
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

An introduction to
adversarially robust deep learning

Jonathan Peck, Bart Goossens and Yvan Saeys

Abstract—The widespread success of deep learning in solving machine learning problems has fueled its adoption in many fields, from
speech recognition to drug discovery and medical imaging. However, deep learning systems are extremely fragile: imperceptibly small
modifications to their input data can cause the models to produce erroneous output. It is very easy to generate such adversarial
perturbations even for state-of-the-art models, yet immunization against them has proven exceptionally challenging. Despite over a
decade of research on this problem, our solutions are still far from satisfactory and many open problems remain. In this work, we
survey some of the most important contributions in the field of adversarial robustness. We pay particular attention to the reasons why
past attempts at improving robustness have been insufficient, and we identify several promising areas for future research.

Index Terms—Deep learning, adversarial machine learning, computer vision

✦

1 INTRODUCTION

A RTIFICIAL intelligence (AI) has been revolutionized by
the emergence of deep learning (DL), i.e., the use of

deep neural networks (DNNs) to solve machine learning (ML)
problems [1], [2]. Since the publication of AlexNet in 2012
drastically improved the performance of image recognition
systems [3], DNNs have been successfully applied to es-
sentially every conceivable AI domain. On the ImageNet
Large Scale Visual Recognition Challenge [4], for example,
[5] achieve 91% top-1 accuracy, compared to the 60% top-
1 accuracy achieved by AlexNet ten years prior. Using
reinforcement learning [6], researchers have been able to
construct deep learning systems that can achieve remark-
able competency in certain video games and board games,
ranging from simple Atari games [7] to complex strategy
games such as Dota 2 [8]. Recently, major advances in gen-
erative modeling using diffusion models [9] for images and
Transformers [10] for natural language understanding have
made headlines around the world due to their remarkable
results. The results obtained by modern DL techniques are
sufficiently impressive that DNNs are now also applied to
very sensitive and safety-critical problems, such as medical
diagnoses [11], [12] and autonomous driving [13]. Deep
learning has been an important part of the worldwide re-
sponse to the COVID-19 pandemic, aiding in the discovery
of vaccines and other therapeutic treatments [14], [15] as
well as forecasting hospitalizations and case numbers [16].

It is clear that deep learning is rapidly becoming a signif-
icant part of modern life, and DNNs are increasingly used to
solve problems where accuracy is paramount and mistakes
can cause tangible harm. As such, ensuring that these AI-
powered systems are sufficiently trustworthy has become
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Fig. 1.1: An adversarial example in the image recognition
domain.

a major area of research. In this regard, it has been found
that DNNs can in fact be very easily fooled into providing
incorrect predictions even when they are highly accurate on
the task at hand [17], [18]. Specifically, for almost any deep
learning system, it is generally easy to craft inputs to that
system for which the output is plainly wrong. Moreover,
these inputs are often indistinguishable from “normal” data
on which the system tends to perform very well. In fact,
most methods for generating such inputs start from regular
test data on which the model is highly accurate and perturb
it in very small but specific ways to cause erroneous results.
These are referred to as adversarial perturbations: small alter-
ations to normal data samples which are specifically crafted
to fool some target model.

Figure 1.1 shows an example of an adversarial perturba-
tion on a DNN for image recognition. The network initially
classifies the image on the left correctly as ice cream.
Adding the perturbation in the middle pixel-wise to the
original image and clipping the values back to the original
range results in the image on the right. Despite being
visually identical to the original, the classification has now
changed to burrito. Although adversarial perturbations
are easiest to generate for image recognition systems, they
have also been shown to exist in natural language process-
ing (NLP) [19] as well as speech recognition systems [20].
As a contemporary example of adversarial perturbations
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Prompt. Prove that the square of 2 is irrational.
Response. The proof that the square of 2 is irrational is a
well-known proof, which can be shown by contradiction. If
we assume that the square of 2 is rational, then it can be
written in the form of a fraction, where the numerator and
denominator are integers. Let’s represent the square of 2 as
a fraction, where a and b are integers and b is not equal to
zero.

(22) = (a/b)

Expanding the left side of the equation:

4 = (a/b)

We can then multiply both sides of the equation by b:

4b = a

Since a and b are integers, a must also be divisible by 4. So
let’s write a as 4x for some integer x:

4b = 4x

Dividing both sides by 4:

b = x

So, we have a = 4x and b = x, which means that a/b =
4, and thus the square of 2 can be expressed as a ratio of
integers. But this contradicts our assumption that the square
of 2 is irrational. Therefore, the square of 2 is irrational.

Fig. 1.2: ChatGPT (version 2023-01-09) is easily tricked into
constructing false mathematical proofs.

for NLP, we consider the ChatGPT model by OpenAI,1 a
chatbot based on the Transformer neural network architec-
ture [10]. In figure 1.2, we prompt ChatGPT to “prove” that
the square of 2 is irrational. It responds by constructing a
proof that resembles that of the irrationality of

√
2, but with

the number 4 instead. This is an example of an adversarial
perturbation for NLP, where the deletion of a single word
(“root” in this case) causes the model to generate nonsense.

Adversarial perturbations were introduced to the deep
learning community via the work of [21], who were exper-
imenting with visualizations of class boundaries of deep
convolutional neural networks (CNNs). Historically, how-
ever, adversarial perturbations had already been an object of
study in “classical” ML for many years before this work [18],
[22]. The discovery that DNNs also suffered from this prob-
lem came as quite a surprise, as many researchers believed
DNNs learned smooth representations which would be nat-
urally robust to adversarial perturbations [23]. Indeed, this
“smoothness prior” formed the original motivation behind
the work of [21]. Specifically, given an input x classified
as f(x) = y by the CNN, they considered the problem of
finding a closest sample x′ such that f(x′) = yt ̸= y, where
yt is a target class specified beforehand. The idea was that
any such x′ should be semantically ambiguous under the
smoothness prior: if the original sample was classified as
school bus, for example, and the target class is ostrich,
then x′ should resemble some hybrid interpolation of a
school bus and an ostrich. It turns out that this is not what
happens: instead, the sample x′ is almost identical to x, yet
the CNN will have high confidence for the target class yt.

This unintentional finding has severe implications for
the trustworthiness of our AI systems. The existence of

1. https://openai.com/blog/chatgpt/. Accessed 2023-02-17.

adversarial perturbations immediately begs the question:
what have these models actually learned? How reliable can
an AI system be when it can be fooled by tiny perturbations
that are barely noticeable to humans, let alone relevant to
the task at hand? And, most importantly, can this issue be
resolved? The deep learning community has been trying to
develop methods for training robust deep learning models
that are not vulnerable to adversarial perturbations, but
this has proven to be an exceptionally challenging problem.
Despite almost a decade of sustained research effort, even
our most robust state-of-the-art DNNs cannot (yet) solve it
satisfactorily.

Overview

Our goal here is to provide a historical overview of ad-
versarial machine learning (AML), so that the reader un-
derstands how the field has evolved and the important
lessons the community has learned in the past ten years.
As such, it is not our intention to provide an exhaustive
overview of the most recent advances; for that, the reader
can turn to other surveys [24], [25], [26]. Rather, we have
attempted to chronicle the development of the field since
its inception in 2013, with emphasis primarily on the major
themes underlying the important successes and failures of
the field. Therefore, while many recent and state-of-the-art
methods will of course be discussed, we also pay significant
attention to older ideas, particularly on the defensive side.
Many of these have fallen out of favor, either because they
did not work or because they were simply forgotten. In the
former case, it can be highly instructive to learn why the
methods did not work; in the latter case, they may still serve
as inspiration for newer, more effective algorithms.

Our focus is specifically on adversarial attacks — also
referred to as evasion attacks — which are intended to
compromise the integrity of a deployed system. Specifically,
evasion attacks attempt to manipulate deployed ML sys-
tems by corrupting incoming data at inference time. There
are many other important classes of attacks which do not
fall under this category, but which we cannot adequately
cover here. Examples include backdoor or poisoning attacks
which aim to insert hidden triggers in the training data in
order to influence the behavior of the system, a threat that
is particularly relevant today when much of our training
data is supplied by third party sources that may not be
completely reliable. We refer the interested reader to other
surveys on these topics [27], [28].

We begin by formally defining the adversarial robustness
problem in section 2. With the mathematical framework
established, we survey so-called adversarial attacks in sec-
tion 3; these are algorithms for the efficient generation of
adversarial examples under specific threat models. As we
shall see, generating adversarial perturbations boils down to
a relatively simple optimization problem, and all adversarial
attacks essentially just try to solve this same problem under
different assumptions. We then proceed in section 4 to
survey defenses against adversarial perturbations that have
been proposed in the literature. We encourage the reader to
pay particular attention to the contents of this section, as the
AML community has learned most of its valuable lessons by
failing to develop effective defenses. It is therefore important
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TABLE 2.1: Some common Lp perturbation thresholds

Data set L1 L2 L∞

MNIST 22 1.5 0.3
Fashion-MNIST 1.5 0.1
CIFAR-10 12 0.5 8/255
CIFAR-100 12 0.5 8/255
ImageNet 60 0.05 4/255

to know beforehand that many of the methods discussed in
section 4 have been broken at some point, and offer no real
protection against adversarial attacks. Yet we include them
nonetheless, because the value of understanding why each
defense failed cannot be overstated. To this end, we have
taken care to elucidate wherever possible the likely reasons
behind the failure of every broken defense. In section 5,
we move from the more empirical to the more mathe-
matical side of things and survey some theoretical results
regarding the robustness of machine learning models. The
AML community has of course spent a significant amount
of work toward understanding the nature of adversarial
perturbations, and these results do provide many valuable
insights that can inform future defenses. However, perhaps
the most interesting parts of section 5 are those that are
missing: specifically, at the time of this writing, we do not
yet have a comprehensive understanding of why DNNs
are so fragile. Finding an answer to this question is the
largest open problem in the field at this time. Section 6
lists what we believe are the most interesting avenues for
future research in this field. Finally, section 7 offers some
concluding remarks.

2 ADVERSARIAL ROBUSTNESS

The basic idea behind adversarial examples as they were
conceived by [21] is the following. Starting from a classifier
f : Rn → {1, . . . , k}, a “benign” sample x ∈ Rn (such as
a random sample from the training set), find the minimum
set of modifications necessary such that the classification
output by f is altered: f(x) ̸= f(x̃) where x̃ is the modified
“adversarial” sample.

