under different labeled ratios and object types.

5.3.2 Results on WOD

In this section, we focus on adapting M?-Track from KITTI
to WOD, without using any labels from the latter. At the
beginning, we define the notations of several data splits as
follows:

e DL.,,..: the full KITTI training set (scenes 0-16) with

labels;
e D!
o D¢

: the training set of WOD with labels;
b qin: the training set of WOD without labels;
e Dy . the validation set of WOD without labels.

Note that all the above splits are about car/vehicle objects.
Unsupervised domain adaptation. As a semi-supervised
technique, SEMIM can be directly adopted to the task
of unsupervised domain adaptation (UDA). We first use
WOD’s validation set to evaluate the performance of our
best model, which is trained with Dﬁmti using the improved
motion augmentation. As shown in Tab. 12, the model
only achieves 35.75%/44.54% in terms of success/precision,
which is far lower than the result that we achieve on the
KITTI test set (71.14%/82.67%). The performance drop is
mainly due to the domain gap between KITTI and WOD
data. After applying SEMIM using the labeled source data
D!.,,; and the unlabeled target data DY ,., we s ee a sig-
nificant improvement (> 10%) in terms of both success and
precision. We also compare our UDA model with the fully-
supervised models which are trained using labels from the
massive training set D! Even without any annotations

train*

train®

15

TABLE 14
Applying SEMIM’s components to fully supervised training. 20% and
100% training data on KITTI Cars are used. CC./GT Aug. stands for the
cycle-consistent loss and the GT-based motion augmentation,
respectively. All the models are trained with improved motion

augmentation.
Training Data | CC.  GT Aug. | Success Precision

| X X | 6060 76.20

20% v X 60.18 76.08

X v 65.68 79.87

v v 64.13 78.90

| X X | 7114 82.67

100% v X 72.39 85.32

X v 71.46 83.53

v v 71.14 83.43

from WOD, our UDA model performs comparably with the
fully-supervised M 2_Track, while surpassing P2B [6] and
BAT [19] by large margins. This shows that SEMIM also
works well even when the labeled and unlabeled datasets
are in different domains, which is valuable for practical
applications.

Offline auto-labeling. In this experiment, we train a model
with SEMIM using the labeled data D%,,; and the unlabeled
data Dy ;. After that, we use the trained model to make
predictions on D}, and compare them with the ground
truth labels. Such an operation can be regarded as an offline
labeling processing because the trained model has seen all
the testing data (without labels) before it makes predictions
on them. Since the offline processing can fully exploit the
statistics information in D;,,,, it is supposed to be better
than the online predictions, where the testing data is only
available during the testing. As shown in the last two rows
in Tab. 12, the model using the offline processing performs
better than the UDA model, even though D; , is much
smaller than Dy, ;.. This suggests that SEMIM has great
potential in offline auto-labeling, which helps to relieve the
need for laborious human labeling.

5.3.3 Ablation Study on SEMIM

We extensively analyze the effectiveness of each component
of SEMIM in Tab. 13. All the experiments in Tab. 13 are con-
ducted on KITTI cars with 20% annotations (i.e., breakpoint
k = 2), and the models are trained using the basic motion
augmentation. Considering the first two models in Tab. 13,
we can see that the pseudo labels may even harm the
training when applied alone. This is because pseudo labels
contain too much noise when the labels are insufficient
during the pre-training. By contrast, we can see a noticeable
improvement when singly adding the cycle-consistent loss
or the pseudo-label-based motion augmentation. Especially,
the pseudo-label-based motion augmentation brings a more
significant improvement in terms of both success and pre-
cision (>10%). We also noticed that the effectiveness of
the cycle-consistent loss is submerged by the pseudo-label-
based motion augmentation when combining them together.
This is reasonable because the samples after the pseudo-
label-based motion augmentation are treated as labeled
data, which is not used in the computation of the cycle-
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consistent loss. Despite this, the full model still achieves the
best result in Tab. 13.

5.3.4 SEMIM helps fully-supervised training.

For previous semi-supervised experiments, SEMIM's com-
ponents are only applied to unlabeled data. In this section,
we apply SEMIM’s components to fully-labeled data to see
whether they also help fully-supervised training. Specifi-
cally, we additionally introduce a cycle-consistent loss term
and apply the GT-based motion augmentation to labeled
data. The GT-based motion augmentation is modified from
the pseudo-label-based motion augmentation. Since labeled
data are all associated with ground truths, it is unnecessary
to generate pseudo labels for them. Therefore, for pseudo-
label-based motion augmentation, we conduct the delete-
cut-paste operation by replacing the pseudo labels with
the ground truths. Compared to pseudo-label-based motion
augmentation which focuses on maintaining unseen motion
introduced by pseudo labels while reducing the noise in
them, GT-based motion augmentation mainly augments the
relative motion of a target object using other objects’ ground
truth movements.

