
1

Progressive Learning of 3D Reconstruction
Network from 2D GAN Data

Aysegul Dundar, Jun Gao, Andrew Tao, Bryan Catanzaro

Abstract—This paper presents a method to reconstruct high-quality textured 3D models from single images. Current methods rely on
datasets with expensive annotations; multi-view images and their camera parameters. Our method relies on GAN generated multi-view
image datasets which have a negligible annotation cost. However, they are not strictly multi-view consistent and sometimes GANs
output distorted images. This results in degraded reconstruction qualities. In this work, to overcome these limitations of generated
datasets, we have two main contributions which lead us to achieve state-of-the-art results on challenging objects: 1) A robust
multi-stage learning scheme that gradually relies more on the models own predictions when calculating losses, 2) A novel adversarial
learning pipeline with online pseudo-ground truth generations to achieve fine details. Our work provides a bridge from 2D supervisions
of GAN models to 3D reconstruction models and removes the expensive annotation efforts. We show significant improvements over
previous methods whether they were trained on GAN generated multi-view images or on real images with expensive annotations.
Please visit our web-page for 3D visuals: https://research.nvidia.com/labs/adlr/progressive-3d-learning.

Index Terms—3D Texture Learning, 3D Reconstruction, Single-image Inference, Generative Adversarial Networks.

F

1 INTRODUCTION

GAN based models achieve realistic image synthesis on
various objects [19], [20], [55] and find applications in image
editing, conditional image generation [9], [27], [39], and
video generation [49] tasks. They are also found to be useful
for dataset generations with automatic part segmentation
annotations [44], [59]. There is further interest to deploy
this technology for gaming, robotics, architectural designs,
and AR/VR applications. However, such applications also
require contollability on the viewpoint requiring generation
in 3D representations. On the other hand, the realism of 3D
image generation and reconstruction results are not on par
with the GAN generated 2D images [2], [3], [10], [36], [53].
In this work, we are interested in closing this gap.

To reconstruct high quality 3D models, current state-
of-the-art (SOTA) methods rely on 3D annotations. Such
data is expensive to collect, requires special hardware and
is usually collected in constrained lab environments. Due
to the difficulty in collecting such annotations, efforts have
been limited to few objects such as faces [11] and human
bodies [23], [56]. A cheaper alternative is finely curated
multi-view datasets. They can be collected with a camera
without expensive hardware requirements. However, they
are still difficult to annotate for their camera parameters.
For that reason, synthetic images are used instead of real
images to train 3D reconstruction models [5], [6], [7], [53].
While these models learn to reconstruct synthetic objects,
they fall short in their ability to recover the 3D properties of
real images due to the domain gap between synthetic and
real images.

• A. Dundar, J. Gao, A. Tao, B. Catanzaro are with NVIDIA, CA, USA.
• A. Dundar is with Department of Computer Science, Bilkent University,

Ankara, Turkey
• J. Gao is with Department of Computer Science, University of Toronto,

Canada.

Single view image collections are also explored to learn
3D reconstruction models [2], [17]. However, with single
view images during trainings, models receive limited su-
pervision; only to the visible parts. Various constraints and
regularizers are proposed to obtain plausible results such
as losses which limit the deformation from mean template
[6], [17], rotation and swap consistency losses [2], [36] and
semantic consistency [24] constraints. Still results are not
realistic. Another way to use single view image collec-
tions to learn 3D reconstruction models is to train a GAN
model from them and generate multi-view datasets with the
trained GAN models [26], [58]. This approach becomes pos-
sible because recent generative models of images, especially
StyleGANs, are shown to learn an implicit 3D representation
with latent codes that can be manipulated to change the
viewpoint of a scene [19]. The latent codes of the StyleGAN
are controlled to generate consistent objects from different
view points. Few selected viewpoints are labeled for camera
parameters which only takes a minute to annotate and
unlimited number of samples can be generated [58] for those
viewpoints. However, one issue of these datasets is that they
are not perfect especially in presenting the realistic details
across views. This is because StyleGAN does not have strict
disentanglement of shape, texture, and camera parameters.
Therefore, one cannot change the camera parameters while
preserving the identity strictly. Another issue is the distorted
image generations, sometimes appear as missing parts in
objects (cf. Fig. 2).

In this work, our goal is to learn accurate 3D recon-
struction models from GAN generated multi-view images.
As our first contribution, we propose a framework that is
robust to the noise in the training data. We achieve this
with a multi-stage learning scheme that gradually relies
more on the models own predictions when calculating
losses. Secondly, we propose a novel adversarial learning
pipeline with online pseudo-ground truth generation to

ar
X

iv
:2

30
5.

11
10

2v
1

 [
cs

.C
V

]
 1

8
M

ay
 2

02
3

https://research.nvidia.com/labs/adlr/progressive-3d-learning

2

Fig. 1: Given a single 2D image input, our method outputs high quality textured 3D models. We achieve these results
by learning from StyleGAN generated datasets via a robust multi-stage training scheme and a novel adversarial learning
pipeline.

train a discriminator. With the discriminator, our model
learns to output fine details. Our model shows significant
improvements over previous methods whether they were
trained on GAN generated multi-view images or on real im-
ages with expensive data collections/annotations pipelines.
In summary, our main contributions are:
• A robust multi-stage learning scheme that relies more on

the model’s predictions at each step. Our model is not af-
fected by missing parts in the images and inconsistencies
across views.

• A novel adversarial learning pipeline to increase the re-
alism of textured 3D predictions. We generate pseudo-
ground truth during training and employ a multi-view
conditional discriminator for learning to generate fine
details.

• High-fidelity textured 3D model synthesis both quali-
tatively and quantitatively on three challenging objects.
Examples are shown in Fig. 1.

2 RELATED WORK

Style-based GAN models [19], [20] achieve high quality
synthesis of various objects which are quite indistinguish-
able from real image and are shown to learn an implicit
3D knowledge of objects without a supervision. One can
control the viewpoint of the synthesized object by its latent
codes. This makes pretrained GANs a promising technology
for controllable generation [1], [41], [48]. However, in these
models, the disentanglement of 3D shape and appearance
is not strict and therefore the appearance of objects change
as the viewpoint is manipulated. Recently, 3D-aware gener-
ative models are proposed with impressive results but they
either do not guarantee strict 3D consistency [4], [13], [37],
[38] or computationally expensive [3] and overall not on
par with 2D StyleGAN results [10]. We are interested in
single-view image inference so our work is more related
to image inversion methods that project images into these
3D-aware GAN’s latent space [22], [29], [52]. Even though
significant progress is achieved for image inversion [22],
[29], [52], these methods require run-time optimization and
suffer from lower quality novel view predictions.

