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Abstract—Automatically recognising apparent emotions from face and voice is hard, in part because of various sources of uncertainty,
including in the input data and the labels used in a machine learning framework. This paper introduces an uncertainty-aware
multimodal fusion approach that quantifies modality-wise aleatoric or data uncertainty towards emotion prediction. We propose a novel
fusion framework, in which latent distributions over unimodal temporal context are learned by constraining their variance. These
variance constraints, Calibration and Ordinal Ranking, are designed such that the variance estimated for a modality can represent how
informative the temporal context of that modality is w.r.t. emotion recognition. When well-calibrated, modality-wise uncertainty scores
indicate how much their corresponding predictions are likely to differ from the ground truth labels. Well-ranked uncertainty scores allow
the ordinal ranking of different frames across different modalities. To jointly impose both these constraints, we propose a softmax
distributional matching loss. Our evaluation on AVEC 2019 CES, CMU-MOSEI, and IEMOCAP datasets shows that the proposed
multimodal fusion method not only improves the generalisation performance of emotion recognition models and their predictive
uncertainty estimates, but also makes the models robust to novel noise patterns encountered at test time.

Index Terms—Uncertainty Modelling, Multimodal Fusion, Dimensional Affect Recognition, Categorical Emotion Recognition

✦

1 INTRODUCTION

L EARNING to fuse task-specific information from mul-
tiple modalities is a fundamental problem in Machine

Learning. At its core, this problem entails estimating how
informative each modality is towards predicting the labels
of a target task. For example, consider the task of auto-
matically recognising emotional expressions from a video
in which a person is talking with a face mask covering.
In such a scenario, for effectively fusing information from
the audio and visual modalities, the model must be aware
of how informative the facial and vocal streams are w.r.t
the target task separately. Thus, modality-wise uncertainty-
aware fusion is a natural approach to multimodal learning.

In this work, we formulate an uncertainty-aware fu-
sion method for the task of apparent emotion recognition
from multimodal inputs. The proposed multimodal fusion
framework is based on probabilistic modelling of unimodal
temporal context related to emotional expressions. This
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• Elisabeth André is with the Chair for Human-Centered Artificial Intelli-
gence, University of Augsburg, Germany.
E-mail:andre@informatik.uni-augsburg.de

• Timo Giesbrecht is with Unilever R&D Port Sunlight, UK.
Email: timo.giesbrecht@unilever.com

Y*

Y

Y*

YV

YA

𝜎𝑉
2

𝐴. 𝑪𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒆𝒅 𝐿𝑎𝑡𝑒𝑛𝑡
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝐵.𝑶𝒓𝒅𝒊𝒏𝒂𝒍 𝐿𝑎𝑡𝑒𝑛𝑡
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛s

𝜎𝐴
2

𝜎2
𝑎𝑟𝑔𝑚𝑎𝑥

Correlation
1

| 𝜎2 |2
, 𝑑(𝑌, 𝑌∗)

𝜎𝑉
2 ,𝜎𝐴

2
𝑎𝑟𝑔𝑚𝑎𝑥

Correlation ቆ

ቇ

𝑅𝑎𝑛𝑘
1

| 𝜎𝑉
2 |2

,
1

| 𝜎𝐴
2 |2

,

𝑅𝑎𝑛𝑘 𝑑 𝑌𝑉 , 𝑌
∗ , 𝑑(𝑌𝐴, 𝑌

∗)

Fig. 1: The proposed latent distribution learning approach
for multimodal fusion (YV and YA – unimodal predictions,
Y ∗ – target label, and d – a distance function): The latent
distributions’ variance values are learned to represent how
informative the temporal context of each modality is, by
applying the constraints: A. Calibrated Latent Distribu-
tion: Temporal context is modelled by a latent distribution
learned under the calibration constraint so that its variance
can act as a proxy for the target prediction error (d(Y, Y ∗). B.
Ordinal Latent Distributions: The variance values of audio
and visual temporal context distributions (σ2

V and σ2
A) are

learned under the ordinal constraint so that the audio and
visual modalities are ranked according to their prediction
errors (d(YV , Y

∗) and d(YA, Y
∗)).
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Fig. 2: Overview of the proposed approach to an uncertainty-aware audiovisual fusion for emotion recognition: Modelling
latent distributions over unimodal temporal context vectors to derive modality-wise uncertainty guided fusion weights. A
detailed description of our approach is given in Section 3.

probabilistic temporal modelling approach aims to capture
the richness of the temporal context in terms of emotional
expressions present in a given modality, and use that in-
formation in deciding the degree of importance of each
modality towards recognising apparent emotions.

In the proposed method, we first estimate the uncer-
tainty of unimodal temporal inputs, and then apply those
uncertainty estimates in computing modality-wise fusion
weights. In particular, we aim to estimate the aleatoric component
of uncertainty [1] associated with different modalities for improved
emotion recognition performance. Unlike the epistemic compo-
nent of uncertainty, which can be explained away with more
data, aleatoric uncertainty captures noise or stochasticity
that is inherent to an input signal. To give an example,
in recognising emotional expressions from face images, the
epistemic component can describe the uncertainty due to
insufficient data for ’happy’ class whereas the aleatoric
component captures the uncertainty caused by factors like
occluded facial regions, low-resolution face images, etc. In
this work, we focus on estimating modality-wise aleatoric
uncertainty in a multimodal emotion recognition model.

Being an intrinsically temporal and multimodal phe-
nomenon, emotion recognition from multimodal inputs is a
long-standing challenge in Affective Computing [2], [3], [4].
A meta-analysis presented in [5] has shown that although
emotion recognition can benefit from multimodal fusion
in general, performance improvements are not significant
when it comes to spontaneous emotions. We believe that
uncertainty-aware multimodal fusion may have the poten-
tial to address this challenge, considering that the intensity
of spontaneous emotions embedded in different modalities
are likely to vary dynamically over time [6], [7].

Although Deep Neural Networks (DNNs) have been
extensively applied to multimodal emotion recognition [8],
[9], [10], [11], estimating modality-wise uncertainty for im-
proved fusion performance is a relatively unexplored av-
enue. However, modelling predictive uncertainty (or confi-
dence, its opposite) in DNNs received widespread attention
in recent years [12], [13], [14], motivated by the observation
that DNNs tend to make over-confident predictions [15],
[16]. Most existing efforts towards uncertainty or confidence

estimation in DNNs [13], [17] focus solely on reducing
miscalibration errors, i.e., the mismatch between expected
model estimation errors and their corresponding confidence
scores. Recently, as an alternative perspective, Moon et
al. [18] introduced the idea of learning to rank confidence
scores for identifying the most reliable predictions.

In this work we argue that the estimated uncertainty
scores must be simultaneously both well-calibrated and well-
ranked (ordinal). The former is needed to accurately represent
the correctness likelihood of a prediction for an individual
sample. The latter is essential to effectively order predic-
tions for a group of samples according to their correctness
likelihoods. In other words, if an uncertainty estimate of
an individual sample is well-calibrated, in the absence of
its ground truth, the uncertainty score can serve as a proxy
for its expected prediction error. If the uncertainty scores
associated with different predictions are well-ranked or
maintain ordinality, then one can use them to order their
corresponding samples in terms of their reliability towards
the target prediction, and to distinguish the most informa-
tive samples from the least informative samples.

For multimodal temporal learning, it is critical to esti-
mate how informative the predictions made for different
frames in different unimodal sequences are, towards esti-
mating a common target label, so that the target-specific
information can be reliably integrated [19]. In this work,
we hypothesise that jointly learning these two properties
– calibration and ordinality – can lead to more reliable
uncertainty estimates for each modality, facilitating more ef-
fective uncertainty-weighted temporal context fusion. Based
on this hypothesis, we propose an uncertainty modelling
method that imposes the calibration and ordinality con-
straints jointly, as Figure 1 illustrates.

For example, consider the task of classifying whether
a person’s apparent emotional state as either ’happy’ or
’neutral’ by analysing a face image sequence and its speech
signal. Assume that the face is covered with a mask in most
frames, making the face modality less informative than the
speech modality. In a unimodal setting, the face and speech
classifiers are trained separately to output their correspond-
ing ’happy’ class probabilities. When well calibrated, these



ACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

output probabilities should reflect the true correctness like-
lihoods of face and speech models’ predictions. Similarly,
when constrained by ordinal ranking, the speech model’s
output probability must be higher than the face model’s
probability, reflecting the relative uncertainty levels of the
face and speech modalities w.r.t. each other.

In this work, we condition the unimodal latent distribu-
tions’ variance vectors such that they represent the informa-
tion different modalities contain w.r.t. predicting emotion.
The proposed method can be viewed as an uncertainty-
aware extension of classical late fusion, but here the fusion
is applied in the latent space of unimodal temporal con-
text embeddings. This approach is different from a simple
confidence-weighted late fusion model in which uncertainty
is modelled directly over the unimodal output predictions.

In our proposed framework, denoted as Calibrated Or-
dinal Latent Distributions (COLD), we first learn the latent
distributions (multivariate normal distributions) over the
temporal context of audio and visual modalities separately,
as Figure 2 shows. We model the variance values of the
audio and visual latent distributions, σV and σA, as the con-
fidence measures towards emotion prediction. We design
a novel training objective based on softmax distributional
matching to encourage the variance norm values in each
modality to be: (a) strongly correlated with the correctness
likelihood of the unimodal predictions, and (b) ordinal in
nature to effectively rank the relevance of different modal-
ities towards emotion recognition. Thus, the calibrated and
ordinal unimodal variance scores are learnt for effective
uncertainty-weighted fusion, as shown in Figure 2.

We evaluate the proposed COLD fusion approach on:
(a) dimensional emotion recognition from face and voice
modalities in the AVEC 2019 CES [4] and IEMOCAP [20]
datasets, and (b) categorical emotion recognition from face,
voice and text modalities in the CMU-MOSEI [21] and
IEMOCAP datasets. Compared to the uncertainty-unaware
fusion baselines, COLD fusion demonstrates noticeably bet-
ter results on different multimodal emotion recognition
tasks evaluated in this work. For example, in dimensional
emotion regression tasks COLD fusion shows ∼6% aver-
age relative improvement over the best performing fusion
baseline. Similarly, in the case of categorical emotion clas-
sification COLD fusion achieves ∼8.2% relative accuracy
improvement over the existing state-of-the-art model. Fur-
thermore, we assess the robustness of different fusion mod-
els at test time by inducing noise into the visual modality
through face masking. With the faces masked in 50% of the
evaluation sequences, COLD fusion achieves ∼17% average
relative improvement over the best fusion baseline.

