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PFENet++: Boosting Few-shot Semantic
Segmentation with the Noise-filtered

Context-aware Prior Mask
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Abstract—In this work, we revisit the prior mask guidance proposed in “Prior Guided Feature Enrichment Network for Few-Shot
Segmentation”. The prior mask serves as an indicator that highlights the region of interests of unseen categories, and it is effective in
achieving better performance on different frameworks of recent studies. However, the current method directly takes the maximum
element-to-element correspondence between the query and support features to indicate the probability of belonging to the target class,
thus the broader contextual information is seldom exploited during the prior mask generation. To address this issue, first, we propose
the Context-aware Prior Mask (CAPM) that leverages additional nearby semantic cues for better locating the objects in query images.
Second, since the maximum correlation value is vulnerable to noisy features, we take one step further by incorporating a lightweight
Noise Suppression Module (NSM) to screen out the unnecessary responses, yielding high-quality masks for providing the prior
knowledge. Both two contributions are experimentally shown to have substantial practical merit, and the new model named PFENet++
significantly outperforms the baseline PFENet as well as all other competitors on three challenging benchmarks PASCAL-5i,
COCO-20i and FSS-1000. The new state-of-the-art performance is achieved without compromising the efficiency, manifesting the
potential for being a new strong baseline in few-shot semantic segmentation. Our code will be available at Github.

Index Terms—Few-shot Segmentation, Few-shot Learning, Semantic Segmentation, Scene Understanding.

✦

1 INTRODUCTION

Deep learning has significantly boosted the performance of
semantic segmentation. However, strong semantic segmentation
models [5], [84] heavily rely on the training with sufficient fully-
labeled data, and they are hard to deal with new applications where
novel classes are not witnessed during the training phase.

Few-shot segmentation (FSS) [49] aims at quickly adapting
models to segment previously unseen categories on the query
set with only a few annotations available in the support set.
Models are episodically trained on base classes with sufficient
annotations and then tested on novel classes. During testing,
the novel categorical information is provided by the support set
where only a few annotated samples are available, and models are
required to locate the target objects in the query set based on the
information given by the support set.

Current FSS methods [35], [49], [64], [71], [79] can be
abstracted by a generic encoder-decoder structure as demonstrated
in Figure 1. The encoder is usually a deep convolutional network
(i.e., VGG [53] and ResNet [17]) that processes the query and
support images respectively to yield deep features. Then, the query
and support features are sent to the decoder together with the
support masks, and the decoder parses the input features and then
outputs the predictions locating the target regions on the query
samples.
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Fig. 1: Abstract of recent FSS frameworks. Is and Iq are the input
support and query images, and Ms is the support mask. Xs and
Xq denote the feature maps extracted by the encoder from the
support and query images respectively. Then, the features are sent
to the decoder, along with Ms, to yield the prediction Oq on the
query image Iq , based on the categorical information provided by
Ms. The evaluation is conducted on the set of categories that are
not witnessed during the training phase.

The recently proposed PFENet [60] achieves promising per-
formance on popular FSS benchmarks and it has served as strong
baselines for the latest work [2], [27], [76]. As observed in [60],
[79], directly feeding the high-level features (e.g., layer 4 of
ResNet) extracted from a fixed encoder to the trainable decoder
results in performance deduction since the decoder will overly
rely on the high-level features to make predictions during training,
causing severe over-fitting to base classes. Therefore, PFENet
instead transforms the high-level semantic cues into the class-
agnostic prior mask by calculating the maximum one-to-one
correlation responses between the query and support high-level
features. Then, the prior mask is passed to the decoder along
with the query and support middle-level features (e.g., layers 2-
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3 of ResNet), providing additional cues for better identifying the
targets. The prior mask generation method is simple yet effective
for achieving better results in FSS, while we find that two major
bottleneck limits the performance.

Underused high-level contextual cues. Powerful scene pars-
ing models achieve breakthrough improvements by adequately
exploiting the semantic context from the high-level features (e.g.,
PPM [84] and ASPP [6]). However, the current mask generation
method of PFENet merely calculates the element-to-element cor-
relations without considering the essential surrounding contextual
information that is conducive to dense visual perception. There-
fore, we alternatively use the Context-aware Prior Mask (CAPM)
that is obtained by modeling the regional correlations. Unlike the
element-wise correlations, feature patches encode more regional
spatial information that could be used as additional hints for
facilitating the dense labeling tasks.

Noisy and unnecessary responses. The high-level prior guid-
ance on the query sample is obtained by taking the maximum
responses among all support features in [60], while it is observed
that the maximum value is easily affected by noisy features
that share local similarities (i.e., color and texture) but are with
distinct semantic labels. Importantly, when more contextual cues
are involved, the current parameter-free mask generation paradigm
yields abundant unnecessary responses, making the generated
masks unable to clearly indicate the region of interest. To alle-
viate this issue, we incorporate an effective yet efficient module
named Noise Suppression Module (NSM) to screen out useless
activations according to the correlation distribution between the
query and support features, further improving the quality of the
prior mask.

To this end, we combine PFENet with the proposed Context-
aware Prior Mask (CAPM) and Noise Suppression Module
(NSM), and the enhanced model named PFENet++ significantly
outperforms PFENet as well as all other competitors in both 1- and
5-shot settings. Though only a few additional learnable parameters
are introduced, the proposed CAPM and NSM still well generalize
to the new categories that even do not exist in the ImageNet [47]
used for pre-training the feature extractor. Our contributions in this
paper are summarized as follows.

• To our best knowledge, the proposed Context-aware Prior
Mask (CAPM) is the first design that exploits the regional
contextual correlation between the query and support features
to address the few-shot segmentation problem.

• By mitigating redundant irrelevant correlation responses, the
Noise Suppression Module (NSM) further boosts the im-
provement brought by CAPM.

• PFENet++ reaches a new state-of-the-art performance on
popular benchmarks without deprecating the model effi-
ciency, and the new designs also bring considerable improve-
ments to other latest methods.

2 RELATED WORK

Semantic Segmentation
Semantic segmentation is a fundamental yet challenging task
that requires accurate dense labeling. Recent architectures [1],
[25], [41], [46], [55], [58], [63] are originated from FCN [50]
that is the first framework designed for semantic segmentation.
Contextual information helps identify individual elements based

on the surrounding hints, thus the receptive field is essential for
semantic segmentation. To this end, the dilated convolution [4],
[6], [72], [74], global pooling [33] and pyramid pooling [19],
[83], [84] are adopted to help enlarge the receptive field and
they have achieved considerable improvement. Meanwhile, to
effectively leverage long-distance semantic relations, attention-
based models [12], [20], [75], [80], [85] have thrived, reaching
a new state-of-the-art performance. However, powerful segmenta-
tion models cannot well address the previously unseen categories
without updating the model parameters.

Few-Shot Learning
Few-shot learning methods perform classification on the novel
categories while only a small amount of labeled data is provided.
Recent solutions are mainly based on meta-learning [3], [11],
[48] that aims to get a model that can quickly generalize to
new downstream applications within a few adaption steps, and
metric-learning [13], [43], [54], [56], [61], [77] that learns to
yield discriminative representations for novel categories. More-
over, considering the data-driven literature of deep learning, data
augmentation techniques help models achieve better performance
by synthesizing new samples or features based on the few la-
beled data [16], [65], [81]. Though few-shot learning has made
tremendous progress on image recognition, without considering
the contextual issues, directly applying the representative few-shot
learning methods (i.e., Prototypical Network [54] and Relation
Network [56]) to address few-shot segmentation achieve less
satisfying results as verified by the baselines of PL [8] and
CANet [79].

Few-Shot Segmentation
Few-Shot Segmentation (FSS) requires model to quickly segment
the target region with only a few annotations [28], [40], [45],
[57], [86]. OSLSM [49] formally introduces this setting in seg-
mentation and provides a solution by imprinting the classifier’s
weights for each task. The idea of Prototypical Network [54]
is used in PL [8] whose predictions are made based on the
cosine similarity between the query pixels and support prototypes.
Additionally, prototype alignment regularization is introduced in
PANet [64] to help rectify the prediction. The prototype mixture
models (PMMs) [71] correlate diverse image regions with multiple
prototypes to enforce the prototype-based semantic representation
with the Expectation-Maximization (EM) algorithm. Predictions
can be also generated by convolutions, analogous to the relation
module proposed in [29]. CANet [79] concatenates the support
and query features and adopts the Iterative Optimization Module
(IOM) to accomplish the prediction refinement. PPNet [35] con-
structs partial support prototypes based on super-pixels. PFENet
[60] exploits the prior mask guidance obtained from the pre-
trained backbone to help locate the target region, and a Feature
Enrichment Module (FEM) to tackle the spatial inconsistency
between the query and support samples, respectively. RePRI [2]
proposes a transductive inference strategy that better leverages the
support-set supervision than other existing methods.