Note that this definition crucially relies on what is
considered a “minimal” modification. Indeed, the precise
choice of measure is the subject of some debate and contro-
versy within the adversarial ML community. It has become
standard practice to use Lp norms for this purpose, i.e., to
measure the “size” of the modification as

∥x̃− x∥p =
(

n∑
i=1

|x̃i − xi|p
)1/p

,

where p is typically set to 2 or ∞. This particular formal-
ization is known as the Lp threat model. Table 2.1 gives an
overview of commonly used bounds for popular data sets
(assuming the input features are normalized to the range
[0, 1]). Although these bounds are obviously somewhat ar-
bitrary, the idea behind them is to capture the threshold of
“perceptibility.” That is, for each data set, these bounds are
supposed to guarantee that any additive perturbation of a
sample within that radius does not meaningfully alter it and
so the predicted label should stay the same.

We now propose the following definition of an adversarial
example. Given a function f : X → Y , constants2 εX > 0 and
εY > 0 and an element x ∈ X . An element x̃ ∈ X is said to
be (εX , εY)-adversarial to f and x if the following properties
are satisfied:

dX (x, x̃) ≤ εX and dY(f(x), f(x̃)) ≥ εY .

Here, dX : X × X → R+ and dY : Y × Y → R+ are
similarity measures in the input space X and output space
Y respectively. These functions do not need to satisfy any
properties of a metric; they merely need to map pairs of
inputs and outputs to non-negative real numbers as a means
to quantify their “similarity,” however that concept may
be defined for the particular task at hand. Mathematically
speaking, of course, it would be more convenient to have
dX and dY satisfy all properties of metrics, as this would
facilitate proofs of lower and upper robustness bounds. In
practice, however, we may simply not have such a luxury.
For example, in the image domain, we may wish to quantify
the distance dX (x, x̃) using some approximation of visual
similarity according to the human visual system, which
may not yield a valid metric. In the domain of natural
language processing, we may be looking at vectorized word
embeddings and quantifying their distance according to
cosine similarity, which is known not to be a metric.

The above definition easily specializes to the typical Lp
threat model used in the vast majority of the literature: we
simply take dX (x,x′) = ∥x − x′∥p, dY(y, y′) = 1[y ̸= y′]
and εY = 1. However, it can also capture much more gen-
eral classes of adversarial threat models. For instance, if X is
the image manifold corresponding to the data distribution
and dX is the geodesic distance between two points on
this manifold, then an adversarial sample could be a much
more complicated transformation of the original sample:
we would not be limited to small additive perturbations
but could also use rotations, reflections, shearing transforms
and other distortions unique to images. It has been known
for many years now that Lp norms are a poor proxy for
human perception [30], so it is highly desirable to look at
the adversarial robustness problem from this more general
lens. There have been some papers that attempted to achieve
this, such as [31] who introduced semantic adversarial ex-
amples. These samples can differ greatly from the originals
according to Lp metrics, but they are constructed in such
a way that the semantics of the original samples remain
unchanged. Hosseini & Poovendran [31] in particular im-
plement semantic adversarial examples by manipulating the
hue and saturation of the images in the HSV color space,
rather than working directly with the RGB pixel values.
Moving beyond the Lp threat model remains a relatively
under-explored area of research, however.

There is also another threat model, known as patch
attacks, which is becoming increasingly popular [32]. In
a patch attack, an adversary is constrained to rectangular
patches of fixed dimension. There is no constraint on the
per-pixel deviation, so individual pixels may be modified
arbitrarily, but the modifications must all be done within a

2. We may consider an alternative definition where εX and εY are not
constant but may depend on x and f . Such input-dependent bounds
are sometimes (though rarely) considered in the literature [29].

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3331087

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

rectangular patch of fixed size that may appear anywhere
in the image. Patch attacks can be more realistic than the
Lp threat model in cases where one cannot modify the full
image but only localized areas within it, such as when one
is holding up a sign in front of a camera.

Based on the above formalization of adversarial exam-
ples, we can define the point-wise adversarial robustness of a
model f at a point x as

ρ(f,x) = inf
x′∈X

{dX (x,x′) | dY(f(x), f(x′)) ≥ εY}. (2.1)

The expected adversarial robustness is then the expectation of
(2.1) over the data distribution:

ρ(f) = E[ρ(f,X)]. (2.2)

Clearly, in order for adversarial examples to not exist, it is
necessary that ρ(f) ≥ εX . However, this is not sufficient:
even if the expected adversarial robustness is high, there
can in principle still exist adversarial examples with very
small distance dX in the input space. A complete lack of
adversarial examples around every single data point is typ-
ically considered too strong a requirement in the literature,
and so adversarial defenses tend to focus on improving the
expected robustness ρ(f) rather than the robustness around
every single point. Indeed, a high ρ(f) generally implies
that whatever adversarial examples still exist will be rare,
especially at low distortion.

Aside from the point-wise and expected robustness, the
robust accuracy is another main quantity of interest in AML.
It is simply the accuracy of the model under adversarial
perturbations, and it is usually approximated by computing
the empirical accuracy on a set of adversarial examples
generated by some attack. Of course, such evaluations can
only yield an upper bound on the “true” robust accuracy. As
we shall see, finding good bounds on the robust accuracy of
a given model is not trivial, and remains an active area of
research.

3 ADVERSARIAL ATTACKS

In this section, we survey some of the notable adversarial
attacks on DNNs that have been proposed since the work
of [21]. These attacks all attempt to efficiently solve the
following optimization problem in different ways:

x̃ = argmax
x′∈X

dY(f(x), f(x
′))

subject to dX (x,x′) ≤ εX .
(3.1)

That is, starting from some initial point x ∈ X , we wish to
find elements x̃ ∈ X which maximize the dissimilarity in
the output space, dY(f(x), f(x̃)), while maintaining high
similarity in the input space. This bound is determined by
the parameter εX , which is often referred to as the “budget”
or “strength” of the attack. In the simplest case, adopting the
Lp threat model and instantiating dY with the cross-entropy
loss, we obtain the most commonly used formulation of the
adversarial robustness problem:

x̃ = argmax
x′∈X

L(f(x), f(x′))

subject to ∥x− x′∥p ≤ εX .
(3.2)

However, even (3.2) is already a complicated non-convex
problem when f is a deep neural network, so specialized
techniques are required to solve it. As we will see in this
section, it is by no means straightforward to design an
effective adversarial attack. New adversarial attacks are
still proposed on a regular basis, each differing slightly in
their underlying assumptions about what causes adversarial
vulnerability and how to best exploit it. The importance of
strong adversarial attacks in this field cannot be overstated.
Indeed, the development of adversarial defenses has been
incredibly synergistic with the development of new attacks,
a phenomenon often referred to as the arms race: researchers
will propose a defense in response to a new adversarial
attack, and other researchers will subsequently analyze this
defense for flaws and publish improved attacks that break it.
To obtain an accurate picture of where we stand regarding
adversarial robustness, strong attacks are needed which do
not over-estimate model robustness. This problem of over-
estimation has been a staple of the field since the early years,
and is still regarded as an open problem [33].

In general, adversarial attacks may be roughly classified
according to the amount of information about the target they
require. The taxonomy we will use in this work is as follows:

I. White-box, gradient-based. The attack requires com-
plete knowledge of the model to be attacked, including
its exact architecture and weights as well as the ability
to evaluate the gradients of the model on arbitrary
inputs.

II. White-box, gradient-free. The attack requires knowl-
edge of the architecture and weights of the model used
by the victim, but does not need its gradients.

III. Black-box, surrogate-based. The attack does not need
the original model, but requires access to a surrogate,
i.e., a model trained on similar data as the target.

IV. Black-box, score-based. The attack does not need
knowledge of the model, but requires the ability to
obtain the probability scores assigned by the model on
arbitrary inputs.

V. Black-box, decision-based. The attack does not need
knowledge of the model, but requires the ability to
obtain the predicted class of arbitrary inputs.

Aside from the categories above which quantify the level
of information required for the attack to operate, we can
further characterize adversarial attacks according to the
following properties:

• Targeted. The attack requires the user to specify a target
class yt beforehand. The adversarial perturbation will
then be optimized to push the sample towards this
specific class. The attack is successful only if f(x̃) = yt.

• Untargeted. The attack does not require the user to
specify a target class. The adversarial perturbation is
merely optimized to induce a difference in classifica-
tions, i.e., f(x̃) ̸= f(x). The precise output of the model
on the adversarial sample is not relevant.

Whether a user prefers a targeted attack or an untargeted
one entirely depends on the use case. For example, if a
user wishes to impersonate a specific employee to fool a
biometric security system, a targeted attack is required since
a specific classification result must be reached. On the other
hand, if the user wants to cause a computer vision system to
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not recognize a specific object, an untargeted attack suffices
since the exact result is irrelevant as long as it differs from
the ground truth. Furthermore, any targeted attack can (in
principle) be converted to an untargeted one by simply
running the attack for every class except the original and
returning one of the successful results. However, attacks that
were designed to be untargeted will generally be much more
efficient than this.

The earliest adversarial attacks developed against DNNs
were category I: white-box and gradient-based. As time
went on, of course, researchers crafted increasingly sophis-
ticated algorithms that were able to attack DNNs in ever
more restricted settings. We discuss a few of these attacks
below.

3.1 L-BFGS
One of the first attacks to be created for DNNs is known
as the L-BFGS attack. It was proposed by [21] and so-
named because it is merely an application of the limited-
memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) opti-
mization algorithm [34] to the following problem:

min
δ

c∥δ∥+ L(x+ δ, yt, f)

subject to x+ δ ∈ [0, 1]n.
(3.3)

Here, yt is the target class which must be specified before-
hand. The parameter c > 0 is tuned via a line search so
that the smallest value is used for which the minimizer δ
of (3.3) satisfies f(x + δ) = yt. It is a targeted white-box
gradient-based attack, as we must specify a target class yt
and L-BFGS requires access to the gradients of the objective
function, which includes the loss of the model on arbitrary
samples.

3.2 Mimicry attack
Concurrently to [21], [35] were also working on adversar-
ial examples in the context of DNNs and support vector
machines. They developed a general adversarial attack al-
gorithm that tries to find the smallest additive perturbation
to an input such that the classification of the model changes,
but the sample also remains within the support of the orig-
inal data distribution. Formally, they consider the following
problem:

argmin
x̃∈X

f̂(x̃)− λ

m

m∑
i:yi=−1

κ

(
x̃− xi
h

)
subject to dX (x, x̃) ≤ εX .

