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Abstract—The temporal action localization research aims to discover action instances from untrimmed videos, representing a
fundamental step in the field of intelligent video understanding. With the advent of deep learning, backbone networks have been
instrumental in providing representative spatiotemporal features, while the end-to-end learning paradigm has enabled the development
of high-quality models through data-driven training. Both supervised and weakly supervised learning approaches have contributed to
the rapid progress of temporal action localization, resulting in a multitude of methods and a large body of literature, making a
comprehensive survey a pressing necessity. This paper presents a thorough analysis of existing action localization works, offering a
well-organized taxonomy that highlights the strengths and weaknesses of each strategy. In the realm of supervised learning, in addition
to the anchor mechanism, we introduce a novel classification mechanism to categorize and summarize existing works. Similarly, for
weakly supervised learning, we extend the traditional pre-classification and post-classification mechanisms by providing a fresh
perspective on enhancement strategies. Furthermore, we shed light on the bottleneck of confidence estimation, a critical yet
overlooked aspect of current works. By conducting detailed analyses, this survey serves as a valuable resource for researchers,
providing beneficial guidance to newcomers and inspiring seasoned researchers alike.

Index Terms—Temporal action localization, supervised learning, weakly supervised learning, deep learning, survey
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1 INTRODUCTION

I N the modern era, video has emerged as a versatile, cost-
effective, and powerful medium for transporting information.

Various scenarios, such as traffic monitoring, sports competitions,
and film production, continuously generate a vast number of
videos. While these videos contain informative action segments,
they are often interspersed with lengthy sequences of irrelevant
backgrounds. Such videos are referred to as untrimmed videos
[1], [2], in contrast to human-trimmed videos that solely focus
on informative action segments. The objective of temporal action
localization is to address this challenge by efficiently extracting
meaningful action instances and providing their respective starting
time, ending time, and classification label. The task of temporal
action localization holds fundamental importance in intelligent
video analysis and offers significant contributions to a multitude of
applications. Notable applications include video editing [3], video
content analysis [4], highlight extraction [5], video summarization
[6], [7], video-based recommendation [8], industrial video analysis
[9], abnormal behavior detection [10], smart surveillance [11],
and human-robot interaction [12]. Through robust temporal action
localization, these applications stand to benefit from improved
efficiency, accuracy, and automation.

To effectively detect action instances in untrimmed videos,
temporal action localization algorithms necessitate robust spatio-
temporal modeling. This entails the simultaneous consideration
of appearance cues within individual frames and the temporal
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Fig. 1: Illustration of the supervised temporal action localization
task (TAL) and the weakly supervised temporal action localization
task (WTAL), where the difference lies in the supervision signal.

evolution across multiple neighboring frames. Fig. 1 illustrates
how the community approaches temporal action localization with
distinct supervision levels, namely, fully supervised and weakly
supervised methodologies.

This survey is dedicated to exploring the advancements in
temporal action localization within the context of deep learning.
Over the past seven years, the research landscape for temporal ac-
tion localization has been remarkably dynamic, with a substantial
volume of literature emerging since its inception [1]. As depicted
in Fig. 2, the supervised methods have undergone impressive
performance improvements. Notably, under an Intersection over
Union (IoU) threshold of 0.5, the supervised approach has seen its
performance surge from 19.0% [1] to an impressive 72.9% [24],
representing a remarkable fourfold increase over the past seven-
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Fig. 2: Performance development for both supervised methods
and weakly supervised methods, measured by mAP under IoU
threshold 0.5 on THUMOS14 dataset.

year period. While the task of weakly supervised temporal action
localization was proposed subsequently, its reliance on video-
level labels presents unique challenges. Nonetheless, significant
progress has been achieved in this area as well. Commencing
with an initial performance of 13.7% [2], the weakly supervised
approach has now reached a commendable 42.8% [25].

In times of rapid change, it becomes imperative to sum-
marize and assess existing research to understand the reasons
behind advancements, gather valuable insights, identify current
methodological bottlenecks, and outline future research directions.
Temporal action localization plays a crucial role in the domain
of video understanding, alongside foundational techniques like
action recognition. Despite action recognition being extensively
covered in multiple high-quality surveys [29], [30], [31], the
temporal action localization domain lacks a comprehensive survey.
As shown in Table 1, although Xia et al. [26] recognize the
need to review existing works, their study focus on methods
preceding 2018, resulting in the omission of recent progress and
insufficient in-depth analyses. Recently, Elahe et al. [27] provide a
summary of both fully-supervised and weakly-supervised methods
for temporal action localization, including discussions on related
settings such as spatio-temporal action detection. However, Elahe
et al. [27] primarily elaborate on well-known paradigms, such as
categorizing methods into anchor-based and anchor-free pipelines,
without introducing a brand-new categorization pipeline. In con-
trast, our work offers multiple categorizations and highlights a key
bottleneck present in existing action localization algorithms.

To address this gap comprehensively, we present a thorough
survey of representative action localization works in the deep
learning era. Our survey encompasses multiple crucial aspects to
provide a comprehensive analysis of the field. Firstly, we systemat-
ically categorize existing works into distinct groups, developing a
well-defined taxonomy that offers a clear and structured overview
of the various paradigms employed in temporal action localization.
Alongside this categorization, we conduct a meticulous analysis
of the strengths and weaknesses associated with each paradigm,
providing valuable insights into their performance. Secondly,
throughout the survey, we emphasize the characteristics of influen-
tial works that have significantly contributed to the advancement
of temporal action localization research. By recognizing these
pioneering contributions, we shed light on the prominent trends
and developments within the field. Furthermore, our investigation
identifies a critical performance bottleneck in current temporal
action localization methods, primarily stemming from challenges

in accurately estimating confidence scores. Finally, drawing from
our comprehensive analysis, we conclude by suggesting promis-
ing research directions for subsequent investigations in temporal
action localization. These insights are intended to inspire and
guide future research endeavors, with the ultimate goal of driving
continued advancements in the field.
• An in-depth review for the supervised temporal action lo-
calization task from multiple perspectives. Besides the classical
anchor perspective, we propose a new classification perspective,
and categorize existing works into the frame classification pipeline
or the proposal classification pipeline.
• An in-depth review for the weakly supervised temporal action
localization task. Apart from the traditional perspective, we review
existing works from the enhancement perspective, and categorize
them into enhanced classifier, enhanced feature, and enhanced
attention pipeline.
• We identify a potential bottleneck in the process of confidence
score estimation within the context of temporal action localization.
This identification sheds light on introducing refined algorithms
for evaluating prediction quality, ultimately elevating the perfor-
mance of action localization to a higher level.

Our survey endeavors to offer a comprehensive and insightful
analysis of the temporal action localization field by thoroughly
exploring the strengths, weaknesses, and research trends of var-
ious methodologies. The subsequent sections of the paper are
structured as follows. Section 2 serves as an introduction to the
background of temporal action localization, providing essential
context to the readers. In Section 3, we delve into the super-
vised temporal action localization task, tracing its evolution and
presenting multiple categorizations. This section offers a compre-
hensive discussion of the pros and cons associated with different
approaches in this domain. Similarly, Section 4 is dedicated to the
discussion of the weakly supervised temporal action localization
task. We explore its evolution and various categorizations, engag-
ing in an in-depth analysis of the advantages and limitations of
existing methodologies. Next, in Section 5, we identify a critical
bottleneck within current methods, specifically the challenge of
accurately estimating confidence scores, and discuss other promis-
ing research directions. Finally, in Section 6, we draw meaningful
conclusions from our analysis, summarizing the key findings and
highlighting potential avenues for further investigation. Through
this well-structured approach, our survey aims to contribute to
the advancement of temporal action localization research while
providing valuable insights to the scholarly community.

2 BACKGROUND

In this section, we provide a comprehensive research background
for the temporal action localization task. We commence by pre-
senting a general formulation of the task, capturing its essential
characteristics and objectives. Subsequently, we explore and dif-
ferentiate between two distinct settings: the supervised setting and
the weakly supervised setting, each offering unique challenges
and approaches for temporal action localization. Additionally, we
offer a concise overview of the historical development of temporal
action localization. By examining its evolutionary journey, we
gain valuable insights into the progression of methods and key
milestones that have shaped the field over time. Through this
detailed exposition, our aim is to establish a solid foundation of
knowledge that sets the stage for the subsequent discussions and
analyses in this survey.
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TABLE 1: Summary of previous temporal action localization surveys about the temporal action localization task.

