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Abstract—Although no specific domain knowledge is considered in the design, plain vision transformers have shown excellent
performance in visual recognition tasks. However, little effort has been made to reveal the potential of such simple structures for body
pose estimation tasks. In this paper, we show the surprisingly good properties of plain vision transformers for body pose estimation
from various aspects, namely simplicity in model structure, scalability in model size, flexibility in training paradigm, and transferability
of knowledge between models, through a simple baseline model dubbed ViTPose. Specifically, ViTPose employs the plain and non-
hierarchical vision transformer as an encoder to encode features and a lightweight decoder to decode body keypoints in either a top-down
or a bottom-up manner. It can be scaled up from about 20M to 1B parameters by taking the advantage of the scalable model capacity and
high parallelism of the vision transformer, setting a new Pareto front for throughput and performance. Besides, ViTPose is very flexible
regarding the attention type, input resolution, and pre-training and fine-tuning strategy. Based on the flexibility, a novel ViTPose++
model is proposed to deal with heterogeneous body keypoint categories in different types of body pose estimation tasks via knowledge
factorization, i.e., adopting task-agnostic and task-specific feed-forward networks in the transformer. We also empirically demonstrate
that the knowledge of large ViTPose models can be easily transferred to small ones via a simple knowledge token. Experimental
results show that our ViTPose model outperforms representative methods on the challenging MS COCO Human Keypoint Detection
benchmark at both top-down and bottom-up settings. Specifically, our largest single model ViTPose-G with 1B parameters sets a new
record on the MS COCO test set without model ensemble. Furthermore, our ViTPose++ model achieves state-of-the-art performance
simultaneously on a series of body pose estimation tasks, including MS COCO, AI Challenger, OCHuman, MPII for human keypoint
detection, COCO-Wholebody for whole-body keypoint detection, as well as AP-10K and APT-36K for animal keypoint detection, without
sacrificing inference speed. The source code and models are available at https://github.com/ViTAE-Transformer/ViTPose.

Index Terms—Vision transformer, Pose estimation, Top-down, Bottom-up, Pre-training, Transfer learning, Multi-task learning

✦

1 INTRODUCTION

B ODY keypoint detection (a.k.a. body pose estimation of
human, animal, etc.) is one of the fundamental tasks in com-

puter vision and has a wide range of real-world applications [1],
[2], [3]. As a representative example, human pose estimation
aims to localize human anatomical keypoints and is challenging
due to the variations of occlusion, truncation, scales, and human
appearances. To deal with these challenges, there has been rapid
progress in deep learning-based methods [4], [5], [6], [7], which
are typically built upon convolutional neural networks (CNN).

Recently, vision transformers [8], [9], [10], [11] have shown
great potential in many computer vision tasks. Inspired by their
success, different vision transformer structures have been explored
for human pose estimation. Most of them adopt CNN as the back-
bone and then use a transformer of elaborate structures to refine
the extracted features and model the relationship between the
body keypoints. For example, PRTR [12] incorporates both trans-
former encoders and decoders to gradually refine the locations
of the estimated keypoints in a cascade manner. TokenPose [13]
and TransPose [14], instead, adopt an encoder-only transformer
structure to further process the features extracted by the CNN
backbone. Inspired by the success of anchor-based methods in de-
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tection [10], a query-based decoder is adopted in Poseur [15] with
noisy augmentations. On the other hand, HRFormer [16] employs
the transformer to directly extract features and introduce high-
resolution representations via multi-resolution parallel transformer
modules. These methods have obtained superior performance on
human pose estimation. However, they either need an extra CNN
backbone for feature extraction or adopt transformer structures
specially designed for pose estimation. Besides, most of them
favor body pose estimation only on a single type, i.e., human,
while ignoring the potential of transformers in modeling the cor-
relations between different types of body keypoints (e.g., human
and animal), which is essential for developing a foundation model
for generic body keypoint detection. This motivates us to think
from a different direction, how well can plain vision transformers
do for body pose estimation towards a foundation model?

To find the answer to this question, we propose a simple
baseline model dubbed ViTPose and demonstrate the potential of
simple plain vision transformers for human pose estimation in both
the top-down and bottom-up manner. Then, a novel ViTPose++
model is proposed to deal with multiple types of body keypoint
detection via knowledge factorization. Specifically, ViTPose em-
ploys a plain and non-hierarchical vision transformer [8] as the
backbone to extract features for an input person instance or image,
determined by the adopted pose estimation paradigm, i.e., either
the top-down paradigm or the bottom-up paradigm. The backbone
is pre-trained with masked image modeling pretext tasks, e.g.,
MAE [17], to provide a good initialization. Then, a lightweight
decoder, which is composed of two deconvolution layers and one

ar
X

iv
:2

21
2.

04
24

6v
3 

 [
cs

.C
V

] 
 1

4 
D

ec
 2

02
3

https://github.com/ViTAE-Transformer/ViTPose


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

ViTPose-B

ViTPose-L

ViTPose-H

HRFormer-B

HRFormer-S

Resnet-152

HRNet-W32

HRNet-W48

TokenPose-L/D24

TransPose-H/A6

TransPose-H/A4

ViTPose-S

ViTPose++-B

ViTPose++-L

ViTPose++-H

ViTPose++-S

73

74

75

76

77

78

79

80

0 200 400 600 800 1000 1200 1400

A
P 

on
 M

S 
C

O
C

O
 v

al
 se

t

Throughput (fps)

Fig. 1: Comparison of ViTPose and SOTA methods on the MS
COCO val set regarding model size, throughput, and accuracy. The
size of each bubble represents the number of model parameters.

prediction layer, further processes the extracted features by up-
sampling and regression to get the heatmaps of different keypoints.
It is noteworthy that the associate maps are also regressed to-
gether with the heatmaps for the bottom-up paradigm. Despite no
elaborate task-specific designs, ViTPose achieves a state-of-the-art
(SOTA) performance of 80.9 AP on the challenging MS COCO
test-dev set for human keypoint detection. ViTPose++ adopts the
idea of the mixture of experts (MoE) in the backbone networks
to factorize the knowledge between different types of body key-
points1, considering that different body pose estimation tasks may
share common knowledge of body keypoints while also requiring
task-specific knowledge. In detail, ViTPose++ decomposes the
feed-forward networks (FFN) into shared and task-specific parts
to encode the common and task-specific features, respectively.
In this way, ViTPose++ effectively addresses the task conflict
issue and thus achieves better performance on each task than the
single-task and naive multi-task learning methods. It also sets new
SOTA on four challenging benchmarks, including MS COCO [18],
OCHuman [2], MPII [19], and AP-10K [20]. Besides, ViTPose++
retains the inference speed as ViTPose since no more parameters
and computations are introduced for each task.

Besides the superior performance, we also show the surpris-
ingly good properties of ViTPose from various aspects, namely
simplicity, scalability, flexibility, and transferability. 1) For sim-
plicity, thanks to the strong feature representation ability of vision
transformers, the ViTPose pipeline can be extremely simple. For
example, it does not require any specific domain knowledge to de-
sign the backbone encoder and enjoys a plain and non-hierarchical

1. We treat each type of body keypoint detection as an individual task.

encoder structure by simply stacking several transformer layers.
The decoder can be further simplified to a single bilinear up-
sampling layer followed by a common convolutional prediction
layer with a negligible performance drop. This structural sim-
plicity makes ViTPose enjoy better computational parallelism
so that it reaches a new Pareto front for inference speed and
performance, as shown in Fig. 1. 2) In addition, the simplicity
in structure brings the excellent scalability of ViTPose, which can
benefit from the rapid development of scalable pre-trained vision
transformers. Specifically, one can easily control the model size
by stacking different numbers of transformer layers and setting
different feature dimensions (e.g., using ViT-S, ViT-B, ViT-L, or
ViT-H) to balance the inference speed and performance for various
deployment requirements. 3) Furthermore, we demonstrate that
ViTPose is very flexible in the training paradigm. It can adapt
well to higher input and feature resolutions with minor modi-
fications and deliver better pose estimation results. In addition,
ViTPose can obtain competitive performance even if it is pre-
trained using smaller unlabelled datasets or fine-tuned with the
attention modules frozen at a lower training cost. 4) Last but not
least, we show that the performance of small ViTPose models
can be easily improved by transferring the knowledge from large
ViTPose models through an extra learnable knowledge token,
demonstrating a good transferability of ViTPose.

In summary, the main contribution of this paper is threefold. 1)
We propose simple yet effective baseline models named ViTPose
for human pose estimation and ViTPose++ for generic body
keypoint detection. It obtains SOTA performance on represen-
tative benchmarks without elaborate designs for the backbone
and pipeline. 2) The simple ViTPose model demonstrates to
have surprisingly good properties, including structural simplicity,
model size scalability, training paradigm flexibility, and knowl-
edge transferability. These properties can shed light on the future
development of vision transformer-based methods in the field of
pose estimation. 3) Comprehensive experiments on challenging
public benchmarks are conducted to evaluate and analyze the
performance of ViTPose and ViTPose++, which set new SOTA
on the benchmarks for different body keypoint detection tasks,
making a solid step towards developing a foundation model for
generic (body) keypoint detection.

2 RELATED WORK

2.1 Representative pose estimation methods
2.1.1 Top-down methods
Pose estimation has undergone rapid development, transitioning
from CNN-based approaches [5], [21] to the utilization of vision
transformers [8], [16], [22]. The majority of existing methods
concentrate on estimating poses from provided human instances,
following a top-down pipeline. Notably, G-MRI [23] introduced
Faster-RCNN for generating bounding boxes and proposed a com-
bined regression and classification task for keypoint estimation.
RMPE [24] further employed a spatial transformer network to
rectify noise in detected bounding boxes and facilitate subsequent
pose estimation. To achieve accurate keypoint localization, some
approaches employed high-resolution features in CNN networks
through techniques such as skip feature concatenation [25] or
highway structures [26]. CPN [27] introduced a two-stage network
to refine estimated keypoints using hierarchical features. Other
methods like OKDHP [28] leveraged multiple-branch networks
and dynamic fusion strategies to utilize multi-scale information
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effectively. AlphaPose [29] improved performance by leveraging
a symmetric keypoint localization technique. In contrast, Sim-
pleBaseline [5] directly recovered high-resolution features with
decoders. As vision transformers have demonstrated superior per-
formance across various vision tasks [30], [31], some approaches
explored the use of transformers as decoders after the CNN
backbone [12], [13], [14]. For instance, TransPose [14] processed
features extracted by CNN to model global relationships, while
TokenPose [13] introduced token-based representations and ex-
tra tokens to estimate the locations of occluded keypoints and
model the relationship among keypoints. Poseur [15] explored an
anchor-based strategy with noise augmentation using transformer
decoders. These transformer-based pose estimation methods have
achieved superior performance on popular human pose estimation
benchmarks. However, these methods still rely on CNN backbones
for feature extraction. In contrast, HRFormer [16] utilized trans-
formers to directly extract high-resolution features. It incorporated
a parallel transformer module to gradually fuse multi-resolution
features and achieved outstanding performance. Nevertheless, the
extent to which attention mechanisms contribute to pose estima-
tion remains unclear and few efforts have explored the potential
of plain vision transformers for pose estimation. In this paper, we
fill this gap by proposing a simple yet effective baseline model
dubbed ViTPose based on the plain vision transformers.

