
1

Detecting Line Segments
in Motion-blurred Images with Events

Huai Yu, Hao Li, Wen Yang, Lei Yu, and Gui-Song Xia

Abstract—Making line segment detectors more reliable under motion blurs is one of the most important challenges for practical appli-
cations, such as visual SLAM and 3D reconstruction. Existing line segment detection methods face severe performance degradation for
accurately detecting and locating line segments when motion blur occurs. While event data shows strong complementary characteristics
to images for minimal blur and edge awareness at high-temporal resolution, potentially beneficial for reliable line segment recognition.
To robustly detect line segments over motion blurs, we propose to leverage the complementary information of images and events. To
achieve this, we first design a general frame-event feature fusion network to extract and fuse the detailed image textures and low-latency
event edges, which consists of a channel-attention-based shallow fusion module and a self-attention-based dual hourglass module. We
then utilize the state-of-the-art wireframe parsing networks to detect line segments on the fused feature map. Moreover, due to the
lack of line segment detection dataset with pairwise motion-blurred images and events, we contribute two datasets, i.e., synthetic
FE-Wireframe and realistic FE-Blurframe, for network training and evaluation. Extensive experiments on both datasets demonstrate
the effectiveness of the proposed method. When tested on the real dataset, our method achieves 63.3% mean structural average
precision (msAP) with the model pre-trained on the FE-Wireframe and fine-tuned on the FE-Blurframe, improved by 32.6 and 11.3 points
compared with models trained on synthetic only and real only, respectively. The codes, datasets, and trained models are released at
https://levenberg.github.io/FE-LSD.

Index Terms—Line segment detection; Motion blur; Frame-event fusion; Attention.

F

1 INTRODUCTION

L INE segment detection in images with the emergence
of motion blurs often suffers from severe performance

degradation due to the motion ambiguities and texture
erasures [1], which brings a serious burden to geometric
structure perception especially when encountering high-
speed motions of imaging platforms, e.g., robotics [2], visual
SLAM [3], and autonomous driving [4]. In contrast to those
in images with clear and sharp edges, geometric structures
in images with motion blurs are often blurred out, and it
poses intense challenges to accurately detect and localize
line segments in the images, see Fig. 1 (a) for an instance.

Although promising progress has been reported in the
past decades on line segment detection, see e.g., [5], [6], [7],
[8], few of them consider the scenarios with blurry textures
and diverse motions, thus often losing their effectiveness
when dealing with motion-blurred images. As illustrated
in Fig. 1, due to the overlapping of scene information
at different times in blurriness, line segments no longer
appear as distinctive elongated edges, while as blurred
bands mixed with the background. To handle this issue,
an intuitive solution is to deblur the image first and then
detect line segments [9]. The detection performance highly
depends on the quality of motion deblurring, which itself
is ill-posed due to motion ambiguities. Moreover, motion
deblurring methods are usually developed for improving
the image quality but not designed for a better structure

• H. Yu, H. Li, W. Yang, L. Yu are with the School of Electronic Information,
Wuhan University, Wuhan 430072, China. E-mail: {yuhuai, lihao2015,
yangwen, ly.wd}@whu.edu.cn.

• G. S. Xia is with the School of Computer Science, Wuhan University,
Wuhan 430072, China. E-mail:guisong.xia@whu.edu.cn.

• H. Li is also with Baidu Inc, Beijing, China.
• H. Yu and H. Li contribute equally to this work.

(a) Blurred Image (b) Event (c) Ground Truth

(g) HAWP (i) FE-HAWP

(l) FE-ULSD

(d) LSD (e) FBSD

(h) HAWP (Retrained)

(f) LETR

(i)LETR(Retrained)

(j) ULSD (k) ULSD(Retrained)

Fig. 1. Illustrative examples of different methods. Line segments are
drawn on clear images at the end of camera exposure for better visu-
alization. Conventional (d)LSD [5] and (e)FBSD [11] have many false
detections while the original (f)LETR [12], (g)HAWP [6] and (j)ULSD
[7] have many missing alarms on the (a)motion-blurred image. The
retrained (h)HAWP and (k)ULSD on the concatenation of (a)images and
(b)events detect more line segments. The proposed (i)FE-HAWP and
(l)FE-ULSD have the best performance.

perception [1], [10]. On the other hand, if directly per-
forming the detection in motion-blurred images, we can

ar
X

iv
:2

21
1.

07
36

5v
2

 [
cs

.C
V

]
 2

0
N

ov
 2

02
2

https://levenberg.github.io/FE-LSD

2

only determine the distribution or the blurred band of each
line segment [13]. To measure the distribution, a thickness
parameter is introduced to describe the line width [11], [14].
Nevertheless, it can neither model diverse blurred lines (e.g.,
rotated around a point on lines) nor geometrically locate
the position of a line segment. Even if utilizing learning-
based models [8], [15], training with line annotations is still
unable to model the blur distribution and determine the
line position. Therefore, it is far from satisfactory to detect
only on blurred images, regardless of whether deblurring,
motion modeling, or data-driven approaches are used.