There have been many works that learn textured 3D
mesh models from images with differentiable renderers [6],
[21], [28], [30], [43]. Deep neural networks are coupled with

the renderers and trained to predict 3D mesh representa-
tions and texture maps of input images via reconstruction
losses [6], [12], [15], [17], [24]. However, inferring these
3D attributes from single 2D images is inherently ill-posed
problem given that the invisible mesh and texture predic-
tions receive no gradients during training [6], [12], [15], [17],
[24]. These algorithms that learn from single-view images
output results that look unrealistic especially when viewed
from a different point.

Multi-view image datasets provide a solution for the
limited supervision problem of single-view image datasets.
However, due to the expensive annotation of multi-view im-
age datasets for their 2D keypoints or camera pose, they are
small in scale. There have been methods that use sequence of
images to optimize a mesh and texture model [8]. However,
they learn a new network for each sequence. Recently, these
sequence of image datasets have also been tremendously ex-
plored with a method called Neural Radiance Fields (Nerf)
to explore implicit geometry [31], [34], [50]. These models
overfit to a sequence and can not be used for single image
inference. PixelNerf [53] is an extension of these models that
achieves single image inference, however, as we show in our
experiments, the results are not good.

Another promising direction with Nerf-based models is
optimization of 3D representations with well-trained diffu-
sion models. These models can stylize meshes or generate
3D geometry representations from scratch with given text
prompts [25], [32], [33], [42]. However, these models re-
quire run time-optimization and control on the generation
is limited. In our work, we are interested in a different
application, single view image reconstruction where the
generation is conditioned on an input image.

In our work, we are interested in mesh representations
due its efficiency in rendering. To infer mesh representa-
tions, multi-view datasets are also shown to be beneficial
based on the experiments with synthetic datasets [5], [45],
[46]. However, those results do not translate well to real
image inferences because of the domain gap between syn-
thetic and real images. To generate a realistic multi-view
dataset with cheap labor cost, Zhang et. al. [58] use a gen-
erative adversarial network by controlling the latent codes
and generate coarsely consistent objects from different view
points. We also use these datasets but achieve significantly
better results than the state-of-the-art and Zhang et. al. [58]

3

st
yl
eg

an

Fast and cheap
multi-view data generation

With lots of noise

Ø Missing parts
Ø Inconsistencies across view

(b) Robust Multi-Stage Training

Other View Training

Same View Training

GAN Training

Rendered

Rendered GT

GT

ST
AG

E
I

ST
AG

E
II

ST
AG

E
III

Mesh
Prediction

Texture
Prediction

Generator

Input

(a) Fast Dataset Generation

Fig. 2: Overview of the dataset generation (a) and multi-stage training scheme of the reconstruction network (b). The
generator network takes input image and outputs mesh and texture predictions. In the first stage, the output is rendered
from another view than the input image and losses are calculated on this novel view. This way model is not effected by the
missing parts in the images and also the unrealistic segmentation maps resulted from these images. In the second stage,
additional reconstruction loss is added from the same view. The rendered and ground-truth images are masked based on
the silhouette predictions of the model. Lastly, to achieve sharp and realistic predictions, we add adversarial training on
the third stage. GAN training pipeline is given in Fig. 3.

thanks to the robust learning scheme (which also allows us
to remove regularizers that limit the deformations) and the
adversarial learning pipeline.

3 METHOD

In Section 3.1, we describe the motivation of our approach.
The multi-stage training scheme and adversarial learning
pipeline are presented in Section 3.2 and 3.3, respectively.

3.1 Motivation
Differentiable rendering enable training neural networks to
perform 3D inference such as predicting 3D mesh geometry
and textures from images [6]. However, they require multi-
view images, camera parameters, and object silhouettes to
achieve high performance models. Such data is expensive to
obtain. StyleGAN generated datasets remove the expensive
labeling effort via the latent codes that control the camera
viewpoints. When few viewpoints are selected and anno-
tated, multi-view images can be generated in infinite num-
bers for those viewpoints. The annotations require 1 minute
[58] no matter how many images are generated because
they are all aligned across different examples. As for the
segmentation masks the renderers utilize during training,
they can be obtained by off-the-shelf instance segmentation
models [14]. However, learning a high performing model
from these datasets remains a challenge since generated
images suffer from precise multi-view consistency as shown
in Fig. 2 by red rectangles. Additionally, some examples
have missing parts as shown in Fig. 2 by blue rectangles,
the head of the horse is not generated in good quality which
also transfers to instance segmentation mask (fourth-row).
In this work, we address these challenges by proposing
a robust multi-stage training pipeline and an adversarial
learning set-up.

3.2 Multi-stage Training Pipeline

We train the generator that outputs mesh and texture pre-
dictions with multi-stage training pipeline to be robust to
the errors in annotations and multi-view inconsistencies. At
each stage of our pipeline, results improve progressively.

First Stage. In the first stage, our model outputs 3D mesh
and texture predictions from an input image that is from
camera view-1, Igv1. We render the image from these 3D
predictions with the target view, view-2, and output the im-
age Irv2. We calculate the losses on these novel predictions.
The target view is randomly selected among the sequence.
The motivation of the first stage is to capture reliable 3D
mesh predictions and reasonable texture estimations. At this
stage, we do not expect a high quality texture estimation
given the inconsistencies across views. Our experiments
show that when the network is guided with the losses from
the same view as input (Irv1 vs. Igv1), the errors in missing
parts and so the errors in segmentation mask annotations
propagate to the mesh predictions. This instabilizes the
training even when the model is trained with multi-view
consistency, e.g. objectives calculated from both Irv1 and Irv2.
Therefore, in the first stage, we learn to reconstruct an object
from the image of the object from a different view. This
way model does not overfit to the errors of the given view
since it receives feedback from a novel view. Note that novel
view may and does also have errors but since a novel view
is randomly sampled from a sequence and errors are not
consistent among the views, the model outputs the most
plausible 3D model to minimize losses in a sense similar to
majority voting.