2.1.2 Bottom-up methods
In contrast to top-down methods that operate on individual hu-
man instances, bottom-up methods directly localize the keypoints
of all humans present in the input images. DeepCut [32] and
DeeperCut [33] employ regression to estimate all keypoints and
subsequently group them into separate individuals. OpenPose [34]
adopts a two-branch network, with one branch dedicated to
keypoint estimation and the other to grouping. Associate embed-
ding [35] simplifies the bottom-up pipeline by jointly estimating
keypoint locations and associating them within the same network.
Pifpaf [36] employs a Part Intensity Field and a Part Association
Field to regress and associate body keypoints for all humans.
SPM [37] simplifies the pipeline by directly predicting the root
joint for each human and the displacement between the root joint
and other keypoints based on a structured pose representation.
To enhance the performance of bottom-up methods, HigherHR-
Net [38] introduces multi-stage supervision. In contrast, we em-
bark on the pioneering exploration of plain vision transformers for
bottom-up pose estimation, which shows promising performance.

2.2 Vision transformer pre-training

Inspired by the success of ViT [8], many different vision trans-
formers [9], [22], [39], [40], [41], [42], [43], [44] have been
proposed, which are typically pre-trained on the ImageNet [45]
dataset at the fully supervised setting. However, the fully-
supervised learning paradigm needs a large scale of labeled data,
which is expensive. Besides, such pre-trained models may not
generalize well on the tasks with a very different data distribution
as ImageNet. To provide a better initialization for the vision trans-
formers, self-supervised pre-training methods have been proposed,
either in the contrastive way [46], [47] or the generative way [17],
[48]. A typical example is MAE [17] that adopts a masked image
modeling (MIM) pretext task inspired by the success of masked
language modeling pretext tasks in natural language processing.
Surprisingly, MIM pre-trained models on ImageNet without using

the labels demonstrate better generalization performance on image
classification and downstream tasks. In this paper, we focus on
pose estimation tasks and adopt plain vision transformers with
MIM pre-training as backbones. Besides, we explore whether or
not using ImageNet for pre-training is necessary for pose estima-
tion tasks. Surprisingly, using smaller unlabelled pose datasets for
pre-training can also provide a good initialization.

2.3 Foundation models
Foundation model [49], with the aim to deal with diverse real-
world problems with a unified model, has received increas-
ing attention recently. Owing to their strong representation and
scalability abilities, vision transformers have become popular in
building foundation models and leveraging massive data from
multiple modalities for training. For example, Florence [50] em-
ploys different adapter networks on the pre-trained backbones
to handle many tasks, including classification, detection, and
segmentation. Encoder-decoder structures are adopted in [51]
to solve multi-modality tasks via a novel Perceiver module. To
further enhance the representation ability of backbone networks,
MoE [52] is adopted by allowing the network to ensemble the
outputs from different sub-networks without introducing too much
extra computational costs. Typically, each MoE layer contains a
gate layer to determine the appropriate expert to use and fuse the
outputs of the selected experts in a weighted sum manner, e.g.,
UniPerceiver-MoE [53] adopts MoE-based attention layers and
FFN layers to construct the networks. In this paper, we aim to
explore the potential of plain vision transformers for generic body
keypoint detection. We propose ViTPose++, which decomposes
the FFN layers into task-agnostic and task-specific experts to
handle different types of body pose estimation tasks simultane-
ously. Without extra parameters and computations, ViTPose++
outperforms ViTPose trained in either a single-task or multi-task
manner and sets new SOTA on challenging public benchmarks.

2.4 Comparison to the conference version
A preliminary version of this paper is presented in [54]. This paper
extends the previous study with three major improvements. 1)
We explore more model sizes of ViTPose to thoroughly compare
with representative models from many aspects, i.e., number of
parameters, inference speed, input resolution, and performance.
For example, the ViTPose-S model with 24M parameters obtains
73.8 AP with 1,432 fps on MS COCO, which is better than
ResNet-50 [5] (71.8 AP, 1,351 fps) and ResNet-152 [5] (73.5
AP, 829 fps) and comparable with the frontier transformer-based
model HRFormer-S [16] (73.8 AP, 269 fps) but with a much
faster speed. As demonstrated in Fig. 1, different ViTPose variants
from the small to large model sizes set a new Pareto front for
throughput and performance, demonstrating the superiority of
plain vision transformers for human pose estimation. 2) We extend
ViTPose to the bottom-up paradigm from the top-down paradigm
by directly predicting the keypoint locations and their associa-
tions. The experimental results on the MS COCO dataset again
demonstrate the potential and flexibility of vision transformers,
i.e., plain vision transformers can perform well for human pose
estimation in both top-down and bottom-up manners. 3) A novel
model dubbed ViTPose++ is further proposed to deal with multiple
types of body pose estimation tasks via knowledge factoriza-
tion. It obtains better performance than previous representative
methods on public challenging datasets, i.e., MS COCO [18],
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Fig. 2: (a) The diagram of the proposed ViTPose model. (b) The transformer block. (c) The classic decoder in the top-down paradigm.
(d) The multi-task decoder used to deal with multiple datasets. (e) The decoder in the bottom-up paradigm.

OCHuman [55], MPII [19], AI Challenger (AIC) [56], COCO-
Wholebody (COCO-W) [57], AP-10K [58], and APT-36K [59],
for various types of body keypoint detection, making the first
attempt towards developing a foundation model for generic (body)
keypoint detection. Besides, more experiment results, ablation
studies, and analyses are presented. We also provide some visual
results to demonstrate the promising performance of ViTPose++.

3 VITPOSE

As shown in Fig. 2, ViTPose employs a plain vision transformer
for feature extraction and is compatible with different decoders for
keypoint estimation, e.g., using classic (c) or simple (d) decoder
in top-down keypoint estimation and associate embedding layer
(e) in a bottom-up manner. Different properties of ViTPose are
illustrated, i.e., simplicity, scalability, flexibility, and transferabil-
ity. By exploiting these properties, a novel ViTPose++ model is
further proposed and obtains SOTA performance on various pose
estimation datasets. The details will be described below.

3.1 The simplicity of ViTPose

The goal of this paper is to provide a simple yet effective vision
transformer baseline for body pose estimation tasks and explore
the potential of plain and non-hierarchical vision transformers [8].
Thus, we keep the structure as simple as possible and try to
avoid fancy but complex modules, even though they may improve
performance. To this end, we simply append several decoder
layers after the transformer backbone to regress the heatmaps
of keypoints, as shown in Fig. 2(a). Specifically, given a person
instance image X ∈ RH×W×3, it is first embedded into tokens via
a patch embedding layer, i.e., F ∈ R

H
d ×W

d ×C, where H and W are
the height and width of the input image, respectively, d (e.g., 16 by
default) is the down-sampling ratio of the patch embedding layer,
and C is the channel dimension. Then, the tokens are processed by
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Fig. 3: (a) Classic decoder (Fig. 2(c)) with a frozen predictor. (b)
Simple decoder. (c) Minimal decoder.

several transformer layers, each of which is consisted of a multi-
head self-attention (MHSA) layer and an FFN, i.e.,

F
′
i+1 = Fi +MHSA(LN(Fi)),

Fi+1 = F
′
i+1 +FFN(LN(F

′
i+1)),

(1)

where Fi denotes the output of the ith transformer layer and we
use F0 = PatchEmbed(X) to denote the features after the patch
embedding layer. It should be noted that the spatial and channel
dimensions are constant for each transformer layer. We denote the
output feature of the backbone network as Fout ∈ R

H
d ×W

d ×C.
We adopt different decoder designs to process the features

extracted from the backbone network and regress the heatmaps,
i.e., the classic decoder, the simple decoder, and the minimal
decoder, as shown in Fig. 2(c) and Fig. 3. The classic decoder
is composed of two deconvolution blocks, each containing one
deconvolution layer followed by batch normalization [60] and
ReLU [61]. Following the common settings in previous meth-
ods [5], [62], each deconvolution blocks first up-samples the
feature maps by a factor of 2. Then, an 1×1 convolution prediction
layer is used to regress the heatmaps, i.e.,

K = Conv1×1(Deconv(Deconv(Fout))), (2)

where K ∈ R
H
4 ×W

4 ×Nk denotes the heatmaps of keypoints and Nk
is the number of keypoints, e.g., 17 for the MS COCO dataset.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

In addition to the classic decoder, we propose three simplified
designs: classic-FP, simple decoder, and minimal decoder, to lever-
age the strong representation capabilities of the vision transformer
backbone. Classic-FP retains the same structure as the classic
decoder but with a randomly initialized and frozen predictor layer.
For the simple decoder as shown in Fig. 3(b), the feature maps
extracted by the backbone are upsampled by a factor of 4 using
bilinear interpolation and then fed into a ReLU activation function
and a 3×3 convolutional layer to predict the heatmaps, i.e.,

K = Conv3×3(Bilinear(ReLU(Fout))). (3)

The minimal decoder is the most simple design, which utilizes
only a single linear projection layer for heatmap prediction, i.e.,

K′ = Conv1×1(Fout) ∈ R
H
16×

W
16×(16Nk),

K = PixelUnshuffle(K′) ∈ R
H
4 ×W

4 ×Nk ,
(4)

where PixelUnshuffle [63] refers to the efficient operator that
restores the spatial dimensions of the heatmap by reshaping it
from the channel dimension to the spatial dimension. This design
choice allows for a focused investigation into the representation
capability of vision transformers in pose estimation

3.2 The scalability of ViTPose
While small-scale CNN-based models have shown promising
results, they often face challenges when scaling up due to the
overfitting problem caused by a strong inductive bias, as discussed
in [64]. One intriguing characteristic of vision transformers is their
improved performance as the model size increases [8]. However,
it remains under-explored whether this scalability holds true for
specific downstream tasks such as pose estimation. Based on
ViTPose, we can easily control its model size by adjusting the
number of stacked transformer layers and feature dimensions. This
allows us to develop different sizes of models and fully exploit
the benefits of pre-trained plain vision transformers. Specifically,
we use the vision transformers of different model sizes as the
backbone, i.e., ViT-B, ViT-L, ViT-H [8], and ViTAE-G [22], which
are MIM pre-trained on ImageNet, and fine-tune them on the MS
COCO dataset to investigate the scalability of ViTPose. For ViT-
H and ViTAE-G, which use patch embedding with size 14× 14
during pre-training, we use zero padding to reformulate a patch
embedding with size 16×16 for the same fine-tuning setting with
ViT-B and ViT-L. As shown in Fig. 1, ViTPose delivers continuing
performance gains with the increased model size.