The key contributions of our work are as follows:

• We propose an uncertainty-aware multimodal fu-
sion method that dynamically estimates the fusion
weights to be assigned to unimodal features.

• We demonstrate how to jointly learn well-calibrated
and well-ranked unimodal uncertainty estimates. For
this purpose, we propose a simple softmax distri-
butional matching loss function that applies to both
regression and classification models.

• On both dimensional and categorical emotion recog-
nition tasks, the proposed fusion approach shows no-

ticeable performance gains and improved robustness
to novel noise patterns encountered at test time.

2 RELATED WORK

Multimodal Affect Recognition. Humans rely primarily
on visual (faces) and audio (voices) modalities to encode
and express their affective or emotional states. Recognising
dimensional emotions, valence (how pleasant an emotion
is) and arousal (how active an emotion is), and categorical
emotions (happy, sad, disgust, etc) from multiple modalities,
is a widely studied problem in various prior works [7],
[22], ranging from the almost a decade-long running annual
AVEC challenge series [2], [3], [4] to the recently introduced
MuSe challenge [23], [24], [25] and ABAW challenge [26],
[27]. Beyond audiovisual modalities, some recent works
(e.g. [28], [29]) explored how to fuse a wide range of con-
textual cues for reliably recognising expressed emotions.

We refer the reader to Poria et al. [30], Roust et al. [8],
Jiang et al. [31] and Zhao et al. [32] for comprehensive
surveys of affect recognition in multimodal settings and
contemporary deep learning-specific advancements in it.
Since our main focus in this work is on uncertainty-aware
fusion models for emotion recognition, we review the liter-
ature closely related to the following key research topics: i)
uncertainty modelling for emotion and expression recogni-
tion, ii) uncertainty-aware multimodal fusion, iii) calibrated
uncertainty, and iv) ranking-based uncertainty.
Uncertainty Modelling for Emotion and Expression
Recognition. In categorical facial expression recognition
tasks, modelling predictive uncertainty is studied in several
recent works [33], [34], [35], by estimating uncertainty in the
space of low-dimensional feature embedding outputs from
a Convolutional Neural Network (CNN) backbone. On the
other hand, directly predicting emotion label uncertainty
is explored in [36], but only in unimodal (video-only) set-
tings. For uncertainty-aware multimodal emotion recogni-
tion, some prior works applied Kernel Entropy Component
Analysis (KECA) [37] and Multi Modal-Hidden Markov
Models (MM-HMMs) [38] by predicting modality-specific
uncertainty measures for estimating the fusion weights.

Noting the limitations of deterministic function learn-
ing in DNNs for uncertainty modelling, Dang et al. [39]
explored the application of Gaussian Process (GP) Regres-
sion to the fusion of emotion predictions. With the same
motivation, in Affective Processes (APs) [40], [41], Neu-
ral Processes [42], [43] have been applied to the task of
emotion recognition. By combining the abilities of GPs
to learn function distributions with DNN’s representation
learning abilities, APs demonstrated superior generalisation
performance over deterministic function learning models.
Building on this idea of stochastic modelling of temporal
functions, recently APs have been extended to multimodal
settings in [44] based on a strictly model-based fusion
approach, demonstrating impressive emotion recognition
results. However, for uncertainty-aware temporal context
modelling, APs heavily rely on the proxy labels predicted
by a separate pre-trained backbone and a complex encoder-
decoder formulation. In contrast to APs, our method aims
to model the temporal context uncertainty in a model-
agnostic fashion, by just altering the output head of sim-
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ple CNN+RNN models that are trained using some novel
constrained optimisation objectives.

All the aforementioned methods demonstrated the po-
tential of uncertainty-aware emotion recognition models
over their uncertainty-unaware counterparts in general.
However, they ignore two important aspects of uncertainty
modelling: calibration and ordinality (ranking). In this
work, we aim to demonstrate the significance of these two
properties by hypothesising that learning well-calibrated
and well-ranked uncertainty estimates is critical for improv-
ing multimodal emotion recognition performance.
Uncertainty-Aware Multimodal Fusion. For multimodal
sensor fusion, several prior works [37], [45], [46], [47] ex-
plored uncertainty-aware or confidence-weighted averag-
ing techniques for classic machine learning models before
the advent of Deep Neural Networks (DNNs). Recently,
Subedar et al. [48] applied Bayesian DNNs for uncertainty-
aware audiovisual fusion to improve human activity recog-
nition performance. Similarly, Tian et al. [49] explored the
use of uncertainty estimation in fusing the softmax scores
predicted using CNNs for semantic segmentation. Other
notable approaches to uncertainty-aware multimodal fusion
are based on optimal transport for cross-modal correspon-
dence [50], random prior functions [51], boosted ensem-
bles [52], and factorised deep markov models [53].

Although all the aforementioned methods demonstrated
critical advantages over the models that predict only point
estimates, they do not study the calibration properties of
the estimated uncertainty scores. Further, such DNN models
focus mainly on modelling absolute uncertainty estimates,
whereas our focus is on jointly learning the calibrated and
relational uncertainty estimates in an end-to-end fashion
introducing a novel softmax distributional matching loss.
Calibrated Uncertainty. As DNNs tend to make overcon-
fident predictions [15], [16], confidence calibration has re-
ceived significant attention in recent years [15], [16]. Cali-
brating confidence or uncertainty estimates involves max-
imising the correlation between predictive accuracy values
and predictive uncertainty scores. A wide variety of cali-
bration techniques, particularly in classification settings, can
be broadly categorised into explicit and implicit calibration
categories [54]. In the former category, two types of post-
hoc methods, binning-based and temperature-scaling, are
applied to increase the reliability of DNN confidence es-
timates [13], [55]. In binning-based methods such as non-
parametric histogram binning [56], calibrated confidence
is estimated based on the average count of positive-class
instances in each bin. This method is extended to jointly
optimise the bin boundaries and their predictions in Iso-
tonic Regression [57]. Temperature-scaling methods can be
viewed as generalised versions of Platt scaling [58] using
logistic regression for calibrating the class probabilities. We
use temperature-scaling as a calibration baseline [13], [59] to
compare against the uncertainty calibration performance of
the proposed method, due to its simplicity.

Implicit calibration methods tailor the training objective
of DNNs to minimise the prediction error and calibration
error simultaneously. Addressing the limitations of standard
cross-entropy loss w.r.t. confidence calibration, various al-
ternative loss functions such as focal loss [14], maximum
mean calibration error [17], and accuracy vs uncertainty

calibration [60], have been investigated recently. Calibrating
regression models is relatively under-explored compared to
the classification. Some recent works [61], [62], [63] made
attempts to extend some of the aforementioned calibration
techniques to continuous-valued predictions.
Ordinal or Ranking-based Uncertainty. In the existing
uncertainty modelling works, the ordinal property of un-
certainty estimates received less attention compared to the
calibration property, which partly motivated the method in-
troduced in this paper. Li et al. [64] proposed to model data
uncertainty by inducing ordinality into probabilistic embed-
dings of face images. Towards uncertainty-aware regression
problems, the results reported in [64] highlighted the key
limitations of deterministic unordered embeddings com-
pared to the probabilistic ordinal embeddings. Although not
strictly ordinal, relative uncertainty modelling is explored
for facial expression recognition in [34].

Other closely related works approached the problem
of ordinal ranking of uncertainty estimates with different
objectives such as failure prediction [65], out-of-distribution
detection [66], and selective classification [67]. Fundamen-
tally, all these objectives necessitate a method that can train
the model to output well-ranked confidence or uncertainty
scores. Among these existing methods, the one most closely
related to ours is by Moon et al. [18], which proposes
a Correctness Ranking Loss (CRL). CRL directly imposes
ordinal ranking constraints on the confidence estimates of
a DNN classifier. Similar to CRL, our proposed softmax
distributional matching loss also constrains the ordinal-
ranking property of uncertainty estimates. However, in ad-
dition to ordinal ranking, our method imposes the calibra-
tion property as well, most importantly by controlling the
latent distribution variance, unlike in CRL. Moreover, our
formulation generalises the idea of calibrated and ordinal
uncertainty estimates to both classification and regression
settings, using a common loss function computation.

3 MODEL-AGNOSTIC FUSION BASELINES

Before introducing our uncertainty-aware multimodal fu-
sion formulation, we briefly discuss the general multimodal
fusion techniques w.r.t. audiovisual emotion recognition
and introduce the related notations. A fundamental ques-
tion in multimodal learning concerns the optimal stage to
perform fusion [68]. We consider the following three typical
model-agnostic fusion methods as the baselines: feature
fusion, temporal context fusion, and prediction fusion.
Preliminaries and Notations. As Figure 2 illustrates, given
a face video clip XV with N frames and its corresponding
speech signal XA, using overlapping time windows, we first
create N speech segments that correspond to the N visual
frames. Here, we assume that both the signals XV and XA

are annotated with a common dimensional emotion label,
Y ∗ = [Y ∗

valence, Y
∗
arousal] (either per-frame or per-sequence).

We extract sequences of per-frame low dimensional features
(ZV , ZA) from the face video and speech inputs using a two-
stream network. This network is composed of a 2D CNN
fV and a 1D CNN fA for processing the face images and
speech segments respectively, fV : XV → [z1V , z

2
V , ..., z

N
V ]

and fA : XA → [z1A, z
2
A, ..., z

N
A ]. For unimodal emotion

recognition, we process the temporal context from each
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modality separately from ZV and ZA using different tem-
poral networks gV : ZV → YV and gA : ZA → YA to
predict the emotion labels YV and YA.
Feature Fusion or early fusion integrates frame-level emo-
tion cues present in the audiovisual features ZV and ZA

(e.g., [69]), not accounting for commonly encountered tem-
poral misalignment between different modalities [70]. Here,
we concatenate the per-frame audiovisual features into a
single sequence, Z = [ZV , ZA], then pass it to a common
temporal network gAV : Z → Y to predict emotion labels.
Decision Fusion combines the unimodal emotion predic-
tions YV and YA (e.g., [71]). Here, we apply predictive confi-
dence based weighted averaging to perform the late fusion.
Unlike early fusion, late fusion does not leverage the low-
level correspondences among the emotion cues distributed
over the audio and visual streams [68].
Temporal Context Fusion or simply context fusion inte-
grates sequence-level emotion information aggregated in
the form of audiovisual temporal context vectors hi

V and
hi
A for frame i, produced by the temporal networks gV

and gA respectively. This method is also referred to as
‘feature fusion with RNNs’ or ‘mid-level’ fusion in some
prior works [8], [72]. Note that here temporal context or
simply context at ith frame refers to the emotion information
present in frame i w.r.t. the emotion information carried by
remaining frames in the input sequence. As a result, unlike
early fusion, context fusion is bound to suffer less from
the temporal misalignment between the emotion-related
semantics of audio and visual feature sequences. Further,
context fusion benefits from the low-level audiovisual cor-
respondences in the emotion space, in contrast to late fusion.