Title Year Venue Description

A Survey on Temporal Action Localization [26] 2020 IEEE Access This paper reviews techniques and models for temporal action
localization up to 2019.

Deep Learning-based Action Detection in Untrimmed
Videos: A Survey [27] 2022 TPAMI This paper reviews works for temporal action detection and

spatio-temporal action detection.

Weakly-supervised Temporal Action Localization: A Sur-
vey [28] 2022 NCA This paper reviews temporal action localization under only

video-level labels .

2.1 Notation and taxonomy

In this context, we are given a dataset X comprising N videos,
denoted as X = {Xi}Ni=1. Each video Xi is accompanied by a
corresponding supervision label Yi. During the training phase, the
algorithm processes video Xi and generates predictions, which are
then compared with the respective supervision label Yi to guide
the learning process.

l = L(Φ(Xi|W),Yi), (1)

The loss function L(·) is utilized to quantify the discrepancy
between the predictions made by the algorithm, where Φ(Xi|W)
represents the algorithm’s predictions, and W denotes the algo-
rithm’s parameter.

The training phase ensures that the algorithm learns to rec-
ognize accurate action patterns for each category, leveraging
the provided supervision labels. During the inference phase,
the algorithm’s objective is to precisely detect action instances
Pi = {(tsj , tej , cj , sj)}

Ni
j=1 within each untrimmed video. Specifi-

cally, the algorithm discovers Ni action instances in the ith video,
with the start time and end time of the jth instance denoted as
tsj and tej , respectively. Additionally, cj represents the predicted
category, and sj is the confidence score associated with this
prediction.

It is essential to note that the distinction between the super-
vised paradigm and the weakly supervised paradigm lies in the
nature of the supervision label Y, leading to specific challenges
for each setting. The supervised setting benefits from precise
supervision, allowing for accurate action localization. Conversely,
the weakly supervised setting poses challenges due to its re-
liance on video-level labels, leading to the need for innovative
approaches to precisely identify action instances in untrimmed
videos.

In the supervised setting, each training video is accom-
panied by a detailed supervision label, denoted as Yi =
{(tsj , tej , cj)}

Ui
j=1. This label provides explicit information, includ-

ing the start time, end time, and category label for each action
instance within the video. Here, Ui denotes the total number of
instances present in the video. The loss function, as represented
in Eq.(1), takes into account both the classification and regression
losses. Supervised algorithms leverage these annotations to learn
action patterns comprehensively, albeit facing challenges stem-
ming from significant variations in action duration [1], [14], [36],
[42], [50], as well as discrepancies in action patterns [15], [16],
[51], [52], and other factors.

Conversely, the weakly supervised setting involves training
videos with video-level classification labels, denoted as Yi =
[c1i , c

2
i , ..., c

C
i ], where cli = 1 indicates the presence of action

instances from the lth category in the video. As video-level
classification labels only reveal the existence of action instances

without specifying instance number or temporal boundaries, the
loss function in Eq.(1) primarily emphasizes video-level classifi-
cation loss. Weakly supervised algorithms grapple with ambiguity
issues arising from action-context confusion [53], [54], [55], [56],
part domination [57], [58], [59], and false alarms in backgrounds
[60].

2.2 History and scope

To the best of our knowledge, the origins of temporal action
localization can be traced back to the concept of action search [61],
[62], wherein algorithms aim to identify similar action instances
within untrimmed videos, guided by an exemplary action instance.
Zelnik et al. [61] propose a simple statistical distance measure
for dynamic events and represented long-term temporal objects
with spatiotemporal features at multiple temporal scales. Similarly,
Gorelick et al. [62] treat human action as the silhouette of a
moving torso and developed a 2D shape analyzing method to
handle 3D spacetime actions. Building upon these initial works,
Laptev et al. [63] and Duchenne et al. [64] introduced the concept
of learning action patterns from movie scripts and localizing action
boundaries, which marked the inception of weakly supervised
temporal action localization. Laptev et al. [63] design a unified
framework that simultaneously incorporates local space-time fea-
tures, space-time pyramids, and multichannel non-linear SVMs
for video classification, leveraging movie scripts to automatically
discover human actions. In summary, traditional approaches for
temporal action localization encompass diverse techniques, such
as space-time features [62], spatiotemporal graphs [65], hidden
Markov models [66], and more.

With the advent of deep learning research [67], [68], temporal
action localization has undergone a revolutionary transformation.
Leveraging the capabilities of video recognition backbones [69],
[70], [71], which provide representative features, and adopting
the end-to-end learning paradigm [36], which simplifies complex
designs, the field has seen significant advancements. In the realm
of supervised approaches, the anchor mechanism has seen notable
developments, resulting in one-stage methods [33], [39], [72],
[73], two-stage methods [14], [36], [52], [74], and anchor-free
methods [44], [75], [76], [77]. On the other hand, in the context
of weakly supervised methods, the community has introduced
the pre-classification pipeline [2], [78], [79], [80] and the post-
classification pipeline [20], [54], [81], [82].

It is essential to highlight that this survey centers specifically
on temporal action localization research while considering other
relevant tasks as distinct and separate topics. For instance, tasks
such as action segmentation [83], spatiotemporal action detection
[84], and action recognition [69], [70], [71] are not the primary
focus of this survey and are treated as separate subjects.
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Fig. 3: Chronology for representative supervised temporal action localization research.

3 FULLY SUPERVISED TEMPORAL ACTION LO-
CALIZATION

In the deep learning era, temporal action localization methods can
be classified into three main pipelines: the one-stage pipeline,
the two-stage pipeline, and the anchor-free pipeline1. This cat-
egorization is based on whether the algorithm relies on default
anchors and how these anchors are utilized. Furthermore, apart
from the anchor mechanism taxonomy, we propose to review
temporal action localization methods from the perspective of
the classification mechanism. We categorize existing works into
two distinct pipelines: the frame classification pipeline and the
proposal classification pipeline. Additionally, we delve into two
influential aspects of existing methods: the receptive field and
feature representation. We summarize the representative char-
acteristics of these aspects to gain valuable insights into their
contributions to the field. Lastly, we identify the current bottleneck
in supervised action localization algorithms and discuss several
promising research directions aimed at overcoming these limita-
tions.

As depicted in Fig. 3, several significant research works
have emerged, each contributing to the advancement of action
localization accuracy and serving as pivotal milestones in the
field’s chronology. In the realm of supervised temporal action
localization, the earliest work can be traced back to detecting
actions through the classification of sliding-window proposals [1].
Subsequently, Gao et al. [13] introduce the anchor mechanism
to enhance proposal flexibility and accomplished action detec-
tion through regression based on default anchors. The pipeline’s
progress continued with the introduction of TAL-Net [14], which
further developed the anchor mechanism into a two-stage ap-
proach. Subsequently, Zeng et al. [15] emphasize that action
instances should not be detected individually and introduced graph
convolution to model complex relationships among proposals,
a concept further promoted by G-TAD [16]. Afterwards, Liu
et al. [17] identify that sufficient comparisons among clustered
proposals are key factors in modeling relationships among pro-
posals. They transformed the task of localizing action scope in

1. We use “anchor-free” to indicate methods that do not rely on the anchor
mechanism, which has a broader scope than the term’s usage in the object
detection domain.

the temporal space into predicting a point in the 2D start-end
space. More recently, ActionFormer [18] pushes the localization
performance to a brand-new status, which is further developed by
TriDet [24].

To ensure clarity in our review, we present an elaborate
categorization of existing research into two main groups and
five sub-groups, as detailed in Table 2. Furthermore, we provide
corresponding schematic diagrams for each sub-group, visually
depicted in Fig. 4. In the subsequent sections, we conduct a
comprehensive review of the classification mechanism and the an-
chor mechanism. We discuss the procedures, representative works,
strengths, and weaknesses associated with each mechanism.