3.3 The flexibility of ViTPose
Pre-training data. Pre-training the backbone networks on Ima-
geNet [45] has been a de facto routine for a good initialization of
network parameters. However, this approach necessitates the use
of large amounts of additional data beyond the pose data, thereby
imposing higher requirements, particularly for vision transformers
employed in pose estimation tasks. This motivates us to investigate
whether it is possible to alleviate the data requirements for vision
transformers by exclusively utilizing pose data throughout the
entire training phase. To answer this question, apart from the
default setting of ImageNet [45] pre-training, we also use MAE
pre-training on MS COCO [18] and a combination of MS COCO
and AIC [56], respectively, by random masking 75% patches from
the images and reconstructing those masked patches. Then, we use
the pre-trained weights to initialize the backbone of ViTPose and

fine-tune it on the MS COCO dataset. Surprisingly, although the
volume of the pose data is much smaller than ImageNet, ViTPose
trained only with pose data can obtain competitive performance,
demonstrating its flexibility regarding the pre-training data.

Resolution of images and features. We vary the input image
size and down-sampling ratios d of ViTPose to evaluate its
flexibility regarding the input and feature resolution. Specifically,
to adapt ViTPose to input images at a higher resolution, we simply
resize the input images and train the model on them accordingly.
Besides, to adapt the model to lower down-sampling ratios, i.e.,
higher resolution of feature maps, we simply change the stride of
the patch embedding layer to partition tokens with overlap while
keeping the size of each patch. We show that the performance
of ViTPose increases consistently regarding either higher input
resolution or higher feature resolution.

Attention type. Using full attention on high-resolution feature
maps will cause a huge memory footprint and computational cost
due to the quadratic computational complexity of vanilla self-
attention. Window-based attention with relative position embed-
ding [31], [65] have been explored to address this issue and can be
used to deal with high-resolution feature maps. However, simply
using window-based attention for all transformer blocks degrades
the performance due to the lack of global context modeling ability.
To address the problem, we adopt two techniques. i.e., 1) Shift
window: Instead of using fixed windows for attention calculation,
we use the shifted window mechanism [9] to help broadcast the
information between adjacent windows. 2) Pooling window: Apart
from the shifted window, we try another solution via pooling.
Specifically, we first extract the global token for each window
by average pooling all the tokens in the window. The global
tokens from all windows are then appended to the tokens in each
window to serve as key and value tokens for attention calculation,
thus enabling cross-window information exchange. In addition,
we further show that the two techniques are complementary and
can work together to improve performance and reduce memory
footprint without introducing extra parameters.

Fine-tuning strategy. As demonstrated in NLP fields [51],
[66], pre-trained transformer models can generalize well to other
tasks by only tuning partial parameters. To investigate whether it
still holds for vision transformers, we fine-tune ViTPose on MS
COCO with all parameters unfrozen, MHSA frozen, and FFN
frozen, respectively. We empirically demonstrate that with the
MHSA frozen, ViTPose obtains comparable performance to the
fully fine-tuning setting while using less memory footprint.

Keypoint detection paradigm. Although some works [13],
[15], [16] have explored vision transformers for body keypoint
detection in the top-down paradigm, it still needs to be determined
how well the vision transformers, especially the plain vision
transformers, can perform in the bottom-up paradigm. To this end,
we thoroughly explore the potential of plain vision transformers
in both top-down and bottom-up paradigms. Technically, in the
top-down paradigm, the individual human instance is fed into the
backbone network for feature extraction. In contrast, the whole im-
age with several human instances is used as input to the backbone
network in the bottom-up paradigm. The associate embedding
technique [35] is adopted to predict the keypoints and tag vectors
based on the extracted features. Instead of using 1/16 feature
resolution and vanilla self-attention in the top-down paradigm,
we adopt 1/8 feature resolution and window-based attention in
the bottom-up paradigm. The decoder of HigherHRNet [38] is
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adopted with an extra up-sample layer as shown in Fig. 2 (d), i.e.,

K = AE(Deconv(Fout)), (5)

where AE represents the associate embedding layer used to predict
the tag vectors and the keypoint locations.

3.4 The transferability of ViTPose
One common method to improve the performance of small models
is to transfer the knowledge from larger ones, i.e., knowledge
distillation [67], [68]. Some interesting distillation methods [28]
have been developed to enhance the performance of small-scale
models in pose estimation tasks. In our study, we show that
even a very simple distillation method can effectively improve the
performance of ViTPose. Specifically, given a teacher network T
and a student network S, a simple distillation method is to add an
output distillation loss Lod

t→s to force the student network’s output
imitating the teacher network’s output, e.g.,

Lod
t→s = MSE(Ks,Kt), (6)

where Ks and Kt are the outputs (e.g., heatmaps) from the student
and teacher network given the same input.

Transformers exhibit a distinct property of flexibility in han-
dling inputs of various sizes. For instance, it has been shown
that attaching several learnable prompt tokens to the inputs can
improve transformers’ performance on specific tasks [69]. These
learnable tokens effectively capture task-related information from
the training data, aiding in the optimization of transformers.
Motivated by this observation, we propose a simple token-based
distillation method to bridge the gap between large and small
models. It complements the heatmap-based distillation methods
and further enhances the performance of the models. Specifically,
we randomly initialize an extra learnable knowledge token t and
append it to the visual tokens after the patch embedding layer of
the teacher model. Then, we freeze the well-trained teacher model
and only update the knowledge token, i.e.,

t∗ = argmin
t

(MSE(T ({t;X}),Kgt), (7)

where Kgt is the ground truth heatmaps, X is the input images,
T ({t;X}) denotes the predictions of the teacher, and t∗ represents
the optimal token that minimizes the loss. Then, the knowledge
token t∗ is frozen and concatenated with the visual tokens in the
student network during training, thus transferring the knowledge
from teacher to student. The loss for the student network is:

Ltd
t→s = MSE(S({t∗;X}),Kgt), (8)

Ltod
t→s = MSE(S({t∗;X}),Kt)+MSE(S({t∗;X}),Kgt), (9)

where Ltd
t→s and Ltod

t→s denote the token distillation loss and its
combination with the output distillation loss, respectively.

3.5 ViTPose++
A basic requirement for generic body keypoint detection should
be able to deal with different body pose estimation tasks after
training on multiple datasets with heterogeneous categories of
body keypoint annotations. One critical challenge is how to deal
with the differences of body keypoints in different pose estimation
tasks, e.g., the same keypoint (e.g., nose) of humans and animals
with distinct appearances, and the different categories of keypoints
in COCO-W [57] which are absent in MS COCO [18] and
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Fig. 4: The structure of FFN in the proposed ViTPose++ model.
T is the number of tasks processed by the model.

MPII [19]. Moreover, the data distribution of different species is
also different, e.g., the human head is always above the shoulder,
while the cow’s head is always to the left or right of the shoulder.

A naive solution is to train a ViTPose model by multi-task
learning, i.e., using a shared backbone and different decoders,
each of which is responsible for a specific type of pose estimation
task. However, there may be conflicts between different tasks [70],
affecting learning performance. In this paper, we propose a novel
model dubbed ViTPose++ to address the challenge from the
perspective of knowledge factorization. Specifically, since MHSA
layers are not sensitive to pose estimation tasks (as evidenced
by the experiment results of fine-tuning strategy in Section 4.3),
we adopt the idea of MoE [52], i.e., splitting FFN layers into a
task-agnostic expert and multiple task-specific experts to encode
the common and task-specific knowledge for pose estimation, re-
spectively. Similar to the aforementioned naive multi-task learning
method, we use a task-specific decoder for each type of body pose
estimation task. Technically, we take one transformer block as an
example to illustrate the proposed ViTPose++. As shown in Fig. 4,
given the output feature Fattn of MHSA, it is processed by the first
linear layer of FFN, which is shared by the MoE, i.e.,

FFFN = ReLU(Linear(Fattn)). (10)

Then, the output feature FFFN ∈RN×γC is fed into separate linear
layers (i.e., task-agnostic expert and task-specific expert), where
N represents the number of tokens and γ is the expansion ratio
of FFN, which is set to 4 by default. The two kinds of experts
project FFFN to Fshared and Fspeci f ic with a channel dimension of
(1−α)C and αC, respectively, i.e.,

Fshared = LinearγC→(1−α)C
shared (FFFN),

Fspeci f ic = LinearγC→αC
speci f ic (F

FFN),
(11)

where α is the partition ratio used to balance the shared and
task-specific experts and is set to 0.25 by default. Note that the
parameters of the shared expert are trained using all the data, while
the parameters of the task-specific expert are trained only using
the data for the corresponding task. Then, Fshared and Fspeci f ic

are concatenated along the channel dimension to form the output
of the transformer block. Given an input image from the training
set for a specific pose estimation task, after getting the encoded
feature from the transformer backbone described above, it is fed
into the corresponding decoder to regress the heatmaps.

During inference for each type of pose estimation task, the
shared and task-specific linear layers are merged into a single layer
for parallel computation. In this way, ViTPose++ brings no extra
parameters and computational costs compared with the ViTPose
model while being able to serve as a foundation model for generic
body pose estimation.
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TABLE 1: Hyper-parameter settings for training ViTPose on the MS COCO dataset and the multiple datasets. The hyper-parameters
before and after the slash are for ViTPose and ViTPose++, respectively.

Model Batch Size Learning rate Weight decay Layer wise decay Drop path rate
ViTPose-S/ViTPose++-S 512/1024 5e-4/1e-3 0.1 0.80 0.10
ViTPose-B/ViTPose++-B 512/1024 5e-4/1e-3 0.1 0.75 0.30
ViTPose-L/ViTPose++-L 512/1024 5e-4/1e-3 0.1 0.80 0.50
ViTPose-H/ViTPose++-H 512/1024 5e-4/1e-3 0.1 0.80 0.55

ViTPose-G 512 5e-4 0.1 0.85 0.55

4 EXPERIMENTS

4.1 Datasets and evaluation metrics
Datasets. We adopt the MS COCO dataset to evaluate the
performance of ViTPose and use several different pose esti-
mation datasets to evaluate the proposed ViTPose++, e.g., MS
COCO [18], AIC [56], and MPII [19] for human pose estimation,
COCO-W [57] for all body keypoint detection including those of
face, hands, and feet, AP-10K [58] and APT-36K [59] for animal
pose estimation. Interhand2.6M [71] is also used to evaluate
our models’ data efficiency in transfer learning. OCHuman [55]
dataset is only used for evaluation to measure the performance of
different models in dealing with occluded persons. Specifically,
MS COCO contains 118K images and 150K human instances
with at most 17 keypoint annotations for each instance. The
dataset is under the CC-BY-4.0 license. COCO-W adopts the
images from the MS COCO dataset but provides additional an-
notations on the face, feet, and hands of each person instance,
resulting in at most 133 keypoints for each instance. MPII is
under the BSD license and contains 25K images and over 40K
human instances. There are at most 16 human keypoints for
each instance annotated in this dataset. AIC is much bigger than
other datasets and contains over 200K training images and 350
human instances, with at most 14 keypoints for each annotated
instance, including shoulder, elbow, wrist, hip, knee, ankle, and
head. OCHuman contains human instances with heavy occlusions
and is only used for evaluation. It consists of 4K images and
8K instances. AP-10K dataset follows the CC-BY-4.0 license
and is used for animal pose estimation. It contains 10K images
with 54 different animal categories. Similarly, APT-36K dataset
contains 36K images belonging to 30 different animal categories.
17 different keypoints are annotated in AP-10K and APT-36K
datasets for each animal instance. Interhand2.6M contains 2.6M
labeled hand frames generated from different subjects with both
2D and 3D annotations. We focus on 2D hand pose estimation
temporally and leave 3D pose estimation [72] as our future work.