The training losses at this stage is calculated as fol-
lows. We use perceptual image reconstruction loss between
the ground-truth image of the target view (Igv2) and the
rendered image view (Irv2). We mask the images with

4

x

Fa
ke

 P
ai

r
R

ea
l P

ai
r

View 2 Projection

Camera-1
Input

Inner
Product

+

View 1 Projection

Camera-2
Input

Generator

Camera-1
Input

64
stride 2

128
stride 2

256
stride 2

512
stride 2

1
stride 1

64
stride 2 + dow

n

128
stride 2 + dow

n

256
stride 2

256
stride 2

256
stride 2

512
stride 2

Fig. 3: Gan training pipeline. Discriminator is trained with fake and real pairs and a conditioning pair. First, texture and
mesh predictions are outputted by the generator. With the estimated mesh and given camera parameters of a second view
image, texture and visibility maps are projected from the second view image. For fake pair, estimated texture is partially
erased by the visibility map. Additionally, conditioning input pair is obtained by projecting from the first view image with
the estimated mesh predictions and given camera parameters of the first view.

ground-truth silhouette (mask) predictions, Sgv2. This way
reconstruction loss is only calculated on the object. As a
reconstruction loss, we use perceptual losses from Alexnet
(Φ) at different feature layers (j) between these images from
the loss objective as given in Eq. 1.

Lp−nv = ||Φj(I
g
v2 ∗ S

g
v2)− Φj(I

r
v2 ∗ Sg

v2)||2 (1)

For shapes, we use an IoU loss between the silhouette
rendered (Srv2) and the silhouette (Sgv2) of the input object.

Lsil = 1− ||Sg
v2 � Sr

v2||1
||Sg

v2 + Sr
v2 − Sg

v2 � Sr
v2||

(2)

Similar to [6], [28], we also regularize predicted mesh
using a laplacian loss (Llap) constraining neighboring mesh
triangles to have similar normals. Following are our base
losses:

Lfirst = λpnLp−nv + λsLsil + λlapLlap (3)

The model outputs reliable 3D mesh predictions since
it gets feedback from different views. Note that, we do not
use many regularizes such as mean template and penalizing
deformation vertices as previous works [2], [6], [58] and still
achieve a stable training with the first stage objectives.

Second Stage. In the second stage, we rely on our 3D
mesh predictions and introduce additional losses between
Irv1 vs. Igv1, same view as the input image. In 3D inference
predictions, we expect the model to output predictions that
faithfully match with object for the input view. Therefore,
in the second stage, we add additional reconstruction losses
from the input view. However, we do not add silhouette
loss for the input view because there are noise in the seg-
mentation masks. Furthermore, for the reconstruction loss,
we do not mask the input image and rendered output with
the ground-truth mask since it is noisy. We rely on the 3D
prediction of our model and mask the reconstruction loss
based on the projected mesh prediction.

The rendered and ground-truth images are masked
based on the silhouette predictions of the model and per-
ceptual loss is calculated as given in Eq. 4. This way, we
rely on the first stage training for the mesh prediction and
learn improved textures with the same view training for
the visible parts. Mesh predictions can still improve via the
reconstruction losses since they still receive a feedback via
image reconstruction, but we do not guide it directly with
the silhouettes.

Lp−sv = ||Φj(I
g
v1 ∗ S

r
v1)− Φj(I

r
v1 ∗ Sr

v1)|| (4)

We use the following loss in additional iterations:

Lsecond = Lfirst + λpsLp−sv (5)

The second stage training starts after first stage training
converges. That is because we rely on the models mesh
predictions in the newly introduces losses. Results improve
significantly but the results are not sharp as the training
data.

Third Stage. After learning reliable mesh representation
and high quality texture predictions, we use generative
learning pipeline to improve realism of our predictions. In
this stage, we rely on our predictions to generate pseudo
ground-truths to enable adversarial learning which is ex-
plained in the next section.

3.3 Adversarial Learning
Training the model with an adversarial loss applied on the
rendered images do not improve the results due to the
shortcomings of renderers [40]. Therefore, we convert tex-
ture learning into 2D image synthesis task. Texture learning
in UV space is previously explored with successful results
[8], [11], [40]. However, our set-up is different as we learn
a single view image inference, the texture projection and

5

pseudo ground-truth generations are online in our training,
we do not learn a GAN trained from scratch for texture
generation rather we tune our 3D reconstruction network,
and we propose a multi-view training in our discriminator.
While previous methods use different networks for texture
projection and texture generation, we achieve both with the
same architecture. This enables us to improve the generator
further and achieve state-of-the-art results.

As shown in Fig. 3, during our training, we obtain
projected texture maps for the input view (v1) and a dif-
ferent view (v2). We obtain those by first predicting 3D
meshes from an input view (v1) via our generator. The input
images are projected onto the UV map of the predicted mesh
template based on the camera parameters of each image
via an inverse rendering. In this process, mesh predictions
are transformed onto 2D screen by projection with camera
parameters. Then transformed mesh coordinates and UV
map coordinates are used in reverse way and real images are
projected onto UV map with the renderer. Visibility masks
are also obtained in this set-up. With this set-up, we obtain
a real partial texture (from v2) and a conditioning texture
map (from v1) to train our discriminator. In this set-up, it
is important for the mesh predictions to be accurate for the
correct inverse rendering. That is way we leave the GAN
training to the third stage.

Discriminator. Finally, to provide adversarial feedback,
we train a conditional discriminator. The discriminator is
conditioned on the partial texture view 1. Partial texture
view 2 is a real example and the generated texture is a
fake one. For the fake example, we mask the generated
texture with the visibility mask from real example to prevent
distribution mismatch.

In traditional image-to-image translation algorithms
conditional input and target images are concatenated and
fed to the discriminators. However, in our case, the im-
ages are partially missing and aligning them in input via
concatenation do not provide useful signals. Instead, we
use a projection based discriminator [35] where we process
the conditioned input via convolutional layers and global
pooling until the spatial dimension decreases to 1×1. Again
the reason to decrease the dimension is because the input is
partially missing, therefore we want a full receptive field of
the input image while conditioning on the patches.