More recently, [10], [14], [18], [21], [22], [23], [26], [31],
[32], [34], [36], [37], [38], [42], [51], [59], [66], [67], [68], [69],
[70], [73] further boost the performance. Specifically, HSNet [37]
employs multi-level feature correlation and efficient 4D convo-
lutions to extract a range of features from different levels of
intermediate convolutional layers, resulting in the generation of
a collection of 4D correlation tensors. BAM [26] introduces an
additional branch (base learner) alongside the conventional FSS
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model (meta learner) with the explicit purpose of identifying
the targets of base classes. The final segmentation prediction is
obtained by adaptively integrating the coarse results produced by
these two learners, allowing for a more accurate segmentation.
GFS-Seg [59] analyzes the generalization ability of segmentation
models to simultaneously recognize novel categories with very
few examples as well as base categories with sufficient examples.
VAT [18] proposes a 4D Convolutional Swin Transformer to
address the problem arose from tokenization of a correlation
map from transformer processing. Our contributions in this paper
mainly follow the principles of the prior mask guidance proposed
in PFENet [60].

3 PRELIMINARIES

Before formally introducing our method, we start with the task
definition of Few-shot Segmentation (FSS) in Sec. 3.1, followed
by the introduction of the prior mask guidance proposed in
PFENet [60] in Sec. 3.2.

3.1 Task Description

The few-shot semantic segmentation task is associated with two
sets, i.e., the query set Q and support set S . Given K samples
from support set S , the goal is to segment the area of unseen class
Ctest from each query image Iq in the query set.

Models are trained on base classes Ctrain and tested on previ-
ously unseen (novel) classes Ctest in episodes (Ctrain ∩ Ctest =
∅). The episode paradigm for FSS is proposed in [49] for training
and evaluation. Each episode is formed by a support set and
a query set of class Ci. The support set S has K samples
S = {S1,S2, ...,SK}, named ‘K-shot scenario’. Each support
sample Si is a pair of {Is,Ms} where Is and Ms are the support
image and pixel-wise annotation of Ci respectively. For the query
set, Q = {Iq,Mq} where Iq is the query image and Mq is the
ground truth indicating the target belonging to class Ci. The query-
support pair {Iq,S} = {Iq, Is,Ms} forms the input batch.

3.2 Revisit the Prior Mask Guidance

In CANet [79], Zhang et al. empirically observe that, within
the encoder-decoder structure, directly sending the middle-level
features extracted from a fixed encoder (e.g., ResNet [17] and
VGG [53]) to the decoder performs much better than the high-
level counterparts on few-shot segmentation, since the middle-
level ones constitute object parts shared by unseen classes.

Tian et al. [60] give an alternative explanation that the
semantic information contained in high-level features is more
class-specific than the middle-level features, and therefore the
decoder parameters are prone to overly rely on high-level features
of the base classes to optimize the training objectives better,
causing inferior generalization ability on unseen classes. However,
contradicting these findings in FSS, advanced generic semantic
segmentation frameworks [7], [75], [84] are instead designed for
better exploiting the high-level semantic cues to have superior
performance. Therefore, for the purpose of adequately making use
of the high-level hints that could cause severe over-fitting issues,
PFENet [60] transforms the ImageNet [47] pre-trained high-level
features into a class-agnostic prior mask that merely indicates the
probability of pixels belonging to the target category.

Concretely, let F denote the feature extractor, and Iq and Is
are query and support images respectively. We can obtain the d-
dimensional high-level features as:

Xq = F(Iq), Xs = F(Is)⊙Ms, (1)

where ⊙ is the Hadamard product. Let h and w represent the
height and width of the feature map. The irrelevant area on the
reshaped support high-level feature Xs ∈ Rhw×d is set to zero by
the reshaped binary support mask Ms ∈ Rhw×1, to make sure
that the prior mask of Iq only correlates with the target region
of Is. The element-to-element correlation matrix R ∈ Rhw×hw

is subsequently formed by calculating the cosine-similarity values
between all query and support high-level features:

R = ϕ(Xq)ϕ(Xs)T , (2)

where ϕ represents the L2 normalization. Then, the prior mask
Yq ∈ Rhw×1 of the query image can be yielded by taking the
maximum correlation values among all support features in Eq. (3),
followed by the min-max normalization as Eq. (4) with ϵ = 1e−7.

Yq = max
j

R(i, j), i, j ∈ {1, 2, ..., hw}, (3)

Yq =
Yq −min(Yq)

max(Yq)−min(Yq) + ϵ
. (4)

4 METHOD

In this following, the motivations and details of our proposed
Context-aware Prior Mask (CAPM) and Noise Suppression Mod-
ule (NSM) are shown in Sec. 4.1 and Sec. 4.2 respectively. The
overall pipeline is illustrated in Fig. 2 where regional matching
and noise suppression are performed to yield more informative
prior masks.

4.1 Context-aware Prior Mask
The prior mask Yq obtained by Eqs. (3) and (4) implies the
similarities between the query features and their most relevant
support features, thus the higher the values on Yq , the more likely
the corresponding regions belong to the target. However, these
correlation values on Yq are obtained by one-to-one matching
without considering broader contextual information. Locations
belonging to the background of the query image might also have
strong responses on Yq as long as they are locally similar to
only one foreground element of the support sample, making the
prior mask less effective in indicating the region of interest. As
shown by examples in Fig. 9 (a), the ones yielded by the one-to-
one matching scheme cannot well handle these cases because the
surrounding non-target regions on the query sample might also
have high correlation values with the locally identical support
features, making the normalization process less discriminative in
highlighting the region of interest on the prior mask. Therefore,
the underutilized contextual information might be an inherent
bottleneck limiting further improvements that could be brought
by high-level features.

To make the best of the nearby hints, one might directly
apply context enrichment modules like PPM [84] and ASPP [6]
to the high-level query and support features respectively to help
each element be more aware of the surroundings before being
used for the prior mask generation. Despite the fact that these
modules are widely found to be conducive to normal semantic
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Fig. 2: Illustration of the new prior generation pipeline that is composed of two steps: 1) regional matching and 2) filtering & scoring.
(a) and (b) demonstrate the input query and support images and their features respectively. (c) is the correlation matrix, and (d) shows
prior masks generated by different patch sizes. As introduced in Sec. 4.1, the first step, regional matching, aims at yielding the context-
aware prior masks (CAPM) that incorporate broader information for better locating the objects belonging to unseen categories. The
second step filtering & scoring is accomplished by the proposed Noise Suppression Module (NSM) that rectifies the activation values
of support samples so as to provide high-quality prior guidance, as described in Sec. 4.2.

segmentation frameworks, they introduce considerable trainable
parameters that might cause over-fitting issues, which has been
verified by experimental results in Table 4. For this reason, instead
of the commonly used contextual enhancement modules that cause
performance deduction, we adopt a regional matching strategy to
generate the Context-aware Prior Mask (CAPM).

Regional matching. The idea of CAPM is straightforward:
it calculates the regional correlations rather than the original
element-to-element ones. For generality, we assume that the query
and support features might have different spatial sizes, denoted as
hq × wq and hs × ws.

Formally, Xq ∈ Rhq×wq×d and Xs ∈ Rhs×ws×d denote the
d-dimensional query and support features obtained via Eq. (1),
and we assume that they have been already L2-normalized by ϕ.
Then, regional matching can be accomplished by measuring the
patch-wise similarities between Xs and Xq , formulated as:

Rc(i, j) =
∑

o∈[−m,m]×[−m,m]

⟨Xq(i+ o), Xs(j + o)⟩. (5)

In Eq. (5), m is the patch size and o ∈ [−m,m] × [−m,m]
represents the set of feasible offset tuples within the m×m patch
window. The patch center positions for Xq and Xs are denoted by
i ∈ [0, hq]×[0, wq] and j ∈ [0, hs]×[0, ws] respectively. Xq(i+
o) and Xs(j + o) are d-dimensional vectors, thus Rc(i, j) ∈
[−1, 1] is scalar value representing the patch-wise similarity. If
i + o /∈ [0, hq] × [0, wq] or j + o /∈ [0, hs] × [0, ws], zeros
are padded. The superscript c in Rc denotes that the contextual
information is better exploited by the proposed regional matching
process.