We conducted experiments by fully training M?-Track*
separately using 20% and 100% labeled data from KITTI
cars, and the results are shown in Tab. 14. Indeed, the cycle-
consistent loss and the GT-based motion augmentation both
offer benefits to fully-supervised training. However, when
combined, they may exhibit redundancy or conflicting ef-
fects, leading to less improvement in performance. More-
over, the effectiveness of each component when applied
individually is contingent on the amount of training data
available. The GT-based motion augmentation tends to be
more effective when training data is limited (i.e., 20%), as it
helps alleviate overfitting in such scenarios. Conversely, the
cycle-consistent loss becomes more powerful when ample
training data is provided, as it can capture temporal coher-
ence and improve tracking performance.

6 CONCLUSIONS

In this work, we revisit 3D SOT in LiDAR point clouds and
propose to handle it with a new motion-centric paradigm,
which is proven to be an excellent complement to the
matching-based Siamese paradigm. In addition to the new
paradigm, we propose a specific motion-centric tracking
pipeline M?-Track, which significantly outperforms the
state-of-the-arts in various aspects. Extensive analysis con-
firms that the motion-centric model is robust to distractors
and appearance changes and can directly benefit from previ-
ous matching-based trackers. Thanks to the motion-centric
paradigm, we further extend our M?-Track to handle semi-
supervised learning in LIDAR SOT. While using much fewer
labels, the semi-supervised model performs on par with its
100% supervised counterpart. It also shows its impressive
ability in domain adaptation and offline auto-labeling. We
believe that the motion-centric paradigm can serve as a
primary principle to guide future architecture designs.
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APPENDIX A
IMPLEMENTATION DETAILS

Network Architecture

The target segmentation network is a PointNet segmenta-
tion network [48], where each input point is firstly processed
by a 5-layer MLP with output channel sizes of 64, 64, 64,
128, 1024. A max-pooling is then applied along the point
dimension to obtain a 1024-dim global embedding, which is
then copied and concatenated with the output of the second
layer (64-dim). The concatenated features are then processed
by another 5-layer per-point MLP with output channel sizes
512, 256, 128, 128, 2. Every layer of the MLP except the last
one has batch normalization and ReLU. The output logits
are used to extract the target points from the input.

At the 1%'-stage, we use a vanilla PointNet [48] to encode the
spatial-temporal target points (with the temporal channel)
into a 256-dim embedding. The PointNet includes a 4-
layer per-point MLP with output sizes 64, 128, 256, 512, a
point-wise max-pooling layer, and another MLP with output
sizes 512, 256. We have batch normalization and ReLU for
every layer of the MLP. On top of the encoded embedding,
we independently apply two MLPs with 3 hidden layers
(128,128,128) to obtain the motion state (6-dim) and the
Relative Target Motion (RTM) for previous box refinement
(4-dim). The motion state includes a 4-dim RTM and a 2-dim
motion classification logit.

At the 2”d—stage, we use a similar PointNet [48] as in
the 1%'-stage to regress a 4-dim RTM on the denser target
point cloud (without the temporal channel). The PointNet
includes a 4-layer per-point MLP with output sizes 64, 128,
256, 512, a point-wise max-pooling layer, and another MLP
with output sizes 512, 256, 4. We have batch normalization
and ReLU for every layer of the MLP except the last one.

Algorithm 2 Workflow of the 1°!-stage

Input: Segmented target points 75,5,1},5 and possible target
BBox B;_; at the previous frame.

Output: A relative target motion state ( including a RTM
M1, and 2D binary motion state logits), a refined target
BBox B;_; at the previous frame, and a coarse target BBox
B; at the current frame.

1: Use a PointNet to encode 7515,” to an embedding &.

2: Obtain an RTM with respect to B;_; by applying an
MLP to the embedding &.

3: Obtain the refined BBox B;_; at the previous frame by
transforming B;_; using the RTM predicted in step 2.

4: Obtain the motion state by applying another MLP to the
embedding £. The the motion state includes an RTM
M;_1; € R* and a 2D logit indicating whether the
target is dynamic or not.