(3.4)

Here, f̂ is a surrogate model trained by the adversary, λ > 0
is a regularization parameter, m is the number of benign
samples available to the adversary, κ is a kernel and h is
its bandwidth. It is a targeted black-box surrogate-based
attack. Biggio et al. [35] already considered the possibility
that the adversary may not have full access to the model f
used by the victim and therefore account for the fact that we
may be using a surrogate model that we trained ourselves,
with the hopes that adversarials generated for the surrogate
will also work on the real target. They also account for the
fact that the norm constraint by itself may not be sufficient
to guarantee that the adversarial sample will lie close to the

original data manifold. Since this might cause the adver-
sarials to be detected by the victim, a regularization term
is added to the objective which penalizes the distance of
the generated sample x̃ to the data samples x1, . . . ,xm
according to a kernel density estimate. They refer to this
technique as “mimicry.” Although the attack can already
cause misclassification with almost imperceptible modifi-
cations, allowing the algorithm to optimize to complete
convergence produces samples that visibly morph into their
target classes. This is in stark contrast to most other attacks,
which will never produce samples that resemble their target
classes at all.

3.3 Fast gradient sign
The fast gradient sign (FGS) attack was proposed by [36] in
order to make the generation of adversarial examples much
more efficient than the L-BFGS method. It is an untargeted
white-box gradient-based attack. To design it, [36] start
from the following optimization problem:

max
δ
L(x+ δ, y, f) subject to ∥δ∥∞ ≤ εX . (3.5)

Note that (3.5) is just (3.2) specialized to the L∞ norm. They
then consider a first-order Taylor approximation of the loss
term:

L(x+ δ, y, f) ≈ L(x, y, f) + δ⊺∇xL(x, y, f).

Assuming this linear approximation is accurate, we can
choose the perturbation as follows:

δ = εX sgn∇xL(x, y, f). (3.6)

We then clearly have ∥δ∥∞ = εX , satisfying our norm
constraint. Furthermore, if we plug this value into the Taylor
approximation, we obtain

L(x+ δ, y, f) ≈ L(x, y, f) + εX ∥∇xL(x, y, f)∥1.

If the original sample (x, y) is not a stationary point of
the loss, then the 1-norm of the gradient will likely be
proportional to the dimensionality of the data. Therefore, in
high dimensions, merely following the sign of the gradient
vector can lead to large increases in loss even though the
input perturbation is very small. Indeed, experiments using
the FGS method were highly successful, achieving very high
error rates with relatively small values of εX . It was also
very fast, since the computation of the perturbation δ in (3.6)
requires only a single backward pass through the network
per sample. These factors combined made FGS one of the
most popular adversarial attacks for many years.

3.4 Projected gradient descent
Similar to L-BFGS, the projected gradient descent (PGD) attack
is named after an existing general-purpose optimization
algorithm that has simply been specialized to the crafting
of adversarial perturbations. Specifically, PGD finds an ad-
versarial example by iterating the following update:

x̃t+1 ← Px+S(x̃t + α sgn∇xt
L(xt, y, θ)). (3.7)

Here, α > 0 is a user-specified constant, S is an appropriate
Lp norm ball centered at the origin and PU (x) denotes the
projection of x onto U . Depending on the choice of norm,
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the projection operator Px+S can take very different forms.
In general, it is the solution to an optimization problem that
finds a point u ∈ U closest to x according to the particular
similarity measure:

PU (x) = argmin
u∈U

dX (x,u).

If dX is the L∞ distance, the projection can be accomplished
merely by clipping the components of the perturbed sample
within the admissible range; for L2, an orthogonal projec-
tion onto the ball x + S must be carried out. For L1, the
projection can be computed in log-linear time in the input
dimensionality [37]. Although the optimization can start
from the unmodified original point x0 = x, it is common
to use random restarts where x0 = Px+S(x + ξ) and ξ is
sampled from some tractable distribution such as uniform
or Gaussian. The attack can then be run multiple times using
different independent samples of ξ, where the best result
across all restarts is returned as the final adversarial.

The PGD attack is an untargeted white-box gradient-
based attack. It was made famous by [38], who performed
an extensive analysis of its theoretical and empirical prop-
erties. They argued that PGD is essentially an optimal first-
order adversary, in the sense that no other efficient attack
algorithm that uses only gradients of the loss to construct
perturbations could outperform it. Stronger adversaries
would therefore either have to use higher-order information,
which is notoriously expensive to compute for DNNs, or
they would need to perform more expensive computations
using the first-order gradient information. Either way, they
would be considerably less efficient than PGD. Based on
this insight, they used PGD to construct robust models for
MNIST and CIFAR-10. These models remained remarkably
robust for some time, although the CIFAR-10 model was
eventually broken.

Croce et al. [39] proposed AutoPGD (APGD) as an
improvement on the original PGD formulation. APGD in-
corporates a momentum term in the update (3.7), which is
known to facilitate optimization [40]. APGD also does not
use a fixed step size α, but rather dynamically decreases the
step size when the loss has seemingly stagnated. In their
experiments, [39] used APGD to successfully break many
defenses that were recently proposed at major conferences
at the time. Crucially, they were able to achieve these results
with little to no tuning of the hyperparameters of the APGD
algorithm, suggesting that this attack should become a new
baseline in adversarial defense going forward. Accordingly,
since its initial proposal, APGD has been rapidly adopted
as a standard benchmark attack for adversarial defenses. It
is included in the AutoAttack suite, a popular library for
benchmarking robustness.3

3.5 The Carlini-Wagner attacks
Carlini et al. [41] originally proposed three different attacks
specifically to target defensive distillation [42], which was one
of the few promising adversarial defenses at the time. They
succeeded in reducing the robust accuracy of defensive dis-
tillation to 0%, a result that gained immediate notoriety as it
was the first complete “break” of an established adversarial

3. https://github.com/fra31/auto-attack. Accessed 2023-02-15.

defense. The three attacks were each designed for a specific
threat model, in this case L0, L2 and L∞ respectively. The
basic insight that led to the C&W attacks is that one must
very carefully craft an appropriate objective function in
order to create effective adversarial samples. Specifically,
[41] propose a general framework where one starts from
the following optimization problem:

min
δ

dX (x,x+ δ) + λg(x+ δ). (3.8)

Here, λ > 0 is a tunable parameter and g is a function with
the property that

f(x+ δ) = yt ⇐⇒ g(x+ δ) ≤ 0. (3.9)

If g satisfies (3.9), then minimizing g is a consistent proxy
for optimizing δ such that the target classifier f outputs the
desired class yt. The basic C&W attacks are all therefore
targeted white-box gradient-based types, although [41]
proposed untargeted variants as well.

Clearly, the main design consideration for the C&W
attacks is the specific choice of g in (3.8). Carlini et al. [41]
experiment with many different options, but the most effec-
tive one turned out to be

g(x′) = max

{
max
i̸=t

Zi(x
′)− Zt(x′),−κ

}
.

Here, Z(x) represents the vector of logits of the model on
the given sample x and κ ≥ 0 is a constant that controls the
confidence of the resulting adversarial. Essentially, the C&W
attacks optimize the perturbation δ such that the resulting
adversarial x + δ has a higher logit value for the target
class than any of the other classes, leading to a targeted
misclassification. Increasing κ causes the attack to generate
adversarial samples with higher confidence in the target
class, which can help them transfer to other models.

We can interpret (3.8) as the Lagrangian relaxation of the
constrained optimization problem

min
δ
dX (x,x+ δ) subject to g(x+ δ) ≤ 0. (3.10)

Due to (3.9), problem (3.10) is itself a relaxation of

min
δ
dX (x,x+ δ) subject to f(x+ δ) = yt, (3.11)

which is the quintessential optimization problem for tar-
geted adversarial attacks. Now, if δ is any feasible solution
to (3.11), it holds that

dX (x,x+ δ) + λg(x+ δ) ≤ dX (x,x+ δ).

That is, for any feasible solution δ (i.e., such that f(x+δ) =
yt), the objective value of (3.8) is a lower bound on the
objective value of (3.11). To obtain the best possible approx-
imation of an optimal solution to (3.11) via the relaxation
(3.8), this bound needs to become as tight as possible. This
means that the parameter λ must be minimized, because
g(x + δ) ≤ 0. Indeed, [41] confirm this empirically, and
therefore extend their attack algorithm with a modified
binary search procedure to choose the minimal constant λ
for which the optimizer can still find feasible solutions.

The Carlini-Wagner attacks were the first attacks that
broke an established defense that seemed highly promising:
at the time, defensive distillation was able to reduce attack
success rates from 95% (i.e., 5% robust accuracy) to 0.5%
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(99.5% robust accuracy). The C&W attacks, on the other
hand, obtained a success rate of 100% against this defense.
They are relatively slow, however, requiring many iterations
to reach a good solution. Moreover, since they optimize over
the logit space, high-confidence adversarials produced by
the C&W attacks may lead to “over-optimized” perturba-
tions that can be easily identified via IQR-thresholding of
the logit values, since such values are atypical of benign
samples [43].

3.6 Sparse attacks
The most popular choices of norm in (3.1) are L2 and L∞,
which lead to adversarial perturbations that are “dense”
(most components are non-zero) but imperceptible. How-
ever, there has also been much work on sparse perturbations
where most components are constrained to be close to zero.
For sparse perturbations, we essentially just specialize (3.1)
to the L0 norm. However, this makes the optimization
problem NP-hard to solve in general, so approximations are
often needed. A common trick is to use the L1 norm instead,
which does allow for tractable optimization but may not
always generate sparse perturbations. Su et al. [44], for
instance, implement the one-pixel attack, a black-box score-
based attack which modifies only a single pixel. Modas
et al. [45] introduce SparseFool, an extension of the older
DeepFool algorithm [46], which works by iteratively ap-
proximating the decision boundary of the model using an
affine hyperplane and solving a linear program to obtain the
optimal sparse perturbation. It is an untargeted white-box
gradient-based attack. Similarly, [47] propose the structured
adversarial attack which imposes sparsity on smaller groups
of pixels rather than the image as a whole. This method
is a targeted white-box gradient-based attack with the in-
teresting advantage that the generated perturbations, while
still imperceptibly small, appear to mimic the structure of
the target class. Additionally, [37] propose an L1 variant of
APGD which is meant to generate sparse perturbations as
well. However, as an approximation to the L0 problem, the
perturbations may not always be sparse [48].

3.7 Randomized gradient-free attack
The randomized gradient-free attack [49] is notable for
being perhaps the only existing white-box gradient-free
attack: it requires access to the entire model specification yet
does not use gradient information. The algorithm exploits
the fact that DNNs with ReLU activation functions divide
their input spaces into linear regions, i.e., connected subsets
where the DNN reduces to a linear function [50]. Croce et
al. [49] make use of an explicit construction of these linear
regions in order to find minimal perturbations that cause
a given sample to cross a decision boundary. The resulting
optimization problem is a quadratic program that requires
only the parameters of the network, but not its gradients
with respect to arbitrary inputs.