We dot product the conditional input that is embedded
and the discriminator outputs. This score is added to the
final discriminator score. With the multi-view conditioning,
the discriminator does not only consider if the patch is
realistic but also if the predicted texture is consistent with its
input pair. The GAN training is especially important in our
set-up since we do not have consistent multi-view images.
The overall objective for the third stage includes following
min-max optimization:

min
θg

max
θd
Lsecond + λadvLadv(θg, θd) (6)

where θd and θg refer to parameters of the discriminator and
the generator, respectively.

4 EXPERIMENTS

Datasets. First to generate datasets, we use three category-
specific StyleGAN models, one representing a rigid object

class, and two representing articulated class. For car and
horse dataset, official models from StyleGAN2 ([19]) repos-
itory are used. These models are trained on LSUN Car
dataset with 5.7M images and LSUN horse dataset with 2M
images [54]. We also use a model trained on a bird class
on NABirds dataset [47] with 48k images. The StyleGAN
generated images are aligned for few view-points and those
views are annotated for one example which takes 1 minutes
in total. Please refer to Zhang et. al. [58] for more details in
the dataset generation pipeline.
Architectural Details of Generator. Our generator has
an encoder-decoder architecture as shown in Fig. 4. In the
encoder, for predicting deformation and texture maps, the
encoder receives 512 × 512 image. It has 7 convolutional
blocks with each convolution layer with 3 × 3 filters and
stride of 2. The number of channels of the convolution layers
are (64, 128, 256, 256, 256, 128, 128). There is a ReLU non-
linearity after each convolution layer. The encoder decreases
the spatial size to 4 × 4.The encoded features (128 × 4 × 4)
go through a fully connected layer and after reshaping, we
output features with dimension of 512 × 8 × 4. Note that,
we start with width of 8 and height of 4. While generating
texture and mesh predictions, we only predict half of the
maps in the height since they are expected to be mostly
symmetric in y axis. Later, we flip the predictions and
concatenate with itself to expand the height.

The texture and mesh predictions go through two shared
blocks of convolutional layers at first. In the decoder, each
block has two convolutional layers. There is an adaptive
normalization and leaky ReLU after each convolutional
layer. There is also a skip connection from input to the
output at each block. After each block, there is a bilinear
interpolation layer to upsample the feature maps at each
layer. The first two blocks has channels of (512, 256) which
bring the feature maps to a spatial dimension of 32 × 16.
After that mesh prediction branches out and there is an-
other block with channel size of 64 for the mesh prediction
branch. After that there is a single convolutional layer with
channel of 3. The output represents the deformations (x,y,z)
coordinates.

For texture prediction, there are 4 more convolution
blocks with channels size of (256, 256, 128, 128). After these
layers, the spatial resolution becomes 512×256. A reflection
symmetry is applied as we flip the texture predictions in y
axis and concatenate it with the original texture predictions.
This results in spatial resolution of 512 × 512. After that
there is one more convolution block with channel size of 64
and a final convolution layer which decreases the number of
channels to 3. They represent (R,G,B) channels of the texture
prediction. The convolutional layers after symmetry relaxes
the symmetry constrains as we do not expect a perfect
symmetry in the texture.

Note that the mesh predictions are also estimated in
a convolutional way as a UV deformation map [2], [8],
[40]. Our deformation is a representation on the function
of sphere directly with a fixed surface topology. We sample
from the deformation map for the corresponding vertex
locations. We also apply symmetry on the predicted UV de-
formation. We use DIB-R [6] as our differentiable renderer.
The renderer takes mesh and texture predictions and output
images for target camera parameters.

6

FC

512
Up 2
256
Up 2
256
Up 2
256
Up 2
128
Up 2
128
Up 2

64

2D
Deformation

Map

Concat
FC

z

Texture
Prediction

Encoder

Sampling

Decoder

64 stride2

128 stride2

256 stride2

256 stride2

256 stride2

128 stride2

128 stride2

64

3

Fig. 4: Encoder-decoder based generator architecturet that
takes the input image and sampled z to output texture
and 2D deformation map predictions. Each block represent
a convolution layer with channel size. The encoder and
decoder are connected with fully connected layers.

We additionally sample a latent vector from normal
distribution to provide a diversity in our predictions. The
sampled latent vector is concatenated with the encoded
features via a linear layer. The output is fed to the adaptive
normalization layers in convolutional blocks.
Architectural Details of Discriminator. As for the ar-
chitecture of the discriminator, we use a projection based
discriminator [35]. The discriminator takes the generated
and real 3 × 512 × 512 texture maps, and the pseudo
ground-truth visibility mask as shown in Fig. 5. Generated
textures are also multiplied with the masks to prevent
a mismatch between the real-fake data distributions. We
concatenate the input with learnable positional embeddings
on both scales which is omitted from the figure [8]. The
discriminator adopts a multi-scale architecture with two
scales one operates on 32×32 patches, the other 16×16. We
also have a conditioning pathway shown as an embedding

Fa
ke

 P
ai

r
R

ea
l P

ai
r

Inner
Product

+

64
stride 2

128
stride 2

256
stride 2

512
stride 2

1
stride 1

64
stride 2 + dow

n

128
stride 2 + dow

n

256
stride 2

256
stride 2

256
stride 2

512
stride 2

Embedding

Discriminator

Fig. 5: Discriminator architecture. To provide adversarial
feedback, we train a projection based conditional discrim-
inator.

network. The embedding network process the conditioned
input via convolutional layers and global pooling until the
spatial dimension decreases to 1 × 1. We dot product the
conditional input that is embedded to 1 × 1 resolution
and the discriminator outputs. This score is added to the
final discriminator score. This happens for both scales of
discriminators.
Training parameters We train our model on 8 GPUs with
batch size of 4 per GPU, for 100 epochs in total with learning
rate of 1−4. In our loss functions, we use λlap = 0.5, λp−sv =
1, λp−nv = 1, λadv = 1. The discriminators learning rate is
set to 10−4. We use Adam optimizer for updating both the
3d inference model and discriminator.
Evaluation. We report various metrics on validation
datasets. Since we have multi-view data, we report the
scores for both same view and novel view. Same view results
are obtained by rendering the predictions from the same
view given as the input whereas for novel view, we render
the predictions from a different camera view than the input.
Same view looks at the fidelity to the given input whereas
novel view measures if the model estimates the invisible
texture and geometry which is a more difficult task. For both
views, we report Frechet Inception Distance (FID) metric
[16] which looks at the realism by comparing the target dis-
tribution and rendered images, Learned Perceptual Image
Patch Similarity (LPIPS) [57] which compares the target and
rendered output pairs at the feature level of a pretrained
deep network, Structural Similarity Index Measure (SSIM)
and Mean Squared Error (MSE) which compare the pairs in
pixel-level similarity. We also report the intersection-over-
union (IoU) between the target silhouette and projected
silhouette of the predicted geometry.
Results. We provide quantitative results in Table 1. We
provide comparisons with GanVerse [58] which is trained
on the same data as ours. We observe quantitative im-
provements at each stage for all three classes as given in
Table 1 as well as large improvements over GanVerse model
especially on FID metrics which measure the quality of
generations. We qualitatively compare with other methods,