Recently, the newly developed event cameras have at-
tracted increasing attention, outputting pixel-level bright-
ness changes instead of standard intensity frames [16].
Event data is asynchronously generated at intensity edges
with extremely high temporal resolution (up to µs), thus it
is edge-aware and free of motion blurs [4]. Motivated by this
characteristic, we propose to introduce event data into the
task of line segment detection in motion-blurred images. On
one hand, texture and structure layout can be maintained
by image frames, which also help to suppress the effect of
event noise. On the other hand, event data can recognize
the distinctive edges in blurred images and address diverse
camera motions. Consequently, event cameras show strong
complementary characteristics to RGB cameras for their
minimal blur and edge awareness at high-temporal reso-
lution. Therefore, if events can be used in the data-driven
training process, we will have great potential to improve
the robustness of line detection and localization to motion
blur. However, it remains challenging for the effective fusion
of the two domain data to detect line segments. Several
key problems need to be investigated: how to avoid the
influence of event noises on line endpoint prediction, how
to make the fused feature map be cognitive to line edges
with either fast or slow camera motions, and how to solve
the problem of lacking line segment detection datasets with
both visual and event data.

In this paper, we propose a robust line segment de-
tection method in motion-blurred images with events, i.e.,
Frame-Event fused Line Segment Detection (FE-LSD). As
the frontend, a novel feature fusion backbone is designed to
extract and fuse information from images and events, which
consists of a channel-attention-based shallow module and
a self-attention-based stacked dual hourglass module. The
shallow fusion module is designed to suppress event noise
and enhance image edge features. The stacked dual hour-
glass module is developed to conduct multi-scale fusion and
obtain the fused feature map. As the backend, the state-
of-the-art line segment detectors, e.g., HAWP and ULSD,
are used to detect line segments on the fused feature map,
namely FE-HAWP and FE-ULSD respectively. A glance at
the performance of different methods is shown in Fig. 1 (i)
and (l), where the proposed FE-HAWP and FE-ULSD have
the best performance. As far as we know, this is the first
work of robust line segment detection in motion-blurred
images with events. Our contributions can be summarized
as follows:

• Events are introduced to assist motion-blurred images
for line segment detection, which can robustly address
the performance degradation caused by motion blurs.
The idea of fusing images and events fully exploits their

complementary properties of low-latency event edges
and detailed image textures, thus effectively improving
the accuracy and robustness of line detection over di-
verse camera motions.

• A general frame-event feature fusion network is de-
signed to extract and fuse the information from images
and events. The concatenation of shallow fusion and
multi-scale decoder fusion fully explores the channel-
attention and self-attention mechanism, thus enhancing
the feature extraction of events and frames.

• Two frame-event line segment detection datasets, i.e.,
synthetic FE-Wireframe and real-world FE-Blurframe,
are constructed for line segment detection in motion-
blurred images. Sufficient qualitative and quantitative
comparisons demonstrate the effectiveness and robust-
ness of the proposed method.

2 RELATED WORK

Line segment detection has been a focused fundamental
problem in computer vision over decades, especially with
the revolution of deep learning. In this section, we will
review the image-based and event-based line segment de-
tection methods. Image-based methods recall the track from
traditional edge-based clustering to the latest learning-based
algorithms. While for the event-based methods, we mainly
analyze the recent adaptions of frame-based methods to
events, such as Hough transform [17] and LSD [18].

2.1 Image-based line segment detection

Traditional line detection methods mostly rely on edge de-
tection and aggregation of linear geometric properties, such
as Hough transform [19], [20], LSD [5], EDLines [21], and
linelet [22]. These methods often follow an unsupervised
manner on the CPU and thus can be efficiently deployed
on embedding systems. However, their performance highly
depends on the edge quality and is sensitive to motion blurs.
In recent years, learning-based techniques have shown great
progress to detect line segments. The first learning-based
wireframe parsing algorithm DWP [23] fuses the predicted
line segments and junctions with two CNNs to obtain the
line segments. Subsequently, AFM [24] is proposed to trans-
form this task into an attraction field regression problem
using the line attraction field representation. Those two
methods are the first to introduce deep learning to improve
the performance of line segment detection. However, they
both rely on heuristic post-processing and thus are not end-
to-end. To address this issue, a series of end-to-end line
segment detection methods have been proposed [6], [15],
[25], [26]. The first one, L-CNN [15] utilizes a proposal sam-
pling module to conduct the fusion of lines and junctions
in the network, eliminating the non-differentiable heuristic
post-processing and ensuring it is fully differentiable. After
that, the HAWP [6] combines the attraction field map [24]
with the L-CNN network, which effectively improves the
quality of line segment proposals. Subsequently, a trainable
Hough transform module is added to the existing line seg-
ment detection network [27] to enhance the linear geomet-
ric constraints. Meanwhile, considering that line segments
formulate graphs, PPGNet [25] and LGNN [26] introduce
Graph Neural Network (GNN) to fuse the line segments

3

and junctions for optimization, which eventually yields
more accurate line detection results. Recently, Transformer
was introduced to the line segment detection network. By
combining it with CNN, LETR [8] achieves state-of-the-art
performance in an end-to-end manner. However, its main
drawback is that model training is time-consuming, and
inference is relatively slow. Recently, self-supervised [28]
and semi-supervised [29] methods have also been proposed
to overcome the problem of limited training samples.

These learning-based line segment detection methods
have demonstrated state-of-the-art performance. However,
they are trained and tested on clear images without motion
blurs. For real-world applications such as mobile robotics
and autonomous driving, the fast relative motion between
the camera and objects will inevitably generate motion blurs
in RGB images. The blurriness can significantly compromise
or even invalidate the performance of existing methods.