In consequence, with Eq. (5), we can obtain the regional
similarity matrix Rc ∈ Rhq×wq×hs×ws that can be reshaped
to Rc ∈ Rhqwq×hsws and then processed by Eq. (3) and
Eq. (4) sequentially to produce the new context-aware prior mask
Ycq ∈ Rhqwq×1 that exploits more contextual cues to help identify
the target objects.

Does a single large patch take all? It is obvious that the
larger the patch size is, the more contextual information could
be exploited to yield the context-aware prior mask. Intuitively,
1 × 1 and 3 × 3 patches can be covered by a 5 × 5 patch, thus
a natural option is to apply the regional matching with a single
large patch size m that can reach an optimal trade-off between the
performance and efficiency.

Nevertheless, the greater m not only brings additional com-
putation overhead, it might also introduce redundant information
that is detrimental for revealing the local details throughout the
regional matching process, leading to sub-optimal performance.
As verified by our experimental results in Table 5, the regional
matching with m=3 outperforms m=1 thanks to the contextual
awareness, while results of m=5 do not further advance the ones
yielded by m=1 and m=3. To this end, in order to utilize the
context-aware prior mask without deprecating the local discrimi-
nation ability, we propose an alternative way that accomplishes the
regional matching with multiple patch sizes so as to large patch
captures nearby context and small patch mines finer details.

Let M={m1,m2, ...,m|M |} be the set of patch sizes adopted
for regional matching, and we can accordingly obtain |M | prior
masks {Rc

1,Rc
2, ...,Rc

|M |} via Eq. (5). Then, the multi-patch
method produces the context-aware prior mask Ycq ∈ Rhqwq×|M |

with all matrices contained in the set {Rc
1,Rc

2, ...,Rc
|M |}. This

process can be formulated as:

Rc = Rc
1 ⊕ ...⊕Rc

m ⊕ ...⊕Rc
|M |

Ycq,m = max
j

Rc(i, j,m)

i, j ∈ {1, 2, ..., hw}, m ∈ {1, ..., |M |},

(6)

where ⊕ denotes the concatenation operation between |M | matri-
ces Rc

m ∈ Rhqwq×hsws to form Rc ∈ Rhqwq×hsws×|M |, and the
prior mask Ycq ∈ Rhqwq×|M | is yielded by taking the maximum
values among the second dimension of Rc.
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Fig. 3: Illustration of the 3 × 3 and 5 × 5 region matching.
Three types of pixels exist: background, edge-background and
foreground pixels, denoted as yellow, purple and red circles
respectively.

4.2 Noise Suppression Module

Motivation. In [60], taking the maximum response is found to
be conducive to revealing most of the potential target on a query
image, because the maximum value indicates that the support
image contains at least one pixel or region that has close semantic
relation to the query pixel. However, these extreme values are vul-
nerable to the noisy support features that are locally identical to the
query features but are actually from distinct classes. Moreover, in
complex scenes, the noisy support features might cause abundant
false alarms on the prior mask, making it fails to highlight the
potential region on the query image.

To alleviate the above issues, we need a module that helps
screen out unnecessary responses. Fundamentally, the module
design should be content-aware such that it can dynamically
mitigate the responses of irrelevant regions, and on the other hand,
it should also be class-agnostic, in an attempt to avoid over-fitting
to the base classes during training. With these two essential design
principles, the proposed Noise Suppression Module (NSM) brings
considerable performance gain to the baseline models.

With the aim of being context-aware and class-agnostic,
the proposed Noise Suppression Module (NSM) is applied to
the query-support similarity matrices R ∈ Rhqwq×hsws and
Rc ∈ Rhqwq×hsws×|M |, since there exists no class-sensitive
cues contained in the similarity matrices but only the correlation
information of the support sample that has been outlined by
its ground-truth mask in the second dimension with a size of
hsws. Moreover, the correlation information is exactly the context
provider that tells NSM which part of the support sample is mostly
relevant to the majority features of the query sample from a
holistic perspective, and thus NSM can simply suppress the rest
suspected to cause noisy responses on the prior mask.

Overview. The Noise Suppression Module (NSM) has three
steps: 1) local information compression, 2) holistic rectification
and 3) noise-filtered prior mask generation. As illustrated in
Figure 4, the former two steps, from local and global views
respectively, yield a rectifier Rψ,θ that adaptively adjusts the
contributions of support features on the correlation matrices in
the last step. To this end, the adverse effects brought by the noisy
activations are mitigated. Details are as follows.

Step 1: Local information compression. In provision for
estimating the importance of each support feature, an information

Fig. 4: The pipeline of Noise Suppression Module (NSM).

concentrator Ψ is used as a means to show how much the individ-
ual support feature is correlated to the query features. Specifically,
we have

Rψ = Ψ(R), (7)

where the first dimension of R ∈ Rhqwq×hsws has been com-
pressed to 1 in Rψ ∈ R1×hsws . The concentrator Ψ can be either
a parameterized module or an operation that takes the average
values. Besides, if the regional matching with |M | patch sizes is
adopted, Eq. (7) can be also applied to Rc ∈ Rhqwq×hsws×|M |

by processing |M | matrices separately to yield the compressed
output Rc

ψ ∈ R1×hsws×|M |.
The concentrator Ψ merely probes the correlations between all

query features and individual support features, accordingly, it only
examines the global context of the query features to foreground the
essential individual support features. As the categorical informa-
tion is provided by the support sample, the spatial information
(i.e., correlation distribution) of the support sample should also
be considered to facilitate sweeping away those “bad” ones that
might cause undesired high responses on the prior mask.

Step 2: Holistic rectification. To leverage the contextual cues
of support features in a class-agnostic way, we look into the
importance of each support feature from a holistic perspective.
Specifically, a rectification module Θ is proposed to adjust the
importance of support features, and this process can be written as

Rψ,θ = Θ(Rψ), (8)

where the module Θ in Eq.(8) is composed of a few learnable
light-weight fully-connected layers. Θ yields a rectifier Rψ,θ ∈
R1×hsws that adjusts the contributions of each support feature on
the similarity matrix R ∈ Rhqwq×hsws in the next step.

Step 3: Noise-filtered prior mask generation. The rectifier
Rψ,θ ∈ R1×hsws can be deemed as a set of values weighing
the support elements, thus the noise-filtered prior mask Yq,nf is
obtained as

Yq,nf = RRT
ψ,θ, (9)

by which the interfering responses on the original correlation
matrix R caused by irrelevant support elements are suppressed
by the rectifier Rψ,θ. The visual comparison is shown in Fig. 9
(b) and (c).

Similarly, Ycq,nf ∈ Rhqwq×|M | can be obtained by applying
Eq. (8) and Eq. (9) to Rc ∈ Rhqwq×hsws×|M | by independently
processing |M | matrices, if the multi-patch regional matching is
adopted as introduced in Sec. 4.1.

4.3 Interpretations regarding CAPM and NSM.

Noisy responses caused by CAPM. As shown in Figure 3,
there are three sets of pixels in the support and query images:
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Fig. 5: Statistical comparison regarding the distributions of the
inputs (A) and outputs (B) of the rectification module Θ. Note that
the responses are normalized for highlighting the relative changes.

background, edge-background and foreground pixels, and they are
denoted by yellow, purple, and red circles respectively. During the
prior generation, all background pixels in the support image are
simply ignored by the support mask, while the regional matching
with 3 × 3 and 5 × 5 patches will bring noises to the edge-
background pixels by involving partial foreground pixels as shown
in the orange regions in Figure 3.

Specifically, for the query image, we take the patch of the
edge-background pixel in the query image to match with all pixels
in the support image where the background pixels have been
masked to zero, while the edge-background pixel in the query
image will have some responses on the prior mask due to the patch
that includes partial foreground pixels. However, these responses
are confusing because the query edge-background pixels belong
to the background, making the prior mask difficult to highlight
the foreground target by blurring the boundary regions. As a
result, without NSM, the blurred region expands as the patch size
increases as demonstrated in Figure 5.