Considering the above-mentioned critical advantages of
temporal context fusion, in this work, we propose to learn
an uncertainty-aware context fusion model for multimodal
emotion recognition as discussed below.

4 PROPOSED METHOD

Figure 3 illustrates our proposed solution to uncertainty-
aware multimodal fusion. Although this section describes
the proposed fusion only in audiovisual settings, note that
it can be easily extended to tasks with more than two
modalities. In this section, we first discuss how we estimate
modality-wise uncertainty by learning unimodal latent dis-
tributions over the temporal context, and we present our
approach to derive the fusion weights based on unimodal
context variance. Then, we introduce two key optimisation
constraints imposed on the variance norms of unimodal
latent distributions and describe their implementations.

4.1 Uncertainty-Aware Audiovisual Context Fusion

Quantifying modality-wise uncertainty towards predicting
a common target label is crucial to improve multimodal
fusion performance. Our objective is to first quantify in-
tramodal uncertainty in the temporal context space, and
then use the estimated uncertainty scores to derive the
fusion weights. To this end, we propose to learn unimodal
latent distributions over the temporal context of the audio
and visual modalities separately, as discussed below.

4.1.1 Latent Distributions over Unimodal Temporal Context

Figure 2 illustrates how we modify the temporal networks
(Gated Recurrent Unit(GRU)-RNNs) gV and gA to output
the parameters (mean and variance) of multivariate normal
distributions N (µi

V , σ
i
V
2
) and N (µi

A, σ
i
A
2
) over the audio

and visual temporal context vectors, respectively. Here, the
term ‘temporal context’ refers to the hidden state outputs
from the corresponding unimodal GRU blocks (gA or gV ).
For each modality separately, we learn this hidden state
output as a multivariate normal distribution, instead of a
typical deterministic embedding vector. We presume that
these unimodal latent distributions are capable of repre-
senting modality-wise emotion information more effectively
than deterministic embeddings.

Given a sequence of frames, [X1, X2, ..., XT ], in order
to predict their corresponding target variables [Y ∗

1 , Y ∗
2 , ...,

Y ∗
T ] it is important to learn the underlying temporal context

information, which is a function of the frames present in the
input sequence as well as the order in which they appear.
By modelling the temporal context as a probability distri-
bution, we propose to use the prediction error ∥Yi − Y ∗

i ∥2
to constrain the contribution of each frame Xi in terms of
its explained variance of the overall temporal context. Here,
the idea of frame-wise explained variance of the temporal
context refers to how much information a particular frame
holds given all the rest of the frames, towards predicting the
target variable Y ∗

i . Thus, the higher the explained variance
of a particular frame Xi, the more informative it is for
accurately predicting the target variable.

Here our aim is to first estimate the informativeness of
each modality towards the task of recognising emotions. To
this end, we learn the temporal context variance such that
it may represent how informative the temporal context of
a particular modality is. For example, consider an audio-
visual sequence in which all the audio frames have the same
emotion (e.g. neutral tone), whereas the visual frames have
more variations in terms of the emotional expressions. In
this case, the fusion model must give more importance to
the visual frames compared to the audio frames when pre-
dicting emotions. Guided by this intuition, our formulation
aims to capture the emotion-related variance in the temporal
context of each modality separately.

It is important to note the difference between the abso-
lute variance of the temporal context distribution learned
from all the frames and the explained temporal context
variance of an individual frame. While the former can be
thought of as a proxy metric for uncertainty measurement,
the latter can be viewed as a per-frame information met-
ric w.r.t the target prediction. For the sake of simplicity,
throughout this work, we use the term ’context variance’ in
order to refer to the explained variance of temporal context
for a given frame in an input sequence. The above argument
can be extended to a multimodal fusion setting as well, in
which the explained temporal context variance of a partic-
ular modality can be used as a proxy for how informative
that modality is w.r.t predicting a common target variable.

We model the variance of a unimodal latent distribution
as a proxy for how informative that modality is w.r.t. pre-
dicting the target emotion, and we use the inverse of vari-
ance values to quantify how uncertain a particular modality
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Fig. 3: COLD fusion training loss computation: To simultaneously impose the calibration and ordinality constraints on
the unimodal latent distributions’ variance vectors, we minimise the softmax distributional matching loss (KL divergence)
between the distance vectors [di] and variance-norm vectors [ 1

∥σi2∥2
], in both intramodal and crossmodal settings.

is towards predicting emotion labels. Note that the potential
of signal variance-based uncertainty modelling for multi-
modal fusion was already demonstrated in [73]. Similarly,
learning latent distribution variance was determined to be
capable of uncertainty modelling in [40]. Inspired by these
ideas, we model the unimodal context variance norm values
∥σ2

V ∥2 and ∥σ2
A∥2 to estimate how certain the audio and

visual modalities are about predicting the emotion labels.
Our approach to derive variance-based fusion weights for
integrating the audiovisual information is discussed below.

4.1.2 Context Distribution Variance-Based Fusion Weights
For an input frame with index i, given its unimodal latent
distributions N (µi

V , σ
i
V
2
) and N (µi

A, σ
i
A
2
) over its visual

and audio temporal context embeddings separately, we first
compute the L2 norms of their variance values ∥σi

V
2∥2 and

∥σi
A
2∥2. As discussed above, these variance norm values are

assumed to represent modality-specific certainty or informa-
tiveness w.r.t. predicting the target emotions. By normalising
the variance norm values of the audio and visual modalities,
we derive fusion weights that are used in a simple linear
fusion model of the audiovisual temporal context (hi

V A) :

hi
V A = wi

V ∗ hi
V + wi

A ∗ hi
A, (1)

where hi
V and hi

A denote the visual and audio temporal
context vectors, and wi

V and wi
A denote their correspond-

ing weight values. The temporal context vectors hi
V and

hi
A are sampled from their respective latent distributions,

hi
V ∼ N (µi

V , σ
i
V
2
) and hi

A ∼ N (µi
A, σ

i
A
2
) during training.

At test time, we set hi
V and hi

A to their corresponding mean
vectors µi

V and µi
A for evaluation purposes.

Based on the unimodal context variance norm val-
ues (∥σi

V
2∥2 and ∥σi

A
2∥2), the weight values wi

V and wi
A

in Equation (1) are computed as:

wi
V =

∥σi
V
2∥2

(∥σi
V
2∥2 + ∥σi

A
2∥2)

, wi
A =

∥σi
A
2∥2

(∥σi
V
2∥2 + ∥σi

A
2∥2)

.

(2)
Context variance modelling seems to be a simple yet

effective approach to uncertainty-aware audiovisual fusion,
yet learning audiovisual latent distributions with well-
conditioned variance ranges is non-trivial in practice, as we
show later in the experiments. To condition the variance
values that can effectively capture intramodal uncertainty
w.r.t. predicting the target labels, we define a more prin-
cipled model training that applies two key optimisation
constraints: Calibration and Ordinality.

4.2 COLD: Calibrated and Ordinal Latent Distributions
To effectively learn the unimodal latent distributions for
uncertainty-aware fusion, we propose to condition their
variance values by applying optimisation constraints to the



ACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

model training objective. We achieve this conditioning by
imposing two key constraints: Calibration and Ordinality
(or ranking) on the latent distribution variance vectors.
When well-calibrated, an uncertainty score acts as a proxy
for the correctness likelihood of its prediction for an indi-
vidual input from a specific modality. In other words, well-
calibrated uncertainty indicates the expected estimation er-
ror, i.e., how far the predicted emotion is expected to lie
from its ground truth.

Given the predictions made for a set of frames from
different modalities, when their uncertainty scores are well-
ranked or maintain ordinality, we can effectively arrange
the input unimodal frames according to their reliability for
predicting a target emotion. In Figure 1, we illustrate the
definitions of both these constraints. It is important to note the
fundamental difference between these two constraints: while the
calibration constraint is applied individually for each unimodal
frame, the ordinality or ranking constraint is imposed jointly for
a set of frames from different modalities.
Calibration Constraint – this is imposed by regularising the
unimodal context variance norms, ∥σi

V
2∥2 and ∥σi

A
2∥2, such

that their values are strongly correlated with the correctness
likelihood values of target emotion classes. In regression
models, this constraint can be implemented by forcing
the variance norm values to correlate with the Euclidean
distance between their corresponding unimodal predictions
YV and YA and their ground truth labels Y ∗, as shown
in Figure 1. In other words, the context variance values
are learnt as reliability measures indicating how far the
emotion predictions are expected to lie from their ground
truth labels. To impose this property on the variance val-
ues of both modalities, COLD fusion applies the following
regularisation constraints,

argmax
σ2
V

Correlation(
1

∥σ2
V ∥2

, d(YV , Y
∗))

argmax
σ2
A

Correlation(
1

∥σ2
A∥2

, d(YA, Y
∗))

(3)

where d(.) denotes the distance function that measures the
target emotion estimation error. Cross-entropy and Mean
Squared Error (MSE) are used as the distance functions for
the classification and regression models respectively.
Ordinality Constraint – this is applied to rank the frames
of unimodal sequences, so that their uncertainty measures
indicate how reliable different multimodal frames are w.r.t.
each other. This ranking operation can be implemented
as a simple ordering constraint which jointly regularises
the unimodal context variance norm values, ∥σi

V
2∥2 and

∥σi
A
2∥2. Here, modality-wise reliability is again computed

in terms of the distance values (see Equation (3)) between
different unimodal predictions and the ground truth labels:

argmax
σ2
V ,σ2

A

Correlation(Rank(
1

∥σ2
V ∥2

,
1

∥σ2
A∥2

),

Rank(d(YV , Y
∗), d(YA, Y

∗)))

(4)

4.2.1 Implementation: Calibration and Ordinality Con-
strained Training for Audiovisual Emotion Recognition
We train classification models of dimensional emotion
recognition, in addition to the standard regression models
used in the literature. In both cases, the underpinning prin-
ciples of the COLD fusion are the same, but the training
objective implementations differ slightly. To train the tem-
poral context fusion models by imposing the calibration and
ordinality constraints, we optimise the network to minimise
a loss function composed of the following components:
Emotion Prediction Loss (Lemo) is computed using the
standard cross-entropy function for training the classifica-
tion models. For the regression models training, similar
to [74], we use inverse Concordance Correlation Coefficient
(CCC) loss (1.0 - CCC) in addition to MSE. This loss is
computed for the predictions from unimodal (YV and YA)
and multimodal (YAV ) branches jointly (Figure 2).
Calibration and Ordinality Loss (LCO) combines the afore-
mentioned constraints, defined in Equation (3) and Equa-
tion (4), into a single training objective using differentiable
operations. Figure 3 shows the steps involved in imple-
menting this component: given an input sequence with N
frames, we first compute their unimodal latent distributions
followed by their corresponding unimodal predictions. To
impose the calibration and ordinality constraints, we first
compute two sets of vectors for each modality:

Distance Vectors. We collect the scalar distance values
(diV and diA) between the unimodal predictions (Y i

V and Y i
A)

and the ground truth labels (Y i∗) using either cross-entropy
(classification) or MSE (regression) as the distance function.
This step produces N-dimensional distance vectors, DV =
[d1V , d

2
V .., d

N
V ] and DA = [d1A, d

2
A.., d

N
A ].