There are few existing works for line segment detection
in motion-blurred images. Debled-Rennesson first presents
the concept of blurred line segments in images and gives
its mathematical definition [30] by introducing a thickness
parameter to describe the line width. Then this blurred
line representation model is further extended to gray-scale
images, and a semi-automatic line segment selection tool is
implemented [31]. Later, FBSD [11] is proposed based on
the adaptive directional scans and the control of assigned
thickness to achieve automatic blurred line segment detec-
tion. Compared with the traditional LSD [5] and EDLines
[21], FBSD effectively improves the line location accuracy
and recall when handling blurs. However, the blurred line
definition according to Debled-Rennesson can only deter-
mine the width bands of line segments. Thus it is hard to
give an accurate line location with large motion blurs.

2.2 Event-based line segment detection

Over the past few years, several event-based line segment
detection methods [2], [32], [33] have been proposed using
the newly developed event camera, which does not suffer
motion blur due to its asynchronous characteristics and
high temporal resolution [34]. The Hough transform is the
first method [17] for event-based line segment detection
and has recently been used for high-speed train localiza-
tion and mapping [33], demonstrating the effectiveness in
handling high-speed motions. After that, the ELiSeD [18] is
proposed by adapting LSD [5] to the event camera. Based
on the assumption of a constant velocity model during a
short-time motion period, the fast detection and persistent
tracking of translating line segments are achieved by plane
detection in event data stream [35]. However, it cannot
handle rotating and drastically moving line segments. To
improve the robustness over motion speed, an event-based
line segment detection method using iteratively weighted
least-squares fitting was proposed [32]. Recently, DVS event
cameras are used for lane detection using basic CNN and
transformer networks [2], [36], which give some insights
for learning-based line detection. In [37], an online event-
based powerline tracker is proposed by using hibernation to
cope with the line direction changes. Most of these methods
are validated only on simple data, thus lacking quantitative
evaluation and comparison. Additionally, there is no pub-
licly available dataset as the testing benchmark, and the line

segment detection performance in real environments is yet
to be verified.

Although event cameras do not suffer motion blurs, the
line segment detection performance on pure event stream is
also unsatisfactory because of the lack of texture information
and instability to slow motions or static conditions. Detailed
texture can improve the performance in weakly textured
areas and maintain structural integrity. Slow motions or
static event cameras cannot capture informative events. In
contrast, RGB cameras can clearly capture detailed edges
and do not have motion blur when moving slowly and
being stationary. Therefore, we propose to fully utilize the
strengths of both cameras to achieve line segment detection
in diverse motion conditions by fusing visual images and
event streams. However, this task is challenging, such as the
lack of frame-event fusion strategy for geometric structure
perception, and the lack of line segment detection dataset
with visual images and event stream data.

3 METHODOLOGY

3.1 Problem statement
We first introduce the concept of blurred line segments
proposed by Debled-Rennesson [30]. A discretized straight
line is defined as:

l = {(x, y)|c ≤ ax− by < c+ v}, (1)

where (x, y) ∈ Z2 is the pixel coordinate, {a, b, c, v} ∈ Z4

are the four parameters to determine the line segment,
in which v describes line width. An additional thickness
parameter µ is defined as the minimum of the horizontal
and vertical distances between the lines ax − by=c and
ax− by = c+ v, i.e., µ = v

max(|a|,|b|) .

(a) Start exposure (b) End exposure (c) During exposure

Fig. 2. Blurred line segments in motion-blurred images. From left to right
are the line segments at the beginning, end, and within the camera
exposure time.

In fact, the blurry distribution of line segments is gener-
ally complex in motion-blurred images, as shown in Fig.
2. A simple thickness parameter cannot precisely model
the line distributions. In this paper, line segments in im-
ages are defined as a function of time l(t), 0 ≤ t ≤ T ,
which are detected on the clear image captured at time t.
T is the camera exposure time. The imaging process for
motion-blurred images can be treated as the average of
all clear images I(t) during T , i.e., IB= 1

T

∫ T
t=0 I(t)dt. Since

the temporal resolution is lost by averaging over time, it
is difficult to detect line segments by only relying on the
motion-blurred image. Therefore, we introduce the high-
temporal resolution events E={(xi, yi, pi, ti)}ti∈T into this
task. Given the motion-blurred image IB and the temporally
aligned events E during T , the line segment detection with
the frame and event data can be defined as:

L(T) = FE-LSD(IB , E), (2)

4

where L(T) denotes the set of line segments at time T and
FE-LSD denotes the line segment detection function.

3.2 Event representation
Unlike RGB cameras streaming images at a certain fre-
quency, event cameras do not output synchronous frames
but event points asynchronously. For each pixel u=[x, y]

T , if
the captured luminance L changes beyond a contrast thresh-
old C at time t, an event point e=(x, y, t, p) is triggered. The
increase and decrease of luminance will result in positive
(p=+1) and negative (p=−1) polarities, respectively.

∆L = p (L(x, y, t)− L(x, y, t−∆t)) ≥ C, (3)

where t−∆t is the time of the last event point generated at
that pixel.

(a) Raw event stream (b) EST representation

Fig. 3. Event data representation using the EST (Left: raw event stream,
red-positive events, blue-negative events; Right: EST representation
with B = 5).