Understanding the intermediate results of NSM. The pipeline
in Figure 4 shows that, in Step 1 (Local information compression),
the first dimension of the correlation matrix R ∈ Rhqwq×hsws

(only a single patch is considered for simplicity) is compressed to
1 in Rψ ∈ R1×hsws by a concentrator Ψ that takes the average
values as Rψ = Ψ(R). Rψ stores the statistics that tell how
much each part of the support sample is related to the elements of
the query sample. Then, Step 2 rectifies the regional responses on
the support sample by holistically analyze the distributions in RΨ,
such that informative regions of the support sample are assigned
with greater importance by Rψ,θ = Θ(Rψ) (Rψ,θ ∈ R1×hsws ).
Finally, the activations are weighted by Rψ,θ to obtain the noise-
filtered prior mask Yq,nf = RRT

ψ,θ (Yq,nf ∈ Rhqwq,1).
To investigate the effect of the proposed NSM, statistical

examples are presented in Figure 5 where we use line charts to
visualize the results Rψ ∈ R1×hsws of the concentrator Ψ, and
the red, blue and green colors denote 1×1, 3×3 and 5×5 patches,
respectively. The row represents the patch indexes in the support
feature map with the size of hs × ws, and the column represents
the averaged similarity values between each patch in the support
feature map and all patches in the query feature maps.

Concretely, for the patch size 1 × 1, the averaged similarity
between each background pixel in the support image and all pixels
in the query image should be close to 0 since the background
pixels in the support image has been filtered out by the support

Fig. 6: Qualitative visualizations of (a) Rψ , (b) Rψ,θ, (c) the
vanilla prior mask of PFENet and (d) the context-aware prior mask
Yq,nf .

mask. However, when performing the 3 × 3 and 5 × 5 region
matching, some averaged similarity values between the patches
of the support edge-background patches and query patches are
not 0 because the patches of edge-background pixels may include
partial foreground pixels. As shown in the black dashed boxes of
the top three examples in Figure 5 (A) , it can be observed that
even when the red line (Patch-1) is close to 0, higher responses
are observed on the blue (Patch-3) green (Patch-5) lines, indicating
the fact that unnecessary responses are introduced by the regional
matching with larger patch sizes. On the other hand, the bottom
three examples of Figure 5 (B) demonstrates the output Rψ,θ

of the rectification module Θ, and the noisy responses caused
by irrelevant surrounding regions are suppressed by Rψ,θ. Put
differently, the input of Θ reflects how much each element of the
support sample correlates with the ones in query sample, so it can
be deemed as a kind of class-agnostic spatial distribution regarding
the query-support activation.

More visual illustrations. The corresponding qualitative il-
lustrations are presented in Figure 6 where (a), (b), (c) and (d)
are the visualizations of Rψ , Rψ,θ, the original prior mask of
PFENet [60] and the context-aware prior mask Yq,nf adopted
by PFENet++, respectively. It can be observed in (b) that the
importance of each support feature is highlighted by the rectifying
factor Rψ,θ, so that the context-aware prior masks shown in (d)
carry more informative cues than that in (c).

5 BOOSTING FSS WITH THE NOISE-FILTERED
CONTEXT-AWARE PRIOR MASK

Despite the fact that PFENet has shown its superiority by sig-
nificantly outperforming its concurrent methods, as discussed in
Sec. 4.1, the original prior mask generation method in PFENet
suffers from being context-imperceptive and noise-sensitive as it
only considers the one-to-one relations without properly elimi-
nating the adverse effects caused by the noisy support features.
Therefore, in this section, we first briefly revisit PFENet and then
propose PFENet++ by taking the essences of CAPM and NSM.

5.1 Revisit PFENet
To achieve promising few-shot segmentation performance without
sinking into the over-fitting issues, CANet [79] only concatenates
the middle-level query and support features for yielding final
predictions since they constitute object parts shared by unseen
classes. Different from CANet, Prior Guided Feature Enrichment
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Network (PFENet) [60] leverages the middle- and high-level
features separately to offer distinct types of guidance that are
complementary to each other.

The abstract structure of PFENet is shown in Fig. 7 (a) where
two modules are adopted, i.e., the Prior Generation Module (PGM)
and Feature Enrichment Module (FEM). Specifically, PGM takes
the high-level query and support features and it yields a single
prior mask to indicate the region of interest on the query sample as
introduced in Sec. 3.2. Then the prior mask is processed together
with the middle-level query and support features by FEM where
three steps, i.e., inter-source enrichment, inter-scale interaction
and information concentration, are performed to yield robust
predictions for the query images. More details about PFENet can
be found in [60].

5.2 PFENet++
As shown in Fig. 7 (b), PFENet++ generally follows the design
principles of PFENet, while the main upgrade lies in the prior
generation process. PFENet++ operates with the proposed novel
designs, i.e., Context-aware Prior Mask (CAPM) and Noise Sup-
pression Module (NSM), to make the prior mask become more
informative (i.e., context-aware) and resilient to noises. Similar
to PFENet, prior masks generated by CAPM and NSM are then
concatenated with the middle-level query and support features and
processed by FEM to get the final prediction.

Not only high-level features can offer prior guidance. It
is worth noting that, in Fig. 7 (b), the middle-level features in
PFENet++ are made better use for offering extra prior guidance.
As verified in the empirical study of [60], the original prior mask
generation method of PFENet yields inferior performance with the
middle-level features, thus PFENet only exploits the correlation
between the high-level features to yield the prior mask. However,
we find that applying CAPM and NSM on the middle-level
features on PFENet++ can bring additional performance gain to
the model that has been incorporated with the prior masks obtained
from the high-level features. We believe that it can be attributed
to the noise filtering mechanism of NSM because the middle-level
features are less semantic-sensitive and so are the correlations. If
there is no selection performed on the middle-level support fea-
tures, simply taking the maximum correspondence values among
the correlation matrix might cause misleading responses on the
prior masks.

Regional matching in CAPM. We empirically find that the
set of patch sizes M = {1, 3, 5} for regional matching yields
decent performance by providing essential contextual information
in CAPM, while the larger patch sizes, e.g., 7, cannot bring
further improvement because the patch size 5 might have provided
sufficient contextual aid. Since performing dense regional match-
ing with three patch sizes leads to extra computation overhead
compared to the original scheme M={1}, the support feature
map is thus down-sampled twice (e.g., hq × wq = 60 × 60,
hs × ws = 30 × 30) for accomplishing regional matching in
Eq. (5). However, we observe that the down-sampled support
feature map does not lead to performance deduction but retains
satisfying efficiency.

Implementation of NSM. NSM involves two modules Ψ and
Θ for accomplishing local information compression and holistic
rectification respectively. Ψ is simply implemented by the aver-
aging operation whose results are empirically found to be on par

with that of the parameterized module. On the other hand, Θ is
composed of two fully-connected (FC) layers with an intermediate
ReLU activation layer, and the weights of two FC layers are
denoted as [hsws × d] and [d × hsws]. Θ first encodes the
spatial information (i.e., correlation distribution) from hsws to
d, followed by a decoding process from d to hwws to produce
Rψ,θ ∈ R1×hsws that grasps the global context and then scores
support features as in Eq. (9).

K-shot implementation. In the K-shot scenario, instead of
forwarding the entire model for K times, we obtain K prior masks
from K support samples and then we take the average of them as
the final prior mask. Suppose if three scales are adopted by default,
so we can get three averaged prior masks in total. Finally, same
as PFENet, we concatenate these prior masks with the averaged
middle-level features and pass them to FEM for yielding the
final prediction. Thus only the feature extractor is additionally
forwarded for K times, not the entire model.

6 EXPERIMENTS

6.1 Implementation Details

Datasets. The recent literature [35], [60], [71], [79] adopts three
benchmarks PASCAL-5i [49], COCO-20i [39], [64] and FSS-
1000 [28] for model evaluation in FSS.

PASCAL-5i is constructed by combining PASCAL VOC
2012 [9] and extended annotations of SDS [15]. The cross-
validation is performed by evenly dividing 20 classes into 4 folds
i ∈ {0, 1, 2, 3} and 5 classes in each fold. When evaluating one
fold, the classes contained in the rest three folds are used as base
classes for training. Following [49], [60], [64], [79], 1,000 query-
support pairs are randomly sampled for the evaluation on each
fold. For stability, we report the results averaged over 5 runs (i.e.,
5,000 pairs).