3.1 Anchor mechanism

One-stage. The anchor mechanism has demonstrated remarkable
efficiency in temporal action localization tasks, with existing
works belonging to the one-stage pipeline, two-stage pipeline,
or anchor-free pipeline. In particular, the one-stage pipeline [33],
[37], [73], [85] stands as a simple yet effective solution, simulta-
neously predicting temporal boundaries and action categories for
each instance, as illustrated in Fig. 4 (a). Notably, two widely used
strategies contribute to enhancing localization accuracy within this
pipeline: (1) estimating the overlap score (i.e., temporal intersec-
tion over union) enables precise ranking of candidate instances; (2)
multiple pyramid layers facilitate the capture of action instances
with varying durations. Additionally, the one-stage pipeline has
witnessed significant advances, such as transforming the vanilla
temporal convolutional kernel into a Gaussian kernel capable of
modeling action structures [39], performing boundary regression
and action classification via separate branches [72], and fusing
appearance and motion features in a middle-level manner [86].
To summarize, the one-stage pipeline effectively discovers action
instances. However, its performance is constrained by default an-
chors, necessitating careful tuning of hyperparameters to achieve
optimal accuracy.
Two-stage. The two-stage pipeline operates by first generating
action proposals using default temporal anchors and then perform-
ing elaborate boundary regression and category label prediction,
as depicted in Fig. 4 (b). A representative work for the two-stage
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TABLE 2: Categorization of existing temporal action localization works. According to the operation mechanism, we group existing
works into two categories, where each category can be further divided into sub-categories.

Paradigm Category Publications Strengths Weaknesses

Anchor Mechanism

One-Stage
[85], [33], [35], [37], [39], [72]

• Efficient framework • Parameter sensitive[51], [77], [86], [87], [73], [88], [47]

Two-Stage
[13], [36], [14], [74], [89], [43], • Accurate boundary • Complicated designs
[52], [90], [91] • Elaborate fusion • Parameter sensitive

Anchor-Free
[75], [76], [77], [44], [92], [93], • Simple design

• Center uncertainty[18], [94], [95], [18], [96] • Robustness

Classification Mechanism

Classifying
[32], [97], [34], [98], [38], [37], [99], [40],

• Accurate boundary • Lacking temporal modeling[51], [41], [100], [50], [43], [101], [102],
frames [88], [46], [103], [92], [18], [104], [103] • Tackling long instances • Separated procedures

Classifying
[1], [105], [13], [106], [98], [42],

• High recall • Heavy computation[15], [107], [108], [109], [110], [17],
proposals [52], [45], [101], [90], [49] • Low background error • Not flexible enough

pipeline is R-C3D [36], which has been further developed by TAL-
Net [14]. Given its multiple procedures, the two-stage pipeline
offers opportunities for specific designs tailored to temporal action
localization tasks. For instance, the receptive field alignment
module [14] addresses drastic variations in action instances, while
the attention-based graph convolutional module [43] explores
intra- and inter-proposal relationships. On one hand, the two-stage
pipeline has the potential to achieve accurate action boundaries.
On the other hand, compared to the one-stage pipeline, it is
more sensitive to hyperparameters and necessitates more intricate
designs.

Anchor-free. In contrast to the one-stage and two-stage
pipelines that rely on default anchors, the anchor-free pipeline
directly performs action boundary regression without referencing
default anchors, as illustrated in Fig. 4 (c). While not extensively
emphasized, credit for pioneering work goes to [75], which
predicted temporal distances from each frame to potential action
boundaries. Building on this foundation, Tang et al. [76] draw in-
spiration from FCOS [121] and introduce an anchor-free temporal
action detection framework, known as AFO-TAD. Subsequently,
Yang et al. [77] conduct an in-depth study on the anchor-free
pipeline, revealing its superiority in handling extremely long or
extremely short action instances. More recently, Lin et al. [44] fur-

ther advance the anchor-free pipeline by learning salient boundary
features and proposing a prediction-and-refinement framework.
In summary, the anchor-free pipeline exhibits robustness and
simplicity in design, but it may encounter challenges related to
the center uncertainty problem.

3.2 Classification mechanism

Frame classification. Temporal action localization necessitates
effective spatio-temporal modeling. In the frame classification
paradigm, spatial information is initially modeled by classifying
each frame, followed by perceiving temporal evolution through
pre-defined rules, as depicted in Fig. 4 (d). For instance, some
works [34], [40], [97] set a threshold on each frame’s clas-
sification score and consider consecutive frames whose scores
exceed the threshold as an action instance. Additionally, other
approaches [38], [41], [50], [99] estimate the likelihood of start
and end moments for each frame and associate potential start and
end moments to form action instances. In summary, the frame
classification pipeline can achieve accurate action boundaries
and effectively discover long-duration action instances. However,
addressing each frame individually poses a limitation in temporal
modeling, often leading to false alarms in backgrounds. Moreover,
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TABLE 3: Summary of existing temporal action localization methods from two important methodology views: receptive field and
feature representation.

Methodology Category Publications Strengths Weaknesses

Intra-video
[34], [33], [13], [36], [33], [37], [14], [76], [77],

• Detailed features
• Lacking globality

[38], [42], [40], [51], [39], [75], [41], [52], [44], • Insufficient
local relationship [103], [92], [93], [92], [104], [103] intra-video diversity

Receptive
Intra-video

[1], [97], [35], [106], [99], [15], [110], [43], [45],
• Temporal modeling • Insufficient detailField [111], [90], [46], [104], [112], [88], [113], [18],

global relationship [102], [94], [95], [47], [18], [49], [91], [96] • Intra-video diversity representation

Inter-video
[114], [115]

• Representative • Complicated
relationship category features training

End-to-End
[1], [34], [105], [36], [114], [116], • End-to-end learnable • Huge GPU footprint
[108], [44], [73], [117], [113], [93], [47], [96] • Representative features • Heavy computation

[118], [13], [33], [14], [38], [15], [39], [42], [107],
• Efficient to • UnflexibleFeature Pre-extracting [86], [87], [16], [119], [109], [45], [88], [90],

Representation [46], [112], [103], [92], [18], [102], [92],
train and inference feature representation[104], [94], [103], [95], [18], [49], [91]

Finetuning and
[120], [40], [52], [17]

• Trade-off between • Inconvenience
Pre-extracting computation and representation of deployment

the reliance on multiple separated procedures, governed by hand-
crafted rules, may constrain the pipeline’s performance.
Proposal classification. In addition to the frame classification
pipeline, the proposal classification pipeline has garnered increas-
ing research interest in recent years, as illustrated in Fig. 4 (e). This
pipeline revolves around two fundamental problems: (1) obtaining
the proposal, and (2) performing classification. Regarding the first
problem, pioneering works [1], [122] have employed the sliding
window strategy to construct action proposals. Subsequently, re-
searchers have introduced the temporal actions grouping strategy
[105], [107], [123] and the dense enumeration strategy [17], [42].
As for the second problem, early explorations [1], [122] inde-
pendently performed classification and regression for each action
proposal. However, the community has recognized the impact of
relationships among multiple proposals and subsequently devel-
oped the graph convolutional theory to simultaneously consider
multiple proposals [15], [45], [107]. By leveraging proposals, the
proposal classification pipeline can achieve a high recall rate and
effectively reduce background errors. However, a large number of
proposals may result in heavy computational overhead, and the
use of fixed proposals can limit the algorithm’s flexibility.

3.3 Categorization from the methodology view

This section provides a comprehensive review of existing temporal
action localization methods from a methodological perspective.
We focus on two crucial factors, namely, the receptive field and
feature representation, and analyze their influence on the local-
ization performance. The detailed categorization of the reviewed
methods is presented in Table 3.
Receptive field. The receptive field plays a crucial role in
accurately determining action boundaries, as effective temporal
modeling is essential for temporal action localization. In the
early explorations [38], [98], [123], video frames were inde-
pendently processed to learn feature representation and perform
classification, resulting in limited temporal receptive fields. To
address this limitation, the pyramid network architecture [16],
[33], [39], [86] was introduced, which employs multiple layers
to gradually increase the receptive field layer-by-layer. Although
these approaches primarily capture intra-video local relationships

and can learn detailed feature representations from each frame,
they are constrained by their local receptive fields. As a result,
these pipelines may struggle to model global relationships and
are limited in their ability to jointly learn from multiple instances
within a video.

To enhance the temporal receptive field, the community has
proposed three types of solutions: recurrent memory, graph mod-
els, and transformers. In the case of recurrent memory, early
attempts by Escorcia et al. [122] and Ma et al. [97] employ
Long Short-Term Memory (LSTM) [126] to capture temporal
dependencies. This approach was further developed by others
[35], [99], [106] with the introduction of Gated Recurrent Unit
(GRU) [127]. On the other hand, for graph models, P-GCN [45]
used graph convolutions to capture relationships among action
proposals, while G-TAD [16] proposes the sub-graph alignment
layer to discover action instances by classifying sub-graphs. More
recently, transformer architectures, known for their effectiveness
in modeling long-term dependencies, have been adapted for action
localization tasks. Early attempts include the relaxed transformer
decoder network [111] and augmented transformer [101]. These
methods offer effective temporal modeling and the ability to
associate multiple instances within an untrimmed video, thus
addressing the intra-video diversity. However, their focus on
globality modeling may lead to insufficient detail representation
and hinder boundary accuracy.