Event streams have asynchronous and sparse character-
istics. To follow the CNN architecture, the asynchronous
event streams are often transformed into fixed-size ten-
sors. The most commonly used event representations in-
cluding Event Counting (EC) [38], Surface of Active Event
(SAE) [39], voxel grid [40] and Event Spike Tensor (EST)
[41]. Among these the EST is a four-dimensional grid of
H×W×B×2, where the time dimension is uniformly di-
vided into B bins. Each bin further encodes the polarity as
the positive and negative dimensions. Therefore, it retains
the most temporal and polarized information. The EST is
calculated by:

EST±(x, y, b) =
∑

ek∈E±

δ (x− xk, y − yk) max{0, 1−|b−t∗k|},

(4)

where b∈{0, 1, · · · , B− 1}, t∗k , B−1
T (tk − t0), t0 is the ear-

liest timestamp of the event stream during time T , ek ∈ E±
means the positive and negative EST are computed respec-
tively with the polarities of events. Fig. 3 shows the event
reconstruction based on the EST representation. The two
spatial-temporal lattices corresponding to the positive and
negative polarity of EST is further stacked into a H×W×2B
tensor to fit the common requirement of CNN.

3.3 Network structure
Given the motion-blurred image and the aligned EST data,
an effective fusion strategy is designed to extract the com-
plementary information for line segment detection. We con-
structively fuse the shallow and deep features from images
and events, and then use two state-of-the-art line segment
detectors, i.e., HAWP [6] and ULSD [7] to get the final de-
tection results (Fig. 4). The feature fusion backbone network
includes two kinds of modules: (i) Shallow module, which is
designed to extract shallow features and suppress the event
noises, and (ii) Dual hourglass module, which follows an
encoder-decoder structure to conduct a multi-scale feature
fusion for the feature map generation.

3.3.1 Shallow module
With the resized H×W×3 RGB image and the spatially-
aligned H×W×2B EST data, the shallow module first
separately down-samples the RGB and EST using the Shal-
low Layer 1 (including 7×7 convolution with step size 2,
BatchNorm, and ReLU), which can obtain the preliminary
RGB and EST features with the same number of channels.
Then the image and event features are fused by the Shallow
Fusion Block (SFB), and the fused feature is further added
with the original RGB and EST features, respectively. Next,
the Shallow Layer 2 (three residual blocks [42] and one
maximum pooling module after the first residual block)
is used to down-sample and extract features. The refined
features are inputted into the second SFB module. Finally,
the fused feature is added with the outputs of Shallow Layer
2 to obtain the same dimension image feature X(0)

F and the
event feature X(0)

E , which will be fed to the dual hourglass
module subsequently.

The SFB is the core part of the shallow module, and its
network structure is shown in Fig. 5. For the input image
feature XF and the EST feature XE , the SFB first concate-
nates them together by channels and retains the number

Shallow

Layer 1

SFB

Shallow

Layer 1

Shallow

Layer 2

Shallow

Layer 2

SFB

Shallow Module

E
n

co
d

er-D
eco

d
er

R
esid

u
al b

lo
ck

Dual Hourglass Module (DHM)

D
etecto

r

Feature Fusion Backbone

…

Motion-blurred image

Event spike tensor Detected line segments

…

On blurred image

Fig. 4. FE-LSD network structure. It mainly consists of two modules: feature fusion backbone and back-end line detector, in which the feature fusion
backbone has one shallow module and several dual hourglass modules.

5

Shallow Fusion Block (SFB)

C

Residual

Block

CA CA

Residual

Block

1×1 Conv

C

Residual

Block

CA CA

Residual

Block

1×1 Conv
Element-wise Addition

Element-wise Multiplication

C Concatenation

CA Channel Attention

Frame Stream Event Stream Fused Feature

C

R
esid

u
al

B
lo

ck

C
A

C
A

R
esid

u
al

B
lo

ck

1×
1
 C

o
n
v

Element-wise Addition

Element-wise Multiplication

C Concatenation

CA Channel Attention

C

Residual

Block

CA

CA

Residual

Block

1×1

Conv

Element-wise Addition

Element-wise Multiplication

C Concatenation

CA Channel Attention

Fig. 5. Shallow Fusion Block (SFB).

of channels with a 1×1 convolution. Then the attention
AttnF and AttnE of the two-channel features are computed
separately using the channel-attention (CA) blocks. The
attention is further multiplied with the original features and
then added with the original features of the other modality
to achieve attention-weighted feature fusion. Finally, the
fused features are refined using a residual block to obtain
the shallow image feature Xo

F and event feature Xo
E . The

whole processing process of the SFB can be described by

X = Conv1×1 (Concat(XF , XE))

AttnF = CAF (X)

AttnE = CAE(X)

Xo
F = ResF (XF +XE �AttnE)

Xo
E = ResE(XE +XF �AttnF),

(5)

where Conv1×1 denotes 1×1 convolution, Concat denotes
the concatenation by channel, CA denotes the channel-
attention module, Res denotes the residual module and �
denotes the element-wise multiplication.

3.3.2 Dual hourglass module
As in HAWP [6] and ULSD [7], an encoder-decoder net-
work, i.e., stacked hourglass network [43], is used to obtain
the feature map for line segment detection. With the two-
branch shallow features, we design the stacked dual hour-
glass module to further fuse and extract features, as shown
in Fig. 4. The image and event features will be first fused into
one feature with the encoder-decoder network, followed by
a residual block. Then the fused feature is added with the
input image and event features respectively to recover the
two branch features for the next dual hourglass module. For
the last dual hourglass module, the fused feature after the
residual block is directly outputted as the final feature map
for the subsequent line segment detector. The calculation of
the stacked dual hourglass module is as:

Y (i) = Res(E-D(X
(i)
F , X

(i)
E))

X
(i+1)
F = X

(i)
F + Y (i)

X
(i+1)
E = X

(i)
E + Y (i),

(6)

where E-D denotes the encoder-decoder network, X(i)
F and

X
(i)
E denote the output image and event features of the i-

th dual hourglass module, respectively (X(0)
F and X

(0)
E are

the outputs of the shallow module). Yi denotes the fused
features of the i-th dual hourglass module output.