COCO-20i is more much challenging than PASCAL-5i since
the former contains 80 categories in total. Following [2], [35],
[60], COCO-20i separates 80 classes from COCO [30] in 4 folds
and each fold contains 20 classes. It is observed in [60] that
evaluating COCO-20i with 1,000 episodes is far from enough
since the validation set is much larger than that of PASCAL-5i.
The insufficient evaluation steps cause great performance variance
as shown in [60], thus our models are instead evaluated with
20,000 episodes on COCO-20i for a fair comparison.

FSS-1000 contains 1,000 classes among which 486 classes are
not included in any existing benchmarks and each class has 10
images with pixel-wise annotations. Following [28], the training,
validation and test sets have 520, 240, and 240 classes respectively.
We report the results obtained on the test set.

Evaluation metrics. Following [60], [79], the class mean
intersection over union (mIoU) is used as the main metric for
comparison since the class mIoU is more informative than the
foreground-background IoU (FB-IoU) [79]. The calculation of
class mIoU is: mIoU = 1

C

∑C
i=1 IoUi, where C is the number of

categories contained in each fold (e.g., 5 for PASCAL-5i and 20
for COCO ) and IoUi is the IoU result of class i. The results
of FB-IoU are also included for a comprehensive comparison
where only the foreground and background are considered as
two categories (C=2). Differently, FSS-1000 only measures the
foreground IoU. We take average results of all folds as the final
class mIoU/FB-IoU results on PASCAL-5i and COCO-20i, while
the results of FSS-1000 are directly obtained from its test set.



8

TABLE 1: Class mIoU and FB-IoU results on four folds of PASCAL-5i. The results of ‘Mean’ is the averaged class mIoU of four
folds shown in the table. The detailed FB-IoU results of four folds are omitted in this table for simplicity. Models with ∗ adopt the
original pre-trained ResNet [17], and the ones without ∗ use the version optimized for semantic segmentation by following the classic
PSPNet [84].

Methods 1-Shot 5-Shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

VGG-16 Backbone
OSLSM2017 [49] 33.6 55.3 40.9 33.5 40.8 61.3 35.9 58.1 42.7 39.1 44.0 61.5
co-FCN2018 [44] 36.7 50.6 44.9 32.4 41.1 60.1 37.5 50.0 44.1 33.9 41.4 60.2
SG-One2018 [82] 40.2 58.4 48.4 38.4 46.3 63.9 41.9 58.6 48.6 39.4 47.1 65.9
AMP2019 [52] 41.9 50.2 46.7 34.7 43.4 61.9 41.8 55.5 50.3 39.9 46.9 62.1
PANet2019 [64] 42.3 58.0 51.1 41.2 48.1 66.5 51.8 64.6 59.8 46.5 55.7 70.7
FWBF2019 [39] 47.0 59.6 52.6 48.3 51.9 - 50.9 62.9 56.5 50.1 55.1 -
RPMM2020 [71] 47.1 65.8 50.6 48.5 53.0 - 50.0 66.5 51.9 47.6 54.0 -
PFENet2020 [60] 56.9 68.2 54.4 52.4 58.0 72.0 59.0 69.1 54.8 52.9 59.0 72.3
PFENet++ 59.2 69.6 66.8 60.7 64.1 77.0 64.3 72.0 70.0 62.7 67.3 80.4

ResNet-50 Backbone
CANet∗2019 [79] 52.5 65.9 51.3 51.9 55.4 66.2 55.5 67.8 51.9 53.2 57.1 69.6
PPNet∗2020 [35] 48.6 60.6 55.7 46.5 52.8 69.2 58.9 68.3 66.8 58.0 63.0 75.8
RPMM∗

2020 [71] 55.2 66.9 52.6 50.7 56.3 - 56.3 67.3 54.5 51.0 57.3 -
PGNet2019 [78] 56.0 66.9 50.6 50.4 56.0 69.9 54.9 67.4 51.8 53.0 56.8 70.5
SCL2021 [76] 63.0 70.0 56.5 57.7 61.8 71.9 64.5 70.9 57.3 58.7 62.9 72.8
ASGNet2021 [27] 58.8 67.9 56.8 53.7 59.3 69.2 63.7 70.6 64.2 57.4 63.9 74.2
RePRI2021 [2] 59.8 68.3 62.1 48.5 59.7 - 64.6 71.4 71.1 59.3 66.6 -
PFENet2020 [60] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9
PFENet++ ∗ 60.6 70.3 65.6 60.3 64.2 75.5 65.2 73.6 74.1 65.3 69.6 80.8
PFENet++ 63.3 71.0 65.9 59.6 64.9 76.8 66.1 75.0 74.1 64.3 69.9 81.1

ResNet-101 Backbone
PPNet∗2020 [35] 52.7 62.8 57.4 47.7 55.2 70.9 60.3 70.0 69.4 60.7 65.1 77.5
FWBF2019 [39] 51.3 64.5 56.7 52.2 56.2 - 54.8 67.4 62.2 55.3 59.9 -
DAN2020 [62] 54.7 68.6 57.8 51.6 58.2 71.9 57.9 69.0 60.1 54.9 60.5 72.3
ASGNet2021 [27] 59.8 67.4 55.6 54.4 59.3 71.7 64.6 71.3 64.2 57.3 64.4 75.2
RePRI2021 [2] 59.6 68.6 62.2 47.2 59.4 - 66.2 71.4 67.0 57.7 65.6 -
PFENet2020 [60] 60.5 69.4 54.4 55.9 60.1 72.9 62.8 70.4 54.9 57.6 61.4 73.5
PFENet++ ∗ 61.6 70.7 66.5 59.0 64.5 76.3 64.3 74.9 73.9 66.3 69.9 82.1
PFENet++ 63.1 72.4 63.4 62.2 65.3 75.5 67.2 76.1 75.5 67.2 71.5 82.7

TABLE 2: Class mIoU and FB-IoU results on four folds of COCO-20i. The results of ‘Mean’ are the averaged class mIoU of four
folds shown in the table. The detailed FB-IoU results of four folds are omitted in this table for simplicity. Models with ∗ adopt the
original pre-trained ResNet [17], and the ones without ∗ use the version optimized for semantic segmentation by following the classic
PSPNet [84].

Methods 1-Shot 5-Shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

VGG-16 Backbone
PFENet2020 [60] 33.4 36.0 34.1 32.8 34.1 60.0 35.9 40.7 38.1 36.1 37.7 61.6
PFENet++ 38.6 43.1 40.0 39.5 40.3 65.5 38.9 46.0 44.2 44.1 43.3 66.7

ResNet-50 Backbone
PPNet∗2020 [35] 28.1 30.8 29.5 27.7 29.0 - 39.0 40.8 37.1 37.3 38.5 -
RPMM∗

2020 [71] 29.5 36.8 28.9 27.0 30.6 - 33.8 42.0 33.0 33.3 35.5 -
ASGNet2021 [27] - - - - 34.6 60.4 - - - - 42.5 67.0
RePRI2021 [2] 31.2 38.1 33.3 33.0 34.0 - 38.5 46.2 40.0 43.6 42.1 -
PFENet++ ∗ 40.9 44.8 39.7 38.8 41.0 65.4 45.7 52.4 49.1 47.2 48.6 69.4
PFENet++ 40.9 46.0 42.3 40.1 42.3 65.7 47.5 53.3 47.3 46.4 48.6 70.3

ResNet-101 Backbone
FWBF2019 [39] 17.0 18.0 21.0 28.9 21.2 - 19.1 21.5 23.9 30.1 23.7 -
DAN2020 [62] - - - - 24.4 62.3 - - - - 29.6 63.9
SCL2021 [76] 36.4 38.6 37.5 35.4 37.0 - 38.9 40.5 41.5 38.7 39.9 -
PFENet2020 [60] 34.3 33.0 32.3 30.1 32.4 58.6 38.5 38.6 38.2 34.3 37.4 61.9
PFENet++ 42.0 44.1 41.0 39.4 41.6 65.4 47.3 55.1 50.1 50.1 50.7 70.9
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Fig. 7: The difference between PFENet [60] and PFENet++ lies in their prior generation methods depicted in dashed boxes (a) and
(b) respectively. The original prior generation method (a) only takes the maximum values from the one-to-one correspondence, while
our new pipeline (b) yields preferable prior masks by decently incorporating additional contextual information with the proposed two
sub-modules, i.e., CAPM and NSM. Besides, (a) only leverages the high-level features to yield prior masks, while (b) makes use of
both high- and middle-level features. Adding middle-level features to (a) does not boost its performance.