One might wonder why it is useful to make the distinc-
tion between category I and category II if the latter category
is so sparsely populated. The reason is that the vast major-
ity of category I attacks work by optimizing the additive
perturbation δ using gradient descent over some function
of the loss of the model. Thus, they crucially rely on the

gradients of the loss with respect to the model parameters
or input. However, as shown by [51], category I attacks can
severely overestimate the true robustness of their targets
due to a phenomenon known as gradient masking, which
we discuss further in section 4. Aside from the problem of
gradient masking, the distinction between category I and
II attacks is also useful because certain types of neural
networks can be shown to be immune to gradient-based
attacks. Carbone et al. [52], for example, obtained a very
interesting result proving that Bayesian neural networks
are immune to gradient-based adversarial attacks in the
infinite data limit, because the gradient of the loss with
respect to any sample from the data distribution is zero.
This result also seems to hold approximately for Bayesian
neural networks trained on finite data.

3.8 Black-box attacks
Due to their practical usefulness, many black-box attacks
have been proposed over the years, and it is not feasible to
survey them all here. We will therefore conclude our discus-
sion of black-box attacks with a few “honorable mentions,”
to which we will not dedicate an entire subsection.

The Simple Black-box Attack (SimBA) is a black-box score-
based attack proposed by [53]. As its name implies, it is an
exceedingly simple attack to implement and carry out: in
order to perturb a given sample, SimBA randomly samples a
vector from a pre-defined orthonormal basis and either adds
or subtracts it to the input. If the user chooses the standard
basis in Rn, SimBA will perturb only a single randomly
chosen pixel at a time. A more interesting choice of basis
is the discrete cosine transform (DCT) basis, which makes
the algorithm very effective and query-efficient.

Chen et al. [54] proposed the Zeroth Order Optimization
(ZOO) attack, which is black-box, score-based (both tar-
geted and untargeted). ZOO can be viewed as an attempt
to “lift” the problem of attacking a black-box model to the
problem of attacking a white-box one. It accomplishes this
by using the symmetric difference quotient to numerically
estimate the gradient of the target model and optimizing a
loss function similar to the Carlini-Wagner attack.

The square attack by [55] is notable for being one of
the most efficient and strong untargeted black-box score-
based attacks proposed to date. It has been included in
the AutoAttack framework, a comprehensive benchmark for
evaluating robustness of models proposed by [39] at ICML
2020. This framework is the foundation of the RobustBench
leaderboard,4 which has become the de facto standard refer-
ence for recording state of the art robustness results.

Brendel et al. [56] proposed the boundary attack, a black-
box decision-based type (targeted and untargeted). To-
gether with GeoDA [57], these attacks are notable for be-
ing the only category V types that appear to have been
described in the literature to the best of our knowledge.

3.9 Real-world attacks
The attacks discussed in the previous sections are all focused
on a “lab setting.” That is, they all assume we can perfectly
manipulate a given input and this input will be provided to

4. https://robustbench.github.io. Accessed 2023-02-03.
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Fig. 3.1: Examples of real-world adversarial attacks. Left: the
“adversarial turtle” by [58]. Right: the adversarial stop sign
by [59].

the model exactly as we crafted it. For many applications of
machine learning, this is unrealistic: think, for example, of
an autonomous vehicle that uses computer vision to recog-
nize traffic signs. The inputs to this system are images of the
road, but these images can vary significantly from moment
to moment due to weather, obstacles, physical damage, etc.
To address these issues, the adversarial ML community has
developed real-world attacks which are designed to cope with
typical distortions to which the inputs might be subjected.
Seminal work in this direction was done by [58], who
proposed a technique called expectation over transformation
(EOT). This technique has since become widely used not
only to create real-world adversarial examples but also to
increase robustness of models in general (even in the lab
setting). The idea behind EOT is to model the distortions
to which the input might be subjected as part of the opti-
mization procedure. Formally, [58] define a distribution T
of possible transformations. A transformation is simply a
X → X function, so T is a distribution on functions of the
input. Before being processed by the vision system, an input
x ∈ X will be affected by some random transformation
t ∼ T . Hence, the system will actually observe t(x) instead
of x itself. The objective of EOT is therefore to solve a
slightly different optimization problem:

max
x̃∈X

E
t∼T

[log Pr[yt | t(x̃)]]

subject to E
t∼T

[dX (t(x̃), t(x))] ≤ ε.
(3.12)

Here, yt is a chosen target class and Pr[y | x] refers to the
probability estimated by the target model for class y given
input x. In practice, (3.12) is solved using a Lagrangian
relaxation, resulting in the stochastic optimization problem

max
x̃∈X

E
t∼T

[log Pr[yt | t(x̃)]− λdX (t(x̃), t(x))] , (3.13)

where λ > 0 is a hyperparameter. Athalye et al. [58] used
projected gradient descent to solve (3.13), so their original
attack is a targeted white-box gradient-based type.

The EOT algorithm allows for some truly impressive
adversarial attacks. For instance, the main contribution of
[58] is to specialize EOT for affine transformations, allowing
them to craft adversarial textures that can be applied to real-
world (3D printed) objects, such as the famous “adversarial
turtle” shown in figure 3.1. These textures cause the targeted
vision system to misclassify the object even under various
common real-world distortions, such as changes in pose,
surrounding environment, lighting and camera angles.

Concurrently to the work of [58], [59] proposed real-
world adversarial attacks on autonomous vehicle systems
using a very similar framework as EOT which they called

robust physical perturbations (RP2). A typical example of this
attack is shown in figure 3.1. The RP2 method allows the
creation of adversarial examples using simple black and
white stickers that are easily applied to physical objects
and which consistently fool computer vision systems under
real-world conditions. Like EOT, it is a targeted white-box
gradient-based attack.

3.10 Universal adversarial perturbations
Bringing the phenomenon of adversarial examples to its
logical extreme, [60] introduced universal adversarial pertur-
bations (UAPs). A UAP is a single perturbation δ with the
property that x+ δ is adversarial for any model f : X → Y
and any sample x ∈ X . They achieve this by creating
adversarial perturbations for individual data samples across
a large data set and simply adding them all together with
appropriate clipping to stay within the designated bud-
get. To create the individual adversarial perturbations, any
existing attack can in principle be used, so the specific
category to which this attack belongs can be subject to some
debate. Based on the original implementation by [60], one
could classify it as untargeted black-box surrogate-based.
Naturally, the discovery of universal perturbations attracted
much research attention, both on the attacking side as well
as the defensive side. Since the publication of [60], many
new methods have been proposed. We refer the interested
reader to other surveys such as [61].

3.11 A note on adversaries
An important distinction that we have neglected so far is
that between static and adaptive adversaries [62]. A static
adversary (or “oblivious adversary”) is not aware of the
particular defense used by their target, and is therefore
restricted to using existing adversarial attacks that were not
specifically designed to circumvent that defense. An adap-
tive adversary is aware of the defense used by the target,
and can adapt their attacks accordingly. Many adversarial
defenses in the past failed to provide meaningful robustness
and over-stated their results primarily because they only
evaluated against static adversaries. As we shall see in the
next section, it is often relatively easy to defend against
known adversarial attacks, since the defense can then be
based on violating the assumptions made by the attacks in
question. This is why many researchers [63] argue that eval-
uations on adaptive adversaries are necessary to properly
gauge the true robustness of any newly proposed method.
That said, we end this note with an important commentary
on how the field of AML has historically handled adver-
sarial threat models. Specifically, it seems there has always
been considerable confusion about the distinction between
a white-box (category I) adversarial attack and an adaptive
adversary. There have been many papers that claimed to
perform a robustness evaluation against an adaptive ad-
versary in accordance with the recommendations by [63],
but in actuality merely performed an evaluation against
a white-box attack. These are not the same thing: a static
adversary can employ any category of attacks, including
category I; similarly, an adaptive adversary can just as well
use category V attacks. There is no inherent connection
between the type of adversary (static or adaptive) and the
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category of attack used. The category is merely an indication
of what information is required to conduct the attack. A
white-box attack does not necessarily use this information
in a manner that appropriately adapts to a specific defense.
Conversely, an adaptive attack does not necessarily need
white-box access to the model. One particularly problematic
consequence of this confusion is now known as gradient
masking, which we discuss in more detail in section 4.

4 ADVERSARIAL DEFENSES

Like adversarial attacks, the defenses described in the litera-
ture can be roughly classified into a few distinct groups. The
taxonomy we propose here is based on the general strategy
used to defend a model:

• Purification. The defense attempts to remove the ad-
versarial perturbation from the input and restore the
sample to its original form, which can then be processed
by the underlying model as usual.

• Detection. These defenses focus on detecting adversar-
ially manipulated inputs before they are processed by
the model. They do not attempt to correct the prediction
of the model in any way; instead, they extend the set of
model outputs to include a special “reject” signal which
implies that the model is likely not reliable on the given
sample.

• Hardening. Hardening defenses do not attempt to re-
move the adversarial noise nor to detect when manipu-
lation might have occurred. Instead, these defenses seek
to make the model inherently invulnerable to adversarial
perturbations.

Apart from these broad categories, adversarial defenses can
also be randomized or deterministic. These distinctions are
relevant, since randomized defenses need to be evaluated
differently from deterministic ones [39]. In the literature,
the distinction is also often made between defenses that are
certified versus those that are not. A certified adversarial
defense is one for which a certificate of robustness can be
produced. This is a mathematical proof that shows that
no perturbation up to a given radius εX could possibly
change the outcome of the classifier. This also must be taken
into account during evaluation, because there is no point in
trying to attack a certified defense using perturbations that
lie within its certified radius.

There are exceptions to this, however. In practice, many
certificates of robustness are probabilistic, in the following
sense. They assume that the adversary creates adversarial
examples by first sampling a natural sample x from the data
distribution on which the model is trained and then finds a
perturbation δ to cause misclassification. Probabilistic cer-
tificates of robustness then usually give the guarantee that,
under this mode of operation, there is only a small probabil-
ity (taken over the data distribution) that there exists such a
perturbation δ. Although probabilistic certificates are clearly
better than no certificates at all, they do not completely
rule out the existence of adversarials within their radius of
certification. Furthermore, these certificates typically suffer
from the same problem as purification-based defenses: their
guarantees become meaningless when the adversary does
not respect their chosen mode of operation, as with rubbish
examples [64].