Metrics. We adopt the average precision (AP) as the primary
evaluation metric on most of the datasets, including COCO [18],
AIC [56], COCO-W [57], OCHuman [55], and AP-10K [58],
AP-36K [59]. It is calculated by evaluating the object keypoint
similarity (OKS) using different thresholds from 0.5 to 0.95 [18].
A loose metric AP50 and a strict metric AP75 are also utilized by
setting the threshold to 0.5 and 0.75, respectively. PCKh is adopted
as the evaluation metric on the MPII [19] dataset following the
common practice, which evaluates the accuracy of each keypoint
with a matching threshold related to the head segment length.

4.2 Implementation details
ViTPose. In the top-down paradigm, ViTPose follows the stan-
dard top-down setting for human pose estimation, i.e., a person
detector is used to detect person instances and ViTPose is em-
ployed to estimate the keypoints for each of the detected instances.

The detection results from SimpleBaseline [5] are utilized to
evaluate ViTPose’s performance on the MS COCO Keypoint val
set. We use ViT-S, ViT-B, ViT-L, ViT-H [8], and ViTAE-G [22] as
the backbone networks and denote the corresponding models as
ViTPose-S, ViTPose-B, ViTPose-L, ViTPose-H, and ViTPose-G,
respectively. The backbones are initialized with MAE [17] pre-
trained weights, and the models are trained on 8 A100 GPUs based
on the MMPose codebase [73]. The default training setting in
MMPose is adopted for training the ViTPose models, i.e., we use
the 256×192 input resolution and an AdamW [74] optimizer with
a learning rate of 5e-4. Udp [75] is used for post-processing. The
models are trained for 210 epochs, and the learning rate is reduced
by multiplying 0.1 at the 170th and 200th epoch, respectively. We
sweep each model’s layer-wise learning rate decay and stochastic
drop path ratio and provide the optimal settings in Table 1. In the
Bottom-up paradigm, we use the whole image as input and resize
it to 512×512 during training, following the common practice in
HigherHRNet [38]. The models are trained for 300 epochs with
an initial learning rate of 1.5e-3. An AdamW [74] optimizer is
adopted during training. The learning rate is reduced by a factor
of 10 at the 200th and 260th epoch, respectively.

ViTPose++. We also use ViT-S, ViT-B, ViT-L, and ViT-H [8]
as the backbone networks and denote the corresponding models
as ViTPose++-S, ViTPose++-B, ViTPose++-L, and ViTPose++-
H, respectively. The backbones are initialized with MAE [17]
pre-trained weights and the models are trained on 8 A100 GPUs
based on the MMPose codebase [73]. The models are trained with
the AdamW optimizer [74] for 210 epochs. A linear warmup of
500 iterations is also incorporated during training. The learning
rate is reduced by multiplying 0.1 at the 170th and 200th epoch,
respectively. We randomly sample 1,024 images from all the used
training datasets to construct each mini-batch.

4.3 Ablation studies of ViTPose and analysis

The structural simplicity and scalability. We train ViTPose
with the classic decoder and simple decoder as described in
Section 3.1, respectively. We also train SimpleBaseline [5] with
the ResNet [76] backbones using the two kinds of decoders for
reference. Table 2 shows the results. It can be observed that using
the simple decoder in SimpleBaseline can lead to about 18 AP
drops for both ResNet-50 and ResNet-152. However, ViTPose
with a plain vision transformer as the backbone and the simple
decoder performs well, i.e., only marginal performance drops less
than 0.3 AP are observed for either small or large ViTPose models.
For the AP50 and AR50 metrics, ViTPose obtains similar scores
regarding both decoders, showing that the plain vision transformer
has a strong representation ability to encode the linearly separable
features and can thus relieve the necessity of complex decoders.
It can also be concluded from the table that the performance of
ViTPose improves consistently with the increase of the model size,
demonstrating the excellent scalability of ViTPose.
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TABLE 2: Ablation study of the backbone and decoder in ViTPose on the MS COCO val set.

Backbone ResNet-50 ResNet-152 ViTPose-S ViTPose-B ViTPose-L ViTPose-H
Decoder Classic Simple Classic Simple Classic Simple Classic Simple Classic Simple Classic Simple
AP 71.8 53.1 73.5 55.3 73.8 73.5 75.8 75.5 78.3 78.2 79.1 78.9
AP50 89.8 86.9 90.5 87.9 90.1 90.0 90.7 90.6 91.4 91.4 91.7 91.6
AR 77.3 62.0 79.0 63.8 79.2 78.9 81.1 80.9 83.5 83.4 84.1 84.0
AR50 93.7 92.1 94.3 92.9 94.0 94.0 94.6 94.6 95.3 95.3 95.4 95.4

TABLE 3: Ablation study of the decoder in ViTPose on the MS
COCO val set. Classic-FP denotes using a randomly initialized
and fixed predictor within the Classic decoder (Fig. 3).

Classic Classic-FP Simple Minimal
AP 75.8 75.6 75.5 75.4

AP50 90.7 90.5 90.6 90.6
AR 81.1 80.9 80.9 80.7

AR50 94.6 94.3 94.6 94.5

TABLE 4: The performance of ViTPose-B using different pre-
training data on the MS COCO val set .

Pre-training Dataset Dataset Volume AP AP50 AP75
ImageNet-1k 1M 75.8 90.7 83.2

COCO (cropping) 150K 74.5 90.5 81.9
COCO+AIC (cropping) 500K 75.8 90.8 83.0

COCO+AIC (no cropping) 300K 75.8 90.5 83.0

The influence of simpler decoders. To further investigate
the representation capabilities of vision transformer backbones,
we incorporate three simplified decoder designs, namely classic-
FP, simple, and minimal decoders, into the ViTPose framework.
The performance of the ViTPose with these simplified decoder
designs is summarized in Table 3. Surprisingly, even with the
frozen projection layer in the classic-FP or the minimal decoder,
ViTPose still achieves an impressive performance of over 75.4
AP. It suggests that a linear layer is enough to act as the task-
specific module for pose estimation, demonstrating the excellent
representation capability of vision transformers in learning linearly
separable features from complex visual data. This emphasizes the
notion that fundamentals speak simply.

The influence of pre-training data. To evaluate whether
or not ImageNet data are necessary for pose estimation tasks,
we pre-train the transformer backbone on different datasets, i.e.,
ImageNet-1k [45], MS COCO [18], and a combination of MS
COCO and AIC [56], respectively. Since images in the ImageNet-
1k dataset are iconic, we also try to crop the person instances from
the MS COCO and AIC training set to form new training data for
pre-training. The models are pre-trained for 1,600 epochs on the
three datasets, respectively, and then fine-tuned on the MS COCO
dataset with pose annotations for 210 epochs. The results are
summarized in Table 4. It can be seen that with the combination
of MS COCO and AIC data for pre-training, ViTPose achieves
comparable performance compared with that using ImageNet-
1k, while the dataset volume is only half of the ImageNet-1k.
It implies that pre-training on the data from downstream tasks
has better data efficiency, validating the flexibility of ViTPose in
choosing pre-training data. Nevertheless, the AP decreases by 1.3
if only MS COCO data are used for pre-training. It may be caused
by the limited volume of the MS COCO dataset, i.e., the number of
instances in MS COCO is on 1/3 of the combination of MS COCO
and AIC. Besides, there is no obvious benefit of using cropping
on the pre-training images by comparing the results in the last two

rows, although the larger dataset volume after cropping means a
higher training cost. These results further validate that ViTPose
has better data efficiency in the pre-training stage when the data
come from the same type of tasks as the fine-tuning stage.

TABLE 5: The performance of ViTPose-B using different pre-
training methods on the MS COCO val set.

Random DeiT [77] MoCov3 [46] MAE [17]
AP 72.8 72.7 72.1 75.8

TABLE 6: The performance of ViTPose-B regarding different
input resolutions on the MS COCO val set.

224x224 256x192 256x256 384x288 384x384 576x432
AP 74.9 75.8 75.8 76.9 77.1 77.8
AR 80.4 81.1 81.1 81.9 82.0 82.6

The influence of pre-training methods. We also conduct
a comprehensive examination of various pre-training methods to
investigate their impact on pose estimation, encompassing random
initialization, supervised pre-training, contrastive self-supervised
pre-training, and masked image pre-training. Specifically, we
employed DeiT [77] and MoCov3 [46] as the supervised and con-
trastive self-supervised pre-training methods, respectively, both
applied to the ImageNet-1K dataset. The results in Table 5 show
that random initialization, supervised pre-training, and contrastive
self-supervised pre-training achieve comparable performance on
the MS COCO dataset, with random initialization yielding slightly
superior performance. This suggests that vision transformers pre-
trained using supervised or contrastive self-supervised methods
may learn classification-related features that generalize poorly to
the pose estimation task. In contrast, using masked image pre-
training, e.g., MAE [17], significantly enhances the performance.

The influence of input resolution. To evaluate whether or
not ViTPose can adapt well to different input resolutions, we
train ViTPose with different input sizes and summarize the results
in Table 6. The performance of ViTPose-B improves with the
increase in the input size. It is also noted that the squared input
only brings marginal or even no gains over the rectangular one,
e.g., 256×256 v.s. 256×192. The reason may be that the average
aspect ratio of human instances in MS COCO is about 4:3, and
the squared input size does not fit the statistics well.

The influence of attention type. As demonstrated in HR-
Net [26] and HRFormer [16], high-resolution feature maps are
beneficial for pose estimation. ViTPose can easily generate high-
resolution features by varying the down-sampling ratio of the
patching embedding layer, i.e., from 1/16 to 1/8. Besides, to
alleviate the out-of-memory issue caused by the quadratic com-
putational complexity of the vanilla self-attention, window-based
attention with the shifted window and pooling window strategies
described in Section 3.3 is used. The results are presented in
Table 7. Directly using full attention with 1/8 feature size obtains
the best 77.4 AP on the MS COCO val set while suffering from
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TABLE 7: The performance of ViTPose-B with 1/8 feature size on the MS COCO val set. “*” means fp16 is used during training due
to the limit of hardware memory. For the combination of vanilla self-attention (Full) and window-based attention (Window), we follow
ViTDet [31] and use full attention every 1/4 of all the layers. “Shift” and “Poll” denote the two strategies described in Section 3.3.