Encoder-Decoder

DFBEncoder Encoder Decoder

DFBEncoder Encoder Decoder

DFBEncoder Encoder Decoder

DFBEncoder Encoder Decoder

DFBEncoder Encoder Decoder

DFBEncoder Encoder Decoder

DFBEncoder Encoder Decoder

DFBEncoder Encoder Decoder

DFB

DFB

DFB

DFB

Decoder

Decoder

Decoder

Decoder

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

D
F
B

D
F
B

D
F
B

D
F
B

D
eco

d
er

D
eco

d
er

D
eco

d
er

D
eco

d
er

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

E
n
co

d
er

D
F
B

D
F
B

D
F
B

D
F
B

D
eco

d
er

D
eco

d
er

D
eco

d
er

D
eco

d
er

Fig. 6. The encoder-decoder network in the dual hourglass module.

The core of the dual hourglass module is the encoder-
decoder network, as shown in Fig. 6, which consists of
a pairwise image feature encoder, event feature encoder,
decoder fusion block (DFB), and decoder. Encoders and
decoders are implemented by residual blocks. The feature
map is down-sampled during feature encoding using a max-
pooling layer with step size 2. During decoding, it is up-
sampled with step size 2 to ensure the same feature size
for the encoder, decoder, and DFB at the same level. The
DFB (Fig. 7) consists of a 1×1 convolution and a trans-
former module using 2 Layer Normalization (LN) modules,
a lightweight Multi-head Self-attention (MHSA) module,
and an Inverse Residual Feed-forward Network (IRFFN)
[44]. The DFB module first fuses the input image-event
features to one feature by channel concatenation and 1×1
convolution, and then uses the transformer [45] to further
fuse and extract deep features. The transformer is used
mainly for two reasons: (i) Compared with CNN, the trans-
former has a stronger capacity to capture global features,
which is beneficial for the long-distributed target detection
such as line segments; (ii) For the fusion of image and event
features, the transformer can provide self-attention as well
as cross-attention for global cross-modal feature interaction
and information fusion.

The structure of the Lightweight MHSA module is
shown in the right-bottom of Fig. 7. Compared with the
original MHSA [45], this lightweight version adds a k × k
convolution (with step size k) to reduce the spatial size
of K and V , thus reducing the computational complex-
ity and memory consumption. Additionally, a learnable
relative position encoder is used to provide the relative
position information between pixels. For the input feature
X ∈ Rh×w×c, the Lightweight MHSA module computes
the output feature Y ∈ Rh×w×c as:

X ′ = Convk×k(X)

Q = Conv1×1,Q(X)

K = Conv1×1,K(X ′)

V = Conv1×1,V(X ′)

Attn = Softmax

(
Q · (K + RPE)

T

dh

)
Y = Attn · V,

(7)

6

1x1 Conv 1x1 Conv 1x1 Conv

kxk Conv

Softmax

RPE 1x1 Conv

𝑸 𝑲 𝑽

𝑨𝒕𝒕𝒏

1×1 Conv

3×3 DW Conv

1×1 Conv

Decoder Fusion Block (DFB)

C

LayerNorm

Lightweight MHSA

LayerNorm

Inverted Residual FFN

1×1 Conv

Element-wise Addition Element-wise Multiplication C Concatenation CA Channel Attention Frame Stream Event Stream Fused Feature

1
×
1

C
o
n
v

1
×
1

C
o
n
v

1
×
1

C
o
n
v

𝑘
×
𝑘

C
o
n
v

S
o
ftm

ax

R
P

E
1
×
1

C
o
n
v

𝑸
𝑲

𝑽

𝑨
𝒕𝒕𝒏

1×
1
 C

o
n
v

3×
3
 D

W
 C

o
n

v

1×
1
 C

o
n
v

C

L
ay

erN
o

rm

L
ig

h
tw

eig
h

t M
H

S
A

L
ay

erN
o

rm

In
v

erted
 R

esid
u

al F
F

N

1×
1
 C

o
n
v

Decoder Fusion Block (DFB)

Lightweight MHSA Inverted Residual FFN

GELU BN

GELU BN

BN

Fig. 7. The decoder fusion block in the encoder-decoder network.

where RPE ∈ Rh
k×

w
k ×c is the relative position encoder, Nh

is the number of multiple heads, and dh is the dimension of
each head.

After the features go through the Lightweight MHSA
module, they are then fed to the IRFFN [44]. It consists
of 1×1 convolutions and 3×3 deepwise (DW) convolution,
where the 3×3 deep convolution can reduce the compu-
tational cost while extracting local features. The outputs
of the first two convolutions are activated by GELU and
BatchNorm. The whole IRFFN computation process can be
expressed as:

X ′ = Conv1×1(X)

Y = Conv1×1(DWConv(X ′) +X ′).
(8)

3.3.3 Line Segment Detector
After obtaining the fused feature map, we use state-of-
the-art line segment detectors to conduct the line segment
detection. The process is divided into two stages, i.e., the
line proposal network and the line classification network.
During the first stage, the junction proposal module and the
line proposal module are used to generate junction and line
proposals, respectively. Then the line and junction proposals
are matched based on the connection relationship to gener-
ate the final line segment candidates. For the second stage,
each line candidate is associated with a feature vector from
the fused feature map by geometric matching. Then the line
classification network is used to classify the line segments
by ground truth binary supervision. Finally, candidates with
confidence scores higher than the set threshold are selected
as the final detection results.