Whatever their underlying philosophy, all adversarial
defenses are direct responses to the adversarial robustness
problem (3.1) or specialized versions thereof. As such, the
fundamental goal of an adversarial defense is to make a
classifier invariant to perturbations generated as solutions
to (3.1). Typically, this is done by maximizing the expected
robustness ρ(f) defined in (2.2). However, it is clear that
ρ(f) cannot become too large, as otherwise the classifier
may become too invariant and not change its decision when
it is supposed to. This implies a trade-off between accuracy
and robustness, a question that has indeed become the
subject of much research in the field [65]. We discuss this
further in section 5.

4.1 Adversarial training
The most successful defense that has been described in the
literature as of this writing is adversarial training (AT). The
basic idea is straightforward: simply include adversarial
examples in the training pipeline as a form of data aug-
mentation. In practice, of course, the devil is in the details,
and the way we implement AT has changed throughout the
years as the field has gained more insights into the factors
and design decisions that can make or break the method.

The first variant of AT was proposed by [36], in the same
paper where they introduced the FGS attack. Since FGS is so
efficient, their AT scheme took the form of a regularized loss
function that essentially performs the FGS attack against all
samples in the mini-batch and then updates the parameters
of the model according to a weighted average of the loss on
the original and adversarial samples:

L(x, y, f) = αJ(x, y, f) + (1− α)J(x̃, y, f),

where
x̃ = x+ ε sgn∇xJ(x, y, f).

Here, α ∈ [0, 1] and J is the cross-entropy loss. Due to its
extremely high efficiency and seemingly high effectiveness,
FGS AT was the preferred method for increasing robustness
for some time. Later, however, [66] showed that FGS AT
suffers from a “label leaking” effect: because the FGS ad-
versarials are computed using the gradient of the loss on
the true label, statistical artefacts are introduced that encode
the true label in the adversarial image in a form that can be
easily detected by DNNs. Thus, using FGS AT, adversarially
trained models often have much higher accuracy on FGS
adversarials than on the original, unaltered samples. Later,
[41] also found that FGS is actually a very weak attack, as
FGS AT provides no real protection against stronger attacks
such as PGD or even an iterated version of FGS. These
findings caused FGS to fall out of favor both as an attack
as well as the basis for any defense.

The next major innovation in the design of AT schemes
came from [38], who proposed a more principled way to
implement it. They characterized the problem as one of
robust optimization (RO) [67]:

θ⋆ = argmin
θ

E
[
max
δ∈Bε

L(X + δ, Y, θ)

]
, (4.1)

where Bε is the ε ball around the origin in the norm of
choice. That is, instead of minimizing the expected loss on
a data set of i.i.d. samples, we try to minimize the loss
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under worst-case norm-bounded additive perturbations of
the input. The RO view therefore casts AT as a bi-level
optimization problem:

1) Inner maximization. In this step, the current mini-batch
of samples is subjected to an adversarial attack with
respect to the current model parameters.

2) Outer minimization. After the adversarial examples
have been constructed, the original mini-batch is re-
placed with their adversarial counterparts. These are
then used in a subsequent optimizer to minimize the
loss.

Madry et al. [38] originally proposed PGD for the inner
maximization, using various arguments to support the idea
that PGD is an optimal first-order adversary. Using PGD
AT, they constructed robust models for MNIST and CIFAR-
10 that maintained state of the art robust accuracy in the
L∞ threat model for some time. They publicly launched
the MNIST challenge5 and the CIFAR-10 challenge6 where
researchers were invited to submit adversarial examples
against their models, essentially crowd-sourcing their ro-
bustness assessments. The CIFAR-10 model was considered
broken by December 2017 using a variant of one of the C&W
attacks, which reduced robust accuracy at L∞ = 8/255
to 47.76%. As of this writing, however, the MNIST model
remains highly robust: even against the best known attack,
it still has a robust accuracy of 88% at L∞ = 0.3.

Thanks to the work by [38], by the end of 2017 the
field had realized that AT could be an incredibly powerful
method of defense. The only real issue was scale: training a
robust model on a large data set such as ImageNet using the
method proposed by [38] severely increased training times
compared to standard training. This caused researchers to
experiment with more efficient methods, such as generating
the adversarials using pre-trained generative models [68],
but these approaches tend to be unstable on complex large-
scale data sets. Other work has focused on making the base
AT algorithm itself more efficient, with some remarkable re-
cent results [69], [70]. The majority of work in AT considers
the L2 and L∞ threat model, as it has proven to be consider-
ably more difficult to adversarially train models against L1

perturbations without catastrophic overfitting. Some recent
progress has been made in this direction, however, such as
the Fast-EG-L1 method proposed by [48].

The precise classification of AT according to the taxon-
omy we proposed here depends on the exact implemen-
tation. The FGS AT and PGD AT variants, for example,
could be classified as non-certified deterministic hardening
defenses, since they cannot provide robustness certificates,
do not introduce any additional randomness as part of the
defense and aim to make the model inherently more robust
rather than focusing on detecting or purifying adversarial
noise. Other works utilize more advanced ideas from opti-
mization theory in order to implement a training regime that
can provide robustness certificates, such as [71]. Typically,
such work goes beyond the original formulation (4.1) by [38]

5. https://github.com/MadryLab/mnist challenge. Accessed 2023-
02-03.

6. https://github.com/MadryLab/cifar10 challenge. Accessed 2023-
02-03.

and instead considers a distributionally robust optimization
(DRO) problem:

θ⋆ = argmin
θ

sup
Q∈Q

E
Q
[L(X, Y, θ)] . (4.2)

Here, Q is a class of distributions centered around the
original data distribution Q0. The most common form of
DRO takes a Wasserstein ball around Q0,

Q = {Q |Wc(Q0, Q) ≤ ε},

where Wc is the Wasserstein metric

Wc(P,Q) = inf
M∈Π(P,Q)

E
M
[c(Z,Z ′)].

The Wasserstein metric Wc(P,Q) between two distributions
P and Q is parameterized by a cost function c, which takes
samples from both distributions P andQ and outputs a non-
negative real number. The set Π(P,Q) is the collection of all
couplings of P and Q, i.e., the set of all joint distributions
where the respective marginals are P and Q. The Wasser-
stein metric therefore computes the smallest expected cost
c(z, z′) when (z, z′) is sampled over all possible joint distri-
butions with marginals P and Q. The DRO problem (4.2)
then consists of minimizing the worst-case expected loss
when the data X can be sampled from any distribution Q
in a Wasserstein ball around Q0. This essentially formalizes
robustness against small distributional shifts, from which
the method derives its name. DRO methods are typically
certified deterministic hardening defenses.

Another important example of an AT defense is
TRADES [72]. Like FGS AT, the concrete implementation of
this method takes the form of a regularization added to the
loss function. By varying the regularization parameter, the
method allows for trade-offs between accuracy and robust-
ness. Although TRADES admits a theoretical upper bound
on its robust risk [72, theorem 3.1], this bound is difficult
to compute in practice, so we cannot yet classify it as a
certified method since it does not produce useful certificates.
TRADES gained notoriety for reaching first place in the
Adversarial Vision Challenge at NeurIPS 2018.7 Due to its
computational efficiency and impressive robustness results,
TRADES has become a popular defense method in recent
years.

Adversarial training is not without its issues, however:
aside from the often much increased computational com-
plexity, there is the problem of robust overfitting described
by [73]. There appears to be a consistent and significant
gap between the best robust error obtained during training
and the robust error achieved at the very end of training.
Moreover, robust overfitting seems to be a general property
of all AT methods, as [73] observe it not only for the original
formulation by [38] but also in other settings, such as the
improved FGS-AT scheme by [69] and even TRADES [72].
After extensive experiments, [73] find that the only effective
remedy appears to be early stopping with a validation set.
It is therefore important when performing model selection
on adversarially trained networks to make use of early stop-
ping on the robust validation loss to mitigate robust over-
fitting. However, we are only just beginning to understand

7. https://www.aicrowd.com/challenges/
nips-2018-adversarial-vision-challenge-untargeted-attack-track.
Accessed 2023-02-03.
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this phenomenon, and some recent works have proposed
other techniques to overcome robust overfitting [74], [75].

While some AT methods can be certified, not all cer-
tified training methods are variants of AT, because they
may not always need to generate actual adversarial ex-
amples. To avoid generating adversarial examples, such
training schemes usually rely on geometric properties of
the networks to compute approximations of regions that are
guaranteed to be free of adversarials. Regularization terms
are then added to the loss to maximize those regions. This
technique is used, for example, by [76], [77] to construct
provably robust ReLU networks. Similarly, [78] character-
ize adversarial-free regions around input samples using
polyhedral envelopes and derive a regularization term to
maximize these regions. These are all certified hardening
defenses.

4.2 Gradient masking
In the early days of adversarial machine learning, the FGS
attack was very popular because of its efficiency and ef-
fectiveness against undefended models. As such, a number
of works focused specifically on thwarting the FGS attack
and its derivatives such as PGD. For instance, [79] observed
that FGS and PGD are only effective because the gradient
of the loss is large around natural data samples. It is
therefore intuitive to explicitly constrain the magnitude of
the gradient around training samples, and to incorporate
such a penalty as a regularization term in the loss. Gu et
al. [79] achieve this using a deep contractive network (DCN),
which attempts to directly constrain the matrix norm of
the Jacobian of the entire network. They also considered
noise injection techniques, i.e., the addition of random noise
to the inputs in an effort to defeat adversarial perturba-
tions. This proved to be an extremely popular avenue of
research, and many papers tried similar strategies. Well-
known examples include pixel deflection [80], random data
transformations [81] and stochastic activation pruning [82].
Even JPEG compression has been tried as a defense against
adversarial perturbations [83].

The defenses discussed above enjoyed considerable pop-
ularity in the early years of AML, but do not really work.
If we let ϕ denote some pre-processing function of the data,
then the “robust” model takes the form f̂ = f ◦ ϕ where
f is the original classifier. Simple preprocessing steps such
as JPEG compression were found to be effective against
FGS and PGD adversaries. However, these defenses are
easily bypassed: if we have access to the original model f
without the preprocessing ϕ, then we can perform a transfer
attack against f̂ : we generate adversarial examples directly
for f and send them to f̂ . Surprisingly, this strategy will
almost always work and the accuracy of f̂ gets degraded
just as much as if we had not used any defense at all.
The problem stems from the fact that many preprocessing
operations ϕ are not differentiable, and so gradient-based
adversarial attacks cannot evaluate ∇L properly for the
composition f ◦ ϕ. Yet the transformation ϕ preserves so
much structure of the original problem that the shape of
∇L (the “loss landscape”) barely changes between f and
f̂ . Hence adversarials generated against f will still work
against f̂ .