Full Window Shift Pool Window Size Training Memory (M) GFLOPs AP AP50 AR AR50
✓ N/A 36,141* 76.59 77.4 91.0 82.4 94.9

✓ (8, 8) 21,161 66.31 66.4 87.7 72.9 91.9
✓ ✓ (8, 8) 21,161 66.31 76.4 90.9 81.6 94.5
✓ ✓ (8, 8) 22,893 66.39 76.4 90.6 81.6 94.6
✓ ✓ ✓ (8, 8) 22,893 66.39 76.8 90.8 81.9 94.8

✓ ✓ (8, 8) 28,594 69.94 76.9 90.8 82.1 94.7
✓ ✓ ✓ (16, 12) 26,778 68.46 77.1 91.0 82.2 94.8

a large memory footprint even under the mixed-precision training
mode. Window-based attention can alleviate the memory issue
while at the cost of performance drop due to lacking global context
modeling, e.g., from 77.4 AP to 66.4 AP. The shifted window and
pooling window strategies both promote cross-window informa-
tion exchange for global context modeling and thus significantly
improve the performance by 10 AP with less than 10% memory
increase. When applying the two mechanisms together, i.e., the
5th row, the performance further increases to 76.8 AP, which is
comparable to the strategy proposed in ViTDet [31] that jointly
uses full and window attention (the 6th row), while having less
memory footprint, i.e., 76.8 AP v.s. 76.9 AP and 22.9G memory
v.s. 28.6G memory. Comparing the 5th and last row in Table 7,
we also note that the performance can be further improved from
76.8 AP to 77.1 AP by enlarging the window size from 8× 8 to
16×12, which outperforms the ViTDet setting and is comparable
with the full attention setting in the first row while having fewer
computations and less memory footprint.

TABLE 8: The performance of ViTPose-B at three partially fine-
tuning settings on the MS COCO val set.

FFN MHSA Memory (M) GFLOPs AP AP50 AR AR50
✓ ✓ 14,090 17.1 75.8 90.7 81.1 94.6
✓ 11,052 10.9 75.1 90.5 80.3 94.4

✓ 10,941 6.2 72.8 89.8 78.3 93.8

The influence of partially fine-tuning. To assess whether or
not vision transformers can still perform well for pose estimation
via partially fine-tuning, we fine-tune the ViTPose-B model at
three settings, i.e., fully fine-tuning, freezing the MHSA and
freezing the FFN. As shown in Table 8, with the MHSA frozen, the
performance drops moderately compared with the fully fine-tuning
setting, i.e., 75.1 AP v.s. 75.8 AP. The AP50 metric is almost the
same for the two settings. However, there is a significant drop of
3.0 AP when freezing the FFN. This finding implies that the FFN
of transformers is more responsible for task-specific modeling. In
contrast, the MHSA is insensitive to different tasks, e.g., probably
being only responsible for modeling the relationship of tokens
based on feature similarity no matter in the MIM pre-training task
or the down-stream pose estimation task.

TABLE 9: The performance of knowledge distillation from
ViTPose-L to ViTPose-B on the MS COCO val set.

Heatmap Token Memory (M) AP AP50 AR AR50
- - 14,090 75.8 90.7 81.1 94.6

✓ 14,203 76.0 90.7 81.3 94.8
✓ 15,458 76.3 90.8 81.5 94.8
✓ ✓ 15,565 76.6 90.9 81.8 94.9

The analysis of transferability. To evaluate the transferability

of ViTPose, we use both the classic output distillation method and
the proposed knowledge token distillation method to transfer the
knowledge from ViTPose-L to ViTPose-B. The results are listed
in Table 9. As can be seen, the token-based distillation brings a
gain of 0.2 AP with a marginal cost of extra memory footprint. In
comparison, the output distillation brings a gain of 0.5 AP with
a moderate cost of extra memory footprint. It is noteworthy that
the proposed token-based distillation does not require the teacher
model to be served during the training of the student model,
thereby bringing fewer computations and less memory footprint
compared with the output distillation method. The two distillation
methods are complementary, and using them together obtains 76.6
AP, validating the excellent transferability of ViTPose models.

4.4 Ablation studies of ViTPose++ and analysis
4.4.1 Different settings of ViTPose++
The baseline method. Since the decoder in ViTPose is rather
simple and lightweight, we can easily extend ViTPose to deal with
multiple types of body pose estimation tasks by using a shared
backbone and individual decoder for each task. Specifically, im-
ages from each pose estimation task are randomly selected and
organized into a batch. These images are then fed into a shared
encoder network for feature extraction. The extracted features
are subsequently passed to the respective task-specific decoder,
which is responsible for predicting the keypoints specific to the
given task. This straightforward extension serves as the baseline
method and is illustrated in Fig. 2 (d). We gradually introduce
various datasets such as MS COCO [18], AIC [56], MPII [19],
COCO-W [57], AP-10K [58], and APT-36K [59] to formulate the
training data. The results on the MS COCO val set are listed
in Table 10. Note that we directly use the models after multi-
task training for evaluation without further fine-tuning. It can be
observed that the performance of ViTPose increases consistently
from 75.8 AP to 77.1 AP by using human pose estimation datasets
(MS COCO, AIC, and MPII) for training. Although the dataset
volume of MPII is much smaller than the combination of MS
COCO and AIC (40K v.s. 500K), using MPII for training still
brings a 0.1 AP increase, showing that ViTPose can well harness
the diverse data in different datasets. With the same data but novel
annotations in COCO-W for training, there is no performance gain
or drop, showing that ViTPose can well encode the human body
feature representations and mitigate the side effect of allocating
the representation capacity for those distinct keypoints in the face,
hands, and feet. However, with the animal datasets (AP-10K and
APT-36K) involved, the performance of the baseline method drops
from 77.0 to 76.7, probably due to the conflict between different
tasks (i.e., humans and animals).

ViTPose++. We consider three variants of ViTPose++ by
changing the configurations of the experts in FFN. 1) Independent
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TABLE 10: The performance of ViTPose-B at the multi-task
training setting on the MS COCO val set.

COCO AIC MPII COOC-W AP10K APT36K AP AP50 AR AR50
✓ - - - - - 75.8 90.7 81.1 94.6
✓ ✓ - - - - 77.0 90.8 82.2 94.9
✓ ✓ ✓ - - - 77.1 90.8 82.2 94.7
✓ ✓ ✓ ✓ - - 77.1 90.8 82.2 94.8
✓ ✓ - - ✓ - 76.8 90.8 82.0 94.7
✓ ✓ - - ✓ ✓ 76.7 90.7 81.8 94.6

FFN (I-FFN): To mitigate the conflict between different tasks, we
use an independent for each task in each transformer block. In this
way, each FFN can only process the images of the dataset corre-
sponding to a specific pose estimation task. All these independent
FFNs are initialized with the weights of the original FFN from the
MAE pre-trained models. 2) Independent and Shared FFN (IS-
FFN): Although there may exist conflicts between different tasks,
they may also share some common knowledge of body poses, e.g.,
the locations of eyes are symmetric for both human beings and
most kinds of animals. To encode such common knowledge, we
introduce a shared FFN in each transformer block in addition to
the independent ones. In this way, each image will be processed by
not only a task-specific FFN but also the shared FFN. The output
features from a task-specific FFN and the shared FFN are then
summed together and used as the input to the next transformer
layer. We initialize the shared FFN with the weights from the
MAE pre-trained models and the independent FFNs with zero.
3) Partially Shared FFN (PS-FFN): We also explore another
design choice to jointly encode the common knowledge and task-
specific knowledge of body poses, i.e., the default setting of
ViTPose++. As described in Section 3.5, we split the last linear
layer of each FFN into a shared part and an independent part
along the channel dimension and leave the first linear layer shared
for all tasks. We duplicate the independent part for all the tasks
while not sharing their weights during training. We initialize the
shared and independent parts with the weights from the MAE
pre-trained models. The features from the first linear layer are
processed by the shared part and the corresponding independent
part of the second layer, respectively. The output features are then
concatenated along the channel dimension and used as the input
to the next transformer layer.

TABLE 11: The performance of ViTPose++-B at different set-
tings on the MS COCO val set. ViTPose-B is only trained on
the MS COCO dataset. “MT Baseline” denotes the multi-task
training baseline method (Section 4.4.1) based on ViTPose-B on
the combination of MS COCO, AIC, and AP-10K datasets. The
ViTPose++-B at the rest settings are described in Section 4.4.1
and trained on the same datasets as “MT Baseline”. The number
of parameters during inference is also listed in the second column.

Model Params (M) AP AP50 AR AR50
ViTPose-B 86 75.8 90.7 81.1 94.6

MT Baseline 86 76.8 90.8 82.0 94.7
I-FFN 86 75.8 90.5 81.1 94.4

IS-FFN 143 77.0 90.8 82.2 94.8
PS-FFN (α = 1/6) 86 77.0 90.8 82.0 94.7
PS-FFN (α = 1/4) 86 77.0 90.9 82.2 94.8
PS-FFN (α = 1/3) 86 77.0 90.8 82.1 94.7

We use the combination of MS COCO, AIC, and AP-10K
datasets to train the multi-task baseline model and ViTPose++ at
the above three settings. The results are summarized in Table 11.

It can be observed that without modeling the common knowledge
between different tasks, the performance of ViTPose++ with I-
FFN obtains 75.8 AP, which is only comparable to the results of
ViTPose trained on MS COCO and much worse than the results
of the multi-task baseline method (76.8 AP). Although the MHSA
layers are shared by all datasets in ViTPose++ with I-FFN, they are
almost task-agnostic, as also evidenced in Table 8, thus explaining
the unsatisfactory result of I-FFN. With PS-FFN, ViTPose++
obtains 77.0 AP, which is the same as the performance of using
human datasets only for training (2nd row in Table 10). The results
demonstrate that a proper design for encoding the common and
task-specific knowledge of the body poses matters for addressing
the conflict between different tasks. Nevertheless, it introduces
extra computations and parameters compared with single-task
ViTPose and the multi-task baseline since there are additional
FFNs used for each task. With a proper partition ratio α in the
PS-FFN setting, i.e., 0.25, ViTPose++ with PS-FFN achieves a
better trade-off between performance and model complexity, i.e.,
obtaining 77.0 AP without extra computations and parameters.
Considering that ViTPose++ can be easily extended to handle
more types of pose estimation tasks, the results show its flexibility
and potential for building a foundation model towards generic
body pose estimation.

4.5 Comparison with SOTA methods

4.5.1 The performance on MS COCO
Since MS COCO [18] is the most popular and representative
dataset among all the body pose estimation tasks, we first compare
the performance of ViTPose and ViTPose++ with SOTA methods
on the MS COCO dataset. Specifically, we report their results
at both the top-down and bottom-up paradigms. Then, we further
compare their performance on other body pose estimation datasets.