In addition to exploring intra-video relationships, there have
been some works [114], [115] that investigate inter-video re-
lationships. Wang et al. [114] propose a siamese network to
simultaneously process two proposals and verify their similarity.
On the other hand, Zhang et al. [115] associate co-occurring action
instances within two videos using a cross-video similarity matrix.
The modeling of inter-video relationships contributes to learning
representative features for each action category. However, it is
important to note that such an inter-video pipeline cannot inde-
pendently localize actions and often collaborates with traditional
intra-video methods.

Feature representation. The choice of feature representation
directly impacts the performance of action localization. Early
works adopted off-the-shelf video recognition backbones for end-
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TABLE 4: Summary of remarkable characteristics of supervised temporal action localization methods.

Methods Publications
Feature

End-to-End Flow Temporal Procedure Proposal
Performance (%)

Extractor THUMOS14 ANet v1.3

Heilborn et al. [118] CVPR 2016 STIPs ✓ Multi-scale sliding window No 13.5 -
DAPs [122] ECCV 2016 C3D ✓ Single-scale sliding window DAPs [122] 13.9 -

Yeung et al. [32] CVPR 2016 VGG-16 ✓ Single-scale sliding window No 17.1 -
S-CNN [1] CVPR 2016 C3D ✓ Multi-scale sliding window No 19.0 -
SST [106] CVPR 2017 C3D ✓ Single-scale sliding window SST [106] 23.0 -
CDC [34] CVPR 2017 C3D ✓ Single-scale sliding window No 23.3 23.80
SSAD [33] ACM 2017 C3D + TS ✓ Single-scale sliding window No 24.6 -
R-C3D [36] ICCV 2017 C3D ✓ Single-scale sliding window No 28.9 12.70
SSN [105] ICCV 2017 TS ✓ - TAG [123] 29.1 28.28

Buch et al. [35] BMVC 2017 C3D ✓ Single-scale sliding window No 29.2 -
CBR [13] BMVC 2017 TS ✓ - TURN [85] 31.0 -

CTAP [98] ECCV 2018 TS ✓ Multi-scale sliding window No 29.9 -
Wang et al. [124] ICPR 2018 C3D ✓ Multi-scale sliding window No 32.2 -

BSN [38] ECCV 2018 TS ✓ Single-scale sliding window No 36.9 33.72
TAL-Net [14] CVPR 2018 I3D ✓ Vanilla length No 42.8 20.22

GTAN [39] CVPR 2019 P3D Single-scale sliding window No 38.8 34.31
BMN [42] ICCV 2019 TS ✓ Single-scale sliding window No 38.8 33.85
PGCN [15] ICCV 2019 I3D ✓ - BSN [38] 49.1 31.11

Zhou et al. [108] TMM 2020 TS ✓ ✓ - TAG [123] 42.6 -
Zhao et al. [41] ECCV 2020 I3D ✓ Fixed Length No 45.4 30.12

A2Net [77] TIP 2020 I3D ✓ Single-scale sliding window No 45.5 27.75
AFNet [89] TMM 2020 C3D ✓ Multi-scale sliding window No 49.5 18.60

PBRNet [50] AAAI 2020 I3D ✓ Single-scale sliding window No 51.3 35.01
G-TAD [16] CVPR 2020 I3D ✓ Single-scale sliding window No 51.6 34.09
C-TCN [87] ACM 2020 I3D ✓ Single-scale sliding window No 52.1 31.10

BSN++ [109] AAAI 2021 TS ✓ Single-scale sliding window No 41.3 34.88
TCANet [52] CVPR 2021 Slowfast [FT] ✓ - BMN [42] 44.6 35.52

PCG-TAL [119] TIP 2021 I3D ✓ Single-scale sliding window No 51.2 28.85
GCM [45] TPAMI 2021 I3D ✓ - BSN [38] 51.9 34.24

ContextLoc [90] ICCV 2021 I3D ✓ - BSN [38] 54.3 34.23
AFSD [44] CVPR 2021 I3D [FT] ✓ Single-scale sliding window No 55.5 34.40

MUSES [17] CVPR 2021 I3D [FT] ✓ - BSN [38] 56.9 33.99

RCL [92] CVPR 2022 I3D ✓ Single-scale sliding window No 52.9 37.65
DCAN [104] AAAI 2022 I3D ✓ Single-scale sliding window No 54.1 35.39
TAGS [125] ECCV 2022 TS ✓ Single-scale sliding window No 57.0 36.50
ReAct [94] ECCV 2022 I3D ✓ Single-scale sliding window No 57.1 32.60

RefactorNet [103] CVPR 2022 I3D ✓ Single-scale sliding window No 58.6 38.60
TadTR [95] TIP 2022 I3D ✓ Single-scale sliding window No 60.1 36.75

TallFormer [47] ECCV 2022 Swin [FT] ✓ Single-scale sliding window No 63.2 35.60
ActionFormer [18] ECCV 2022 I3D ✓ Single-scale sliding window No 71.0 36.60

ContextLoc++ [49] PAMI 2023 I3D ✓ Single-scale sliding window BSN [38] 58.7 38.13
SoLa [91] CVPR 2023 TS ✓ Single-scale sliding window No 59.1 34.99

Re2TAL [96] CVPR 2023 Slowfast [FT] ✓ Single-scale sliding window No 64.9 37.01
TriDet [24] CVPR 2023 I3D ✓ Single-scale sliding window No 72.9 36.80

For the column Feature Extractor, [FT] indicates finetuning the video recognition model on temporal action localization dataset.

to-end learning. Some widely used backbones include the C3D
network [69], utilized by [1], [34], [36], and the TSN network
[128], employed by [105], due to their ability to extract rep-
resentative spatiotemporal features [129]. Additionally, certain
works [73], [97] first process each frame individually using an
image recognition backbone (e.g., VGG [68], ResNet [130]), and
then capture temporal evolution through recurrent strategies [97]
or non-local strategies [73]. This end-to-end learning approach
allows adaptive learning of representative features for the tem-
poral action localization task, but it necessitates significant GPU
memory and computational resources.

To alleviate the computation burden, many researchers adopt a
two-step approach: first, they pre-extract features from untrimmed
input videos, and then they train the action localization model.
This pipeline is widely used due to its efficiency in training. In
this context, the I3D [70] network, pre-trained on the Kinetics

dataset [70], and the two-stream network [128], pre-trained on the
ActivityNet dataset [131], emerge as two dominant backbones.
To improve the feature representation, some studies incorporate
additional fully-connected or convolutional layers to project the
vanilla features into a feature space more suitable for the ac-
tion localization task. However, despite these efforts, the feature
representation still lacks flexibility, which limits the localization
performance as it heavily depends on the recognition model used
for feature extraction.

To allevaite this issue, recent works [17], [44], [52] propose
a two-step approach, involving finetuning the backbone network
and then extracting features. Additionally, efforts have been de-
voted to reducing memory consumption and enabling end-to-end
training [96], [141]. Notably, TSP [141] enhances temporal sensi-
tivity by simultaneously considering action-level classification and
temporal-region classification. The TSP features have become rep-
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Fig. 5: Chronology for weakly supervised temporal action localization research.

resentative and widely adopted in subsequent works, particularly
in action localization challenges. More recently, Re2TAL [96]
introduces a reversible module that clears intermediate activations
during training, thereby mitigating the memory footprint bottle-
neck. The combination of backbone finetuning and efficient end-
to-end training strikes a favorable balance between computational
burden and feature representation, leading to performance gains in
the aforementioned works.