In a seminal paper, [51] systematically investigated this
phenomenon and found that most of the adversarial de-
fenses proposed up to that point suffered from this same
problem, which they called gradient masking. Gradient mask-
ing is illustrated in figure 4.1 using visualizations taken
from Nicholas Carlini’s ICML 2018 talk about this issue.8

Figure 4.1a shows the loss landscape of a regular classifier
that does not mask gradients. Specifically, what is shown
here is a 3D visualization of the loss L of a model around a
point x, generated according to

L(α1, α2) = L(x+ α1v1 + α2v2).

Here, v1 and v2 are orthogonal directions in Rn and
α1, α2 ∈ R are 2D coordinates that determine how far
we move the original point x along these directions. The
height of the landscape then corresponds to the value of the
loss L(α1, α2). The different colors correspond to different
predicted labels, so moving from one colored region to
another implies a change in the resulting classification. We
can see that the loss landscape of a regular classifier is
very smooth, and it is plain to see how gradient-based op-
timization could generate adversarial examples in this case:
simply move downward along the slope of the mountain
until we cross the boundary between the teal and the green
areas. However, when gradient masking occurs, the loss
landscape changes to what is shown in figure 4.1b, with
figure 4.1c showing a zoomed-in view. At a high level, we
see that essentially nothing has changed: we can still follow
the slope of the mountain downward to reach different
classifications, but we won’t be able to do this using first-
order gradient optimization methods; the landscape is too
discontinuous for that to be possible. Yet it is also clear that
this gradient masking classifier f̂ is no more robust than
the regular one f , since we don’t need to cross any larger
distance to obtain adversarial examples. In fact, the loss
landscape of the gradient masking classifier is so similar to
the undefended model that gradient-based methods easily
succeed in a transfer attack. The robustness gained from
gradient masking is an illusion.

The discovery of gradient masking led to a paradigm
shift in how adversarial defenses are evaluated. Specifically,
if the defense incorporates any non-differentiable compo-
nents or randomness, the evaluation must be adapted using
specialized techniques such as EOT [58] or backwards-pass
differentiable approximation (BPDA) [51].

4.3 Randomized smoothing
Given the relative ease with which researchers were able
to break most proposed defenses very quickly after they be-
came known, the community naturally started to focus more
on certified defenses where one can mathematically prove
that no adversarials exist within a certain radius. Perhaps
the most well-known such defense is randomized smoothing
(RS) [84]. RS is both remarkably simple and remarkably
effective. To implement it, one takes an existing pre-trained
model f and computes the smoothed model

f̂(x) = argmax
y∈Y

Pr
η∼N (0,σ2I)

[f(x+ η) = y]. (4.3)

8. https://nicholas.carlini.com/talks/2018 icml
obfuscatedgradients.mp4. Accessed 2023-02-15.
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(a) Smooth loss landscape (b) Gradient masking (c) Gradient masking (detail).

Fig. 4.1: Comparison of the loss landscapes of normal and gradient masking classifiers.

By sampling around a given point x, the stability of the
classifier f under small additive perturbations can be as-
sessed. Despite the fact that RS is randomized, [84] show
that one can derive a deterministic robustness certificate from
it. Specifically, if f̂ is defined as in (4.3), then f̂(x+δ) = f̂(x)
for all perturbations δ satisfying

∥δ∥ ≤ σ

2

(
Φ−1(p1)− Φ−1(p2)

)
(4.4)

where Φ is the standard Gaussian cumulative density func-
tion (CDF) and p1, p2 are probabilities that correspond to
a lower and upper bound respectively on the top-2 class
probabilities assigned by f to the given sample x under
Gaussian perturbations. RS therefore belongs to the class of
certified randomized hardening defenses, and it is power-
ful enough to certify the point-wise robustness ρ(f,x) at
any given point x instead of only providing guarantees on
the expected robustness ρ(f).

The robustness bound (4.4) provided by RS is very
intuitive to interpret and very simple to optimize: in order
to maximize the robustness of the smoothed model f̂ , one
can either increase the variance σ2 or increase the margin
p1 − p2 between the top two predictions. The former option
risks lowering classifier accuracy, as the noise may even-
tually drown out any meaningful signal. The latter option,
however, will be familiar to ML practitioners as maximiza-
tion of probability margins is known to have all sorts of
beneficial effects [85]. It would therefore stand to reason that
the combination of RS with other techniques that promote
large margins, such as the large-margin softmax loss [86] or
temperature scaling [87], would further aid robustness.

The main drawback of randomized smoothing is that the
underlying model to which it is applied must be robust to
relatively large Gaussian perturbations of the input. This
may not be the case unless the model was specifically
trained to accommodate such distortions, which is not com-
mon practice: Gaussian noise typically used in data aug-
mentations tends to be relatively small. Therefore, although
RS can take any classifier and turn it into a certifiably robust
model, clean and robust accuracy may suffer due to the
inability of the model to handle large Gaussian noise.

To compensate for this problem, [88] proposed denoised
smoothing (DS), where a denoising model is prepended
to the classifier before applying RS. Since RS makes no
assumptions on the underlying model, it can still make
the entire model provably robust despite the addition of a
denoiser, and the downstream classifier will achieve better
accuracy scores because the denoiser removes the large

Gaussian perturbations. Denoised smoothing can be formu-
lated as follows:

f̂(x) = argmax
y∈Y

Pr
η∼N (0,σ2I)

[f(D(x+ η)) = y]. (4.5)

Note that this procedure is essentially identical to (4.3)
except for the addition of the denoising model D. DS
therefore belongs to the category of certified randomized
hardening defenses, as it inherits all the guarantees of RS.
DS effectively transforms the hard problem of adversarial
purification to the much easier problem of Gaussian denois-
ing.

Taking this idea to its logical conclusion, [89] propose
diffusion denoised smoothing (DDS), which is essentially just
DS where the denoiser is instantiated with a diffusion
model [9]. DDS is conceptually very simple, as it merely
combines two off-the-shelf models to instantly obtain im-
mensely impressive increases in robust accuracy compared
to the previous state of the art. However, it is also very
resource-intensive, as it relies on prepending a 552M pa-
rameter diffusion model to a 305M parameter classifier.
Finding ways to reduce the computational burden of this
method while maintaining comparable robustness guaran-
tees would be a very interesting avenue of research.

4.4 Purification methods
Many defense methods have been proposed based on the
idea of purification, i.e., using a generative model to remove
adversarial perturbations. MagNet [90], for example, uses
a combination of multiple detector networks as well as an
auto-encoder to detect and subsequently purify adversarial
examples. Its use of multiple detectors instead of just one is
motivated by the idea that randomness complicates attacks,
and so MagNet will randomly select one of its detector
networks to examine each sample. Although an influential
work, it was later found to be much less effective than
initially thought [91]. Another influential method based on
denoising is Defense-GAN [92], where a generative adver-
sarial network (GAN) is used to remove the adversarial
perturbations. Given a generator G, Defense-GAN purifies
an incoming sample x by finding a latent code z such
that the reconstruction error ∥G(z) − x∥2 is minimized.
It then feeds G(z) into the downstream model instead of
the original input x. This method of course relies on the
assumption that adversarial examples do not lie on the
manifold learned by the generator G. Defense-GAN also
requires potentially expensive optimization to find z.

Naturally, with the rise of diffusion models came pu-
rification defenses that made use of this new powerful
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class of generative networks. A recent example is Diff-
Pure [93], which works by first adding Gaussian noise to
the input image via the forward diffusion process and then
using the reverse generative process to restore the original.
This is similar in spirit to denoised smoothing, but can
be computationally much more efficient depending on the
architecture of the diffusion model. Similarly, [94] propose
Adaptive Denoising Purification (ADP), which also first injects
Gaussian noise into the images and then uses an energy-
based model trained with denoising score matching to pu-
rify them. Interestingly, ADP is actually a certified defense,
and denoising score matching is known to be connected to
diffusion models [95]. It may therefore also be possible to
certify other diffusion-based defenses such as DiffPure.

4.5 Statistical hypothesis testing

It is natural to use the machinery of statistical hypothesis
testing to detect adversarial examples, and this is indeed the
basis of many detection approaches. Such defenses crucially
rely on the idea that adversarial examples come from a
distribution that is significantly different from the original
data distribution, and that this difference can be detected
using efficient statistical tests. Grosse et al. [96] made use of
this idea to design an efficient detector method based on the
maximum mean discrepancy (MMD) test developed by [97]. A
problem with such statistical tests is that they can only make
decisions about sets of samples, not individual samples
by themselves. Works such as [98], [99], [100] attempt to
address this by using tests which can be pre-trained or
calibrated beforehand on collections of data, after which
they can be applied sample-wise to individual inputs.

Defenses based on statistical hypothesis testing enjoyed
widespread acceptance early on. However, [101] went on
to break a number of popular ones, including the MMD-
based defense by [96]. As the MMD test is considered one
of the strongest statistical tests for detecting distributional
shifts, Carlini et al. [101] argued that their break of this
defense implies the statistical testing approach to adver-
sarial defense may be fundamentally flawed. Indeed, it is
not difficult to imagine why statistical hypothesis testing
can fail to provide robustness. For one, it is based on the
(controversial) assertion that adversarial examples necessar-
ily come from a different distribution. While this may be
true for many adversarial examples generated by popular
attacks, it is unclear whether this is an inherent property.
Goodfellow [102] has argued against this view, stating that
adversarial examples can clearly be found within undersam-
pled regions of the original data distribution. In general, it
is more likely that adversarial perturbations simply break
the i.i.d. assumption: the idea that incoming data samples
form a sequence of independent and identically distributed
observations, an assumption that is foundational to almost
all ML algorithms. At a higher level, it is difficult to see
why statistical tests would offer any real robustness when
an adversary is aware of the test being used. In that case, the
adversary can simply incorporate the test statistic as an ad-
ditional regularization term in the objective of (3.1). In order
for any particular statistical hypothesis test to make sense
as a detection mechanism of adversarial perturbations, a
persuasive argument must be made as to why an adversary

cannot simply optimize for the test statistic as well and
bypass the detector this way. Most off-the-shelf statistical
tests cannot support such an argument, because they again
assume i.i.d. data samples; they were never designed to be
used in a scenario where an adversary is actively trying
to fool the test and has intimate knowledge of its inner
workings. Statistical tests may therefore work against static
adversaries, but it is highly doubtful they are of any use
against adaptive ones.