Variance-Norm Vectors. We collect the inverted uni-
modal context variance norm values into another set of N-
dimensional vectors, SV and SA, as shown below:

SV = [
1

∥σ1
V ∥2

,
1

∥σ2
V ∥2

, ..,
1

∥σN
V ∥2

]

SA = [
1

∥σ1
A∥2

,
1

∥σ2
A∥2

, ..,
1

∥σN
A ∥2

].
(5)

Softmax Distributional Matching for Calibration and
Ordinal Ranking. Note that the distance vectors and
variance-norm vectors contain scalar values that summarise
the properties of different embedding spaces, emotion la-
bels, and temporal context, respectively. Hence, we assume
that matching their properties by imposing the calibration
and ordinality constraints directly in their original spaces,
is not optimal. For this reason, as illustrated in Figure 3,
we first apply the softmax operation on the distance vec-
tors and variance-norm vectors separately to generate the
softmax distributions. Then, we impose the calibration and
ordinality constraints by minimising the mismatch between
softmax distributions of the variance-norm vectors and dis-
tance vectors. This approach to calibration and ordinality
loss computation based on soft-ranking is inspired by [75] in
which softmax cross-entropy is used for ordinal regression.

As Figure 3 shows, in both intramodal and crossmodal
settings, we compute the softmax distributions of distance
vectors (PDV

, PDA
, and PDAV

) and variance-norm vec-
tors (PSV

, PSA
, and PSAV

). Note that in the crossmodal
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case, we first concatenate the audio and visual distance
vectors and variance-norm vectors separately, i.e., DAV =
[d1A, d

1
V , .., d

N
A , dNV ] and SAV = [s1A, s

1
V , ..., s

K
A , sNV ]. Then, we

apply the softmax operation on the concatenated list which
is 2N dimensional. Thus, the crossmodal softmax distribu-
tions capture the relative measures across both modalities.
Now, to impose the calibration constraint, we minimise the
KL divergence (both forward and backward) between the
distance distributions and variance-norm distributions in
both intramodal and crossmodal settings, as shown below:

LCO = KL(PD||PS) +KL(PS ||PD), (6)

where PD represents PDV
and PDA

, and PS represents
PSV

and PSA
in the intramodal loss computation. In the

crossmodal case, PD and PS denote PDAV
and PSAV

, re-
spectively.
Variance Regularisation Loss (Lregu). Prior works [40], [76]
on latent distribution learning in high-dimensional input
spaces such as images, have reported that the variance
collapse is a commonly encountered problem. Variance
collapse occurs mainly because the network is encouraged
to predict small variance σ2 values to suppress the unsta-
ble gradients that arise while training the latent distribu-
tion models using Stochastic Gradient Descent. To prevent
this problem, we include the regularisation term proposed
in [76] in the training objective:

Lregu = KL(N (µ, σ2)||N (ϵ, I))

= −1

2
(1 + logσ2 − µ2 − σ2),

(7)

where ϵ and I denote the mean vector and an identity vari-
ance matrix respectively. Note that this regularisation term
is applied to the audio and visual distributions, separately.

In summary, the COLD fusion training objective com-
posed of the above-discussed loss components, is as follows:

Ltotal = Lemo + λCOV
· LCOV

+ λCOA
· LCOA

+

λCOAV
· LCOAV

+ λR · Lregu,
(8)

where λCOV
(for visual-only), λCOA

(for audio-only),
λCOAV

(for audio and visual combined), and λR (for reg-
ularisation) are the optimisation hyperparameters that con-
trol the strength of each regularisation constraint.

5 EXPERIMENTS

We first discuss the details of dimensional and categorical
emotion datasets used for evaluating the proposed COLD
fusion model. Detailed information about each dataset can
be found in [4], [20], [21]. Then, we discuss the regression
and classification formulations of emotion recognition and
the evaluation metrics used for dimensional and categorical
emotion tasks, along with a standard uncertainty calibration
error metric that applies to the classification models. Finally,
we present the details of the network architectures, fusion
model implementations, and their optimisation.

5.1 Datasets

5.1.1 Dimensional Emotion Recognition
For spontaneous dimensional emotion recognition, we used
the AVEC 2019 CES challenge corpus [4] which is designed
for in-the-wild emotion recognition in cross-cultural settings
as part of the SEWA project [77]. This corpus is composed of
8.5 hours of audiovisual recordings collected from German,
Hungarian, and Chinese participants. All videos in this
corpus are annotated with continuous-valued valence and
arousal labels in the range [-1, 1]. Note that the train and
validation partitions are composed of only German and
Hungarian cultures. As the labels for the test set (which has
the Chinese culture in addition) are not publicly available,
we report results on the validation set.
For acted emotion recognition, the Interactive Emotional
Dyadic Motion Capture (IEMOCAP) dataset [20] is used.
This dataset constitutes 12 hours of audiovisual data an-
notated with utterance-level labels of valence and arousal.
Here, we normalised the original emotion labels to the
range [-1, 1]. Among the available five sessions in this
corpus, we used the first four sessions’ data for training.
Note that the COLD fusion model training involves tuning
of multiple regularisation constraints (Equation (8)). Thus,
the usual 5-fold cross-validation evaluation is found to be
computationally expensive as it requires the values of λCOV

,
λCOA

, λCOAV
, and λR to be tuned for every fold. For this

reason, we used the speaker-independent partitions of the
fifth session as validation and test sets, the same as the first
fold’s validation and test sets used in the existing works
(e.g. [78], [79]) that apply 5-fold cross-validation.

On both the emotion datasets we trained and evaluated
our audiovisual fusion models in regression as well as
classification settings. To train the regression models, we
directly used the continuous-valued labels as targets in the
range [-1, 1]. For classification, we first mapped the contin-
uous emotion values to three different classes for valence
(positive, neutral, negative) and arousal (high, neutral, low)
individually. For this binning, we chose the thresholds of
-0.05 and 0.05 to draw the boundaries between the three
above-mentioned bins. We adjusted the binning thresholds
and picked the aforementioned values, to minimise the
imbalances in the resultant class-wise label distributions.
Addressing Imbalanced Emotion Class Label Distribu-
tions. Despite carefully tuning the binning thresholds, class-
wise label distributions of the dimensional emotion datasets
still have significant imbalances, as shown in Figure 4. To
mitigate the effect of this problem, we applied two general
techniques while training the classification models: a. non-
uniform sampling of the training instances for different
classes and b. class-weighted cross-entropy loss. In the
former, we modified the sampling criteria to over sample
for the minority classes and under sample for the majority
classes based on the number of examples available for each
class in the train set. In the latter technique, we divided
the cross-entropy loss values for different classes by their
relative bin size (in the train set).

5.1.2 Categorical Emotion Recognition
For spontaneous categorical emotion recognition, we used
the CMU-MOSEI dataset [21], a large-scale dataset for
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Fig. 4: Class imbalances in the distributions of valence and
arousal labels prepared for 3-way classification on the AVEC
2019 CES and IEMOCAP datasets.

in-the-wild multimodal emotion recognition. This dataset
is composed of 23, 453 video utterances collected from
YouTube monologues of 1000 distinct speakers. Each utter-
ance contains three modalities: image sequences sampled
at 30Hz, audio waveforms with a sample rate of 44.1kHz,
and their corresponding text transcripts. All the utterances
are manually annotated with 6 categorical emotions: angry,
disgust, fear, happy, sad, and surprise. Here, we used the same
training, validation and test partitions that are provided as
part of the CMU-Multimodal Software Development Kit1.
For acted categorical emotion recognition, we used the
IEMOCAP dataset with the labels of six basic emotions:
neutral, angry, happy, sad, excited and frustrated. Following the
existing works [80], [81], we used a pre-processed version
of this dataset that contains 7, 380 utterances, in which each
utterance contains an image sequence sampled at 30Hz, an
audio waveform sampled at 16kHz, and its text transcript.
We followed the same training (70%), validation (10%) and
test (20%) splits used in prior works (e.g. [80]).

5.2 Evaluation Metrics
Regression models’ performance is measured using Lin’s
Concordance Correlation Coefficient (CCC) [82] between the
predicted emotions yo and their ground truth labels y∗

CCC =
ρy∗yo .σy∗ .σyo

(µy∗ − µyo)
2
+ σy∗2 + σyo2

, (9)

where ρy∗yo denotes the Pearson’s coefficient of correlation
between y∗ and yo, and (µy∗ , µyo) and (σy∗ , σyo) denote
their mean and standard deviation values, respectively.
Classification models of dimensional emotions are evalu-
ated using precision, recall, and F1 score. Given the imbal-
anced emotion class distributions (see Figure 4), for these
three metrics we report unweighted or macro averaged

1. https://github.com/A2Zadeh/CMU-MultimodalSDK

values of the three emotion classes, so that the average
values are not biased towards the most dominant classes.
For evaluating the categorical emotion models, following
prior works [80], [81], [83], [84], we used (a) the accuracy
and F1 score metrics for IEMOCAP and (b) the weighted
accuracy and F1 score for CMU-MOSEI.
Uncertainty Calibration Errors of the classification models
are measured to analyse the deviations between the true
class likelihoods p and the predicted class confidence es-
timates p̂. Reliability diagrams [13] are used as empirical
approximations to visually represent the confidence calibra-
tion errors. For plotting these diagrams, first, the accuracy
and confidence axes are binned into equally-sized intervals
and then, for each interval mean accuracy values are plotted
against their corresponding mean confidence scores. For a
perfectly calibrated model, the reliability diagram is sup-
posed to be an identity function, i.e., accuracy and confi-
dence should have the same values. Expected Calibration
Error (ECE), a scalar summary statistic of the reliability di-
agram, computes the weighted average of calibration errors
over all the intervals in a reliability diagram.