Characteristic summary and analyses. Table 4 presents a
comprehensive summary of existing temporal action localization
methods, revealing three prominent trends. (1) The evolution of
video recognition backbones has significantly benefited action
localization research. In the deep learning era, representative
backbones such as the C3D network [69], two-stream network [2],
[128], [142], and I3D network [70] have played pivotal roles. Re-
cent works have explored methods to access more representative
features, either through finetuning the I3D network or adopting
the newly proposed Slowfast network [71]. Besides capturing
appearance features from video frames, most approaches rely
on optical flow to describe motion characteristics. Additionally,
pre-extraction of features is a common practice, streamlining the
training and inference processes. (2) The sliding window strategy
has proven to be an effective approach for handling untrimmed
videos. Earlier works [1], [98], [118] employed multiple sliding
windows with different temporal scales to segment untrimmed
videos. However, subsequent research [33], [34], [36] demon-
strated that a single-scale sliding window is often sufficient to
localize action instances accurately. Furthermore, Chao et al. [14]
retained the original length of each video, while Zhao et al.
[41] scaled untrimmed videos to a fixed length for consistency.
(3) While there have been significant performance gains on the
THUMOS14 benchmark, the improvement on ActivityNet v1.3
has been comparatively slow. This observation may be attributed
to two key factors. First, ActivityNet v1.3 employs a stricter eval-
uation metric, the average mAP under threshold [0.5:0.05:0.95],
posing a higher bar for achieving top performance. In contrast,
THUMOS14 uses the relatively looser metric, mAP under thresh-
old 0.5. Second, ActivityNet v1.3 presents greater difficulty due
to a higher number of categories and larger variation in action
durations compared to THUMOS14.

3.4 Further discussions and promising directions

Temporal action localization is a foundational task in intelligent
video understanding, and it is essential to develop theoretical
research while considering practical applications. In recent work,
Damen et al. [143] introduced a method for localizing action
instances in egocentric videos, which finds applications in diverse
scenarios such as robotics and industrial manufacturing. However,
algorithms designed for egocentric videos must address challenges
related to the presence of severe noise in optical flow inputs. The
camera’s movements inevitably introduce significant background
motions, necessitating robust algorithms to handle such complexi-
ties. Another practical area of interest is online action detection
[144], [145]. This topic is particularly relevant in applications
like smart surveillance, where algorithms are expected to trigger
alarms promptly when an anomaly event starts, rather than merely
localizing it in an offline manner. To achieve swift detection,
algorithms need to extract sensitive boundary features from noisy
input data and strike a balance between computational efficiency
and feature representation capability. In conclusion, the temporal
action localization community should not only focus on theoretical
advancements but also keep in mind the real-world applications
where the developed methods will be deployed. Addressing the
challenges posed by specific scenarios, such as egocentric videos
and online action detection, will lead to more practical and
effective solutions.

Both egocentric action localization and online action localiza-
tion present significant challenges, but recent progress in related
areas can serve as valuable inspiration for further explorations. For
instance, Wang et al. [73] have demonstrated promising results by
employing only RGB frames to construct an end-to-end temporal
action localization baseline. This accomplishment highlights two
key points: (1) With appropriate designs, a sequence of RGB
frames can effectively capture motion characteristics, eliminating
the need for optical flow inputs. (2) The end-to-end learning
pipeline proves to be capable of dynamically extracting represen-
tative features without imposing excessive computational burdens.

In conclusion, we encourage future research to continue ad-
vancing the field of temporal action localization with a practical
mindset. This entails addressing specific challenges such as lo-
calizing actions in egocentric videos and enabling online action
detection. By considering real-world applications and developing
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effective solutions, the temporal action localization community
can make valuable contributions to the field of intelligent video
understanding.

4 WEAKLY SUPERVISED TEMPORAL ACTION LO-
CALIZATION

In the deep learning era, weakly supervised temporal ac-
tion localization research can be categorized into two groups:
pre-classification research and post-classification research. Pre-
classification involves performing classification on snippet-level
features, while post-classification is based on aggregated features.
Researchers have proposed various strategies to enhance feature
extraction, attention, and classifiers. In this section, we analyze
the characteristics of existing works and provide suggestions for
future research directions.

Fig. 5 presents a concise chronology of weakly supervised
temporal action localization methods. UntrimmedNet [2] is an
early pioneering work that employs effective procedures such
as predicting video-level classification scores using top-k mean
strategy and detecting actions via thresholding. Subsequently, W-
TALC [19] extends the pipeline to an inter-video manner, consid-
ering two videos from the same category to learn representative
features. Nguyen et al. [20] address the critical influence of
background segments on weakly supervised learning, which was
overlooked by previous research, and propose the background
modeling pipeline. EM-MIL [21] identifies that early fusion and
late fusion, utilized in previous works, do not fully explore the
complementarity between appearance and motion features, and
they propose cross-branch supervision to mine this complemen-
tarity. More recently, Liu et al. [151] view background segments
as blessings rather than curses, integrating the causal analysis
pipeline to enhance localization accuracy.

4.1 Classification mechanism

Under the weakly supervised setting, the learning process is con-
strained by the availability of only video-level classification labels,
while precise localization of action instances necessitates frame-
level predictions. The association between frame-level predictions
and video-level labels is not unique, presenting challenges to
weakly supervised learning algorithms.
Pre-classification. As depicted in Fig. 6 (a), the pre-classification
pipeline begins by utilizing several temporal convolutional layers
to classify each frame. It then predicts the video-level clas-
sification label by aggregating a series of frame-level scores,
achieved through methods like weighted sum [2], [148], [149]
or the top-k mean strategy [53], [59], [134]. Leveraging temporal
convolutional operations allows this pipeline to generate discrim-
inative local features and effectively avoid noise interference in
background segments. However, the limited receptive field of the
temporal convolutional layers poses a challenge, as it restricts the
pipeline’s ability to model long-term relationships. As a result,
pre-classification methods tend to identify the most discrimina-
tive action parts but often struggle to generate complete action
instances, resulting in what is referred to as the “part domination
problem.”

To alleviate the challenge of part domination, the research
community has proposed various solutions, which can be classified
into four groups: hiding discriminative parts, pseudo label training,
learning multiple branches, and prior-based designs. Firstly, the
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Fig. 6: Schematic diagram for (a) pre-classification mechanism
and (b) post-classification mechanism, where both training and
inference pipelines are shown.

“hide-and-seek” approach [57], along with its extension [146],
intentionally conceals discriminative action parts during train-
ing. This encourages the algorithm to explore inconspicuous re-
gions and generate complete action instances. Additionally, some
weakly supervised learning algorithms [21], [78], [79], [147]
adopt a pseudo label training strategy. They generate pseudo labels
for video frames and then train the localization network under a
supervised manner. This approach assumes that multiple pseudo
instances may contain complementary cues, leading to the iden-
tification of complete action patterns. Moreover, recognizing that
diverse classification scores might form complete action instances,
Liu et al. [58] propose to learn multiple branches in parallel,
requiring the classification responses to exhibit diversity. This
approach has been further improved through adversarial training
[59]. Furthermore, some methods leverage priors to enhance the
localization performance. For instance, Lee et al. [150] propose
that background features should have small magnitudes, while
action features should have large magnitudes. Others decompose
action instances into multiple subactions [23], [135], [186] to
better exploit prior knowledge.

Despite the progress made by the four pipelines in alleviat-
ing the part domination problem, the pre-classification approach
still encounters certain challenges. In the hiding discriminative
parts pipeline, it remains uncertain when to cease the hiding
process, as it is difficult to ascertain if an action instance has
been completely discovered. Additionally, the performance of the
pseudo label training pipeline is often limited by the quality of
generated pseudo action instances, which can affect the overall
localization accuracy. Moreover, the learning multiple branches
pipeline necessitates careful consideration of the trade-off between
the classification accuracy of each branch and the diversity of
responses among multiple branches. Lastly, the prior-based design
pipeline is relatively inflexible and may require intricate designs
to generalize effectively to new scenarios.
Post-classification. As depicted in Fig. 6 (b), the post-
classification pipeline adopts a two-step approach. Initially, it eval-
uates the relevance of each frame to the video-level classification
task and assigns an attention weight accordingly. Subsequently,
the vanilla video features are aggregated into a feature vector,
which is utilized to train the classifier and predict the video-level
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TABLE 5: Categorization of existing weakly supervised temporal action localization works. According to the operation mechanism, we
group existing methods into two categories, where each category can be further divided into sub-categories.