7

Input Ours Unicorn
ECCV 22

Pixelnerf
CVPR 21

Dib-r
NeurIPS 20

GanVerse
ICLR 21

Fig. 6: Given input images (1st column), we predict 3D shape, texture, and render them into the same viewpoint and
novel view points for our model. We also show renderings of state-of-the-art models that are trained on real and synthetic
images. Since, models use different camera parameters, we did not align the results. However, the results shown from
similar viewpoints capture the behaviour of each model. Unicorn outputs similar 3D shape for different inputs. Pixelnerf
achieves a high quality same view results but the results are poor from novel views. Dib-r also suffers from the same issue.
Ganverse does not output realistic details. Our model achieves significantly better results than the previous works while
being trained on a synthetic (StyleGAN generated) dataset.

8

TABLE 1: We report results for same view (input and target have the same view) and novel view (input and target have
different view). We provide FID scores, LPIPS, MSE, SSIM, and 2D mIOU accuracy predictions and GT. We compare with
GanVerse since they are trained on the same dataset. We also provide results of each stage showcasing improvements of
progressive training.

Same View Novel View
Method FID⇓ LPIPS⇓ MSE⇓ SSIM⇑ IoU⇑ FID⇓ LPIPS ⇓ MSE⇓ SSIM⇑ IoU⇑

C
ar

GanVerse [58] 28.04 0.1238 0.0060 0.8683 0.92 29.59 0.1333 0.0075 0.8599 0.93
Ours - Stage I 10.75 0.1011 0.0060 0.8695 0.94 11.98 0.1091 0.0074 0.8582 0.92
Ours -Stage II 6.24 0.0737 0.0039 0.9027 0.94 9.05 0.1012 0.0072 0.8651 0.93
Ours - Stage III 4.56 0.0696 0.0040 0.9039 0.94 6.92 0.0965 0.0076 0.8632 0.93

Bi
rd

GanVerse [58] 69.32 0.0742 0.0034 0.9230 0.82 63.89 0.0782 0.0037 0.9202 0.80
Ours - Stage I 69.58 0.0763 0.0035 0.9222 0.82 63.76 0.0764 0.0036 0.9222 0.81
Ours -Stage II 64.67 0.0720 0.0030 0.9258 0.82 60.97 0.0749 0.0036 0.9226 0.81
Ours - Stage III 61.21 0.0689 0.0030 0.9231 0.83 59.08 0.0712 0.0035 0.9201 0.82

H
or

se

GanVerse [58] 62.38 0.1272 0.0060 0.8852 0.78 83.82 0.1531 0.0100 0.8642 0.77
Ours - Stage I 83.66 0.1395 0.0088 0.8727 0.78 76.64 0.1442 0.0100 0.8669 0.78
Ours - Stage II 57.07 0.1037 0.0059 0.8971 0.79 67.77 0.1368 0.0101 0.8676 0.78
Ours - Stage III 56.83 0.1024 0.0055 0.9017 0.79 67.30 0.1367 0.0099 0.8684 0.78

Fig. 7: Qualitative results of our final model on Bird and Horse class. Given input images (1st row), we predict 3D shape,
texture, and render them into the same view point and novel view points.

since they all use different camera set-ups, it is not possible
to do an accurate quantitative comparison. However, on our
qualitative result comparisons (Fig. 6), it is clear that our
results achieve significantly better results.

In our qualitative comparisons, we compare with Uni-
corn [36] which learns 3D inference model in an unsuper-
vised way on Pascal3D+ Car dataset [51]. The model only
uses the bounding box annotation and is trained on 5000
training images. As can be seen from Fig. 6, impressive
results are achieved given that the model is learned in an un-
supervised way. On the other hand, the results lack details
and diversity in the shapes. It is significantly worse than
ours. Second, we compare with Pixelnerf [53] which pre-
dicts a continuous neural scene representation conditioned
on a single view image. While neural radiance fields [34]
optimizes the representation to every scene independently,
Pixelnerf trains across multiple scenes to learn a scene
prior and is able to perform novel view synthesis given an
input image. Pixelnerf is trained on a synthethic dataset,
ShapeNet dataset [5]. It is also showcased on real image
reconstruction for car classes. In our results, Pixelnerf is very
good at predicting the same view but not as successful on
the novel view predictions. Next, we compare with Dib-
r model [6] which is trained on Pascal3D+ Car dataset
with ground-truth silhouette and camera parameters. Dib-r
outputs reasonable results on the same-view predictions of

Fig. 8: 3D model predictions of our model.

the input image. However, their texture and meshes do not
generalize across views and results in unrealistic predictions
from novel views even though the model is trained with
expensive annotations.

Last, we compare with GanVerse model which is trained
on the same StyleGAN generated dataset as our method. As
shown in Table 1, the quantitative results of GanVerse are
even worse than our single-stage results. GanVerse model
is trained with same view and other view reconstructions
simultaneously. One difference is that, GanVerse model
learns a mean shape and additional deformation vertices

9

iterations

FI
D

First Stage
Second Stage
Third Stage

Fig. 9: Validation FID curve on Car class with respect to
number of iterations. As shown, the improvements are not
coming from longer iterations but from the progressive
training.

for each image. The additional deformation is penalized
for each image for stable training. Since, we rely on other
view training for mesh prediction, we do not put such
constrain on the vertices. Their architecture is based on
a U-Net and they do not employ a GAN training. Their
results lack details and do not look as realistic compared
to our model. Note that StyleGAN generated dataset also
removes the expensive labeling effort and models that train
on this dataset have the same motivation with the models
that learn without annotations such as Unicorn. Generat-
ing StyleGAN dataset with annotations requires 1 minute,
whereas Pascal3D+ dataset requires 200h 350h work time for
the annotations [58]. Therefore, our comparisons provided
in Fig. 6 cover models learned from a broad range of dataset
set-ups with different levels of annotation efforts. It includes
unsupervised training data (Unicorn with Pascal3D+ im-
ages), StyleGAN generated data which adds a minute longer
annotation effort (our method), a much more expensive data
with real images and with key-point annotations (Dib-r on
labeled Pascal3D+ images), and a synthetic data (Pixelnerf
with ShapeNet dataset) with perfect annotations.