ECE =
M∑

m=1

|Im|
N

|Acc(Im)− Conf(Im)|, (10)

where Im denotes the mth interval, M is the total num-
ber of intervals, and N is the total number of samples.

5.3 Network Architectures
5.3.1 Feature Extraction for Dimensional Emotion Models
Visual CNN Backbone. EmoFAN [85], a 2D CNN proposed
recently for facial feature extraction, is proven highly ef-
ficient by building on hour-glass-based network architec-
tures. This CNN backbone, pretrained on 2D face alignment
task, has been found very efficient for transfer learning
tasks [86], [87]. We used its pretrained model2 on image-
based emotion recognition on the AffectNet dataset [88].
Using this backbone, we extracted a 512D feature vector per
frame.
Audio CNN Backbone. We adopted a 2D CNN backbone
proposed in [89] for extracting speech signal features in an
end-to-end fashion. Here, we applied a VGGish [90] pre-
trained module to 2D Mel-spectrograms that are derived
by setting the hop size and window length values to 0.1 s
and 1 s respectively. Similar to [89], we fine-tuned only the
last two fully connected layers of this VGGish module. To
differentiate the interlocutor’s information from that of the
target speaker, we implemented the feature dimensionality-
doubling technique proposed in [91].
Data Augmentation. We applied strong data augmenta-
tion techniques to the audiovisual inputs to minimise the
overfitting problem. It is important to note that under
heavy overfitting, the COLD loss function (Equation (6))
may collapse since the calibration and ordinality constraints
rely on the prediction errors of the training instances. For
face image data, we applied horizontal flipping with the
probability set to 0.5, random scaling by a factor of 0.25,
random translation by +/- 30 pixels, and random rotation

2. Pretrained models of Toisoul et al. [86] are available at https://
github.com/face-analysis/emonet

https://github.com/A2Zadeh/CMU-MultimodalSDK
https://github.com/face-analysis/emonet
https://github.com/face-analysis/emonet
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by 30◦. In the audio case, we applied SpecAugment [92]
which directly augments the 2D spectrogram itself, instead
of its original 1D waveform. Here, we applied the standard
SpecAugment operations: time warping, frequency masking
and time masking, with their order defined arbitrarily. The
parameters3 of time warping (ω), frequency masking (f ),
and time masking (t) are chosen from different uniform dis-
tributions in the range [0, 50], [0,27], and [0,40] respectively.

5.3.2 Feature Extraction for Categorical Emotion Models
Following the existing works [80], [81], we applied the
early-stage feature extraction on the aligned multimodal
data. The visual features containing 35 facial action units
are extracted using Facet4. The audio features extracted
using COVAREP [93] contain glottal source parameters,
Mel-frequency cepstral coefficients, etc. Similar to the
prior works [80], [81], we used 74-dimensional and 144-
dimensional audio features for CMU-MOSEI and IEMOCAP
datasets, respectively. The text feature vectors with 300
dimensions are prepared by tokenising the text data at word
level and then extracting their GLoVE [94] (5) embeddings.

5.3.3 Temporal Networks
In dimensional emotion recognition models, the tempo-
ral networks are stacked on top of the unimodal CNN
backbones to model the temporal dynamics and integrate
the multimodal affect information. Note that all the fusion
models evaluated in this work follow different temporal
network implementations. However, all the temporal net-
works have the following GRU block in common: a 2-layer
bidirectional GRU module followed by a fully connected
(FC) output layer. This GRU block contains 256 hidden units
with the dropout value set to 0.5. The number of GRU blocks
and their input-output dimensionality vary across different
fusion models, as discussed below.

In feature fusion, a single GRU+FC block is used to pro-
cess the input feature sequence that is prepared via frame-
wise concatenation of the unimodal embeddings, whereas,
in the prediction fusion, different unimodal temporal mod-
els (GRU+FC) are applied separately, and their output soft-
max label distributions are aggregated into the final predic-
tions. The context fusion implementation has two different
GRU blocks, but a common FC layer. As shown in Figure 2,
COLD fusion is similar to the context fusion, but with the
GRU block’s output layer modified to predict the mean and
variance vectors. Note that we trained the unimodal output
branches simultaneously along with the fusion branch in all
the multimodal models (see Figure 2).

In categorical emotion recognition models, the pre-
extracted visual, audio, and text features are directly fed
into their corresponding temporal networks, which are com-
posed of the same GRU+FC blocks used in the dimen-
sional emotion models. Except for the number of input
units, which depend on the input feature dimensionality,
all the network parameters are the same in both the cases.
In the COLD fusion module, due to the presence of the

3. ω – warping length, f – number of consecutive Mel frequency
channels masked, t – number of consecutive time steps masked

4. iMotions. Facial expression analysis, 2017.
5. glove.840B.300d: https://nlp.stanford.edu/projects/glove/

third modality (i.e. text features) present in the categorical
emotion models, Equation (2) is modified to accommodate
three modalities and the calibration and ordinal constraints,
Equation (3) and Equation (4), are modified to compute pair-
wise correlations for the six possible combinations of the
audio, visual and text modalities.

5.4 Optimisation Details
The batch size, learning rate, and weight decay values
chosen for training all these models are 4, 5e-3, and 1e-4,
respectively. For tuning the learning rate, we used Cosine
annealing coupled with warm restarts [95] (the number of
epochs for the first restart set to 1 and the multiplication
factor set to 2). We used Adam optimiser [96] for training all
the models evaluated in this work.

For dimensional emotion recognition, we used input
sequences of 30 seconds duration with per-frame and per-
sequence targets on the AVEC 2019 and IEMOCAP datasets
respectively. The visual and audio backbones and all the
fusion models are trained by jointly minimising the CCC
loss [74] and mean squared error for the regression task
and class-weighted cross-entropy loss for the classification
task. For finding the optimal values of hyper-parameters,
we used the IEMOCAP validation set and the same optimal
values are applied to the models trained on the AVEC 2019
corpus. The hyper-parameter values in the loss function
(Equation (6)) are tuned on the logarithmic scale in the range
[1e-5, 1e+5] using RayTune [97]. Based on the IEMOCAP
validation set performance, the following values are found
to be optimal: 1e-3 for λCOV

, λCOA
and λCOAV

, and 1e-4
for λR. We applied the same hyperparameter values to the
models trained on the AVEC 2019 corpus as well.

For categorical emotion recognition, we used sequences
of 100 frames. The temporal networks are trained using
the standard cross-entropy loss. The hyper-parameters are
tuned separately on the validation sets of CMU-MOSEI and
IEMOCAP. The following values are found to be optimal: 1e-
2 and 5e-3 for {λCOV

, λCOA
, and λCOAV

} on CMU-MOSEI
and IEMOCAP respectively and, 1e-4 and 5e-5 for λR on
CMU-MOSEI and IEMOCAP respectively.

6 RESULTS AND DISCUSSION

We first present the results of dimensional and categorical
emotion recognition models based on different audiovisual
fusion techniques. By inducing visual noise through face
masking, we investigate the robustness of the proposed
COLD fusion compared to the standard fusion baselines.
Then, we analyse the uncertainty calibration performance
of the COLD fusion model, particularly in classification
settings. Finally, a qualitative analysis of modality-wise
fusion weights is presented to demonstrate the calibration
and ordinal ranking proprieties of the COLD fusion model.

6.1 Dimensional Emotion Recognition Results
Regression performance of different unimodal (Aud-branch
and Vis-branch) and multimodal (AV) predictions are pre-
sented in Table 1 and Table 2 for the AVEC 2019 CES
(spontaneous emotion recognition) and IEMOCAP (acted
emotion recognition) corpora, respectively. In both cases,

https://nlp.stanford.edu/projects/glove/
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Fig. 5: Dynamic adaptation of COLD fusion weights when presented with novel noise patterns induced into the visual
inputs: At test time, face masking is applied to randomly chosen consecutive frames in the AVEC 2019 CES validation
examples. When the visual modality is noisy, i.e., containing faces with masks, AV COLD fusion output relies more on
the audio modality (note the gaps between visual predictions and AV COLD fusion predictions, and modality-wise fusion
weights). After removing the face masks, the fusion weight values adapt accordingly, hence, the fusion outputs.

Valence Arousal Avg.
Model CCC ↑ CCC ↑ CCC ↑

AVEC CES Winners:Aud [98] 0.388 0.518 0.453
Aud-branch 0.369 0.465 0.417
AVEC CES Winners:Vis [98] 0.579 0.594 0.586
Vis-branch 0.511 0.514 0.512

AVEC CES Winners:AV Fusion [98] 0.614 0.645 0.629
AV Feature Fusion 0.515 0.509 0.512
AV Prediction Fusion 0.552 0.617 0.584
AV Context Fusion 0.578 0.620 0.599
AV COLD Fusion 0.611 0.661 0.636

TABLE 1: Dimensional emotion regression results on the
AVEC 2019 CES validation set (CCC: Concordance Cor-
relation Coefficient).

COLD fusion consistently outperformed the standard fusion
baselines (feature, prediction and context) as well as the
unimodal results. When compared to the best performing
CNN+RNN fusion baselines COLD fusion achieved ∼6%
average relative improvement.

Compared to the winners of the AVEC 2019 challenge,

Valence Arousal Avg.
Model CCC ↑ CCC ↑ CCC ↑

Aud-branch 0.694 0.453 0.573
Vis-branch 0.496 0.355 0.425

AV Feature Fusion 0.568 0.390 0.479
AV Prediction Fusion 0.696 0.481 0.578
AV Context Fusion 0.690 0.487 0.588
AV COLD Fusion 0.723 0.504 0.613

TABLE 2: Dimensional emotion regression results on the
IEMOCAP test set (CCC: Concordance Correlation Coef-
ficient).