Paradigm Category Publications Strengths Weaknesses

[2], [146], [78], [79], [58], [53], [147],
[148], [59], [133], [21], [149], [150], [135], • Discriminative • Lacking

Pre- [80], [151], [152], [134], [22], [153], [154], local features long-term modeling
Classification Classification [155], [156], [157], [158], [159], [160], • Less background • Dominated by
Mechanism [161], [162], [163], [138], [164], [165], interference action part

[166], [167], [168], [139], [169], [25],
[170], [140], [171], [172], [173], [174]

Post- [57], [81], [175], [20], [132], [54], [55], [56], • Global awareness • Insufficient detail modeling
Classification [23], [82], [176], [177], [178], [179] • Associating multiple instances • Action-context confusing

Enhanced [57], [146], [81], [78] , [79], [20], [59], • Alleviating part domination • Requiring specific
Classifier [147], [134], [159], [160], [174], [140] and action-context confusion designs

[180], [58], [53], [55], [56], [150], [135], [80],
Enhanced [152], [23], [82], [156], [181], [155], [177], • Intra-class similarity • Relying on priors

Enhancement Feature [157], [158], [178], [161], [163], [182], • Inter-class discrepancy • Hyper-parameter sensitive
Mechanism [138], [164], [179], [165], [167],

[183], [173], [172], [171], [170]

Enhanced
[175], [132], [148], [54], [133], [149], • A simplification of • Relying on proper
[22], [153], [154], [176], [166],

Attention [168], [184], [185], [169], [25] localizing actions normalization

classification score. During inference, the classifier is applied to
classify each frame and identify action instances, as illustrated in
the lower part of Fig. 6. Since the classifier learns from aggregated
features, the algorithm can effectively capture global cues in
untrimmed videos and associate multiple action instances within
the video. However, the use of aggregated features may result
in insufficient modeling of local details, leading to challenges in
distinguishing between boundary action frames (e.g., the end of
a diving action) and neighboring background frames (e.g., water
splashing after diving). This phenomenon is known as the action-
context confusion challenge.

To address the action-context confusion challenge, the research
community has proposed three types of solutions: attention mod-
eling, background modeling, and context modeling. The atten-
tion modeling pipeline [54], [132] focuses on generating high-
quality attention maps to effectively separate action frames from
neighboring background frames. For instance, Yuan et al. [132]
introduce a marginalized average aggregation module to suppress
the response of discriminative regions, while Shi et al. [54] incor-
porate representability into the estimation of attention weights. On
the other hand, the background modeling pipeline [20], [59], [148]
emphasizes the importance of understanding background informa-
tion. Nguyen et al. [20] propose to estimate background attention
by inverting action attention, followed by aggregating background
features and predicting background-aware classification scores.
This strategy is further extended and refined by subsequent works
[59], [148]. Additionally, the context modeling pipeline [55], [56]
considers that foreground frames consist of both action frames
and contextual frames, while background frames are the opposite
of foreground frames. To distinguish between action and context,
ACSNet [55] combines latent components and performs action-
context classification. Similarly, Liu et al. [56] learn explicit sub-
spaces for action and context separately. Although the above
pipelines have made progress in alleviating the action-context
confusion, it remains a challenging issue, especially in scenarios
where the algorithm has access to only video-level classification
labels during training. Further research and improvements are
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Fig. 7: Schematic diagram for (a) enhanced classifier mechanism,
(b) enhanced feature mechanism and (c) enhanced attention mech-
anism.

needed to fully address this challenge.

4.2 Enhancement mechanism
In addition to the classification mechanism, weakly supervised
temporal action localization methods can be categorized based on
the enhancement mechanism. As shown in Table 5, we analyze the
enhancement mechanism from three aspects: enhanced classifier,
enhanced feature, and enhanced attention.
Enhanced Classifier. Because weakly supervised learning al-
gorithms can only access video-level classification labels, an
enhanced classifier is beneficial for localizing action instances,
as shown in Fig. 7 (a). Singh et al. [57] and Zhong et al. [146]
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TABLE 6: Summary of remarkable characteristics of weakly supervised temporal action localization methods.

Methods Publications Feature Extractor Supervision
Performance (%)

THUMOS14 ANet v1.2 ANet v1.3

Hide-and-Seek [57] ICCV 2017 C3D Cls. label + UCF101 6.8 - -
UntrimmedNets [2] CVPR 2017 End-to-End Cls. label 13.7 - -

STPN [81] CVPR 2018 I3D Cls. label 16.9 - -
AutoLoc [78] ECCV 2018 UNT Cls. label 21.2 16.0 -
W-TALC [19] ECCV 2018 I3D Cls. label 22.8 18.0 -

MAAN [132] ICLR 2019 I3D Cls. label 20.3 - -
STAR [175] AAAI 2019 I3D Cls. label 23.0 - -
CMCS [58] CVPR 2019 I3D Cls. label 23.1 22.4 21.2

CleanNet [147] ICCV 2019 UNT Cls. label 23.9 21.6 -
TSM [187] ICCV 2019 I3D Cls. label 24.5 17.1 -
ASSG [79] ACM MM 2019 I3D Cls. label 25.4 - -
3C-Net [53] ICCV 2019 I3D Cls. label + Action Count 26.6 21.7 -
WSBM [20] ICCV 2019 I3D Cls. label + Micro videos 27.5 - -

PreTrimNet [188] AAAI 2020 I3D Cls. label 23.1 - 22.5
AdapNet [189] TNNLS 2020 ResNet-101 Cls. label + UCF 101 23.7 - 22.0
BaS-Net [134] AAAI 2020 I3D Cls. label 27.0 24.3 22.2
TSCN [133] ECCV 2020 I3D Cls. label 28.7 23.6 21.7
DGAM [54] CVPR 2020 I3D Cls. label 28.8 24.4 -

A2CL-PT [59] ECCV 2020 I3D Cls. label + UCF 101 30.1 - 22.5
ACL [190] CVPR 2020 I3D Cls. label 30.1 24.6 -

EM-MIL [21] ECCV 2020 I3D Cls. label 30.5 20.3 -

Huang et al. [156] TPAMI 2021 I3D Cls. label 29.0 24.2 22.7
Liu et al. [56] AAAI 2021 I3D Cls. label 29.6 25.5 23.2
MSA-Net [82] TIP 2021 I3D Cls. label 29.7 25.7 23.5

ASL [152] CVPR 2021 I3D Cls. label 31.1 25.8 -
CoLA [80] CVPR 2021 I3D Cls. label 32.2 26.1 -

ACSNet [55] AAAI 2021 I3D Cls. label 32.4 26.0 23.9
HAM-Net [149] AAAI 2021 I3D Cls. label 32.6 25.1 -

AUMN [135] CVPR 2021 I3D Cls. label 33.3 25.5 23.5
UGCT [176] CVPR 2021 I3D Cls. label 33.3 25.8 23.8

Lee et al. [150] AAAI 2021 I3D Cls. label 33.7 25.9 23.7
TS-PCA [151] CVPR 2021 I3D Cls. label 34.3 - 23.7
D2-Net [155] ICCV 2021 I3D Cls. label 35.9 26.0 -
CO2-Net [22] ACM MM 2021 I3D Cls. label 38.3 26.4 -

A-TSCN [185] TPAMI 2022 I3D Cls. Label 33.6 25.6 23.6
FTCL [179] CVPR 2022 I3D Cls. label 35.6 - 24.8
DCC [164] CVPR 2022 I3D Cls. label 35.7 - 24.3

MMSD [167] TIP 2022 I3D Cls. label 36.4 - 25.8
ASM-Loc [138] CVPR 2022 I3D Cls. label 36.6 - 25.1

Huang et al. [165] CVPR 2022 I3D Cls. label 38.2 - 25.0
ECM [137] TPAMI 2022 I3D Cls. label 29.1 25.5 23.5
DELU [139] ECCV 2022 I3D Cls. Label 40.5 26.9 -

AICL [174] AAAI 2023 I3D Cls. Label 36.9 29.9 27.6
Wang et al. [173] CVPR 2023 I3D Cls. label 37.1 - 26.3

Li et al. [172] CVPR 2023 I3D Cls. label 39.3 - 26.0
Ren et al. [171] CVPR 2023 I3D Cls. label 40.0 26.5 25.5
STCL-Net [140] TPAMI 2023 I3D Cls. label 41.8 26.6 24.7

Ju et al. [170] CVPR 2023 I3D Cls. label 42.0 29.6 -
Zhou et al. [169] CVPR 2023 I3D Cls. label 42.7 - 28.8

PivoTAL [25] CVPR 2023 I3D Cls. Label 42.8 - 28.1

For the Supervision column, “Cls. label” indicates video-level classification label.

remove the most discriminative action parts, and the classifier gets
enhanced when highlighting other action parts. Lee et al. [134]
and Nguyen et al. [20] employ the same classifier to dispose
of both foreground features and background features, where the
classifier gets enhanced via clearly distinguishing actions from
backgrounds. AutoLoc [78] and CleanNet [147] first generate
pseudo action instances, then enhance the classifier through train-
ing under a supervised manner. To sum up, the enhanced classifier
mechanism has made progress in solving both the discriminative
part dominant problem and the action-context confusion problem.
However, researchers should make specific designs according to

the enhancement target, which constrains the generalization of this
pipeline.