By combining the feature fusion backbone with the
line proposal and classification network, line segment de-
tection in motion-blurred images can be achieved using
synchronized visual images and EST data. The feature fu-
sion backbone network can be easily applied to existing
line segment detectors by simply replacing their feature

extraction backbone. To verify the generality of the feature
fusion network, we apply it to the current state-of-the-art
line segment detectors HAWP [6] and ULSD [7], named FE-
HAWP and FE-ULSD respectively.

4 EXPERIMENTS AND ANALYSIS

In this section, we first detail the dataset, the experimental
settings, and evaluation metrics. Then the significant com-
ponent configurations of FE-LSD are analyzed. Finally, FE-
LSD is evaluated and compared with the state-of-the-art.

4.1 Dataset

LSD datasets such as Wireframe [23] and YorkUrban [46]
play a vital role in LSD methods. However, there is no
publicly available LSD dataset with geometrically and tem-
porally aligned RGB images and events. Additionally, an-
notation from scratch on either motion-blurred RGB images
or EST frames is difficult to obtain accurate line segment
annotations. Based on these requirements, we first build a
larger-scale synthetic dataset with the existing Wireframe
dataset [23]. Then, considering there may be large gaps
between synthetic and real data, we contribute a real dataset
by collecting real data and manually labeling line segments.

…

𝑡0 𝑡𝑘

𝑡𝑁

Motion-blurred image

Events

Interpolated image sequence

Camera trajectory

Original image

Line annotationOriginal line annotation

Fig. 8. Synthetic LSD dataset generation with the registered motion-
blurred RGB image and events.

FE-Wireframe: The goal of synthetic data generation is
to avoid laborious line annotation over motion blurs. With
the labeled Wireframe dataset [23], we use ESIM [47] to
generate the synthetic data, and the construction pipeline
is shown in Fig. 8. Firstly, the RGB frame I is re-projected to
3D space and then projected to image space to obtain frame
I0 using the initial camera pose and camera intrinsics. With
the simulated camera trajectory over a short time window
T , frame Ik can be generated at any interpolation time tk.
Next, using the two adjacent frames Ik−1 and Ik at time
tk−1 and tk, we can obtain the intensity changes and use
Eq. 3 to generate the events Ek. The time window T=30 ms,
and the threshold C for event contrast is randomly sampled
from a uniform distribution U(0.05, 0.5) for every image
sequence. Then we can obtain the event data E =

⋃N−1
k=0 Ek

and the simulated frames I = {Ik}Nk=0 forN+1 interpolated
images. To directly use the original line annotation of the
Wireframe dataset, the camera motion trajectory is designed
to ensure that the last image IN is exactly the original image.
The motion-blurred image IB is then obtained by averaging
the N+1 images. Finally, we obtain the synthetic event data
E , the synchronized motion-blurred image IB , and the line

7

segment annotations. The FE-Wireframe dataset consists of
5000 pairs of frame-event training samples and 462 pairs of
testing samples.

FE-Blurframe: For the generation of the real dataset with
Frame-Event Line Segment detection in Motion-blur (FE-
Blurframe), we build a dual camera system similar to [48],
which consists of a DAVIS 346 event camera, FLIR RGB
camera, and a beam splitter mounted in front of the two
cameras. 52 data sequences are collected on the campus
of Wuhan University, including typical indoor and outdoor
scenes, such as libraries, dining rooms, gymnasiums, office
buildings, and classrooms. Each data sequence includes
an event stream and APS images from the event camera,
and synchronized RGB images from the FLIR camera. The
resolution of the event camera and FLIR RGB camera are
346×260 and 640×512, respectively. The frame rate for FLIR
is set as 200 Hz to ensure that a clear image can be captured
for line segment annotation.

We crop 800 fragments from the 52 sequences, each
fragment contains events over 30 ms and the synchronized
7 RGB frames. Then, the Super SloMo [49] algorithm is
used to interpolate the RGB images from 7 to 40 frames for
motion-blurred image generation. For the annotation, we
label on the last clear image of the 30ms interval. We refer
to the clear image and event data to improve and validate
the annotation quality. Finally, the real dataset contains 800
samples, including clear images, synthetic blurred images,
event streams, and line segment annotation. The dataset is
randomly divided into a training set with 600 samples and
a test set with 200 samples.

4.2 Experimental settings and evaluation metrics

Experimental setup. In the experiment, the temporal dimen-
sion of EST B is set to 5. The sizes of the image and EST are
re-scaled to 512×512 before being input into the network.
In the feature fusion backbone, the number of pairwise
hourglass modules is set to 2, and the number of feature
encoders in each module is set to 5. After the feature fusion
backbone network, we obtain a fused feature map with
the size of 128×128×256. The parameters and the training
configurations of FE-HAWP are also set to be the same
as the original HAWP. The network is trained using the
Adam optimizer [50]. The learning rate, weight decay, and
training batch size for network training are set to 4×10−4,
1×10−4, and 4, respectively. In the line proposal module,
the numbers of junction proposals and line proposals are
set as Kjunc=300, Kline=5000. To train the line classifier, the
numbers of positive and negative samples from LPN are set
as Npos=300, Nneg=300, respectively. The threshold of the
binary classification confidence score is set the same as it is
in HAWP [6] and ULSD [7]. Additionally, we add N∗pos=300
positive samples from ground truth line annotations to the
training dataset. To obtain the feature vector for each line,
32 points are uniformly sampled from the line, and the di-
mension of the feature vector is set as 1024. Meanwhile, the
training utilizes a step decay learning strategy, the network
is trained with 30 epochs. After 25 epochs, the learning rate
is divided by 10. The data argumentation used in this work
includes horizontal and vertical flips, and 180◦ rotation.
The model training and testing are conducted on a single
NVIDIA RTX 3090 GPU.