Zhao et al. [98], COLD fusion performs well in terms of
arousal and mean CCC scores. However, it is slightly worse
in the case of valence CCC. Note that Zhao et al. [98] use a
domain adaptation technique to cope with the cross-cultural
variations in audiovisual emotion expressions. However,
our focus is not on coping with the cross-cultural variations,
but primarily on improving the fusion performance. It is
important to note that our fusion technique is, in principle,
complementary to the domain adaptation used in [98].
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Transition points (points 
at which one modality 
becomes more 
confident than the other)

Deviation between 
unimodal (visual or 
audio) predictions and 
ground truth labels

Deviation between 
unimodal (visual
or audio) fusion 
weights

Fig. 6: Emotion predictions on an example from the AVEC
2019 CES validation set: Unimodal and multimodal valence
predictions, and their uncertainty-based fusion weights esti-
mated by the AV COLD fusion predictions. Note that fusion
weights of the audio and visual modalities demonstrate
(a) the calibration property – how far their corresponding
unimodal predictions are from the ground truth ratings and
(b) the ordinal ranking property – how well they can order
the audio and visual modalities in terms of their reliability.

More advanced temporal models such as Affective Pro-
cesses [40], [41], [44] demonstrated superior generalisation
performance than the RNNs in recent years. However, since
this work mainly focuses on capturing temporal uncertainty
for model-agnostic fusion based on simple CNN+RNN for-
mulations, such complex temporal models based on APs are
not included in this comparison, to not clutter the analysis
of standard model-agnostic fusion methods presented here.

In Appendix. A, we compare the proposed COLD fusion
and a multimodal Transformer baseline [99] on the AVEC
2019 dimensional emotion regression task. Here also, COLD
fusion clearly outperformed the transformer baseline by a
noticeable margin, especially in arousal prediction.

Appendix. B presents an ablation study of different
components in the COLD fusion formulation, by nullifying
different hyperparameters to modify the COLD training
objective (Equation (8)). These results, as shown in Table 11,
show the importance of calibration, ordinal, and variance
regularisation constraints to the overall performance

Valence Arousal

Model P↑ R↑ F1↑ P↑ R↑ F1↑
Aud-branch 68.3 48.2 56.6 74.3 50.2 59.9
Vis-branch 70.9 58.1 63.9 76.8 70.3 73.4
AV Feature Fusion 67.8 60.2 63.8 73.4 68.2 70.7
AV Prediction Fusion 68.9 60.5 64.4 77.0 69.4 73.0
AV Context Fusion 75.0 60.6 67.0 77.1 71.1 73.9
AV COLD Fusion 76.8 62.4 68.9 79.5 74.0 76.5

TABLE 3: Dimensional emotion 3-way classification results
(P: Precision, R: Recall, F1: F1 score) on the AVEC 2019 CES
validation set.

Valence Arousal

Model P↑ R↑ F1↑ P↑ R↑ F1↑
Aud-branch 55.5 55.3 55.4 62.4 55.1 58.5
Vis-branch 53.7 48.7 51.0 56.8 49.2 52.7
AV Feature Fusion 62.8 47.8 54.3 58.4 54.2 56.2
AV Prediction Fusion 64.5 57.3 60.7 58.9 57.0 57.9
AV Context Fusion 64.3 61.6 62.9 61.8 55.6 58.6
AV COLD Fusion 66.3 61.5 63.8 64.9 59.5 62.1

TABLE 4: Dimensional emotion 3-way classification results (P:
Precision, R: Recall, F1: F1 score) on the IEMOCAP test set.

improvements achieved by COLD fusion. In Appendix. C,
we present the results of statistical significance tests, further
validating the improvements achieved by COLD fusion
over the standard fusion baselines.

Classification performance on the AVEC 2019 CES and
IEMOCAP corpora is presented in Tables 3 and 4. Similar
to the regression results, COLD fusion demonstrates
superior emotion classification results on both datasets.
Note that here, we pose the original regression problem as a
3-way classification problem by discretising the continuous
emotion labels. For this reason, we do not have any existing
benchmarks for comparison in this particular classification
setting. Nevertheless, the performance improvements
achieved by the COLD fusion are consistent for both
valence and arousal in terms of all three metrics, except for
the valence recall on IEMOCAP.

Unimodal Performance Analysis. It is interesting to note
that in the AVEC 2019 case, the visual modality (Vis-branch)
has a considerably better performance compared to the
audio modality (Aud-branch), while it is vice versa in the
case of the IEMOCAP dataset. This discrepancy may be
due to the difference in the quality of the video data in
terms of face image resolution. Despite such dataset-specific
differences, our COLD fusion technique shows consistent
performance improvements in the multimodal classification
and regression settings for both datasets.

Analysis of Fusion Baselines. Among the fusion methods
that we evaluated here, temporal context or simply context
fusion is found to be the second-best performing method
after the proposed COLD fusion, on both datasets. Note
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Valence ECE ↓ Arousal ECE ↓
Model BTS ATS BTS ATS
Aud-branch 13.6e-2 6.3e-2 3.2e-2 2.8e-2
Vis-branch 8.9e-2 7.1e-2 12.6e-2 3.1e-2
AV Feature Fusion 6.1e-2 5.0e-2 5.5e-2 3.3e-2
AV Prediction Fusion 8.7e-2 5.1e-2 2.5e-2 2.6e-2
AV Context Fusion 6.9e-2 4.0e-2 6.3e-2 3.0e-2
AV COLD Fusion 3.7e-2 4.3e-2 1.3e-2 0.9e-2

TABLE 5: Dimensional emotion classification calibration re-
sults on the AVEC 2019 CES validation set (ECE: Expected
Calibration Error, BTS: Before Temperature Scaling, ATS:
After Temperature Scaling).

Valence ECE ↓ Arousal ECE ↓
Model BTS ATS BTS ATS
Aud-branch 7.4e-2 6.0e-2 13.2e-2 8.1e-2
Vis-branch 8.0e-2 4.1e-2 7.4e-2 5.0e-2
AV Feature Fusion 7.5e-2 5.6e-2 7.0e-2 5.8e-2
AV Prediction Fusion 8.4e-2 6.4e-2 8.4e-2 4.2e-2
AV Context Fusion 9.7e-2 6.6e-2 7.9e-2 6.0e-2
AV COLD Fusion 6.1e-2 3.8e-2 1.1e-2 2.0e-2

TABLE 6: Dimensional emotion classification calibration re-
sults on the IEMOCAP test set (ECE: Expected Calibration
Error, BTS: Before Temperature Scaling, ATS: After Temper-
ature Scaling)).

that here, the temporal context refers to the output of
the unimodal GRU block, and unimodal predictions are
generated by applying a shallow fully connected network
to the unimodal context vector. Thus, the context vectors
can be viewed as higher-dimensional descriptors of the final
unimodal predictions. Based on this assumption, in theory,
the performance of context fusion is bound to be either
better or at least as good as the prediction fusion, justifying
the trends observed in our experimental results.

We notice that the feature fusion performance is inferior
to all the remaining fusion techniques, and prediction fusion
performs better than feature fusion. This result is consistent
with an observation that prediction fusion achieves better
results compared to feature fusion in general, as reported
in the existing multimodal affect recognition literature [71].
It is worth noting that the results of feature fusion are
worse than that of the best performing unimodal models on
both datasets, i.e., the visual (Vis-branch) model on AVEC
2019 and the audio (Aud-branch) model on IEMOCAP.
This performance degradation may be due to not explicitly
correcting the temporal misalignment effects [70], which
are heuristically derived in general [4]. This result indicates
that integrating multimodal emotion information at the
feature-level or frame-level could be suboptimal most
likely due to the temporal misalignment issues, given
that continuous emotion information is expressed in the
audiovisual modalities at different frame rates [8], [72].

Dynamic Adaptation of Fusion Weights in the Presence
of Noise. In this experiment, we aim to understand how
different fusion models perform when presented with novel

Valence Arousal Avg.
Model CCC ↑ CCC ↑ CCC ↑

AV Feature Fusion 0.378 0.351 0.364
AV Prediction Fusion 0.363 0.545 0.454
AV Context Fusion 0.385 0.508 0.445
AV COLD Fusion 0.491 0.574 0.528

TABLE 7: Impact of visual noise (external occlusions) on the
AV fusion models: Dimensional emotion regression results
with 50% of randomly chosen face images masked during evalua-
tion (see Figure 5) on the AVEC 2019 CES validation Set.

noise patterns at test time. By inducing noise into the visual
modality through face masking, here, we investigate the
performance of different fusion baselines in comparison
with the COLD fusion. For this evaluation, we overlaid
the face masks as external occlusions on the image se-
quences using the method proposed in MaskTheFace [100]6.
We applied MaskTheFace to 50% of the randomly chosen
consecutive frames of the AVEC 2019 CES validation set
sequences, as shown in Figure 5. Note that all the fusion
models evaluated here have not seen faces with masks
during their training. As Table 7 shows, in this noise-
induced evaluation setup, performance drop compared to
the noise-free evaluation (Table 1) is considerably higher
for all three fusion baselines (feature, prediction, and con-
text) than for the COLD fusion. Furthermore, the relative
performance difference between the COLD fusion and the
best-performing fusion baselines is increased from ∼6% in
noise-free settings to ∼17% in this noise-induced case.

Figure 5 compares the COLD fusion predictions with
the predictions from visual and audio branches, along with
the inferred modality-wise fusion weight scores. We can
clearly see that the visual fusion weights are much lower
for the frames with masks compared to the frames without
masks, and as a result, the final predictions rely more on the
audio modality in the presence of visual noise. This result
demonstrates the ability of COLD fusion to dynamically
adjust the importance of a specific modality according to
its informativeness towards recognising the target emotions.

6.2 Categorical Emotion Recognition Results

The comparative results for the categorical emotion recog-
nition tasks are presented in Table 8 (CMU-MOSEI) and
Table 9 (IEMOCAP). This comparison considers the fol-
lowing baselines: late fusion models based on LSTMs and
Transformers, existing multimodal benchmarks and a SOTA
model (AMOA [83]) among the two-phase models. Note
that most existing models evaluated on CMU-MOSEI and
IEMOCAP take a two-phase approach to multimodal emo-
tion recognition, in which unimodal hand-crafted feature
extraction and multimodal temporal fusion are performed
separately. In line with those works, we evaluated the COLD
fusion using the same two-phase architecture.