Enhanced Feature. As most weakly supervised temporal action
localization works rely on pre-extracted features, the feature en-
hancement pipeline aims to transform vanilla features into features
suitable for action localization, as shown in Fig. 7 (b). Some
works [53], [55], [56], [80], [156] enhance features by learning
similar representations for instances from the same category and
keeping them distinct for instances from different categories. In
other words, they pursue both intra-class similarity and inter-class
discrepancy. For example, Huang et al. [156] learn prototypes for
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each category, while Liu et al. [55], [56] embed category fea-
tures into distinct subspaces. Furthermore, some works transport
features through several convolutional layers and directly impose
constraints on features to achieve accurate action localization. For
instance, they may focus on the magnitude of features [150] or
the diversity of features [58]. Later, [23], [135], [186] observed
the diversity within each category and proposed to learn subaction
representations for each category, resulting in a more elaborate
feature enhancement approach. In summary, the feature enhance-
ment pipeline can generate high-quality features by preserving
intra-class similarity and inter-class discrepancy. However, it relies
on priors and is sensitive to hyper-parameters, which should be
taken into consideration during the design process.
Enhanced Attention. The attention mechanism can guide the
algorithm to focus on informative action parts while avoiding in-
terference from background parts, as shown in Fig. 7 (c). In action
localization research, some works introduce additional loss terms
to learn reliable attention weights. For example, BANet [148]
employs the action-guided attention loss, TSCN [133] utilizes
the attention normalization loss, and DGAM [54] adopts a VAE
module and calculates the reconstruction loss. Moreover, some
works dynamically adjust the attention weights. For instance,
Xu et al. [175] calculate class-variable attention weights, while
Yuan et al. [132] dynamically select responses based on randomly
sampled attention weights following a Bernoulli distribution. More
recently, HAM-Net [149] utilizes three variants of the vanilla at-
tention weight, namely semi-soft attention, soft attention, and hard
attention, to enhance the attention weight. In general, determining
attention weights can be seen as the simplification of localizing
action instances, where the algorithm focuses solely on estimating
action boundaries and does not predict the action category. How-
ever, the attention mechanism should be equipped with a proper
normalization strategy; otherwise, degenerated attention weights
could lead to a drop in performance.

4.3 Characteristics analyses

Table 6 provides a summary of remarkable characteristics ob-
served in representative temporal action localization methods.
Notably, most works maintain consistent experimental setups, fa-
cilitating fair comparisons among different algorithms. Regarding
feature representation, the majority of methods utilize the I3D
network [70], pre-trained on the Kinetics 400 dataset, to extract
features from untrimmed videos. This approach captures both
appearance and motion features, which are essential for accurately
depicting untrimmed videos. However, it is important to note
that networks such as I3D and [2], initially trained for video
recognition tasks, may not offer flexible feature representations
perfectly suited to the temporal action localization task due to
the domain gap. In terms of supervision, most works solely rely
on video-level classification labels. Some methods have explored
incorporating additional supervision signals [20], [53] or pre-
training the network with extra data from the UCF 101 dataset
[191] [57], [59], [189]. However, it is noteworthy that learning
from video-level classification labels remains the dominant trend
and achieves superior performance. Similar to supervised research,
the performance on the THUMOS14 benchmark has shown rapid
improvement, while ActivityNet v1.2 and ActivityNet v1.3 present
greater challenges and receive slower performance gains.

TABLE 7: Statistics about the size of existing temporal action
localization datasets.

Dataset Category No. Video No. Instance No.

THUMOS14 [192] 20 413 6,365
ActivityNet v1.2 [131] 100 9,682 10,733
FineAction [193] 106 17,000 103,000
ActivityNet v1.3 [131] 200 19,994 23,064
HACS [194] 200 50,000 140,000
FineGym v1.0 [195] 530 303 32,697
YouTube-8M [196] 1,000 46,000 237,000

”No.” is the abbreviation for ”Number”.

4.4 Further discussions and promising directions

As discussed in the above sections, existing weakly temporal
action localization research has achieved impressive progress.
However, the community still requires continuous development
in the following aspects: the size of the benchmark and the
supervision label.
From small benchmark to large benchmark. Because a ma-
jority of temporal action localization algorithms are verified on
THUMOS14 [192] and ActivityNet [131] benchmarks, current
research is usually subject to two limitations: the risk of overfitting
and the insufficient ability to extend. As shown in Table 7, the
early benchmarks THUMOS14 and ActivityNet v1.3 contains
413 and 19,994 videos, respectively, while recently proposed
benchmarks HACS [194] and YouTube-8M [196] contain 50,000
and 46,000 videos, respectively. In part because of overfitting,
a classical method SSN [105] achieves 28.28% on ActivityNet
v1.3, but the performance drops to 18.97% on HACS, although
these two datasets share the same action categories. In addition,
because existing algorithms are trained on fixed categories, the
algorithm can accurately discover action instances belonging to
categories in the benchmark but is incompetent when tackling
newly emerged action categories. To alleviate this issue, Zhang
et al. [197] have introduced zero-shot learning [198] to temporal
action localization, but there exhibits huge performance gap with
existing algorithms [17], [44], [52].

To summarize, we propose further research to benchmark the
proposed methods on both large-scale datasets [194], [196], and
datasets [193], [195] featuring fine-grained annotations. Regarding
large-scale datasets, their utilization offers multiple advantages.
Firstly, a large-scale benchmark provides an ample training data
source that holds the potential to unlock the algorithm’s full capa-
bilities. Secondly, it poses new challenges due to the considerable
computational burden and the diversity of instances within the
dataset. As for fine-grained action analysis, the datasets FineAc-
tion [193] and FineGym v1.0 [195] have emerged as significant
contributors to this research direction. In contrast to traditional
coarse-level action annotations, fine-grained action analysis allows
for atomic analyses, which are highly applicable in real-world
scenarios. Moreover, it opens promising avenues for weakly-
supervised learning in the context of fine-grained actions, as
exemplified by the pioneering work of Li et al. [199].

Moreover, action localization algorithms should transcend
conventional benchmarks, address novel categories, and excel in
the challenging task of temporal action localization in uncon-
strained real-world settings. Recently, Chen et al. [200] integrated
the weakly-supervised setting with open-set action localization,
introducing a more formidable task. The recent advancements in
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TABLE 8: Match rate of existing action localization methods on THUMOS14 dataset.

Method
Fully supervised methods Weakly supervised methods

SSAD [33] GTAD [16] AFSD [44] BaSNet [134] DGAM [54] UM [150]

Match Rate 71.58 85.18 92.68 56.29 52.64 62.47

TABLE 9: Analysis of existing action localization methods on THUMOS14 dataset.

Method
Fully supervised methods Weakly supervised methods

SSAD [33] GTAD [16] AFSD [44] BaSNet [134] DGAM [54] UM [150]

Raw method 48.00 43.03 55.48 28.69 28.11 33.81

Refining classification label 48.84 (+0.84) 43.36 (+0.33) 59.18 (+3.70) 28.90 (+0.21) 28.74 (+0.63) 33.98 (+0.17)
Refining confidence score 64.27 (+16.27) 82.83 (+39.80) 88.47 (+32.99) 56.57 (+27.88) 51.08 (+22.97) 61.28 (+27.47)

large foundational models [201], [202] have presented opportu-
nities for significant progress in multimodal action localization
tasks. These tasks can now leverage aligned vision-language fea-
tures and factual knowledge encapsulated within the foundational
models.
From fixed supervision to flexible supervision. Supervised tem-
poral action localization necessitates accurately annotated action
boundaries and classification labels. Conversely, weakly super-
vised algorithms remove precise annotations and learn directly
from video-level classification labels. Ji et al. [203] alleviate
the challenge of controlling annotation costs by proposing the
semi-supervised action localization task. The primary hurdle in
the semi-supervised setting lies in effectively leveraging limited
annotations. To this end, several approaches have been explored:
KFC [204] applies perturbations on video features, SSTAP [205]
integrates self-supervised learning, Shi et al. [206] design three
levels of supervision (fully-, weakly-, and unsupervised settings),
and SPOT [207] introduces a parallel architecture for localization
and classification. Apart from the semi-supervised setting, Kang
et al. [208] developed the temporal action localization task in an
online setting, constraining the algorithm to process streaming
videos without accessing future frames. Subsequently, Kim et
al. [209] improved the online setting by integrating the anchor
mechanism.