Lastly, we show the final results of our method on bird
and horse classes in Fig. 7. 3D models of these categories
without textures are also shown in Fig. 8. Our method
achieves realistic 3D predictions for these classes as well
even though StyleGAN generated datasets have inconsis-
tencies across views.

Ablation Study. First, we analyze the role of each stage
in our training pipeline. As given in Table 1, additional
training at each stage improves metrics consistently, espe-
cially FIDs and LPIPS, the metrics that are shown to closely
correlate with human perception. In Fig. 9, we provide the
training curves of each stage. As can be seen from figure,
the improvements are not coming from longer trainings
but from the progressive learning. We provide qualitative
comparisons of each stage’s output renderings in Fig. 10.
First stage rendering outputs results with a reliable geom-
etry. However, the texture is not realistic, especially tires
have duplicated features which is understandable given
that the model is minimizing the reconstruction loss from

First Stage Second Stage Third Stage

Fig. 10: Qualitative results of our models from first, second,
and third stage trainings on Car class. At each stage, results
improve significantly. For example, zooming into tires in
the first stage, we see duplicated features. The second stage
solves that problem mostly but results are not as sharp as
the third stage results.

inconsistent multi-view images. In the second-stage, texture
improves significantly over first-stage. Finally, with GAN
training in the last stage, the colors look more realistic,
sharp, and fine-details are generated.

We provide additional ablation study in Table 2 con-
ducted on Car dataset. We also provide our each stage scores
in the first block to compare the results easily. In the second
block, we first experiment with no multi-stage training (No
Multi-Stage). This set-up refers to training the model from
scratch with the final proposed loss function. This training
results in poor results in all metrics and even worse than our
first-stage training results. Especially, adversarial training
makes the training less stable when the model did not yet
learn reliable predictions. It shows the importance of our
multi-stage training pipeline.

Next, we train with Same-view training objectives. This
set-up is used when multi-view images are not available and
models have to be trained on single-view images. We use a
similar perceptual objective to Eq. 4 but with the ground-
truth silhouettes as given in Eq. 7. We also add the silhouette
loss from the same view to guide the geometry predictions.
Here the input and target images share the same camera
parameters.

Lp−sv−sil = ||Φj(I
g
v1 ∗ S

g
v1)− Φj(I

r
v1 ∗ Sg

v1)|| (7)

Lsil−sv = 1− ||Sg
v1 � Sr

v1||1
||Sg

v1 + Sr
v1 − Sg

v1 � Sr
v1||

(8)

Lsv = λpnLp−sv−sil + λsLsil−sv + λlapLlap (9)

The same-view training (model trained with objective
from Eq. 9) results are given in Table 2. With this set-
up, same view results look good quantitatively because the
network learns to reconstruct the input view. Especially IoU
of the same view is better than the other set-ups because the

10

TABLE 2: Ablation study showing results without multi-stage pipeline, without multi-view discriminator, and without the
gaussian sampling in the generator on Car dataset. Results are given for same and novel views and contains scores, LPIPS,
MSE, SSIM, and 2D mIOU accuracy predictions and GT.

Same View Novel View
Method FID ⇓ LPIPS ⇓ MSE ⇓ SSIM ⇑ IoU ⇑ FID ⇓ LPIPS ⇓ MSE ⇓ SSIM⇑ IoU ⇑
Ours - Stage I 10.75 0.1011 0.0060 0.8695 0.94 11.98 0.1091 0.0074 0.8582 0.92
Ours -Stage II 6.24 0.0737 0.0039 0.9027 0.94 9.05 0.1012 0.0072 0.8651 0.93
Ours - Stage III 4.56 0.0696 0.0040 0.9039 0.94 6.92 0.0965 0.0076 0.8632 0.93
No Multi-Stage 66.59 0.1424 0.0118 0.8276 0.91 66.71 0.1485 0.0136 0.8200 0.90
Same-View Training 4.88 0.0759 0.0037 0.9034 0.96 42.24 0.1256 0.0105 0.8469 0.88
Multi-View Training 6.60 0.0741 0.0039 0.9026 0.94 10.00 0.1017 0.0071 0.8657 0.94
No Multi-View disc. 4.65 0.0702 0.0039 0.9042 0.94 7.02 0.0965 0.0076 0.8633 0.93
No Gaussian samp. 4.67 0.0696 0.0039 0.9043 0.94 7.05 0.0986 0.0075 0.8625 0.93

model learns the missing parts of input images and their
corresponding silhouettes and make similar predictions on
the validation dataset that match the ground-truth. On the
other hand, IoU of novel view score is the worst among all
set-ups. Models trained with single-view objectives struggle
generating realistic novel views as can be seen in FIDs, 42.24
novel view FID versus 4.88 same view FID.

We also experiment with multi-view training set-up.
This refers to training the model from scratch with the
second stage objective. We compare those results with our
second-stage training results. We see that better results are
achieved with the progressive learning.

In the last block, we run experiments where we train
a discriminator without the multi-view conditioning. For
this experiment, we only update the stage three training.
The discriminator only has the main pipeline without the
projection based other view conditioning. This also results
in worse results than our proposed multi-view conditional
discriminator, especially in FIDs. Since the multi-view con-
ditional discriminator receives guidance from a given view,
it propagates better signals to the generator.

We also experiment the setting which does not have
the sampling from normal distribution. This change con-
verts the setting to a deterministic model. We observe that
sampling provides with a slight diversity in the colors
and improves the metrics slightly so we decide to keep it.
The diversity results are given in Fig. 11. The model does
not achieve visible diversity, however, when we take the
difference of two images, they are slightly different. The
improvements are not significant but consistent across all
metrics.