5: If the target is dynamic, obtain the coarse B; by trans-
forming B:—1 using the RTM M;_; ;. Otherwise, set
Bt = Bt—l-

Detailed Workflow

The overall pipeline with the data flow of M2-Track is
presented in Fig. 12. The detailed description of the 1%'-stage
and 2"¢-stage are provided in Alg. 2 and Alg. 3, respectively.
4DOF RTM Transformation

We focus on the 4DOF RTM within two successive frames.
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Algorithm 3 Workflow of the 2"¢-stage

Input: Segmented target points 7’5,5_1725, the coarse target
BBox B; at the current frame and the motion state predicted
in the 1%'-stage. _
Output: A refined target BBox B; at the current frame.
1. Extract P;_; € RMi-1%3 and P, € RMX3 from ﬁt_u €
RMi—1+Mt)x4 according to the timestamp.
2: If the target is dynamic, transform 75t_1 to 75t_1 using
the RTM M;_; ;. Otherwise, simply set 75,5_1 = ﬁt_l.
3: Form a denser target point cloud Py € RIMe-1+Me)x3 by
merging 75t—1 and P;.
4: Transform P; to the canonical coordinate system defined
by Bt .
5. Apply a PointNet on the canonical P to regress a RTM.
6: Obtain the refined BBox B; by transforming B; using the
RTM predicted in step 5.

Given a 4D RTM (Axz, Ay, Az, Af), we can construct a
transformation matrix 7 € R**4 as follows:

cos (Af) —sin(Af) 0 Az

sin (Af) cos(Af) 0 Ay ©)
0 0 1 Az
0 0 0 1

We define the above process as a function 7 : R* — R4*4,
Point Transformation. Given any object point p = (z,y, 2)
in a BBox B = (4, Yb, 26, O, Wp, lp, hp), we can transform it
using an RTM = (Az, Ay, Az, Af) under the homogeneous
coordinates:

=T(B[: 4]) x T(RTM) x T (B[: 4])~* x (10)

— S
— ey

Here p = (&,9,%) denotes the transformed point. And
B[: 4] = (xp, b, 2b,0) is the 4DOF pose of the BBox B.
Note that we transform all scenes from different datasets
to the same right-handed coordinate system with the z-axis
pointing upward.

Box Transformation. For a BBox B = (z,y,z2,0,w,l,h),
we transform its center using Eqn. (10). The transformed
BBox is B = (Z,9,2,0 + AO,w,l, h), where (&,7,2) is the
transformed center, (0 + Af) is the transformed heading
angle, and w, [, h are the width, length and height of the
BBox which remain unchanged.

APPENDIX B
HYPER-PARAMETERS AND MODEL COMPLEXITY
B.0.1 Hyper-parameters

To showcase our method’s ability to achieve excellent results
with minimal tuning, we investigate the influence of hyper-
parameters on both fully-supervised and semi-supervised
training. All the experiments are conducted on KITTI cars.
And we only use 20% labels for the semi-supervised training
(i.e., breakpoint k = 2).

Fully-supervised training. Tab. 15 shows the results of
fully-supervised M?-Track under different hyper-parameter
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Fig. 11. Distributions of distractors for Cars (Vehicles) in KITTI, NuScenes, and Waymo Open Dataset. We enlarge each target BBox by 2 meters
and count the distractors inside. Objects with the same category as the target are regarded as distractors.
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Fig. 12. The pipeline of M?2-Track. The data flow is illustrated with black lines.

TABLE 15
Study of the hyper-parameters for fully-supervised M2-Track. All the
models are trained with improved motion augmentation. Our default
setting is given in the first row

Al A2 A3 A\ p | Success Precision
01 01 10 1.0 05 | 71.14 82.67
02 01 10 1.0 05 72.13 84.51
04 01 10 1.0 05 70.88 83.20
01 02 10 1.0 05 70.08 82.14
01 04 10 1.0 05 70.68 82.61
01 01 05 1.0 05 72.06 83.48
01 01 15 1.0 05 70.57 82.79
01 01 10 05 05 69.22 81.76
01 01 10 15 05 70.16 82.14
01 01 10 1.0 03 68.12 81.42
01 01 10 10 07 69.07 81.70

configurations. The A\, A2, A3, and A4 are the weights in
Eqn. (4) in the main paper. And p denotes the probability
used in the coin-flip test for the improved motion augmen-
tation.

Semi-supervised training. Tab. 16 displays the results
of semi-supervised M?2-Track with SEMIM under various

TABLE 16
Study of the hyper-parameters for semi-supervised M 2-Track with
SEMIM. All the models are trained with improved motion augmentation.
Our default setting is given in the first row.