Top-down paradigm. Based on the previous analysis, we use
the input resolution of 256× 192 during training and report the
results on the MS COCO val set as shown in Table 12. The
speed of all methods is recorded on a single A100 GPU with
a batch size of 64. The ViTPose++ models are trained on the
combination of MS COCO, AIC, MPII, COCO-W, AP-10K, and
APT-36K datasets. It can be observed that ViTPose achieves a
better trade-off between throughput and accuracy, showing that
the plain vision transformer has a strong representation ability
and is computationally friendly to modern hardware devices.
For example, the ViTPose-S model with fewer parameters and
fewer memory footprint obtains similar performance compared to
SimpleBaseline [5] and FastPose [29] using a ResNet-152 [76]
backbone. Besides, ViTPose performs better with much larger
backbones, demonstrating the good scalability of ViTPose. For ex-
ample, ViTPose-L obtains much better performance than ViTPose-
S and ViTPose-B, i.e., 78.3 AP v.s. 73.8 AP and 75.8 AP. ViTPose-
L also outperforms previous SOTA methods based on CNN and
transformers (e.g., UDP [75] and TokenPose [13]) by a large
margin while keeping a similar inference speed. Furthermore,
in comparison to the strong transformer-based baseline method
HRFormer-B [16], the proposed plain vision transformer-based
ViTPose delivers comparable performance. For instance, ViTPose-
H (16th row) achieves slightly better performance and faster
inference speed compared to HRFormer-B (10th row), with 79.1
AP v.s. 75.6 AP and 241 fps v.s. 158 fps, respectively. Even
when compared to HRFormer-B with a larger input resolution
(11th row), ViTPose-H still outperforms it while consuming less



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 12: Comparison of ViTPose and ViTPose++ with SOTA methods on the MS COCO val set.

Model Backbone
Params Speed FLOPs Memory Input Feature Detector COCO val

(M) (fps) (G) (M) Resolution Resolution AP APM APL AR
SimpleBaseline [5] ResNet-152 60 829 15.7 3827 256x192 1/32 Faster RCNN 73.5 69.9 80.2 79.0

HRNet [26] HRNet-W32 29 428 16.0 7049 384x288 1/4 Faster RCNN 75.8 71.9 82.8 81.0
HRNet [26] HRNet-W48 64 309 32.9 7339 384x288 1/4 Faster RCNN 76.3 72.3 83.4 81.2
UDP [75] HRNet-W48 64 309 32.9 7339 384x288 1/4 Faster RCNN 77.2 73.2 84.4 82.0

FastPose [29] ResNet-152 60 653 16.0 6013 256x192 1/32 YoLov3 73.3 - - -
TokenPose-L/D24 [13] HRNet-W48 28 602 11.0 3477 256x192 1/4 Faster RCNN 75.8 72.3 82.7 80.9
TransPose-H/A6 [14] HRNet-W48 18 309 21.8 - 256x192 1/4 Faster RCNN 75.8 76.4 87.2 80.8

HRFormer-B [16] HRFormer-B 43 158 12.2 4287 256x192 1/4 Faster RCNN 75.6 71.7 82.6 80.8
HRFormer-B [16] HRFormer-B 43 78 26.8 7859 384x288 1/4 Faster RCNN 77.2 73.2 84.2 82.0

ViTPose-S ViT-S 22 1439 5.3 3438 256x192 1/16 Faster RCNN 73.8 70.5 80.4 79.2
ViTPose-B ViT-B 86 944 17.1 4589 256x192 1/16 Faster RCNN 75.8 72.1 82.2 81.1
ViTPose-L ViT-L 307 411 59.8 5587 256x192 1/16 Faster RCNN 78.3 74.5 85.4 83.5
ViTPose-H ViT-H 632 241 122.9 7293 256x192 1/16 Faster RCNN 79.1 75.3 86.0 84.1

ViTPose++-S ViT-S 22 1439 5.3 3438 256x192 1/16 Faster RCNN 75.8 72.3 82.6 81.0
ViTPose++-B ViT-B 86 944 17.1 4589 256x192 1/16 Faster RCNN 77.0 73.4 84.0 82.6
ViTPose++-L ViT-L 307 411 59.8 5587 256x192 1/16 Faster RCNN 78.6 75.2 85.6 84.1
ViTPose++-H ViT-H 632 241 122.9 7293 256x192 1/16 Faster RCNN 79.4 75.8 86.5 84.8

memory. These results highlight that despite having a higher
number of parameters, the plain vision transformer structure, with
its simple matrix multiplication operations, exhibits excellent com-
patibility with modern hardware designs. It also has the potential
to achieve better performance with reduced memory consumption
and faster speed, pointing towards a new design paradigm for
future works. While using multiple body pose estimation datasets
for training, the performance of ViTPose++ further increases. For
example, the small model ViTPose++-S obtains 75.8 AP with
1,439 fps, which is comparable to the larger model ViTPose-B
but has a much faster speed. It’s also worth noting that even
when applied to large-scale models that have already achieved
outstanding results, ViTPose++-H still demonstrates performance
improvement by elevating ViTPose-H from an impressive 79.1 AP
to an even higher 79.4 AP. The results show the good scalability
and flexibility of ViTPose regarding both model structures and
training data.

TABLE 13: Comparison with SOTA methods on the MS COCO
test-dev set. “⋄” means model ensemble. “†”, “‡”, and “*” denote
the champions of the 2018, 2019, and 2020 MS COCO Human
Keypoint Detection Challenge, respectively.

Method Backbone AP AP50 AP75 APM APL AR
Baseline⋄ [5] ResNet-152 76.5 92.4 84.0 73.0 82.7 81.5
RMPE [24] PyraNet 68.8 87.5 75.9 64.6 75.1 73.6
CPN+ [27] ResNet-Inception 73.0 91.7 80.9 69.5 78.1 79.0
HRNet [26] HRNet-w48 77.0 92.7 84.5 73.4 83.1 82.0
HRFormer [16] HRFormer-B 76.2 92.7 83.8 72.5 82.3 81.2
MSPN⋄† [78] 4xResNet-50 78.1 94.1 85.9 74.5 83.3 83.1
SwinV2 [79] SwinV2-L 77.2 - - - - -
DARK [80] HRNet-w48 77.4 92.6 84.6 73.6 83.7 82.3
RSN⋄‡ [81] 4xRSN-50 79.2 94.4 87.1 76.1 83.8 84.1
CCM⋄ [62] HRNet-w48 78.9 93.8 86.0 75.0 84.5 83.6
UDP++⋄∗ [75] HRNet-w48plus 80.8 94.9 88.1 77.4 85.7 85.3
ViTPose-B ViT-B 75.1 92.5 83.1 72.0 80.7 80.3
ViTPose-L ViT-L 77.3 93.1 85.3 74.0 83.1 82.4
ViTPose-H ViT-H 78.1 93.3 85.7 74.9 83.8 83.1
ViTPose++-B ViT-B 76.4 92.7 84.3 73.2 82.2 81.5
ViTPose++-L ViT-L 77.8 93.1 85.5 74.6 83.6 82.9
ViTPose++-H ViT-H 78.5 93.4 86.2 75.3 84.4 83.4
ViTPose-G ViTAE-G 80.9 94.8 88.1 77.5 85.9 85.4
ViTPose-G⋄ ViTAE-G 81.1 95.0 88.2 77.8 86.0 85.6

We then build a much stronger ViTPose-G model using the
ViTAE-G [22] backbone, which has about 1B parameters and
larger input resolution (576×432) and trained on the combination

of MS COCO, AIC, and MPII datasets. A more powerful detector
from Bigdet [82] is also used to provide person detection results
(68.5 AP on the person class of COCO dataset). As shown in
Table 13, ViTPose-G with the ViTAE-G backbone outperforms all
previous SOTA methods on the MS COCO test-dev set at 80.9
AP, where the previous best method UDP++ uses 17 models and
a slightly better detector (68.6 AP on the person class of COCO
dataset) and only obtains 80.8 AP. Our ensemble model ViTPose-
G⋄ with only three models further achieves the best 81.1 AP.

TABLE 14: Comparison of ViTPose and SOTA methods in the
bottom-up paradigm on the MS COCO val set.

Model Backbone
COCO Val

AP AP50 AR AR50
Associate Embedding [35] Hourglass 61.3 83.3 65.9 85.0
Associate Embedding [35] ResNet-50 46.6 74.2 56.6 81.0
Associate Embedding [35] ResNet-101 55.4 80.7 62.2 84.1
Associate Embedding [35] ResNet-152 59.5 82.9 65.1 85.6

Pifpaf [36] ResNet-50 62.6 - - -
HigherHRNet-w32 [38] HRNet-w32 67.7 87.0 72.3 89.0
HigherHRNet-w48 [38] HRNet-w48 68.6 87.3 73.1 89.2

ViTPose-B ViT-B 68.5 87.3 72.9 89.2
ViTPose-L ViT-L 70.1 88.3 74.5 90.2

Bottom-up paradigm. We use images of size 512× 512 in
MS COCO to train the ViTPose models in the bottom-up paradigm
and report the performance on the MS COCO val set. 1/8 feature
resolutions with full window-based attention are adopted. The
results are listed in Table 14. Without delicate designs, the plain
vision transformer obtains 68.5 AP with ViTPose-B and 70.1 AP
with ViTPose-L, demonstrating the good scalability of ViTPose in
the bottom-up paradigm. Compared with previous SOTA methods,
e.g., HigherHRNet with the HRNet-w48 backbone, ViTPose-L
model achieves better performance and sets a new SOTA, i.e.,
68.6 AP v.s. 70.1 AP. These results validate the flexibility of plain
vision transformers for different keypoint detection paradigms.

4.5.2 The performance on other datasets

To evaluate the performance of ViTPose comprehensively, apart
from the results on the MS COCO val and test-dev set, we also re-
port the performance of ViTPose++-S, ViTPose++-B, ViTPose++-
L, and ViTPose++-H on the OCHuman [55] val and test set,
MPII [19] val set, AIC [56] val set, COCO-W [57] val set, AP-
10K [20] test set, and APT-36K [59] test set, respectively. Please
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TABLE 15: Comparison of ViTPose++ and SOTA methods on the OCHuman [55] val and test set with ground truth bounding boxes.

Model Backbone Resolution
Val Set Test Set

AP AP50 AR AR50 AP AP50 AR AR50
SimpleBaseline [5] ResNet-152 384x288 58.8 72.7 63.1 75.7 58.2 72.3 62.7 75.2

HRNet [26] HRNet-w32 384x288 60.9 76.0 65.1 78.2 60.6 74.8 64.7 77.6
HRNet [26] HRNet-w48 384x288 62.1 76.1 65.9 78.2 61.6 74.9 65.3 77.3
MIPNet [83] HRNet-w48 384x288 74.1 89.7 81.0 - - - - -

HRFormer [16] HRFormer-S 384x288 53.1 73.1 59.6 76.9 52.8 72.8 59.1 76.6
HRFormer [16] HRFormer-B 384x288 50.4 71.5 58.8 76.6 49.7 71.6 58.2 76.0

ViTPose-S ViT-S 256x192 57.6 75.2 61.8 77.8 57.4 74.7 61.8 77.4
ViTPose-B ViT-B 256x192 60.1 75.9 64.3 78.0 59.6 74.7 64.7 77.8
ViTPose-L ViT-L 256x192 65.2 77.2 69.1 79.8 64.2 76.0 67.8 78.4
ViTPose-H ViT-H 256x192 67.5 79.6 70.7 81.1 67.0 78.5 70.2 80.7

ViTPose++-S ViT-S 256x192 79.4 90.7 81.6 91.4 78.4 90.6 80.6 91.0
ViTPose++-B ViT-B 256x192 83.7 91.8 85.4 92.9 82.6 91.7 84.6 92.4
ViTPose++-L ViT-L 256x192 87.4 93.7 88.8 94.2 85.7 92.8 87.5 93.4
ViTPose++-H ViT-H 256x192 86.8 92.8 88.3 93.7 85.7 92.8 87.4 93.8

TABLE 16: Comparison (PCKh) of ViTPose++ and SOTA methods on the MPII [19] val set with ground truth bounding boxes.