5 CONCLUSION

In this work, we present a method to reconstruct high-
quality textured 3D models from single images. Our method
learns from GAN generated images and bypasses the re-
liance on labeled multi-view datasets or expensive 3D scans.
GAN generated dataset is labeled in mass and requires
a total of 1 minute human-labor. Because GAN generated
dataset is noisy and not strictly consistent across views, we
propose a novel multi-stage training pipeline and adver-
sarial training set-up. We achieve significant improvements
over previous methods whether they were trained on GAN
generated images or on real images.

Limitations. First limitation of our work is that we
deform our final meshes from a sphere and cannot handle
objects with holes similar to previous works that build their

Sample 1 Sample 2 Difference Map

Sample 1 Sample 3 Difference Map

Sample 2 Sample 3 Difference Map

Fig. 11: Texture predictions with different sampled codes
and with same input image. The model does not achieve
visible diversity. However, when we take the difference of
two images, they are slightly different.

work on mesh representations obtained by deforming from
spheres [17], [40], [58]. Another limitation we observe is
the different 3D model qualities we obtain across different
categories. Specifically, our generated 3D models are better
quality for the car class than the bird class. We also ob-
serve the same on the StyleGAN image generations results
between car and bird classes. One reason for that is that
StyleGAN model is trained on 5.7M car images whereas
for bird category it is only trained on 48k bird images.
We acknowledge that the performance of our model is
correlated with the performance of the StyleGAN model
it learns from. Even though, our model does not need
annotated images, StyleGAN model requires a large amount
of unlabeled data. Learning GAN models on limited data is
an important future direction for this work [18].

REFERENCES

[1] Y. Alaluf, O. Tov, R. Mokady, R. Gal, and A. Bermano. Hyperstyle:
Stylegan inversion with hypernetworks for real image editing.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18511–18521, 2022. 2

11

[2] A. Bhattad, A. Dundar, G. Liu, A. Tao, and B. Catanzaro. View
generalization for single image textured 3d models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 6081–6090, June 2021. 1, 4, 5

[3] E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. De Mello,
O. Gallo, L. J. Guibas, J. Tremblay, S. Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16123–16133, 2022. 1, 2

[4] E. R. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein.
pi-gan: Periodic implicit generative adversarial networks for 3d-
aware image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5799–5809, 2021.
2

[5] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 1, 2, 8

[6] W. Chen, H. Ling, J. Gao, E. Smith, J. Lehtinen, A. Jacobson, and
S. Fidler. Learning to predict 3d objects with an interpolation-
based differentiable renderer. In Advances in Neural Information
Processing Systems, pages 9609–9619, 2019. 1, 2, 3, 4, 5, 8

[7] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object
reconstruction. In European conference on computer vision, pages
628–644. Springer, 2016. 1

[8] A. Dundar, J. Gao, A. Tao, and B. Catanzaro. Fine detailed texture
learning for 3d meshes with generative models. arXiv preprint
arXiv:2203.09362, 2022. 2, 4, 5, 6

[9] A. Dundar, K. Sapra, G. Liu, A. Tao, and B. Catanzaro. Panoptic-
based image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8070–8079, 2020.
1

[10] J. Gao, T. Shen, Z. Wang, W. Chen, K. Yin, D. Li, O. Litany,
Z. Gojcic, and S. Fidler. Get3d: A generative model of high
quality 3d textured shapes learned from images. arXiv preprint
arXiv:2209.11163, 2022. 1, 2

[11] B. Gecer, S. Ploumpis, I. Kotsia, and S. Zafeiriou. Ganfit: Gener-
ative adversarial network fitting for high fidelity 3d face recon-
struction. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1155–1164, 2019. 1, 4

[12] S. Goel, A. Kanazawa, and J. Malik. Shape and viewpoint without
keypoints. arXiv preprint arXiv:2007.10982, 2020. 2

[13] J. Gu, L. Liu, P. Wang, and C. Theobalt. Stylenerf: A style-based 3d-
aware generator for high-resolution image synthesis. arXiv preprint
arXiv:2110.08985, 2021. 2

[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In
Proceedings of the IEEE international conference on computer vision,
pages 2961–2969, 2017. 3

[15] P. Henderson, V. Tsiminaki, and C. H. Lampert. Leveraging 2d
data to learn textured 3d mesh generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7498–7507, 2020. 2

[16] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter. Gans trained by a two time-scale update rule converge to a
local nash equilibrium. Advances in neural information processing
systems, 30, 2017. 6

[17] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learning
category-specific mesh reconstruction from image collections. In
Proceedings of the European Conference on Computer Vision (ECCV),
pages 371–386, 2018. 1, 2, 10

[18] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and
T. Aila. Training generative adversarial networks with limited
data. Advances in neural information processing systems, 33:12104–
12114, 2020. 10

[19] T. Karras, S. Laine, and T. Aila. A style-based generator architec-
ture for generative adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4401–
4410, 2019. 1, 2, 5

[20] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila.
Analyzing and improving the image quality of stylegan. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8110–8119, 2020. 1, 2

[21] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3907–3916, 2018. 2

[22] J. Ko, K. Cho, D. Choi, K. Ryoo, and S. Kim. 3d gan inversion with
pose optimization. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 2967–2976, 2023. 2

[23] A. Lattas, S. Moschoglou, B. Gecer, S. Ploumpis, V. Triantafyllou,

A. Ghosh, and S. Zafeiriou. Avatarme: Realistically renderable 3d
facial reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 760–769, 2020. 1

[24] X. Li, S. Liu, K. Kim, S. De Mello, V. Jampani, M.-H. Yang,
and J. Kautz. Self-supervised single-view 3d reconstruction via
semantic consistency. arXiv preprint arXiv:2003.06473, 2020. 1, 2

[25] C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang,
K. Kreis, S. Fidler, M.-Y. Liu, and T.-Y. Lin. Magic3d:
High-resolution text-to-3d content creation. arXiv preprint
arXiv:2211.10440, 2022. 2

[26] F. Liu and X. Liu. 2d gans meet unsupervised single-view 3d
reconstruction. arXiv preprint arXiv:2207.10183, 2022. 1

[27] G. Liu, A. Dundar, K. J. Shih, T.-C. Wang, F. A. Reda, K. Sapra,
Z. Yu, X. Yang, A. Tao, and B. Catanzaro. Partial convolution for
padding, inpainting, and image synthesis. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022. 1