As shown in Table 8 and Table 9, COLD fusion achieves
new SOTA performance among the two-phase models. Note

6. https://github.com/aqeelanwar/MaskTheFace

https://github.com/aqeelanwar/MaskTheFace
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Angry Disgusted Fear Happy Sad Surprised Average

Model WAc.↑ F1↑ WAc.↑ F1↑ WAc.↑ F1↑ WAc.↑ F1↑ WAc.↑ F1↑ WAc.↑ F1↑ WAc.↑ F1↑

LSTM Pred. Fusion† 64.5 47.1 70.5 49.8 61.7 22.2 61.3 73.2 63.4 47.2 57.1 20.6 63.1 43.3
Transf. Pred. Fusion† 65.3 47.7 74.4 51.9 62.1 24.0 60.6 72.9 60.1 45.5 62.1 24.2 64.1 44.4
EmoEmbs [81] 66.8 49.4 69.6 48.7 63.8 23.4 61.2 71.9 60.5 47.5 63.3 24.0 64.2 44.2
MulT [99]† 64.9 47.5 71.6 49.3 62.9 25.3 67.2 75.4 64.0 48.3 61.4 25.6 65.4 45.2
AMOA [83]† 66.4 47.5 74.9 52.2 62.0 25.1 62.6 73.4 63.8 47.2 64.3 26.5 65.7 45.3
AVL Context Fusion 61.8 47.3 79.6 50.6 64.9 22.7 66.3 73.3 55.8 48.1 63.4 24.5 65.3 44.5
AVL COLD Fusion 69.7 49.3 77.6 52.9 79.8 25.6 65.8 74.2 54.8 46.5 78.8 28.5 71.1 46.1

TABLE 8: Categorical emotion classification results on the CMU-MOSEI test set (WAc. and F1 indicate weighted accuracy
and F1 scores respectively and † indicates the baseline models’ results from Li et al [84]).

Angry Excited Frustrated Happy Neutral Sad Average

Model Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑

LSTM Pred. Fusion† 71.2 49.4 79.3 57.2 68.2 51.5 67.2 37.6 66.5 47.0 78.2 54.0 71.8 49.5
Transf. Pred. Fusion† 81.9 50.7 85.3 57.3 60.5 49.3 85.2 37.6 72.4 49.7 87.4 57.4 78.8 50.3
EmoEmbs [81] 65.9 48.9 73.5 58.3 68.5 52.0 69.6 38.3 73.6 48.7 80.8 53.0 72.0 49.8
MulT [99]† 77.9 60.7 76.9 58.0 72.4 57.0 80.0 46.8 74.9 53.7 83.5 65.4 77.6 56.9
AMOA [83]† 82.5 53.4 85.8 57.9 74.4 56.5 88.6 47.0 73.2 49.6 87.8 64.5 82.1 54.8
AVL Context Fusion 85.4 51.6 82.4 52.2 63.4 50.0 85.6 35.5 71.6 49.3 84.6 56.8 78.8 49.2
AVL COLD Fusion 86.5 58.4 88.3 61.6 68.6 57.9 88.1 43.7 76.6 48.9 87.9 60.2 82.7 55.1

TABLE 9: Categorical emotion classification results on the IEMOCAP test set (Acc. and F1 indicate standard accuracy and
F1 scores respectively, and † indicates the baseline models’ results from Li et al [84]).

that on the both datasets there is a noticeable performance
difference between the context fusion and COLD fusion
models, which demonstrates the importance of the pro-
posed calibration and ordinal constraints on temporal latent
distribution learning. On CMU-MOSEI, compared to the ex-
isting SOTA (AMOA), COLD fusion achieves 8.2% and 1.8%
relative improvements in terms of the average weighted
accuracy and F1 scores respectively. On IEMOCAP, COLD
fusion demonstrates the best accuracy and the second best
F1 score. Here, the model with the highest F1 score is
based on a multimodal transformer (Mult [99]), whereas
the COLD fusion model implemented in this work uses
GRUs for modelling the temporal dynamics. For further
performance improvements, the proposed COLD fusion
model can be integrated with transformer-based temporal
models for combining the best of both worlds.

Compared to the two-phase models considered here for
evaluation, some recently proposed fully end-to-end models
such as the ones in [80], [84], [101] demonstrated improved
emotion recognition performance but at the cost of signif-
icantly increased model training complexity. Although the
COLD fusion framework is not evaluated in such models in
this work, its ability to achieve robust multimodal fusion
can be extended to fully end-to-end models as well for
additional performance gains.

To demonstrate the applicability of COLD fusion to other
multimodal tasks, besides emotion recognition, we evalu-
ated it on utterance-level multimodal (AVL) sentiment anal-
ysis tasks on the CMU-MOSEI dataset. Refer to Appendix. E
for the sentiment classification and regression results of the
COLD fusion model in comparison with the existing base-
lines. In this case, COLD fusion achieves competitive results

compared to the best-performing baseline (MISA [102]) and
it shows the best results when coupled with MISA.

Overall, the multimodal categorical emotion and sen-
timent recognition results demonstrate the importance of
learning well-calibrated and well-ranked uncertainty scores
for improved multimodal fusion performance. These exper-
iments also show that the COLD fusion formulation can be
easily extended to models with more than two modalities.

6.3 Uncertainty Calibration Performance Analysis
To measure the quality of uncertainty estimates, we com-
puted Expected Calibration Error (ECE) (see Section 5.2) val-
ues for the unimodal and multimodal emotion classification
models. Note that this calibration error metric applies only
to the classification settings. By computing the ECE values
before and after applying temperature scaling to the softmax
distributions over the predictions of each model separately,
we analyse the impact of explicit uncertainty calibration
(temperature scaling). We searched for an optimal tempera-
ture value in the range of 1e− 2 to 1000 by doing a random
search for 100 iterations. Similar to the technique followed
in [14], we selected a temperature value that achieves the
lowest ECE value on the validation set.

It is important to consider that the COLD fusion models
are trained to be implicitly calibrated (see Equation (6)) in
terms of their context variance values. Thus, even before
applying explicit calibration, i.e., temperature scaling, we
expect the predictive uncertainty values or class-wise confi-
dence scores of the COLD fusion models to have lower ECE
values compared to the other fusion baselines.

Table 5 reports the ECE values for valence and arousal
attributes on the AVEC 2019 corpus. For both attributes,
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before the application of temperature scaling, COLD fusion
has the lowest calibration error when compared to the
other models. After applying temperature scaling, it is
obvious that the ECE values for all the models go down,
and the COLD fusion still achieves the lowest error. Only
in the case of valence, AV context fusion has a marginally
lower ECE value compared to the COLD fusion. This minor
discrepancy could be due to the random search of optimal
temperature values and note that here, different models
have different optimal temperature values that are tuned
for valence and arousal, separately. Nevertheless, in all
the remaining cases (both before and after temperature
scaling), COLD fusion consistently shows lower uncertainty
calibration errors w.r.t. the other fusion models. Results on
the IEMOCAP corpus (see Table 6) show similar trends,
validating the effectiveness of the COLD fusion approach
in producing well-calibrated uncertainty estimates. To
visually illustrate the uncertainty calibration performance
of the COLD fusion model, Appendix. D compares the
reliability diagrams of different unimodal and multimodal
dimensional emotion classification models.

Analysis of Audiovisual Fusion Weights. Figure 6 il-
lustrates modality-wise fusion weights estimated by the
COLD fusion model on a validation sequence taken from
the AVEC 2019 corpus. Note that these fusion weights are
functions of the unimodal temporal context distributions
(see Equation (2)). In this illustration, we analyse the tem-
poral patterns of fusion weights along with their corre-
sponding unimodal and multimodal emotion predictions
and their ground truth labels. This analysis clearly shows
the well-calibrated nature of modality-wise fusion weights:
when the predictions of one modality move closer to the
ground truth compared to those of the other modality, the
audiovisual weight values in the COLD fusion are found to
be varying accordingly. From the transition points marked
in Figure 6, we can see that the fusion weights are gradually
inverted, as the predictions of one modality move closer
to the ground truth while the other modality predictions
move further. This result validates our main hypothesis of
making unimodal latent distributions calibrated and ordinal
for improved fusion performance.

7 CONCLUSION

We proposed an uncertainty-aware multimodal fusion ap-
proach to dimensional and categorical emotion recognition
from multimodal data. To capture modality-wise uncer-
tainty w.r.t. predicting valence and arousal dimensions, we
probabilistically modelled the unimodal temporal context
by learning modality-wise latent distributions. For effec-
tive uncertainty-weighted multimodal fusion, we suggested
conditioning the unimodal latent distributions such that
their variance norms are learnt to be well-calibrated and
well-ranked (ordinal). To jointly impose these two constraints
on the latent distributions, we introduced a novel softmax
distributional matching loss function that encourages the
uncertainty scores to be well-calibrated and well-ranked.
Our novel loss function for multimodal learning is appli-
cable to both classification and regression settings.

For example, in dimensional emotion regression tasks,
COLD fusion shows ∼6% average relative improvement
over the best performing fusion baseline. Similarly, in the
case of categorical emotion classification, COLD fusion
achieves ∼8.2% relative accuracy improvement over the
existing state-of-the-art model. Furthermore, we assess the
robustness of different fusion models at test time by induc-
ing noise into the visual modality through face masking.
With the faces masked in 50% of the evaluation sequences,
COLD fusion achieves ∼17% average relative improvement
over the best fusion baseline.

On spontaneous and acted emotion recognition tasks
(in both dimensional and categorical emotion cases), our
proposed uncertainty-aware fusion model achieved consid-
erably better recognition performance than the uncertainty-
unaware model-agnostic fusion baselines. In recognising
dimensional emotions, COLD fusion demonstrated ∼6%
relative improvement over the best-performing fusion base-
line, and in the case of categorical emotion recognition
it achieved ∼8.2% relative improvement over the exist-
ing state-of-the-art model. Validating our main hypothesis,
extensive ablation studies (see Appendix. B) showed that
it is important to apply both calibration and ordinality
constraints for improving the emotion recognition results of
uncertainty-aware fusion models. Furthermore, our method
demonstrated noticeable improvements in terms of predic-
tive uncertainty calibration errors of the emotion recognition
models. It is important to note that our proposed calibration
and ordinal ranking constraints can be easily applied to
general model-fusion methods as well by quantifying the
model-wise predictive uncertainty values of emotion labels.
Future work can consider evaluating the COLD fusion ap-
proach on other complex multimodal learning tasks such
as audiovisual speech recognition in noisy conditions [103]
and humour detection [25], [104], etc.