A a o p Success  Precision
0.1 01 125 05 65.20 79.90
005 01 125 05 65.81 80.07
0.2 01 125 05 65.26 79.43
0.3 01 125 05 66.80 80.59
01 005 125 05 65.46 78.96
0.1 02 125 05 66.04 79.85
0.1 03 125 05 63.85 78.59
0.1 01 1.00 05 65.67 79.00
0.1 01 175 05 65.11 79.39
0.1 01 125 03 65.56 79.37
0.1 01 125 07 64.08 79.93

hyper-parameter configurations. A and « are the weights in
Eqn. (5) and Eqn. (8) in the main paper, respectively. And
v and p are the scale factor and the probability used in the
pseudo-label-based motion augmentation.

As demonstrated in Tab. 15 and Tab. 16, both M2-
Track and SEMIM exhibit insensitivity to hyper-parameters,
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Fig. 13. Visualization of the target segmentation and motion-assisted shape completion. Pictures in the same column are from the same case. The
completion results demonstrate that our model learns good enough relative target motions.

showcasing robust performance across different configura-
tions. Interestingly, our adopted settings do not necessarily
yield the best results in both fully-supervised and semi-
supervised settings. This observation suggests that there
is room for further improvement through extensive tuning
of the hyper-parameters. In summary, our methods show
promising capabilities even without extensive tuning, and
there is potential for further enhancements by exploring
more refined hyper-parameter configurations.

B.0.2 Model Complexity

In addition to achieving high performance, our method
also demonstrates remarkable efficiency. To compare our
approach’s complexity with other high-efficient trackers
P2B [6] and BAT [7], we conduct complexity evaluations
on a single Nvidia 3090 GPU.

For FLOPs, we leverage the torchprofile library to com-
pute the MACs of the models and then convert them
to FLOPs. To assess memory consumption, we train each
model with batch size = 64 and report its corresponding
GPU memory usage. In terms of speed, we conduct inde-
pendent evaluations on the inference speed of each model
with batch size = 1. Unlike BAT [7], which solely reports the
time of model forwarding, we additionally consider the pre-
and post-processing time during inference including the
time for calculating metrics. Specifically, we test each model
on full Pedestrian sequences (6088 frames) in KITTI test split
and calculate the FPS (frames per second) by dividing the
total time by the number of frames. We perform three runs
for each model and report the average FPS. However, it’s
worth noting that due to varying hardware specifications
(e.g., CPU, GPU, memory, storage, etc.), the reported speed
may differ across different platforms, particularly when
accounting for data processing time. Hence, the absolute
reported speed is provided for reference purposes only, and
one should interpret it with consideration of the relative
relations between different models.

As depicted in Tab. 17, our top-performing model M?2-
Track surpasses previous trackers in terms of FLOPs, speed,
and memory consumption. Notably, our proof-of-concept
model M-Vanilla achieves unparalleled efficiency in all as-
pects. Remarkably, M-Vanilla achieves comparable tracking
performance to M?2-Track while consuming over ~80%

TABLE 17
Efficiency Comparison. Train. Mem. stand for GPU memory
consumption during the training (batch size = 64)

Method FLOPs Params Size Speed Train. Mem.
M?2-Track (Ours) 5.07G 8.54MB 57.4 FPS 10037MB
M-Vanilla (Ours) 0.71G 2.56MB 75.9 FPS 3085MB

P2B [6] 8.51G 5.11MB 249 FPS  17331MB

BAT [7] 5.50G 5.64MB 43.6 FPS 14195MB

TABLE 18
FLOPs breakdown of M?2-Track.
Segmentation StageI StageIl = Total
3.64G 0.71G 0.71G 5.07G

fewer FLOPs and ~70% less memory. This substantial re-
duction in computational complexity highlights the effi-
ciency gains achieved by M-Vanilla. In Tab. 18, we present
a detailed breakdown of the FLOPs for M?2-Track. Notably,
the segmentation network accounts for approximately 70%
of the FLOPs in the full model, demonstrating that M-
Vanilla’s exceptional efficiency primarily stems from the
removal of the segmentation network.