Evaluation metrics. We use evaluation metrics com-
monly used in line segment detection tasks, including
APH , FH , mean structural Average Precision (msAP), sAP5,
sAP10, sAP15, junction mean Average Precision (mAPJ) and
Frames Per Second (FPS).

APH and FH are calculated using precision and recall,
which follow the traditional LSD [5] and L-CNN [23]. sAP
is proposed in L-CNN [15] to reflect the geometric structure.
The distance between the predicted line and the GT line is
used to determine whether a predicted line segment is a true
positive. sAP5, sAP10, and sAP15 are the sAP values when
the distance is less than 5, 10, and 15 pixels, respectively.
While msAP is the average of sAP5, sAP10, and sAP15. For
the distance calculation:

d(l, l̂) =
1

2
min

(
1∑

i=0

‖pi − p̂i‖ ,
1∑

i=0

∥∥pi − p̂1−i
∥∥) , (9)

where {pi}1i=0 and {p̂i}1i=0 are the start and end points of
GT and predicted line segments.

mAPJ is used to measure the precision of junction pre-
dictions, which is computed in a similar way to the sAP
of line segments. A true positive junction is determined by
calculating the Euclidean distance between predicted and
GT junctions. mAPJ is the average accuracy when setting
the distance thresholds as 0.5, 1, and 2 pixels.

4.3 Configuration analyses
In this section, we first conduct experiments on the synthetic
FE-Wireframe dataset to analyze the influence of the three
main configurations, i.e., input data fusion, event represen-
tation, and fusion strategy. Then, the model trained on the
FE-Wireframe dataset is fine-tuned on the real dataset to
show the transfer learning results.

TABLE 1
Impact of the input data fusion on network performance

F E sAP5 sAP10 sAP15 msAP mAPJ APH FH

H
A

W
P X 41.6 47.3 49.9 46.3 44.0 73.5 72.2

X 25.3 29.7 32.0 29.0 31.2 54.4 59.1
X X 45.1 50.4 52.9 49.5 46.8 75.0 73.2

U
LS

D X 40.8 46.7 49.4 45.6 45.1 67.5 70.6
X 25.9 30.6 33.1 29.8 32.6 48.4 59.2

X X 47.0 52.7 55.2 51.7 48.8 72.2 73.7
1 F - image frames, E - events

4.3.1 Input data fusion
To analyze the effect of input data on network performance,
we train on the blurred image only, the EST only, and the
concatenation of both using the original HAWP [6] and
ULSD [7] with the stacked hourglass network backbone. It
should be noticed that the results on blurred images are
retrained using blurred images. The results are shown in
Table 1. As for single-modal input, higher accuracy can be
obtained using only image frames. This is because the event
data loses a lot of texture information, and event noises have
a negative impact on junction prediction. Most importantly,
when using events to enhance image-based line segment
detection, the fusion using naive concatenation can com-
prehensively improve the line detection performance. For
example, the msAP of HAWP on frame-event concatenation

8

is 3.2 and 20.5 points higher than the model trained with
images and events, respectively. The ULSD model shows
consistent improvements with 6.1 and 21.9 points higher
msAP. These results demonstrate the benefits of edge-aware
events over high-speed motion blurs. Thus simple concate-
nation can fuse the complementary information for line
segment detection.

TABLE 2
Impact of event representation on network performance

Event sAP5 sAP10 sAP15 msAP mAPJ APH FH

FE
-H

A
W

P EST 48.7 53.9 56.2 53.0 49.4 77.1 75.1
Voxel Grid 48.3 53.5 55.8 52.6 48.9 76.9 75.3
EC+SAE 48.3 53.7 55.8 52.6 49.1 77.0 75.1
EC+SAE* 47.3 52.5 54.8 51.5 47.8 76.0 74.1

FE
-U

LS
D

EST 50.9 56.5 58.8 55.4 51.1 75.3 75.9
Voxel Grid 50.3 55.7 58.0 54.7 50.9 74.8 75.3
EC+SAE 50.7 56.1 58.3 55.0 50.9 74.3 75.5
EC+SAE* 49.4 55.0 57.3 53.9 50.4 74.0 74.7

4.3.2 Event representation
Different event representation determines the richness of
the event information, directly affecting the performance of
FE-LSD. To investigate the impact, four different event rep-
resentations, i.e., Event Spike Tensor (EST) [41], voxel grid
[40], Event Count + Surface of Active Event(EC+SAE) [38],
[39], Event Count + Surface of Active Event without polarity
(EC+SAE∗), are tested. The channels of event frames are
10, 5, 4, and 2 for the four representations, respectively.
Experimental results are shown in Table 2. Among the
four representations, when adding polarity information to
the Voxel Grid and EC+SAE∗, i.e., EST and EC+SAE, the
comprehensive performance is improved for all metrics.
Besides, EST and Voxel Grid retain the temporal information
compared with EC+SAE and EC+SAE∗, therefore obtaining
much better accuracy than the other two representations,
indicating the importance of the temporal information for
the motion-blurred line segment detection task. As for the
pixel-based metrics APH and FH , neither of them is af-
fected by the event representations, indicating that polarity
and temporal information mainly enhance the accuracy of
structured line detection. Most importantly, the EST-based
line detectors have the highest accuracy, which encodes
the polarity information and retains the most temporal
information. Therefore, EST is selected as the final event
representation of FE-LSD.