More recently, Ma et al. [210] discovered that single-frame
supervision yields performance gains comparable to weakly su-
pervised methods but requires similar annotation costs. As a
result, SF-Net [210] introduces the single-frame annotation to
learn action patterns, which is developed by Yang et al. [136]
via switching point annotations to backgrounds. Although current
weakly supervised algorithms cannot achieve similar performance
with their supervised counterparts, we think it is a promising di-
rection to continuously develop the weakly supervised algorithm.
With the rapid increase of video data on the internet, further
works could strive to continuously obtain training videos from
the internet and learn from a large amount of data. If so, the
weakly supervised learning algorithm would persistently make
improvements by itself, and such continual improvement may lead
to a breakthrough.

In addition, the supervision signal should not be limited to
instance- or video-level labels. For example, some works [211],
[212] first employ trimmed videos from video recognition bench-
marks to learn action patterns, then localize action instances
in untrimmed videos. Furthermore, the exploration of multiple
modalities within video data is essential. For instance, Lee et

al. [213] introduced audio cues to enhance action localization
methods. POLO [214] takes into account both appearance and
motion modalities for action localization. Additionally, the local-
ization of action instances based on language descriptions [215],
often referred to as temporal grounding [216], [217], has been
extensively studied. Moreover, Bao et al. [218] propose the open-
set temporal action localization task. In this task, the algorithm
is trained with fixed action categories but is expected to accu-
rately detect unknown actions when handling videos containing
previously unseen categories. Given the abundance of supervision
signals and multimodal video data, we recommend that future
research focuses on building a flexible learning framework capable
of exploring various supervisions and effectively leveraging the
complementarity among multiple modalities. -

5 FUTURE DIRECTIONS

5.1 Improving confidence score estimation
As extensively reviewed above, the temporal action localization
task has been extensively investigated through a series of seminal
works [1], [2], [13], [14], [15], [16], [17], [19], [20], [21], [151].
Overall, the process of localizing an action instance involves three
key subtasks: precisely identifying action boundaries, accurately
classifying the action category, and appropriately estimating the
confidence score. While past research has primarily focused on the
first two subtasks, the significance of the confidence score has not
received sufficient attention, leading to a performance bottleneck
in the existing approaches.

To identify the performance bottleneck of current methods,
a natural approach is to employ the diagnosing tool DETAD
[219] and conduct an analysis of the localization results. DETAD
[219] categorizes false positive predictions into five categories:
Double Detection Error, Wrong Label Error, Localization Error,
Confusion Error, and Background Error. However, the last four
categories only consider the boundary and classification quality,
neglecting the influence of the confidence score. Furthermore, the
Double Detection Error only indicates the presence of another
true positive prediction with a higher confidence score, without
analyzing confidence scores among multiple predictions. As our
objective is to analyze the impact of the confidence score, a factor
that has been overlooked for a considerable period, we conduct
experiments under an oracle setting and analyze both supervised
methods [16], [33], [44], and weakly supervised methods [54],
[134], [150], as illustrated in Table 9.

Given the localization results of each method on the THU-
MOS14 dataset, we first evaluate the quality of action proposals.
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Specifically, for each ground truth instance, we measure the
Intersection over Union (IoU) between the ground truth instance
and any predicted instance. If the predicted instance has a high
IoU value (i.e., IoU > 0.5) with the ground truth instance, we
consider this ground truth instance as correctly matched. As
demonstrated in Table 8, existing methods exhibit a high match
rate, with AFSD [44] achieving a ground truth match rate of
92.68%. Next, as shown in Table 9, we refine the classification
label by assigning each prediction the label of the closest ground
truth instance. However, this refinement only results in limited
performance gains, typically less than 1.0%, which suggests that
the classification task is not the primary performance bottleneck.
On the other hand, if we refine the confidence score based on
the IoU between a predicted instance and its closest ground
truth, we observe substantial performance gains. For instance, the
supervised method AFSD [44] achieves a gain of 32.99% and
an mAP of 88.47%. Even the weakly supervised method UM
[150] achieves an mAP of 61.28% with the proposed refinement.
This notable improvement indicates that the main performance
bottleneck lies in the accurate estimation of the confidence score.
In summary, our comprehensive analysis demonstrates that the
confidence score estimation significantly influences the overall
performance of the temporal action localization methods, and
addressing this aspect can lead to considerable performance gains.

5.2 Pursuing high-quality feature representation
Discriminative features play a crucial role in assisting action
localization algorithms by distinguishing action frames from con-
textual backgrounds and enabling differentiation among multiple
action categories. Moreover, representative features help reduce
intra-class diversity and increase inter-class differences, further
enhancing the algorithm’s performance. However, a significant
number of existing methods rely on off-the-shelf video recognition
backbones [69], [70], [71] for feature extraction from untrimmed
videos. Unfortunately, these backbones are not flexible enough due
to their inherent task bias. To pursue the extraction of high-quality
features, we propose exploring unsupervised visual representation
learning [220], [221] as a promising direction, particularly in the
context of video-related tasks [222], [223], [224]. By leveraging
unsupervised learning, these specialized backbones can alleviate
the task bias and produce features that encapsulate both intra-
class similarity and inter-class separability. This approach holds
great potential for improving the overall performance of action
localization algorithms by providing more discriminative and
representative features.

5.3 Preserving privacy
In the data-driven learning paradigm, the performance of deep
learning algorithms is often directly influenced by the quantity of
available training data. Consequently, a larger dataset with more
action instances can significantly enhance the temporal action
localization algorithm’s performance. However, the abundance of
data also raises concerns about privacy and potential misuse of per-
sonal information [225]. Without appropriate privacy preservation
measures, the action localization system may inadvertently expose
sensitive information for illicit purposes. To address this issue
and effectively preserve privacy, two promising strategies have
emerged: secure multi-party learning [226], [227] and federated
learning [228]. Secure multi-party learning utilizes a peer-to-peer
pipeline, where multiple parties collaboratively train the model

without sharing their individual data directly. On the other hand,
federated learning adopts a client-server pipeline, where clients
with private data locally train their models and only share model
updates with the central server. Both approaches are designed
to ensure data privacy while allowing the algorithm to leverage
information from multiple sources. It is important to note that
privacy preservation should be considered not only during the
training phase but also during the inference phase. Proper pre-
cautions and secure mechanisms must be in place to guarantee
that personal information remains protected throughout the entire
action localization process.

5.4 Measuring video information
In theory, a fundamental challenge in accurately localizing action
instances from untrimmed videos lies in the precise extraction of
meaningful information from the video content. If we can extend
traditional information theory [229] to the video understanding
domain and establish effective rules for measuring video infor-
mation, it could lead to significant breakthroughs in temporal
action localization research. For instance, a series of video frames
containing the desired information could form a coherent action
instance. Moreover, with such a framework, it might be possible
to quantitatively assess the impact of each video processing step
on action localization results, thereby providing valuable insights
for advancing research in intelligent video understanding.

6 CONCLUSION

This paper presents a comprehensive survey of temporal action
localization methods in the deep learning era. For supervised ac-
tion localization, we thoroughly review the anchor mechanism and
provide a detailed discussion of the strengths and weaknesses of
one-stage, two-stage, and anchor-free pipelines. Furthermore, we
summarize existing works in the classification mechanism, encom-
passing both the frame classification and proposal classification
pipelines, offering an in-depth and novel overview of supervised
action localization methods. In the domain of weakly supervised
temporal action localization, we categorize existing works into
pre-classification and post-classification pipelines, carefully ex-
amining their distinct characteristics. Additionally, we conduct
a comprehensive analysis of the classifier, feature, and attention
weight, leading to a novel categorization of weakly supervised
methods. The taxonomy we propose enhances the understanding
of temporal action localization research and facilitates compar-
isons between different approaches.

Moreover, this survey uncovers the performance bottleneck
related to confidence estimation. Looking ahead, we suggest
several promising research directions. One such direction involves
the precise quantification of information within a video to aid
the development of intelligent video understanding. Additionally,
we emphasize the significance of preserving privacy in action
localization systems, proposing secure multi-party learning and
federated learning as viable strategies. In conclusion, this survey
contributes to the field by offering a comprehensive overview
of temporal action localization methods and their strengths and
limitations. The suggested future research directions serve as
valuable insights for researchers in the community.
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