[28] S. Liu, T. Li, W. Chen, and H. Li. Soft rasterizer: A differentiable
renderer for image-based 3d reasoning. In Proceedings of the IEEE
International Conference on Computer Vision, pages 7708–7717, 2019.
2, 4

[29] Y. Liu, Z. Shu, Y. Li, Z. Lin, R. Zhang, and S. Kung. 3d-fm gan:
Towards 3d-controllable face manipulation. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XV, pages 107–125. Springer, 2022. 2

[30] M. M. Loper and M. J. Black. Opendr: An approximate differen-
tiable renderer. In European Conference on Computer Vision, pages
154–169. Springer, 2014. 2

[31] R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Doso-
vitskiy, and D. Duckworth. Nerf in the wild: Neural radiance fields
for unconstrained photo collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7210–
7219, 2021. 2

[32] G. Metzer, E. Richardson, O. Patashnik, R. Giryes, and D. Cohen-
Or. Latent-nerf for shape-guided generation of 3d shapes and
textures. arXiv preprint arXiv:2211.07600, 2022. 2

[33] O. Michel, R. Bar-On, R. Liu, S. Benaim, and R. Hanocka.
Text2mesh: Text-driven neural stylization for meshes. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13492–13502, 2022. 2

[34] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng. Nerf: Representing scenes as neural ra-
diance fields for view synthesis. In European conference on computer
vision, pages 405–421. Springer, 2020. 2, 8

[35] T. Miyato and M. Koyama. cgans with projection discriminator. In
International Conference on Learning Representations, 2018. 5, 6

[36] T. Monnier, M. Fisher, A. A. Efros, and M. Aubry. Share with
thy neighbors: Single-view reconstruction by cross-instance con-
sistency. arXiv preprint arXiv:2204.10310, 2022. 1, 8

[37] T. Nguyen-Phuoc, C. Li, L. Theis, C. Richardt, and Y.-L. Yang.
Hologan: Unsupervised learning of 3d representations from nat-
ural images. In Proceedings of the IEEE International Conference on
Computer Vision, pages 7588–7597, 2019. 2

[38] M. Niemeyer and A. Geiger. Giraffe: Representing scenes as
compositional generative neural feature fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11453–11464, 2021. 2

[39] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. Semantic image
synthesis with spatially-adaptive normalization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2337–2346, 2019. 1

[40] D. Pavllo, G. Spinks, T. Hofmann, M.-F. Moens, and A. Lucchi.
Convolutional generation of textured 3d meshes. arXiv preprint
arXiv:2006.07660, 2020. 4, 5, 10

[41] H. Pehlivan, Y. Dalva, and A. Dundar. Styleres: Transforming
the residuals for real image editing with stylegan. arXiv preprint
arXiv:2212.14359, 2022. 2

[42] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. Dreamfusion:
Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988,
2022. 2

[43] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. John-
son, and G. Gkioxari. Accelerating 3d deep learning with py-
torch3d. arXiv preprint arXiv:2007.08501, 2020. 2

[44] N. Tritrong, P. Rewatbowornwong, and S. Suwajanakorn. Re-
purposing gans for one-shot semantic part segmentation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4475–4485, 2021. 1

[45] S. Tulsiani, A. A. Efros, and J. Malik. Multi-view consistency as
supervisory signal for learning shape and pose prediction. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2897–2905, 2018. 2

12

[46] S. Tulsiani, T. Zhou, A. A. Efros, and J. Malik. Multi-view
supervision for single-view reconstruction via differentiable ray
consistency. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2626–2634, 2017. 2

[47] G. Van Horn, S. Branson, R. Farrell, S. Haber, J. Barry, P. Ipeirotis,
P. Perona, and S. Belongie. Building a bird recognition app and
large scale dataset with citizen scientists: The fine print in fine-
grained dataset collection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 595–604, 2015. 5

[48] T. Wang, Y. Zhang, Y. Fan, J. Wang, and Q. Chen. High-fidelity
gan inversion for image attribute editing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11379–11388, 2022. 2

[49] T.-C. Wang, A. Mallya, and M.-Y. Liu. One-shot free-view neural
talking-head synthesis for video conferencing. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pages 10039–10049, 2021. 1

[50] Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu. Nerf–:
Neural radiance fields without known camera parameters. arXiv
preprint arXiv:2102.07064, 2021. 2

[51] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A bench-
mark for 3d object detection in the wild. In IEEE winter conference
on applications of computer vision, pages 75–82. IEEE, 2014. 8

[52] F. Yin, Y. Zhang, X. Wang, T. Wang, X. Li, Y. Gong, Y. Fan, X. Cun,
Y. Shan, C. Oztireli, et al. 3d gan inversion with facial symmetry
prior. arXiv preprint arXiv:2211.16927, 2022. 2

[53] A. Yu, V. Ye, M. Tancik, and A. Kanazawa. pixelnerf: Neural
radiance fields from one or few images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4578–4587, 2021. 1, 2, 8

[54] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. Lsun:
Construction of a large-scale image dataset using deep learning
with humans in the loop. arXiv preprint arXiv:1506.03365, 2015. 5

[55] N. Yu, G. Liu, A. Dundar, A. Tao, B. Catanzaro, L. S. Davis,
and M. Fritz. Dual contrastive loss and attention for gans. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 6731–6742, 2021. 1

[56] J. Y. Zhang, P. Felsen, A. Kanazawa, and J. Malik. Predicting
3d human dynamics from video. In Proceedings of the IEEE
International Conference on Computer Vision, pages 7114–7123, 2019.
1

[57] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The
unreasonable effectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 586–595, 2018. 6

[58] Y. Zhang, W. Chen, H. Ling, J. Gao, Y. Zhang, A. Torralba, and
S. Fidler. Image gans meet differentiable rendering for inverse
graphics and interpretable 3d neural rendering. International
Conference on Learning Representations, 2020. 1, 2, 3, 4, 5, 6, 8, 9,
10

[59] Y. Zhang, H. Ling, J. Gao, K. Yin, J.-F. Lafleche, A. Barriuso,
A. Torralba, and S. Fidler. Datasetgan: Efficient labeled data
factory with minimal human effort. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10145–
10155, 2021. 1