Model Backbone Resolution Head Shoulder Elbow Wrist Hip Knee Ankle Mean
SimpleBaseline [5] ResNet-152 256x256 86.9 95.4 89.4 84.0 88.0 84.6 82.1 89.0

HRNet [26] HRNet-w32 256x256 96.9 85.9 90.5 85.9 89.1 86.1 82.5 90.0
HRNet [26] HRNet-w48 256x256 97.1 95.8 90.7 85.6 89.0 86.8 82.1 90.1
CFA [84] ResNet-101 384x384 95.9 95.4 91.0 86.9 89.8 87.6 83.9 90.1

ASDA [85] HRNet-w48 256x256 97.3 96.5 91.7 87.9 90.8 88.2 84.2 91.4
TransPose-H-A6 [14] HRNet-w48 256x256 - - - - - - - 92.3

OKDHP [28] 8-Stack Hourglass 256x256 97.3 96.1 91.2 86.8 89.9 86.9 83.1 90.6
HRFormer [16] HRFormer-S 256x256 97.1 95.8 90.5 85.9 88.7 85.7 82.1 89.9
HRFormer [16] HRFormer-B 256x256 96.8 96.1 90.4 85.9 89.0 87.3 84.1 90.4

ViTPose-S ViT-S 256x192 96.4 94.7 88.1 83.2 88.4 84.3 80.0 88.4
ViTPose-B ViT-B 256x192 97.0 96.2 90.7 86.7 90.4 88.2 84.2 90.9
ViTPose-L ViT-L 256x192 97.7 97.2 92.9 89.2 92.3 90.8 87.4 92.8
ViTPose-H ViT-H 256x192 97.7 97.1 93.2 89.6 91.8 91.2 88.1 93.0

ViTPose++-S ViT-S 256x192 97.4 97.2 92.9 89.0 92.3 90.4 86.8 92.7
ViTPose++-B ViT-B 256x192 97.3 97.2 93.3 89.7 91.5 90.7 87.2 92.8
ViTPose++-L ViT-L 256x192 98.0 97.6 94.3 90.9 92.9 92.6 89.5 94.0
ViTPose++-H ViT-H 256x192 97.8 97.6 94.4 91.5 93.2 92.8 90.2 94.2

TABLE 17: Comparison of ViTPose++ and SOTA methods on the AIC [56] val set with ground truth bounding boxes.

Method Backbone Resolution AP AP50 AP75 AR AR50
SimpleBaseline [5] ResNet-50 256x192 28.0 71.6 15.8 32.1 74.1
SimpleBaseline [5] ResNet-101 256x192 29.4 73.6 17.4 33.7 76.3
SimpleBaseline [5] ResNet-152 256x192 29.9 73.8 18.3 34.3 76.9

HRNet [26] HRNet-w32 256x192 32.3 76.2 21.9 36.6 78.9
HRNet [26] HRNet-w48 256x192 33.5 78.0 23.6 37.9 80.0

HRFormer [16] HRFomer-S 256x192 31.6 75.9 20.9 35.8 78.0
HRFormer [16] HRFomer-B 256x192 34.4 78.3 24.8 38.7 80.9

ViTPose-S ViT-S 256x192 28.2 72.4 15.8 32.4 75.1
ViTPose-B ViT-B 256x192 30.9 75.8 19.4 35.3 78.3
ViTPose-L ViT-L 256x192 34.1 79.1 23.9 38.7 81.6
ViTPose-H ViT-H 256x192 34.6 80.2 24.3 39.0 82.1

ViTPose++-S ViT-S 256x192 29.7 74.6 17.6 34.3 77.1
ViTPose++-B ViT-B 256x192 31.8 76.7 20.6 36.3 79.0
ViTPose++-L ViT-L 256x192 34.3 79.1 24.1 38.9 81.8
ViTPose++-H ViT-H 256x192 34.8 80.2 24.5 39.1 82.2

note that the ViTPose++ models are trained with the combination
of all the datasets and directly tested on the target dataset without
further fine-tuning, which keeps the whole pipeline as simple
as possible. For each dataset, we use the corresponding FFN,
decoder, and prediction head in ViTPose for prediction. We also
provide the ViTPose baseline results. It’s worth highlighting that,
despite using the same number of parameters for inference, ViT-
Pose++ utilizes much fewer parameters during training compared
with training individual ViTPose models for each dataset.

OCHuman val and test set. To evaluate the performance of
different methods on the human instances with heavy occlusions,
we compare ViTPose++ and SOTA methods on the OCHuman val
and test set. We adopt the ground truth bounding boxes instead

of those obtained by a person detector to isolate the effect of
person detection because not all human instances are annotated
in the OCHuman datasets, and the person detector may cause
false positive or missing bounding boxes, which may obscure the
true performance of pose estimation models. Specifically, we use
the decoder and prediction head of ViTPose++ corresponding to
the MS COCO dataset since the keypoint definition is the same
in both the MS COCO and OCHuman datasets. The results are
listed in Table 15. Compared with previous SOTA methods with
complex structures, e.g., MIPNet [83], ViTPose++ obtains a gain
of over 10 AP on the OCHuman val set, although there is no
special structural design to deal with occlusions, implying the
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strong feature representation ability of plain vision transformer.
It should also be noted that HRFormer [16] experiences large
performance drops from MS COCO to OCHuman, and its small
model even beats the base model, i.e., 53.1 AP v.s 50.4 AP on the
OCHuman val set. Such phenomena imply that HRFormer may
overfit the MS COCO dataset, especially for larger models. By
contrast, ViTPose++ generally delivers performance gains with
the increase of model size and significantly pushes forward the
frontier of the keypoint detection performance on OCHuman, i.e.,
87.4 AP on the val set and 85.7 AP on the test set.

MPII val set. We evaluate the performance of ViTPose++
and representative models on the MPII val set with the ground
truth bounding boxes. Following the default settings of MPII, we
use PCKh as the metric for performance evaluation. It can be
observed that the previous representative methods have obtained
well performance on the MPII dataset, i.e., the strong transformer-
based method HRFormer-B obtains over 90 PCKh. Nevertheless,
ViTPose demonstrates the potential to further improve perfor-
mance due to its remarkable scalability. As shown in Table 16,
ViTPose++ outperforms previous methods in terms of both sin-
gle joint evaluation and average evaluation, e.g., ViTPose++-
S, ViTPose++-B, ViTPose++-L, and ViTPose++-H achieve 92.7,
92.8, 94.0, and 94.2 average PCKh with a smaller input resolution.

AIC val set. We also evaluate the performance of ViTPose++
on the AIC val set. As listed in Table 17, compared to represen-
tative CNN-based and transformer-based models, our ViTPose++
obtains better performance, i.e., 34.8 AP by ViTPose-H v.s. 33.5
AP by HRNet-w48 and 34.4 AP by HRFromer-B. Nevertheless,
the score is still not high enough on the AIC set, indicating that
more efforts may be needed to improve the performance further.

COCO-W val set. Different from the previous datasets,
COCO-W contains not only the annotations for typical human
body keypoints, but also provides fine-grained annotations on
the faces, hands, and feet. Similar to the MS COCO val set,
we use the person detection results from SimpleBaseline [5] for
evaluation. As shown in Table 18, our ViTPose++-B model obtains
competitive performance at 57.4 AP on the COCO-W val set.
With the model becoming larger, the performance of ViTPose++
further increases, and ViTPose++-H sets a new SOTA, e.g., 61.2
AP, demonstrating the excellent scalability of ViTPose++.

AP-10K val set. To evaluate the performance of ViTPose++
for animal pose estimation, we adopt the AP-10K and APT-36K
datasets. We use an input size of 256×192 for ViTPose++ during
training, while other methods take a larger size of 256×256
by default. The results are listed in Table 19. As can be seen,
ViTPose++ performs well not only for human pose estimation
but also for animal pose estimation. For example, ViTPose++-B
outperforms previous methods by obtaining 74.5 AP. In compar-
ison, the performance of the largest model ViTPose++-H further
increases to 82.4 AP, setting a new record on the animal pose
estimation task and demonstrating the potential of ViTPose in
dealing with various types of body pose estimation tasks.

APT-36K val set. We also evaluate the performance of ViT-
Pose++ on the APT-36K dataset, which contains a larger number
of instances. As shown in Table 20, ViTPose++ also achieves bet-
ter performance on the APT-36K datasets than previous methods.
Note that ViTPose++-S delivers a much higher AP on APT-36K
than AP-10K, i.e., 74.2 AP v.s. 71.4 AP, probably due to the more
balanced data distribution of APT-36K than that of AP-10K.

4.6 Subjective results

We also provide some visual pose estimation results for subjective
evaluation. We show the results of ViTPose++-H on the MS
COCO, AIC, OCHuman, MPII, COCO-W, AP-10K, and APT-
36K datasets, respectively. The results are shown in Fig. 5. As
can be seen, ViTPose++ is good at dealing with challenging cases
such as occlusions, blur, scale changes, appearance variance, odd
body postures, and complex backgrounds, owing to its strong
representation ability and flexibility in encoding pose-relevant
knowledge from multiple types of body pose estimation datasets.

4.7 Data efficiency analysis

A critical property of the foundation model is high data efficiency
for transfer learning, i.e., performing well on a target domain after
fine-tuning on only a small fraction of labeled data. To evaluate
the data efficiency of ViTPose under different settings, we first
train them with only the MS COCO dataset and the combination
of MS COCO, MPII, AIC, and COCO-W datasets, respectively.
Then, we demonstrate their generalization ability by further fine-
tuning them on two different datasets, i.e., InterHand2.6M [71]
and AP-10K [20], to make a comprehensive evaluation of the
generalization ability on datasets with different domain shifts, i.e.,
human body → human hand and human body → animal body.
Specifically, we use the 10%, 20%, 40%, 60%, 80%, and 100%
percentage of the training data for fine-tuning. During fine-tuning,
we ensure the models are fine-tuned with the same amount of data
by keeping the same number of iterations.