There are exceptions to this, however. One recent exam-
ple is the work of [103], who combine randomized smooth-
ing with conformal prediction [104]. Conformal prediction is a
type of frequentist hypothesis testing framework based on
a scoring function S : X × Y → R. Gendler et al. [103]
apply randomized smoothing to the scoring function of a
conformal predictor in order to construct a certified defense,
since the resulting method inherits the provable guarantees
of RS. Essentially, they employ a frequentist hypothesis
testing framework where RS is applied to the test statistic in
order to obtain certified robustness. This strategy is poten-
tially applicable to all manner of hypothesis tests and may
therefore lead to new effective statistical tests for detecting
adversarial examples. There is also the work by [105], who
propose a detection scheme for adversarial examples based
on the Mahalanobis distance:

M(x) = max
c
−(f(x)− µ̂c)

⊺Σ−1(f(x)− µ̂c).

Here, c ranges over all possible classes, µ̂c is the empirical
mean of f(x) for all samples x belonging to class c and Σ
is the covariance matrix of the training samples. By thresh-
olding M(x) at appropriate levels, one can obtain a remark-
ably powerful detector that serves as an easy and efficient
baseline for adversarial defense and out-of-distribution de-
tection. It is equivalent to fitting class-conditional Gaussian
distributions to the output of f with shared covariance
across all classes. The quantity M(x) then corresponds to
the log of the probability density of the test sample.

4.6 Combination therapies

More recent efforts towards improving adversarial robust-
ness have focused on “combination therapies,” i.e., the
combination of many relatively small changes in model
architecture, data curation and training regimes that appear
to add up to significantly increased robustness. Gowal et
al. [106], for example, showed that one can greatly boost ad-
versarial robustness by combining a number of adjustments,
including: a careful choice of loss function with appropriate
regularizers, increased model capacity, the use of additional
training data (even synthetic samples created by generative
models) and modifications to the optimization algorithm
such as weight averaging [107]. In a similar vein, [108]
show that weight averaging combined with carefully chosen
data augmentation strategies can also significantly boost
robustness. It has also been noted that Vision Transform-
ers [109] tend to be intrinsically more robust to certain types
of adversarial perturbations, such as severe occlusions [110].
However, the dot-product attention mechanism widely used
in Transformer architectures suffers from vulnerabilities of
its own which compromise robustness [111].
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In all, these works seem to suggest that the fragility of
our DNNs to adversarial perturbations is likely not caused
by any one component of the ML pipeline in isolation.
Rather, it is a consequence of the interplay of various ele-
ments, from the data curation process to the neural network
architecture and specifics of the training algorithm. This can
be seen in the results of the works cited above, where con-
siderable improvements in robustness are obtained through
the combination of many small tweaks rather than through
the construction of an elaborate dedicated defensive compo-
nent.

4.7 Robustness against multiple threat models
The defenses discussed so far typically focus on one specific
threat model, such as L2 or L∞. Ideally, of course, we would
like our models to be robust against all plausible threat
models simultaneously. However, Tramèr and Boneh [112]
demonstrate that robustness against one threat model in
general does not guarantee any robustness at all against
other threat models. We also cannot simply ensemble mod-
els robust to different threat models and expect their robust-
ness properties to add up, nor is it wise to simply mix dif-
ferent perturbation types during adversarial training. More-
over, [112] prove the existence of so-called mutually exclusive
perturbations, which are pairs of perturbation classes with
the property that robustness to one class necessarily implies
vulnerability to the other. Under certain assumptions, L1

and L∞ perturbations are mutually exclusive, so one cannot
in general have robustness against these two threat mod-
els simultaneously. Obtaining robustness to multiple threat
models remains an active area of research, and specialized
techniques have been developed for this purpose [113].

4.8 Evaluation and benchmarking
Before we conclude the section on adversarial defenses, it is
important to reflect on current and past practices adopted by
the field for the evaluation and benchmarking of proposed
methods. This is particularly relevant for adversarial ML,
as experience has shown that great care must be taken in
order to properly evaluate defense algorithms. Historically,
most of the proposed defenses against adversarial examples
have failed because of common mistakes in the evaluation
methodology. Carlini et al. [63] list a few typical errors:

• Failure to specify a precise threat model.
• Failure to evaluate against an adaptive adversary.
• Reporting robust accuracy only for a fixed attack bud-

get.
• Neglecting basic sanity checks. At the very least, one

should verify that an unbounded attack, i.e., an attack
that has no limit on the perturbation budget, reaches
100% success rate. After all, with unbounded perturba-
tions it is possible to transform a given input into any
other input and so any target output could be reached.
If unbounded attacks fail, it is highly likely that the
defense is implemented incorrectly and robustness is
over-estimated.

• Failing to tune hyperparameters. Most adversarial at-
tacks and defenses have at least some hyperparameters
that should be tuned for the specific task. In any evalu-
ation, failing to tune the hyperparameters of the attacks

can easily cause over-estimation of robustness. This is a
common and subtle way in which defense evaluations
can become overly optimistic.

As discussed by [114], the field has mostly taken these
suggestions to heart, and defense evaluations have been
getting significantly better in recent years. The introduc-
tion of the AutoAttack suite by [39] and the RobustBench
leaderboard9 serves as another important milestone in this
regard, as to date this is the most successful attempt at
systematically benchmarking existing adversarial defense
algorithms. The RobustBench benchmark works by simply
applying the AutoAttack suite to a given defense for several
different data sets and threat models. For each defense, the
leaderboard reports the original publication that proposed
it, their standard accuracy, robust accuracy according to
the AutoAttack suite, a flag indicating whether the defense
uses additional data and a flag indicating whether the
evaluation may be unreliable. While definitely a step in the
right direction, RobustBench has important shortcomings
that researchers need to be aware of. First, RobustBench
relies on AutoAttack, which is not an adaptive adversary:
it is a collection of static adversaries that are deemed to
be generally strong against most defenses. It only supports
image recognition tasks under L2 and L∞ threat models
with fixed perturbation budgets on a limited number of
data sets (CIFAR-10 and ImageNet). RobustBench does not
support detector methods, and considers accuracy as the
sole important metric, neglecting computational and mem-
ory overhead.

5 THEORETICAL RESULTS

In this section, we survey some of the theoretical results
that have been described in the adversarial ML literature.
Of particular interest to us here are theorems regarding
conditions for the (non-)existence of adversarial examples,
bounds on the robustness achievable by a given model and
computational hardness results for adversarial defense.

5.1 On the causes of adversarial fragility
Perhaps the most interesting theoretical aspect of adversar-
ial examples, is the reason why they exist at all. Naturally,
this question has attracted considerable attention, and vari-
ous explanations for the existence of adversarial examples
have been proposed. One such explanation is offered by
[65], who constructed a toy classification task where accu-
rate classifiers provably cannot have any robustness. They
define the following distribution:

Y ∼ Unif({−1,+1}),

X1 =

{
+Y w.p. p,
−Y w.p.1− p,

X2, . . . , Xn+1 ∼ N (ηY, 1).

(5.1)

That is, we have a uniformly distributed binary class label
Y ∈ {−1,+1} and observed (n + 1)-dimensional feature
vectors X . The first feature X1 can be equal or opposite
to Y depending on some probability p, and the other fea-
tures X2, . . . , Xn+1 are weakly correlated with Y . Tsipras

9. https://robustbench.github.io. Accessed 2023-02-03.
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et al. [65] then show that a classifier that simply returns
the sign of the average value of the features X2, . . . , Xn+1

can achieve near-perfect accuracy for large n. However,
this classifier is not robust to L∞ adversarial perturbations
for even very small budgets ε: in particular, high standard
accuracy implies zero robust accuracy for ε ≥ 2η, where η
can be arbitrarily small.

Of course, as damning as the above result may seem,
it applies only to (5.1). This is a toy problem that creates
an extremely pessimistic scenario for a robust classifier, as
there is only one “good” feature and all the other features
are essentially rubbish. Nevertheless, it does provide an
important insight into why adversarial examples exist in
general: it is possible even in realistic classification tasks that
our models are over-optimizing for accuracy and depending
on large groups of features that individually are only very
weakly correlated with the label. Due to these weak corre-
lations, such features can be perturbed significantly without
affecting the overall task, but this will fool a classifier that
is heavily dependent on them. In this view, adversarial
examples merely exploit an over-reliance of classifiers on
weak features.

This idea was further elaborated on in a widely cele-
brated paper by [115]. They proposed the “robust features
model,” where features are classified along two axes: use-
fulness and robustness. Here, a “feature” is any X → R
function, and classifiers generate predictions by taking the
sign of weighted sums of features. A feature f is then
called ρ-useful if E[Y · f(X)] ≥ ρ. It is called γ-robust
if E [infδ Y · f(X + δ)] ≥ γ. A useful feature correlates
well with the label Y under the standard data distribu-
tion. A robust feature maintains this correlation even in
the presence of adversarial perturbations. Ilyas et al. [115]
then argue that classifiers are vulnerable to adversarial
perturbations because they rely too much on features that
are useful but not robust, and they propose an interesting
experiment to verify this. Specifically, they take existing
non-robust models f and use them to generate a special
data set S̃ which contains adversarial examples for f and
the associated incorrect predictions given by f on these
adversarials. Then, this mislabeled data set S̃ is used to
train new models f̃ . Paradoxically, these models f̃ , which
were trained on mislabeled data, generalize to the original
test data just as well as the properly trained models f .
They repeat this experiment when the original models f
have been adversarially trained, and find that this leads to
new models f̃ that exhibit higher robustness to adversarial
attacks than the baseline non-robust ones.

The idea proposed by [115] is currently one of the
most popular explanations for the existence of adversarial
examples, but it is by no means the only one. Tanay and
Griffin [116] proposed a different hypothesis called boundary
tilting, which attributes the existence of adversarial exam-
ples to a geometric misalignment between the true data
manifold and the learned classification boundaries. Other
explanations utilizing the geometry of the data manifold
were proposed, for example, by [117], [118], who relate
adversarial vulnerability to curvature properties of the de-
cision boundaries.

At present, there are multiple distinct hypotheses de-
scribed in the literature which can all explain the existence

of adversarial examples. However, most of these hypotheses
do not seem to imply any of the others. We thus have mul-
tiple independent but plausible explanations for why ad-
versarial examples exist, suggesting that this phenomenon
may not be reducible to a single clearly-defined cause. It
could therefore be the case that qualitatively different types
of adversarial examples exist which may require distinct
approaches for defense. Constructing a relevant taxonomy
of adversarial examples according to their underlying cause
would be highly informative.