TABLE 3: Foreground IoU results on FSS-1000 [28].

Methods Backbone 1-Shot 5-Shot
OSLSM2017 [49]

VGG-16

70.3 73.0
GN2018 [45] 71.9 74.3
FSS10002019 [28] 73.5 80.1
PFENet++ 86.5 87.5
PFENet++ ResNet-50 88.6 89.1
DAN2020 [62] ResNet-101 85.2 88.1
PFENet++ 88.6 89.2

Experimental configurations. All experiments are conducted on
PyTorch framework. VGG-16 [53], ResNet-50 [17] and ResNet-
101 [17] are used as the backbones, and the configurations are the
same as that of PFENet [60]. SGD is adopted as our optimizer.
The momemtum and weight decay are set to 0.9 and 0.0001
respectively. The ‘poly’ policy [4] decays the learning rate by
multiplying (1 − currentiter

maxiter
)power where power equals to 0.9

according to the training progress.
Same as [60], [79], all our models are trained on PASCAL-

5i for 200 epochs with the initial learning rate 0.0025 and batch
size 4. On COCO, models are trained for 60 epochs with learning
rate 0.006 and batch size 16. FSS-1000 is trained for 100 epochs
with initial learning rate 0.01 and batch size 16. The ImageNet
pre-trained backbone is kept unchanged during training. Data
augmentation is important for combating over-fitting problems.
Training samples are first randomly scaled from 0.9 to 1.1 and then
randomly rotated from -10 to 10 degrees followed by the random
mirroring operation with probability 0.5. After that, image patches
are randomly cropped (473×473 for PASCAL-5i and COCO-20i,
and 225× 225 for FSS-1000) as the final training samples.

Since different datasets have various input image sizes, the
hidden dimension number d of Θ is set to 256 for PASCAL-5i and
COCO-20i, and 64 for FSS-1000. Similarly, the output dimension
varies in different backbone networks, while we simply project all
of them to 256, including the high-level features for yielding the
prior masks for speeding up the prior generation process.

Additional post-processing strategies (e.g., multi-scale testing

and DenseCRF [24]) are not implemented. Our experiments are
performed on a single NVIDIA RTX 2080Ti GPU and Intel Xeon
Silver 4216 CPU @ 2.10GHz. The implementation of PFENet++
follows the official repository1 of PFENet [60].

6.2 Results

The quantitative results of three backbone networks are shown in
Tables 1, 2 and 3 where PFENet++ significantly outperforms all
its competitors on both PASCAL-5i, COCO-20i and FSS-1000,
manifesting the superiority of the proposed CAPM and NSM.
By adequately exploiting the context information during the prior
mask generation process, PFENet++ even advances PFENet by 8-
10 mIoU on 5-shot evaluations in terms of both class mean IoU
and FB-IoU.

Besides, it is noteworthy that PFENet++ achieves much better
performance without remarkably sacrificing its efficiency since it
can process 12.7 frames of size 473×473 per second with ResNet-
50 backbone, while the original PFENet processes 14.8 frames
per second on the same NVIDIA RTX 2080Ti GPU. As for the
learnable parameters, the original PFENet has 10.8M while the
proposed designs only bring 1.4M increase thus PFENet++ has
12.2M learnable parameters in total. The qualitative results are
shown in Figure 8 where the results of PFENet++ are much better
than that of the original PFENet.

As for the impressive improvement from 1- to 5-shot settings,
compared to PFENet, we conjecture that it can be attributed to the
better use of high-level features, since more high-level contextual
hints are leveraged by the proposed CAPM and NSM keeps the
essence in a class-agnostic way for combating the over-fitting
issues. Similar improvement can be observed in recent work
RePRI where the high-level features are directly optimized by
specific objectives designed for few-shot segmentation task. Thus
we believe further exploiting the potentials of high-level features
without impairing the generalization ability can be a promising
future directions.

1. https://github.com/dvlab-research/PFENet



10

(a
)

Su
pp

or
t

(b
)

Q
ue

ry
(c

)
G

T
(d

)
PF

E
N

et
(e

)
Pr

io
r

(f
)

PF
E

N
et

++
(g

)
Pr

io
r 1

×
1

(h
)

Pr
io

r 3
×

3
(i

)
Pr

io
r 5

×
5

Fig. 8: Qualitative results of the proposed PFENet++ and the original PFENet. The right samples are from COCO and the left ones
are from PASCAL-5i. From top to bottom: (a) support images; (b) query images; (c) ground truth of query images; (d) predictions of
PFENet; (e) the vanilla prior mask of PFENet; (f) the predictions of PFENet++; (g)(h)(i) are the proposed context-aware prior masks
yielded by 1× 1, 3× 3, 5× 5 patches, respectively.

6.3 Ablation Study

In this section, extensive experiments are presented to inspect the
effectiveness of our two major contributions: Context-Aware Prior
Mask (CAPM) and Noise Suppression Module (NSM). Experi-
ments are conducted on PASCAL-5i with ResNet-50 backbone
without specification. The different visual effects brought by the
proposed CAPM and NSM are presented in Fig. 9. All compared
models in this section are re-trained for fair comparisons.

Noisy support features are the evils. NSM aims at alleviating
the adverse effects brought by noisy support features during the
prior mask generation process. Even the regional matching is not
adopted in PFENet, the noisy support features still cause undesired
high correlation responses with the query features on the prior
mask. By applying NSM, it brings considerable improvement to
the vanilla PFENet in Table 4.

Context is essential but could also become evil. The original
PFENet only leverages the element-to-element correspondence for

TABLE 4: Comparison between different context enrichment
modules.

Methods 1-Shot 5-Shot
Baseline (PFENet) 61.3 63.0
+ NSM 63.2 66.8
+ CAPM 58.6 59.7
+ NSM + PPM [84] 51.3 53.2
+ NSM + ASPP [6] 55.3 56.5
+ NSM + GAU [78] 59.6 61.5
+ NSM + CAPM 64.9 69.9

yielding the prior mask while it overlooks the contextual informa-
tion that could help better identify the region of interest. Therefore,
as shown by Exp. III & VI in Table 5, the result obtained from the
patch-wise correlations (CAPM={1, 3}) is better than the original
1 to 1 correlation (CAPM={1}) adopted in PFENet because the
former is more aware of the hints hiding in the surroundings.

Additionally, since the large patch captures nearby context
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Fig. 9: Visual comparison between prior masks generated by different sources and patch sizes: (a) original high-level features; (b)
high-level features after projection; (c) high-level features after projection and NSM; (d) middle-level features after projection and
NSM. Figures of (a) with patch 1 are the prior masks adopted by the original PFENet. Specifically, the prior masks of (a) maintain
the basic generalization ability and can partially identify the unseen objects on the query images, while the linear channel compression
deprecates the ones from (a) to (b) and images of (b) tend to erroneously highlight the background regions objects belonging to base
classes used for training. Rectification is achieved by the proposed Noise Suppression Module (NSM) as demonstrated by figures of
(c) that are generally more visually attractive than the two aforementioned sources. Also, introducing broader contextual information
further enhances the prior masks, as manifested by the comparison between patch sizes 1, 3 and 5. Finally, the comparison between
(c) and (d) shows that the prior masks yielded by middle-level features can supplement more local structural details but they are not as
semantically precise as that of (c), hence PFENet++ incorporates both (c) and (d).

TABLE 5: Ablation study on the effectiveness of NSM and
CAPM. We note that CAPM = {1} means there is no context-
aware prior mask generation because only 1×1 patch is adopted.
CAPM= {1, 3, 5} means |M | = 3 in Eq. (6) and patch sizes are
1, 3 and 5.

Exp. NSM CAPM 1-Shot 5-Shot
I - {1} 61.3 63.0
II - {1,3,5} 58.6 59.7
III ! {1} 63.2 66.8
IV ! {3} 62.9 66.1
V ! {5} 62.9 66.2
VI ! {1,3} 64.4 68.5
VII ! {3,5} 63.9 68.0
VIII ! {1,3,5} 64.9 69.9
IX ! {1,3,5,7} 64.8 69.4

and the small patch mines finer details, the combination of them
might be even better. The results of Exp. VI-VIII show that by
mining extra cues from the nearby regions with different distances,
the proposed multi-patch regional matching scheme of CAPM
introduces further advancements to the models incorporated with
single level matching schemes such as Exp. III-V, but enlarging

the patch size to 7 does not harvest additional improvement as
shown in Exp. IX.