In summary, this work showed the importance of uncer-
tainty modelling for the dynamic integration of emotional
expression cues from multimodal signals. We believe that
uncertainty-aware information fusion is fundamental to re-
liably recognise apparent emotional states in naturalistic
conditions. We hope that the results we demonstrated in
this work may help in generating more interest in embracing
uncertainty in multimodal affective computing.
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APPENDIX A
COMPARISON WITH A MULTIMODAL TRANS-
FORMER [99]
In addition to the standard fusion baselines, we imple-
mented a multimodal Transformer model based on pair-
wise crossmodal self-attention fusion proposed in Tsai et
al. [99]. It is worth noting that the crossmodal self-attention
fusion aims to cope with the problem of temporal misalign-
ment between different modalities during fusion, similar
to the temporal context fusion model we evaluated in this
work. We implemented an audio-visual version of this
multimodal Transformer method by tailoring its original
network architecture designed for the text, audio, and visual
modalities7. We used a 3-layer self-attention network with
16 heads followed by an FC output layer to implement this
multimodal Transformer. As shown in Table 10, regression
results on the AVEC 2019 CES corpus show that the COLD
fusion clearly outperformed the Transformer baseline, par-
ticularly in arousal prediction, by a large margin.

Valence Arousal Avg.
Model CCC ↑ CCC ↑ CCC ↑

Multimodal AV Transformer [99]† 0.602 0.619 0.610
Proposed AV COLD Fusion 0.611 0.661 0.636

TABLE 10: Comparison with a pair-wise crossmodal self-
attention based multimodal Transformer [99] († indicates in-
house implementation for AV fusion): Regression results on
the AVEC 2019 CES validation set.

APPENDIX B
ABLATION STUDIES

Table 11 presents the ablation results that quantify the
contributions of calibration, ordinality, and variance reg-
ularisation constraints to the performance gains achieved
by COLD fusion. By individually nullifying the four opti-
misation hyperparameters of the COLD training objective
(see Equation (8)), we measure the emotion regression per-
formance on the AVEC 2019 validation set. Compared to
the fully constrained COLD fusion model, different partially
constrained and fully unconstrained models listed in Ta-
ble 11, achieve considerably lower CCC scores. Most im-
portantly, we observe that discarding the variance regular-
isation constraint results in more performance degradation
than the remaining constraints. This observation indicates
the importance of preventing the variance collapse problem
by using the variance regularisation term, in line with the
results reported in prior works [40], [76].

APPENDIX C
STATISTICAL SIGNIFICANCE ANALYSIS

As shown in Table 12, we conducted paired t-test on
the validation set of the AVEC 2019 corpus, to verify the
statistical significance of COLD fusion’s performance
improvements over the unimodal and remaining

7. https://github.com/yaohungt/Multimodal-Transformer

Model Valence Arousal
CCC ↑ CCC ↑

With All three constraints 0.605 0.661
(λCV = λCA = λCAV = 1e− 3, λR = 1e− 4)
Without Intramodal constraints (λCV = λCA=0) 0.573 0.615
Without Crossmodal constraint (λCAV ) 0.580 0.609
Without Regularisation constraint (λR = 0) 0.541 0.595
Without Any constraints 0.517 0.578
(λCV = λCA = λCAV = 0, λR = 0)

TABLE 11: Ablation experiments on the proposed loss func-
tion (Equation (6)): Analysing the impact of different loss
components in the COLD Fusion on the AVEC 2019 CES
validation set (CCC-Concordance Correlation Coefficient).

multimodal baselines. In line with the trends in regression,
performance reported in Table 1, p-values of the student
t-test indicate that the improvements achieved by the COLD
fusion models are statistically quite significant compared to
the baseline models.

Model Pair Valence Arousal
p-Value ↓ p-Value ↓

(Aud-branch, AV COLD Fusion) 6.4e-34 9.7e-23
(Vis-branch, AV COLD Fusion) 1.9e-15 3.3e-16
(AV Feature Fusion, AV COLD Fusion) 3.7e-14 1.1e-18
(AV Prediction Fusion, AV COLD Fusion) 5.5e-9 7.3e-3
(AV Context Fusion, AV COLD Fusion) 1.2e-4 2.0e-3
(AV COLD Fusion, AV COLD Fusion) 1.0e-0 1.0e-0

TABLE 12: Statistical significance testing (p <0.01): Regres-
sion t-test results on the AVEC 2019 CES validation set.

APPENDIX D
RELIABILITY DIAGRAMS: UNCERTAINTY CALIBRA-
TION PERFORMANCE EVALUATION

Reliability diagrams visually illustrate the uncertainty
calibration performance of a model’s predictions.
As Figure 7 shows, when a model is perfectly calibrated,
its confidence score vs the accuracy score histogram looks
like a perfect right-angled triangle. The more the deviations
are from the diagonal lines in them, the higher their ECE
values are. Note that ECE is a scalar summary statistic of a
reliability diagram, which computes the weighted average
of such deviations over all the intervals in the reliability
diagram. Though the ECE values reported for both the
AVEC 2019 corpus (Table 5) and IEMOCAP (Table 6)
already validate the improved calibration results with
COLD fusion. Here, as an example, in Figure 7 we compare
the reliability plots of different models evaluated on the
AVEC validation set. In Figure 7, we can see that compared
to the unimodal cases and other fusion baselines, the COLD
fusion reliability plot looks much closer to a perfect right-
angled triangle. Among all the reliability plots illustrated,
we observe that the audio branch for valence has the
highest calibration error. This observation is in line with the

https://github.com/yaohungt/Multimodal-Transformer
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Fig. 7: Reliability plots of unimodal and multimodal classifi-
cation models evaluated on the AVEC 2019 validation set. A
perfectly calibrated model appears as a perfect right angled
triangle, as marked by the diagonal lines and the red bars.

poor performance achieved by the audio modality in terms
of the valence prediction error (see Table 1 and Table 3) on
the AVEC 2019 corpus.

APPENDIX E
APPLICATION OF COLD FUSION TO MULTIMODAL
SENTIMENT INTENSITY PREDICTION

Experimental Setup. In this evaluation our objective is
to analyse the sentiment recognition performance of the
proposed uncertainty-aware temporal context modelling
approach, by demonstrating its application to multimodal
fusion on a large-scale in-the-wild audiovisual dataset. Con-
sidering that the simple recurrent temporal model is used
in the COLD fusion mechanism implemented in this work,
we also show that the proposed uncertainty-aware fusion
step can be easily integrated into the existing multimodal
fusion techniques. We demonstrate this by modifying the
standard modality-wise LSTM / GRU layer output layers in
an existing multimodal fusion network, and by adding ad-
ditional loss terms specific to the COLD fusion as described
in Equation (8). Based on these modifications, we added the
COLD fusion step in one of the existing benchmark fusion
models on CMU-MOSEI, Modality-Invariant and -Specific
Representations (MISA) [102]. MISA is a simple multimodal
fusion approach in which utterance-level embeddings of the
audio, visual and language modalities are projected into
modality-invariant and modality-specific subspaces using
different encoder modules. To extract the unimodal ut-
terance embeddings in MISA, stacked LSTM modules are
applied to each modality separately, similar to the temporal
context extraction step followed in the COLD fusion model.

Model MAE ↓ Corr ↑ Acc-7 ↑ Acc-2 ↑ F1 ↑
Graph-MFN [21] 0.710 0.540 45.0 76.9 77.0
RAVEN [105] 0.614 0.662 50.0 79.1 79.5
MCTN [106] 0.609 0.670 49.6 79.8 80.6
LMF [107] 0.623 0.677 48.0 82.0 82.1
TFN [108] 0.593 0.700 50.2 82.5 82.1
MulT [99] 0.570 0.758 51.1 84.5 84.5
MFM [109] 0.568 0.717 51.3 84.4 84.3
ICCN [110] 0.565 0.713 51.6 84.2 84.2

MISA [102]∗ 0.555 0.756 52.2 85.5 85.3
MISA [102]† 0.557 0.748 51.7 84.9 84.8
COLD Fusion 0.549 0.752 52.1 85.2 85.0
MISA [102]† with
COLD Fusion 0.548 0.760 52.4 85.8 85.5

TABLE 13: Multimodal sentiment regression and classifi-
cation results on the test set of CMU-MOSEI dataset (∗
denotes the originally reported results and † denotes the
results that we could reproduce using the publicly available
implementation)

We followed the same audio, visual and textual feature
extraction steps implemented in the original MISA model.
Here we applied the COLD fusion to only audio and
visual features, as the text embeddings are prepared
using a pre-trained BERT model [111]. Building on the
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main idea of MISA, we replaced the modality-wise
(audio and visual) recurrent temporal modules in the
MISA implementation with the modified GRU layers
that output mean and variance vectors as in the COLD
fusion model. Before learning the modality-invariant
and modality-specific features, the temporal context
embeddings of audio and visual modalities are multiplied
with their corresponding COLD fusion weight vectors
(see Equation (2)). For the purpose of computing the
COLD fusion loss (Equation (8)), we additionally included
modality-wise sentiment prediction modules, composed of
a 2-layer fully connected network on top of the GRU layer
outputs. Note that all the remaining experimental setup
details of this modified MISA model that we used here for
the COLD fusion evaluation are the same as in the publicly
available implementation of MISA8.

Evaluation Criteria. For analysing the sentiment intensity
prediction performance in regression tasks, we used
mean absolute error (MAE) and Pearson’s correlation
coefficient (Corr) as evaluation metrics. Similar to the
existing benchmarks, we also included the classification
results in terms of 7-class accuracy (Acc-7), 2-class accuracy
of positive and negative classification task (Acc-2) and its
corresponding F1 score values.

Results and Analysis. In Table 13 we present the senti-
ment intensity regression and classification results of the
MISA model with and without COLD fusion on the test set
of CMU-MOSEI, in comparison with the following fusion
methods evaluated on multimodal sentiment analysis tasks:

• A graph-based fusion model (Graph-MFN [21])
• Attention and Transformer-based fusion models

(RAVEN [105] and MulT [99])
• Fusion models based on subspace learning

(MCTN [106] and MFM [109])
• A tensor-based fusion model (TFN [108]) and its low-

rank variant (LMF [107])
• A canonical correlation-based fusion network

(ICCN [110])

Compared to the above-listed fusion models, the pro-
posed COLD fusion mechanism integrated with the MISA
model shows consistently better sentiment intensity predic-
tion results in terms of both classification and regression
metrics. The overall performance improvements achieved
by the MISA + COLD fusion model validate the main
hypothesis of this work that the uncertainty-aware temporal
fusion improves the model’s predictive performance. The
performance difference between the MISA models with
and without COLD fusion, indicates that the COLD fu-
sion mechanism can complement the existing uncertainty-
unaware temporal fusion models, at the cost of requiring
only minimal changes to the canonical temporal model’s
architecture and the training loss function.

8. MISA - https://github.com/declare-lab/MISA

https://github.com/declare-lab/MISA
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