5.2 Robustness certification
In order to assess the robustness of a given DNN in practice,
the most straightforward method is to simply attack the
network with a strong algorithm and compute its empir-
ical robustness on the generated samples. However, this
approach may not be efficient if the attack is slow, since
a large number of samples may be required to obtain
statistically reliable estimates of robust accuracy. Moreover,
in general, there is no guarantee that high robust accu-
racy against a given attack implies any robustness at all
against other attacks. For this reason, there has also been
much interest in developing methods that can efficiently
and reliably certify robustness of any given model without
the need for extensive experiments with suites of existing
attacks. The randomized smoothing defense by [84] which
we described earlier essentially obtains certification abilities
as a side-effect, but other methods exist that focus solely on
certification and do not provide any defense themselves. Li
et al. [119] is perhaps most similar in spirit to randomized
smoothing, as they also rely crucially on additive Gaussian
noise to certify robustness. Their method also allows for the
derivation of a training algorithm that improves robustness.

The main disadvantage of dedicated certification tech-
niques is that they tend to be highly specific to certain
architectures, as the problem of robustness certification for
general neural networks is known to be NP-hard even
under very simple threat models [120, theorem 3.1]. For
example, for tree-based models such as decision trees,
random forests and gradient-boosted trees, [121] proposed
an iterative algorithm that gives tight lower bounds. The
CLEVER score [122] has appeared in many publications
as a robustness estimate for general neural networks. It is
based on estimation of the local Lipschitz constant, and its
results seem to align well with empirical robustness tests. In
a similar vein, [123] develop the CROWN score, which has
also been widely used. Other works that derive robustness
bounds based on efficient estimates of the (local) Lipschitz
constants include [124], [125].

Perhaps the most well-studied scenario is the ReLU
network, i.e., when the neural network is restricted to us-
ing only the ReLU or linear activation functions between
layers. Weng et al. [120] introduce Fast-Lin and Fast-Lip
to efficiently certify robustness of such networks. Fast-Lin
relies on linear approximations of the individual layers
whereas Fast-Lip uses Lipschitz estimation techniques sim-
ilar to [122]. In some cases, researchers cast the robustness
certification problem for ReLU networks as a semi-definite
program, which is a rich area in the field of optimization
theory [126]. Raghunathan et al. [127] provide one such
example, and the work of [77] is similar.
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5.3 Hardness results

Much work has also gone into the study of the hardness
of robust learning. Specifically, determining the conditions
under which robust learning is possible, and to what extent,
is one of the major problems in the field. In this regard, [128]
have made several important contributions. They showed
that robust learning is impossible in the distribution-free
setting even when the adversary is restricted to perturbing
just a single bit of the input. Therefore, in order to have
any hope of creating robust classifiers, certain distributional
assumptions must be made; no adversarial defense can claim
general robustness on arbitrary distributions. However,
there are certain concrete distributions that can be robustly
learned under milder conditions: the class of monotone
conjunctions is robustly learnable if the adversary is limited
to perturbing O(log n) input bits.

In a similar vein, [129] prove that the Rademacher
complexity of robust learning will unavoidably be larger
than its natural counterpart under realistic conditions. The
Rademacher complexity is a fundamental quantity in sta-
tistical learning theory, similar to the VC dimension [130],
that measures the complexity of infinite hypothesis classes
in a way that can be directly related to the worst-case
performance of any finite-sample learner for this class. A
higher complexity of the hypothesis class therefore imme-
diately implies worse lower bounds on the error of any
learning algorithm. Similarly, [131] prove that hypothesis
classes with finite VC dimension can be robustly learned,
but only improperly. In the case of neural networks, this can
imply that additional model capacity is necessary to obtain
robustness. Diochnos et al. [132] study the problem of robust
learning in the probably approximately correct (PAC) frame-
work [133]. They demonstrate conditions under which ro-
bust PAC learning requires either exponentially more samples
or polynomially more samples than standard PAC learning,
and give examples where robust PAC learning is impossible
altogether.

6 AVENUES FOR FUTURE RESEARCH

In this section, we list some of the research directions we
believe are currently most important for the field of AML as
a whole.

6.1 Moving beyond the toy problem

As it stands, researchers are much too heavily focused on
computer vision and the Lp threat model. Although one of
course has to start somewhere, at the time of this writing it
has been almost ten years since the work of [21] introduced
the deep learning community to this phenomenon, yet we
are still studying essentially the same problem despite its
known shortcomings. The Lp threat model is a particularly
poor fit for computer vision: large Lp perturbations do not
necessarily translate to heavily altered images, nor do small
Lp perturbations imply small distortion. A small rotation,
for instance, could imply a very large Lp perturbation but
would not actually change much of what is seen in the
image. Furthermore, adversarial robustness is a problem
for virtually all machine learning models, not just deep
neural networks for image recognition. In the case of natural

language processing, for example, it is unclear what exactly
constitutes a “small” or “imperceptible” perturbation. Most
work in this area considers the introduction of typographi-
cal errors, where one or more letters of a word are replaced,
thus causing slight misspellings in the text. In essence, this is
the equivalent of the Lp threat model using the Levenshtein
distance as the metric instead of an Lp norm. However, one
could also justify replacing words with synonyms or homo-
phones, which could drastically increase the Levenshtein
distance but would nevertheless only make a very small
difference to human readers.

We believe progress on this front can be made by taking
inspiration from differential geometry [134], based on the
so-called manifold hypothesis. This hypothesis posits that the
input data of our ML algorithms, although they are typically
given as vectors in Rn for some potentially large n, in
fact almost always lie on an embedded submanifold of
much lower dimensionality d ≪ n. The manifold hypoth-
esis tends to be an unavoidable requirement for most ML
algorithms, particularly those dealing with dimensionality
reductions [135]. In the simplest case, when the manifold
to be learned is smooth, it may be characterized by a
single invertible chart ψ : Rn → Rd. This chart can be
learned using variational auto-encoders [136], normalizing
flows [137] or other manifold learning algorithms. We can
then use it to rewrite (4.1) as follows:

θ⋆ = min
θ

E
[

max
δ∈Bε(ψ(X))

L(ψ−1(ψ(X) + δ), Y, θ)

]
. (6.1)

In this case, Bε(z) is the regular Lp norm ball around
z ∈ Rd. In other words, we are constructing adversarial
examples by additively perturbing the latent code z = ψ(x)
of the given input x with vectors δ of bounded Lp norm
and then mapping the resulting perturbed code z̃ = z + δ
back to the input space, obtaining x̃ = ψ−1(ψ(x) + δ). The
works of [138], [139] essentially follow the spirit of these
ideas, and we expect future work will likely explore this
avenue much further. The concept of semantic adversarial
examples introduced by [31] follows the same spirit, but the
concrete implementation would need to be generalized to
accommodate more than just images.

6.2 Practical solutions

The question of how to make AML more relevant and ac-
cessible to a broader audience is an underestimated but very
important open problem in this field. There is a tendency in
AML to focus on robust accuracy to the exclusion of other
relevant metrics such as efficiency and user-friendliness.
This significantly hinders the adoption of robust learning
techniques in domains outside of AML proper. If we wish
to make all DNNs robust (as well we should), then more
research needs to be dedicated to lightweight solutions
which can be easily applied in practice with good results
without the need for excessive tuning of hyperparameters,
mountains of additional data and huge models. This is
of course very difficult, and indeed we have discussed
some theoretical results which suggest that robust learning
may not be possible without significantly more resources.
Nevertheless, we should not lose sight of the fact that
AML is fundamentally motivated by trustworthiness, and
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so our defenses ought to be constrained not just by the
abstract threat model we happen to be interested in but
also the requirements and limitations of practitioners who
need reliable models to develop viable products. We believe
it could greatly benefit the AML community if we started
from real applications rather than the typical toy problem
(3.1). This could not only help us develop more practically
useful defenses but also, in doing so, raise much broader
awareness of this important issue.

6.3 Improved benchmarks
To facilitate progress towards lightweight solutions and
more general threat models, appropriate benchmarks also
need to be developed. Currently, the gold standard for
robustness benchmarking is the RobustBench library. How-
ever, RobustBench is heavily specialized to image classifi-
cation under the Lp threat model (although the CIFAR-10-
C and ImageNet-C data sets have been incorporated into
it [140]). It also has little regard for any metric aside from
accuracy, limiting the usefulness of the library in resource-
constrained environments or applications where large data
sets are hard to come by (e.g., medicine). Ideally, our current
benchmarks should be extended to support a greater variety
of performance metrics and threat models, including patch
attacks and other more natural data transformations, as well
as different machine learning tasks such as NLP. Even when
restricted to the domain of image classification, the field
of AML tends to only benchmark robustness on CIFAR-
10 and ImageNet, neglecting many other data sets where
robustness is clearly desirable. Medical imaging data sets
immediately come to mind in this regard. In the case of
NLP, the AML community can take inspiration from “red
teaming,” a popular practice where a language model is
probed for harmful or nonsensical outputs [141].

7 CONCLUSIONS

Unless proper precautions are taken, DNNs are extremely
vulnerable to adversarial perturbations. This problem casts
serious doubt on the trustworthiness of our AI systems and
can present a major obstacle to the adoption of machine
learning in practice. After all, when DNNs are used to
assist with medical diagnoses, approving loan applications
or screening resumés, tangible harm can result if the predic-
tions drastically change on the basis of imperceptible per-
turbations. This poses a challenge for high-risk applications
of AI to comply with new legislative frameworks such as
the European AI Act.10

Despite over a decade of sustained research efforts, our
current solutions are still unsatisfactory in a number of
important ways: they tend to impose a significantly higher
computational burden, require much additional data, are
complicated and difficult to deploy properly or they simply
do not reach the desired level of accuracy for the task at
hand. The practical adoption of AML techniques is also
hindered by the field’s narrow focus on image classification
under a limited number of threat models and data sets, as
well as its reliance on robust accuracy as the sole important
metric.

10. https://artificialintelligenceact.eu/. Accessed 2023-03-06.

The Lp threat model is a useful starting point for robust-
ness analysis, but it hits clear limitations when applied to
discrete domains such as natural language. For instance, at
this time the field of AML has not been able to substantially
improve the adversarial robustness of generative large lan-
guage models [142]. In order to meet the acute and growing
demand of society for robust and trustworthy AI systems,
the field of AML urgently needs to diversify its benchmarks
and motivate its threat models using concrete and realistic
use-cases.
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