However, every rose has its thorn so does the contextual infor-
mation since it might introduce unfiltered information that gives a
rise to trivial responses on the prior masks. As demonstrated by
the Exp. II, if the NSM is not equipped for screening those noises
induced by the additional contextual information, the performance
is notably impaired, compared to Exp. I and Exp. VIII. With this
finding, we can conclude that both CAPM and NSM are mutual-
complementary and indispensable so as to achieve a promising
performance.

Comparison with other context enrichment modules. The
purpose of CAPM is to leverage more contextual information
during the prior generation process, thus CAPM performs regional
matching with different patch sizes in Eq. (6) to form correlation
matrices that will be then processed by NSM for yielding the final
prior mask.

Alternatively, directly applying context enrichment modules
like Pyramid Pooling Module (PPM) [84], Atrous Spatial Pyramid
Pooling (ASPP) module [6] and Graph Attention Unit (GAU) [78]
to the extracted high-level feature map seems to be another
attainable way that provides a wider scope for individual elements
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in the one-to-one correlation calculation process as Eq. (2).
Experiments in Table 4 show that, compared to the results of

NSM+CAPM, both PPM and ASPP fall short of the generalization
ability to unseen categories, because CAPM as well as the origin
prior mask transform the high-level semantic information into the
class-insensitive formats, i.e., prior masks whose values range
from 0 to 1, to avoid the over-fitting issue. However, PPM and
ASPP directly apply parameterized modules that are prone to
overly rely on the high-level features to yield high-quality prior
masks on base classes during training, leading to a rather inferior
performance on novel classes.

Different from ASPP and PPM, the key component of
PGNet [78], i.e., GAU, aims at establishing regional correlations
between query-support features specifically, so it applies several
average pooling to the features followed by independent Graph
Attention Units (GAU) to between the query and support individ-
ual elements at different levels. Though GAU is found beneficial
in enhancing the middle-level features, two issues may inhibit the
application to enhance the prior mask obtained from the high-
level features: 1) Average pooling loses essential local information
contained in the query features; 2) GAU directly projects the query
and support features, thus it leads to over-fitting issues as ASPP
and PPM.

Concretely, inherently different from the multi-scale schemes
achieved by different average pooling sizes in GAU, the proposed
CAPM models query-support correlations more meticulously by
measuring the inter-patch similarities, keeping the local hints
intact within the patches. Compared to the average pooling op-
erations used by GAU for establishing the compressed regional
correlations, patch-wise correlation adopted by CAPM retains
local details better and thus it is more effective in revealing extra
useful cues in different regions. On the other hand, dense attention
modules are directly applied to query and support features in GAU,
so it is more likely to overfit the witnessed base classes. While, the
proposed CAPM is with no learnable parameters and NSM only
takes the class-agnostic statistics regarding the spatial responses
as the input so as to ameliorate the over-fitting issue.

As the results shown in Table 4 where we incorporate GAU to
enhance the query features before yielding the prior mask, GAU
is not helpful in enhancing the prior mask. Also, in Figure 10,
the visualizations yielded by (b) are more prone to high-light the
objects belonging to the base classes in the background.

Middle-level features can be also leveraged for prior gener-
ation. The high-level features have more semantic cues while
the middle-level ones encode more spatial details, thus the latter
could be further leveraged to supplement the prior masks yielded
by the high-level features. Due to the lack of an effective noise
suppression mechanism, as shown in Exp. I and Exp. II in
Table 6, directly applying the prior masks yielded by the middle-
level features is not beneficial but might potentially degrade the
performance. Contrarily, by the virtue of the proposed NSM, the
prior masks yielded by the middle-level features are also able
to indicate the region of interest from a more local perspective,
and the comparison between Exp. III and Exp. IV in Table 6
manifests the improvement to the final performance. The visual
comparison between the prior masks yielded by high- and middle-
level features are shown in Fig. 9 (c)-(d). Exp. V proves the
necessity of the high-level features by comparing it with Exp. III
and Exp. IV. Also, the results can tell that the considerable
improvement of PFENet++ from 1 to 5-shot mainly comes from

Fig. 10: Qualitative comparisons of (a) the original PFENet’s
prior masks, (b) prior masks yielded with GAU, (c) the proposed
context-aware prior mask.

TABLE 6: Results of applying CAPM on the middle- and high-
level features with and without the proposed NSM.

Exp. NSM High Middle 1-Shot 5-Shot

I - ! - 61.3 63.0
II - ! ! 61.0 63.1
III ! ! - 64.1 68.6
IV ! ! ! 64.9 69.9
V ! - ! 60.2 60.7

the better use of the high-level features by comparing Exps. III-V.

Design options for higher efficiency. The multi-patch regional
matching involves extra computation, causing lower efficiency.
Table 8 shows the effects of different structural options for
achieving an efficient design, in terms of performance, speed and
the number of learnable parameters.

With an eye towards a faster implementation, first, we prefer
a slim channel number because high-dimensional features slow
the correlation calculation. As shown in Exp. I-II, by applying
a simple 1×1 convolution to reduce both the query and support
high-level feature maps’ dimensions from 2048 to 256 before per-
forming the regional matching in Eq. (5), the inference becomes
considerably faster (from 3.8 to 9.1 FPS). Additionally, the com-
pressed features retain essential information without deprecating
the performance.

Also, we find that applying a 2×2 average pooling on the
support feature maps further accelerates the regional matching
process in Eq. (5) without sacrificing the performance as verified
by Exp. II-III in Table 8. We note that the decrease in Params is
caused by the parameterized module Θ in NSM whose input and
output dimensions are determined by the spatial size of support
feature map. However, compared to Exp. III, Exp. IV indicates
that spatially compressing the query feature maps yields inferior
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results because it leads to direct information loss on the target
query feature maps.

The benefits of down-sampling. Down-sampling has two
benefits. Firstly, it is used to reduce the computational cost
introduced by the multi-scale patch matching, and the effects have
been shown in Table 7 of the paper. On the other hand, it can
introduce broader contextual information for enhancing the prior
mask. To verify this claim, we conduct another experiment without
down-sampling but with enlarged patch sizes {1, 5, 9} in Table 8.
It can be observed that, compared to the original scheme adopted
in the paper with patches {1, 3, 5}, the model implemented
with {1, 5, 9} has considerably lower inference speed (12.7 v.s.
7.9). However, similar to PFENet++ with down-sampling, the
model incorporating larger patch sizes {1, 5, 9} still outperforms
the PFENet++ without down-sampling the support features, i.e.,
PFENet++(Full), because additional contextual information can be
introduced by either down-sampling or larger patch sizes, yielding
better performance. As for the reason why {1, 5, 9} is inferior
to the PFENet++ with down-sampling and {1, 3, 5}, we think
explicit larger patch matching may bring extra noises, causing
additional difficulties for NSM.

The effects of the rectification module Θ. DeepEMD [77]
adopts dot-product between each support feature and all query
features in order to high-light the importance of the individual
support element, which is analogous to the operation in the first
step of NSM. The difference is that DeepEMD directly takes the
average of the responses with a normalization operation as the
weights for different support elements, while PFENet++ adopts
a learnable module Θ for dynamic rectification based on the
global responses. Though it is found rather effective in few-shot
classification, without the rectification module, merely adopting
the operation of DeepEMD in dense semantic segmentation is
sensitive and vulnerable to noisy samples, as demonstrated in
Figure 5. Also, we have also tried by replacing the NSM with
the operation of DeepEMD, and the model obtains 58.6 and 61.4
mIoU in 1- and 5-shot settings respectively.

The necessity of the position-sensitive operations in Θ.
We consider a key aspect that the spatial information still

exists in Rψ ∈ R1×hsws , since the compression performed by the
concentrator Ψ does not result in the loss of spatial information
within Rψ as it is obtained by flattening hs × ws to 1 × hsws.
This preservation of positional and spatial information can be
likened to the transformation performed by the vision transformer,
where each image is converted into 16×16 d-dimensional tokens,
specifically, flattened into the vector whose shape is d × 196.
In contrast to the vision transformer’s utilization of position
embeddings for conveying positional information, NSM employs
the position-sensitive linear layers as the rectification module Θ
to analyze the obtained correlation Rψ ∈ R1×hsws from the
concentrator Ψ. Therefore, it is crucial to note that without the
position-sensitive Θ, the effective filtering out of potential noises
present in Rψ would not be achievable.