APPENDIX C
MORE ANALYSIS

Distractor Statistics

We count the number of distractors in each object’s neigh-
borhood in the training set of KITTI [11], NuScenes [14], and
Waymo Open Dataset (WOD) [15] respectively. Specifically,
we enlarge each target BBox by 2 meters and count the
number of annotated BBoxs which not only intersect with
the enlarged area but also have the same category as the
target. Fig. 11 illustrates the distributions of distractors for
cars/vehicles. It shows that more than two-thirds (69%)
of the regions in KITTI are free of distractors. While in
NuScenes and WOD, distractors are very common, espe-
cially for WOD. Besides, though we only consider a pretty
small neighborhood around the target, some regions in
NuScenes and WOD have even more than two distractors.
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TABLE 19
Larger search area for NuScenes Cars.

Method |  Success Precision
BAT [7] (2m) 40.73 43.29
BAT [7] (5m) | 37.1413.59 39.92 | 3.37
P2B [6] (2m) 38.81 43.18
P2B [6] (5m) | 38.48 ] 0.33 42.15] 1.03

M?2-Track (2m) 55.85 65.09
M?2-Track (5m) | 58351 2.50 67.04711.95

We do the same analysis on the pedestrians in KITTI and
find that 68.3% of the regions has at least 1 distractor(s).
All of these observations, together with our main experi-
ment results, prove that M/ 2_Track is much more robust to
distractors than previous matching-based approaches.
Larger Search Area for NuScenes Cars

By default, we enlarge the (predicted) target BBox at previ-
ous frame by 2 meters and collect points inside to generate
the inputs. This strategy is also adopted in P2B [6] and
BAT [7] to generate their search areas. The 2 meters larger
area is sufficient for KITTI and WOD, where keyframes
are sampled at 10Hz. However, NuScenes only provides
keyframes at 2Hz. Thus, the target may move more than
2 meters even within two consecutive keyframes. For a fair
comparison, we only report our results with 2 meters in
the main manuscript. In Tab. 19, we re-evaluate our perfor-
mance on NuScenes Cars with 5 meters larger search area.
Note that using a larger area does not incur more computa-
tional costs because we keep the number of sampled points
unchanged. As shown in Tab. 19, we can further improve
the performance of M?-Track by using larger search areas.
However, due to the increase of distractors and sparsity,
larger search areas instead harm the performance of P2B
and BAT.

Limitations

Unlike appearance matching, our motion-centric model re-
quires a good variety of motion in the training data to
ensure its generalization on data sampled with different fre-
quencies. For instance, our model suffers from considerable
performance degradation if trained with 2Hz data but tested
with 10Hz data because the motion distribution of the 2Hz
and 10Hz data differs significantly. But fortunately, we can
aid this using a well-design motion augmentation strategy.

APPENDIX D
VISUALIZATION

Target Segmentation

Our model depends on the target segmentation to learn
the relative target motion (RTM). The first row in Fig. 13
shows our target segmentation results. We can see that most
segmented points are from the target objects, demonstrating
the effectiveness of spatial-temporal learning.
Motion-assisted Shape Completion

In the 2"¢-stage, we leverage the RTM M,_; ; to complete
the target point cloud at the current frame. As shown in the
second row in Fig. 13, our method correctly merges the point
clouds from two consecutive frames, using the predicted
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RTM. These results demonstrate that the RTMs are correctly
modeled by our method.

Advantageous Cases in Fully-supervised Setting

More qualitative comparison results are in Fig. 14 and
Fig. 15. We also provide animated results in the attached
video. We can observe that our M 2-Track consistently shows
its advantage when the scene is sparse, the relative target
motion is large, or distractors exist in the target’s neigh-
borhood. However, since our M2-Track only takes LiDAR
point clouds as input, it fails on extremely sparse scenarios
where the number of target points is almost zero (e.g.the
second row in Fig. 14). Actually, this is a common issue for
LiDAR-based SOT and could be probably solved by using
multi-modal data (e.g.. RGB images).

Advantageous Cases in Semi-supervised Setting

Fig. 16 and Fig. 17 show the visualization results for cars
and pedestrians in KITTI under the semi-supervised setting.
The visualization results confirm that SEMIM significantly
improves the performance of M2-Track when labels are
limited.
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KITTI

nuScenes

Waymo

Timeline

- Ground Truth - BAT - Ours

Fig. 14. Visualization results for Cars.
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Timeline

B 3« I Ows

- Ground Truth

Fig. 15. Visualization results for Pedestrians.

I (00% Labels

Ground
Truth

Fig. 16. Visualization for KITTI Cars under the semi-supervised setting.
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Pedestrian

w/o SEMIM - w/ SEMIM

B Crovnd . 100% Labeis [N B bl
0

Truth 7% Labels

Fig. 17. Visualization for KITTI Pedestrians under the semi-supervised setting.
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