InterHand2.6M. We first conduct the data efficiency ex-
periments using ViTPose-B, ViTPose-L, and ViTPose-H on the
InterHand2.6M datasets. The results are plotted in Fig. 6, where
we also provide the results of representative small models trained
with 100% training data for reference. It can be observed that
the data efficiency is improved with the increase of the model
size, i.e., with the same percentage of data for training. ViTPose
with the ViT-H backbone always has better performance than
that with smaller ones. Moreover, the transformer-based methods
obtain better performance gains compared with the CNN-based
method, i.e., increasing the transfer data from 10% to 100%,
SimpleBaseline with a ResNet-50 backbone only experiences 0.8
AUC increase while ViTPose-B obtains 1.3 AUC improvement.
Besides, multi-task training on multiple types of body pose estima-
tion datasets also improve data efficiency. For example, compared
with single-task training, the multi-task training helps ViTPose-
B/L/H achieve a gain of 0.4/0.3/0.2 AUC when using 10% data for
training. In addition, compared with the small models using 100%
data for training, ViTPose-H obtains better performance with
fewer training data, e.g., ViTPose-H using 20% training data (87.2
AUC) outperforms ViTPose-S (86.5 AUC) and SimpleBaseline
with ResNet-50 (85.1 AUC) using 100% training data, showing
the high data efficiency of large models. Besides, with the model
size increasing, the benefit of using multiple types of pre-training
data becomes lower, i.e., the gap between the red and blue curves
becomes narrower. It implies that the model size plays a more
important role in improving the data efficiency of transfer learning,
i.e., suggesting the notion that more is different.

AP-10K. Similarly, we evaluate the data efficiency of the pre-
vious best model ViTPose-H on the AP-10K dataset. The results
are shown in Fig. 7. It can be observed that with only 10% data
for training, ViTPose-H outperforms the representative methods
with small models, e.g., ResNet-50, HRNet-32, and HRNet-48, as
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TABLE 18: Comparison of ViTPose and SOTA methods on the COCO-W [57] val set with detected boxes.

Method Backbone Resolution Body Foot Face Hand WholeBody
SimpleBaseline [5] ResNet-50 256x192 65.2 61.4 60.8 46.0 52.0
SimpleBaseline [5] ResNet-101 256x192 67.0 64.0 61.1 46.3 53.3

HRNet [26] HRNet-w32 256x192 70.0 56.7 63.7 47.3 55.3
HRNet [26] HRNet-w48 256x192 70.0 67.2 65.6 53.4 57.9
ZoomNet HRNet 384x288 74.3 79.8 62.3 40.1 54.1
FastPose ResNet50-dcn 256x192 69.3 69.0 75.9 45.3 57.7

ViTPose-S ViT-S 256x192 66.1 64.5 59.8 45.9 52.3
ViTPose-B ViT-B 256x192 69.6 70.1 62.1 50.8 56.3
ViTPose-L ViT-L 256x192 72.9 75.2 63.9 54.5 59.6
ViTPose-H ViT-H 256x192 73.5 76.4 63.2 54.9 60.0

ViTPose++-S ViT-S 256x192 71.6 72.1 55.9 45.3 54.4
ViTPose++-B ViT-B 256x192 73.3 74.2 60.1 50.2 57.4
ViTPose++-L ViT-L 256x192 75.3 77.1 63.0 54.2 60.6
ViTPose++-H ViT-H 256x192 75.9 77.9 63.3 54.7 61.2

TABLE 19: Comparison of ViTPose and SOTA methods on the AP-10K [20] test set with ground truth bounding boxes.

Method Backbone Resolution AP AP50 AP75 APM APL
SimpleBaseline [5] ResNet-50 256x256 68.1 92.3 74.0 51.0 68.8
SimpleBaseline [5] ResNet-101 256x256 68.1 92.2 74.2 53.4 68.8

HRNet [26] HRNet-w32 256x256 72.2 93.9 78.7 55.5 73.0
HRNet [26] HRNet-w48 256x256 73.1 93.7 80.4 57.4 73.8
ViTPose-S ViT-S 256x192 68.7 93.0 75.1 50.7 69.1
ViTPose-B ViT-B 256x192 73.4 95.0 81.9 60.2 73.8
ViTPose-L ViT-L 256x192 80.1 97.5 88.0 62.3 80.3
ViTPose-H ViT-H 256x192 82.0 97.5 89.1 67.3 82.3

ViTPose++-S ViT-S 256x192 71.4 93.3 78.4 47.6 71.8
ViTPose++-B ViT-B 256x192 74.5 94.9 82.2 46.8 75.0
ViTPose++-L ViT-L 256x192 80.4 97.6 88.5 52.7 80.8
ViTPose++-H ViT-H 256x192 82.4 98.2 89.5 59.1 82.8

TABLE 20: Comparison of ViTPose and SOTA methods on the APT-36K [59] val set with ground truth bounding boxes.

Method Backbone Resolution AP AP50 AP75 AR AR50
SimpleBaseline [5] ResNet-50 256x256 69.4 - - - -
SimpleBaseline [5] ResNet-101 256x256 69.6 - - - -

HRNet [26] HRNet-w32 256x256 74.2 - - - -
HRNet [26] HRNet-w48 256x256 74.1 - - - -

HRFormer [26] HRFormer-S 256x256 71.3 - - - -
HRFormer [26] HRFormer-B 256x256 74.2 - - - -

ViTPose-S ViT-S 256x192 70.2 94.8 77.1 73.2 95.4
ViTPose-B ViT-B 256x192 75.5 97.4 85.0 78.4 97.6
ViTPose-L ViT-L 256x192 80.6 98.4 90.4 83.3 98.5
ViTPose-H ViT-H 256x192 82.1 98.4 91.6 84.9 98.6

ViTPose++-S ViT-S 256x192 74.2 94.9 82.3 77.6 95.6
ViTPose++-B ViT-B 256x192 75.9 95.4 83.7 79.2 96.0
ViTPose++-L ViT-L 256x192 80.8 97.4 88.5 83.9 97.9
ViTPose++-H ViT-H 256x192 82.3 97.7 90.6 85.5 98.3

well as the ViTPose-B and ViTPose-S models, further validating
the good data efficiency of the large model.

4.8 Visualization and analysis

Visualization of feature maps. To inspect the learning ability
of ViTPose, we visualize the feature maps of ViTPose++-B on
the normal and heavily occluded images, i.e., we mask half of
the images. As shown in Fig. 8 (a), ViTPose++-B gradually
focuses on the human body from the shallow layers to deep
layers in the backbone network. The up-sampling layer further
mitigates the interference of the background and focuses on the
keypoint locations. When comparing the feature maps extracted
from the normal images (1st row) and masked images (2nd row),
the features are almost the same in the visible parts. In contrast,
ViTPose gradually guesses the locations of those invisible joints
for the masked parts. For example, although the heads of the
human are masked, ViTPose can still guess the locations of the

head and the keypoints based on the visible parts, as demonstrated
in the upper parts of the feature maps from the 9th and 12th layers.

Visualization of attention maps To further inspect how
ViTPose models the relationships between different keypoints,
we visualize the attention maps regarding the right wrist from
the 3rd, 6th, 9th, and 12th layers of ViTPose++-B. We test on
both normal images (1st row) and images with the right wrist
masked (2nd row). The results are shown in Fig. 8 (b). It can
be observed that the attention map is rather similar no matter
whether the right wrist is masked or not, especially in the deep
layers. For example, in the 12th layer, ViTPose pays attention to
the person’s right arm to help localize the locations of the right
wrist in both cases. These visualization results present an intuitive
explanation of how ViTPose leverages the learned relationship
between different keypoints to facilitate the prediction of a specific
(invisible) keypoint.

Task correlation. We further evaluate the correlation between
different types of body pose estimation tasks by calculating the
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Fig. 5: Results of ViTPose++-H on the (a) MS COCO, (b) AIC, (c) OCHuman, (d) MPII, (e) COCO-W, (f) AP-10K, and (g) APT-36K.
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Fig. 6: The transfer learning results of ViTPose-B (a), ViTPose-L (b), and ViTPose-H (c) on the Interhand2.6M dataset using different
percentages of training data. The red and blue curves denote the results of ViTPose at the multi-task and single-task training settings.
We also plot the results of small pose estimation models, e.g., SimpleBaseline [5] with ResNet-50 and ResNet-101, for reference.
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Fig. 7: The transfer learning results of of ViTPose-H on the AP-
10K [20] using different percentages of training data. We also plot
the results of smaller models for comparison.

similarity between the weights of the task-specific FFN parts.
The weight similarity is defined as the cosine similarity between
the weights of the FFN layer corresponding to each dataset,
respectively. We analyze the per-layer similarity of ViTPose++-
B model. The results are plotted in Fig. 9. It can be observed
that the task-specific FFNs for human pose estimation have a
larger similarity than that of the task-specific FFNs for body pose
estimation of different species, i.e., the similarity between MS

COCO and AIC is larger than that between MS COCO and AP-
10K, especially in the deeper layers, implying that there probably
exist conflicts between different types of body pose estimation
tasks. Nevertheless, for the shallow layers, the weights of FFN
layers are rather similar in both cases, implying that FFNs in the
deeper layers are more task-specific than those in the shallower
layers, and thus we may only adopt MoE in the deeper FFN layers.

4.9 Failure case analysis
Despite the superior performance of ViTPose on various pose esti-
mation tasks, there are still challenges when it comes to handling
extreme postures, such as skiing as in Fig. 10. Fortunately, due
to the scalability of ViTPose, these limitations can be mitigated
by using a larger backbone and incorporating more data during
training. For instance, the ViTPose++-H model, trained with an
expanded dataset containing a greater variety of pose data, can
estimate the pose correctly.

5 LIMITATIONS AND DISCUSSION

Despite the good properties and performance of our ViTPose
and ViTPose++ for body pose estimation, even without elaborate
structural designs, there is still room to improve them further.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Layer#3 Layer#6 Layer#9 Layer#12 DeconvLayer#3 Layer#6 Layer#9 Layer#12 Deconv
(a) (b)

Fig. 8: Visualization of the (a) feature maps and (b) attention maps from ViTPose++-B on two test images w/ and w/o manual masks.
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Fig. 9: The similarity of task-specific FFN weights of ViTPose++-
B, i.e., COCO v.s. AIC and COCO v.s. AP-10K.
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Fig. 10: Failure case analysis on a test image with an extreme
pose. (a) Result of ViTPose-S. (b) Results of ViTPose++-H.

First, we only focus on the pose estimation task in this study,
while designing a unified foundation model for simultaneous
object detection (tracking) and pose estimation is more appealing
for generic body pose estimation and tracking. Besides, we only
use the training data in the visual modality in this study, while
leveraging language knowledge of body keypoints to help body
pose estimation, especially for zero-shot generalization on unseen
species or keypoints, is also worth further exploration.

6 CONCLUSION

This paper presents ViTPose and ViTPose++ as the simple base-
line for body pose estimation. They demonstrate good properties,
including simplicity, scalability, flexibility, and transferability,
which have been well justified through extensive experiments on
the representative benchmarks, including MS COCO, AIC, MPII,
OCHuman, COCO-W, AP-10K, and APT-36K. New performance
records on these datasets have also been set by the proposed
models. We hope this work could provide useful insights to the
community and inspire more future studies on the potential of
developing vision transformers towards a foundation model for
generic pose estimation and beyond.
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