To illustrate this, consider a scenario where a specific location
in Rψ exhibits high activation, while its surrounding area displays
low activation. In such a case, this location is likely to be a
noisy element that NSM aims to suppress in the support sample.
However, without the adoption of the position-sensitive module
Θ, we lack the means to analyze each location with the context of
its surroundings or broader area, thereby impeding our ability to

TABLE 7: The results of different methods to obtain Rψ . ‘Pool-
ing’ indicates that NSM does not employ a linear layer but instead
directly applies pooling to R. ‘Self-Attn’ refers to the utilization
of a self-attention layer to process R, which is treated as hsws
vectors with individual shapes [1 × hqwq]. The final Rψ of
‘Self-Attn’ is obtained through the application of the concentrator
Ψ, serving as the NSM. Additionally, ‘Self-Attn + Pos’ adopts
positional embeddings for individual elements, and ‘Self-Attn +
NSM’ incorporates the self-attention layer before NSM.

Methods 1-Shot 5-Shot
NSM 64.9 69.9
Pooling 58.6 59.7
Self-Attn 59.9 62.7
Self-Attn + Pos 63.6 66.1
Self-Attn + NSM 64.8 69.2

TABLE 8: Ablation study on the proposed Noise Suppression
Module (NSM). ‘Ch’ represents the channel compression. ‘Sp-
S’ and ‘Sp-Q’ are spatial down-sampling applied on support and
query features respectively. ‘FPS’ denotes the number of frames
processed per second. ‘Params’ is the number of learnable param-
eters. Exp. II∗ means larger patches are adopted without down-
sampling ({1, 5, 9} instead of {1, 3, 5}) for leveraging broader
contextual information.

Exp. Ch Sp-S Sp-Q 1-Shot 5-Shot FPS Params (M)
I - - - 62.2 65.0 3.8 13.1
II ! - - 63.1 66.7 9.1 13.6
II∗ ! - - 64.3 68.0 7.9 13.6
III ! ! - 64.9 69.9 12.7 12.2
IV ! ! ! 64.2 68.9 14.1 12.2

determine whether it constitutes noise or not.
To support our claim, we have conducted several experiments,

and the results are shown in Table 7. Specifically, the position-
agnostic operations of self-attention (‘Self-Attn’) and pooling
(‘Pooling’) demonstrate clear lower performance compared to
the proposed NSM. This discrepancy can be attributed to their
limited capability in effectively utilizing spatial information to
identify potential noisy samples within Rψ , as discussed earlier.
When incorporating the positional embedding to the self-attention
module, as shown by the results of ‘Self-Attn + Pos’, it shows
better results than the aforementioned position-agnostic counter-
parts, but it is still inferior to that of NSM. Furthermore, as in
‘Self-Attn + NSM’, we investigate the effects of adding self-
attention to enhance the interaction between different elements in
R prior to passing it to NSM. However, it does not yield improved
performance. Thse findings emphasize the crucial role played by
the position-sensitive linear layers employed in NSM.

More about the prior mask. The prior mask is used as an
input of FEM to provide prior knowledge of the existence of the
target class, so the quality is essential for the final performance.
If we directly use the ground-truth mask to replace the estimated
prior mask, the 1- and 5-shot results are directly boosted to 98.0
and 99.0 mIoU respectively, manifesting the importance of the
prior mask. Besides, we have also examined another model that
directly outputs the prior masks as the final prediction, and we
surprisingly find that the prior mask alone can even achieve 59.3
and 62.4 mIoU in 1 and 5-shot settings without the help of the
decoder with FEM.
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6.4 Extensions

Generalization on totally unseen categories. The majority of
unseen categories for the evaluations on PASCAL-5i and COCO-
20i has been included in the class set of ImageNet [47], therefore
the ImageNet pre-trained backbones have already witnessed these
novel classes, even if their corresponding samples and pixel-wise
annotations are not available during the model training. To further
demonstrate the effectiveness of the proposed CAPM and NSM,
the comparison of the classes that are NOT contained in the
ImageNet is more convincing.

In PASCAL-5i, the category ‘person’ is not included in Ima-
geNet. Thus the original prior mask adopted in PFENet might fail
to locate the region belonging to ‘person’ since the context is not
well exploited. By incorporating the proposed CAPM and NSM,
Ours (48.56) significantly outperforms the prior mask used in the
original PFENet (15.81) in terms of mIoU on ‘person’.

However, a single class is insufficient to show the general-
ization ability. FSS-1000 [28] is a benchmark that sets up 1,000
classes for few-shot segmentation among which we select 420
classes 2 from FSS-1000 as the novel class set for testing since
they are not in the class set of ImageNet and the rest classes are
used as training class set. As shown in Table 9, the proposed
CAPM and NSM still demonstrate their efficacy by well general-
izing to the 420 unseen categories that are even not included in
the large scale dataset for pre-training the backbone.

Applications on other frameworks. The enhanced prior mask,
as a model-agnostic pixel-wise indicator that has no special
structural constraints, should be able to bring decent performance
gain to different frameworks, not only to PFENet. To investigate
the generalization ability of the proposed CAPM and NSM, we
additionally apply them on two recent state-of-the-art methods
SCL [76] and ASGNet [27].

Specifically, SCL proposes a self-guided learning approach
that creates main and auxiliary support vectors to facilitate ex-
tracting the discriminative information. Differently, ASGNet, by
applying superpixel-guided clustering (SGC) and guided prototype
allocation (GPA), alleviates the ambiguities caused by using one
prototype to represent all the information. In ASGNet, more than
one representative prototypes are aggregated and then selected as
the final support vectors for feature matching.

Both two methods do not well exploit the prior knowledge
hidden in high-level features, thus the proposed techniques sig-
nificantly boost their performance as shown in Table 10. The
implementation is similar to that of PFENet++, we simply attach
a prior generation branch with the proposed CAPM and NSM,
and then concatenate the new prior masks to the features before
making the final predictions. Our implementations of ASGNet
and SCL will be also made publicly available along with that
of PFENet++.

7 CONCLUSION

In this paper, we present a novel framework, named PFENet++,
to tackle the few-shot semantic segmentation problem. Different
from PFENet that only considers the maximum correspondence

2. The paper of FSS-1000 wrote that there are 486 classes not belonging to
any existing datasets. The author of FSS-1000 has clarified in an email that
they “have made incremental changes to the dataset to improve class balance
and label quality so the number may have changed. Please do experiments
according to the current version.”

TABLE 9: Foreground IoU results on totally unseen classes of
FSS-1000 [28]. PM denotes the original prior mask generation
method used in PFENet [60].

Methods 1-Shot 5-Shot
Baseline 79.7 80.1
PM [60] 80.8 81.4
Ours 83.6 84.8

TABLE 10: Results of applying CAPM and NSM to ASGNet [27]
and SCL [76] on PASCAL-5i. We note that SCL has already
incorporated the vanilla prior mask proposed by PFENet, so only
ASGNet (Vanilla Prior) is presented.

Methods 1-Shot 5-Shot
ASGNet (original) 59.3 63.9
ASGNet (reproduced) 59.5 64.2
ASGNet (Vanilla Prior) 60.3 64.7
ASGNet + ours 63.4 67.4
SCL (original) 61.8 62.9
SCL (reproduced) 61.3 62.6
SCL + ours 64.5 66.9

values between individual query and support features, PFENet++
incorporates broader contextual information to yield the Context-
aware Prior Mask (CAPM) and adopts a lightweight Noise Sup-
pression Module (NSM) that further improves the generalization
ability on unseen classes by effectively selecting representative
support features to alleviate the adverse effects brought by noisy
responses. Not only surpassing the original PFENet without com-
promising much efficiency, but PFENet++ also significantly out-
performs previous few-shot segmentation methods and achieves
new state-of-the-art performance on both PASCAL-5i, COCO-
20i and FSS-1000 benchmarks. Finally, extensive experiments are
conducted to investigate the contributions of individual compo-
nents of the proposed frameworks, and they are also conducive
to different frameworks. We hope that PFENet++ can be a strong
baseline approach to few-shot segmentation, and inspires future
work such that the full potential of prior mask guidance can be
further exploited.
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