TABLE 3
Impact of the fusion module on network performance

SFB DFB sAP5 sAP10 sAP15 msAP mAPJ APH FH

FE
-H

A
W

P 43.6 49.1 51.5 48.1 45.8 74.5 73.5
X 46.0 51.2 53.4 50.2 47.6 75.5 73.3

X 48.5 53.7 55.9 52.7 48.9 76.8 74.6
X X 48.7 53.9 56.2 53.0 49.4 77.1 75.1

FE
-U

LS
D

45.5 51.2 53.7 50.1 47.6 71.7 72.8
X 46.5 52.2 54.5 51.1 48.9 71.1 73.2

X 50.1 55.6 57.9 54.5 50.5 74.5 75.0
X X 50.9 56.5 58.8 55.4 51.1 75.3 75.9

4.3.3 Fusion module analysis
For the fusion of image and event features, we test the effect
of the proposed SFB and DFB, and the results are shown

in Table 3. The SFB is directly removed from the network
when unused, and the element-by-element addition is used
when the DFB is unused. From Table 3, we can see that the
network has the lowest accuracy when no fusion module
is used, with 48.1% and 50.1% msAP for FE-HAWP and
FE-ULSD, respectively. Then, msAP is improved by 2.1 and
1.0 points when the SFB is added, and it increases by 4.6
and 4.4 points when only the DFB is used, for FE-HAWP
and FE-ULSD, respectively. The gains brought by DFB are
larger than SFB, indicating the importance of the multi-
scale encoder-decoder fusion of deep features. Therefore, the
global attention in Transformer is helpful for line segment
detection. When both SFB and DFB are used, we obtain the
highest accuracy with 53.2% and 55.2% msAP for FE-HAWP
and FE-ULSD, respectively. The above quantitative results
verify the effectiveness of the proposed SFB and DFB.

w
/o

 S
F

B
 a

n
d

 D
F

B
w

/
S

F
B

 a
n

d
 D

F
B

w
/o

 S
F

B
 a

n
d

 D
F

B
w

/
S

F
B

 a
n

d
 D

F
B

Fig. 9. Comparison of Class Activation Map (CAM) visualization results
on the synthetic dataset.

Meanwhile, we further qualitatively analyze the effec-
tiveness of the two fusion blocks by visualizing the feature
map using Class Activation Map (CAM) [11]. The results are
shown in Fig. 9. The first row shows some sample CAMs
trained using FE-HAWP without SFB and DFB, while the
second row shows the corresponding samples using FE-
HAWP with both modules. The CAM reflects the network
attention distribution to different regions in the image, and
the red indicates greater attention to these parts. By adding
the SFB and DFB, it is clear that the network pays more
attention to the edges and has stronger responses to the
endpoints of line segments. These visualizations validate the
importance of the SFB and DFB modules in improving the
network’s ability to recognize and locate line segments.

4.3.4 Transfer learning on real data
In our experiment, the synthetic data generated on the
Wireframe dataset relieves the burden of extensive data
annotation on real images and events. However, the model
trained on synthetic data has generalization issues to the
real-world dataset. Therefore, we build a real dataset FE-
Blurframeto conduct transfer learning. To verify the effec-
tiveness of transfer learning, the three models, i.e., trained
on synthetic only, trained on real only, and pre-trained on
synthetic and fine-tuned on real, are evaluated on the same
real dataset. The results are shown in Table 4. Compared
with real data training (R) and fused data training (F), it can
be observed that the models trained on synthetic only (S)
obtain 30.7% and 34.4% msAP on the real-world testing set
for FE-HAWP and FE-ULSD, respectively. This performance
degradation is similar to the HAWP [6] when it is trained
on Wireframe only and tested on the YorkUrban dataset.
The reasons are mainly two-fold: (i) The significant data
differences between synthetic and real datasets; (ii) The

9

synthetic event data is obtained based on the ideal event
generation model, while the quality of real event data is
affected by the lens, noise, contrast threshold and other fac-
tors for event cameras. Then comparing the transfer learning
models (F) with the models trained on synthetic (S) and real
only (R), the performance of the synthetically pre-trained
model has improved substantially after being fine-tuned
on the real dataset and also has a significant improvement
over the model trained on real only. The msAPs are finally
improved to 63.3% and 62.9% for the FE-HAWP and FE-
ULSD models, respectively.

TABLE 4
Effect of model transfer and fine-tuning on real dataset

Train sAP5 sAP10 sAP15 msAP mAPJ APH FH

FE
-H

A
W

P S 26.8 31.4 33.7 30.7 30.1 45.9 54.9
R 47.5 53.0 55.4 52.0 50.9 74.0 73.9
F 59.8 64.2 65.9 63.3 60.1 82.0 79.7

FE
-U

LS
D S 30.4 35.3 37.6 34.4 31.4 48.0 62.5

R 47.3 52.9 55.2 51.8 52.2 72.9 73.7
F 59.3 63.8 65.7 62.9 61.0 77.8 77.1

- S-training on the synthetic only, R - training on the real only,
F - pre-training on the synthetic and fine-tuning on real.

0 10000 20000 30000 40000 50000 60000 70000 80000

Iteration

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L
os

s

Curve of loss w.r.t. iteration

random init

w/ pre-train

0 10000 20000 30000 40000 50000 60000 70000 80000

Iteration

0

10

20

30

40

50

60

m
sA

P

Curve of msAP w.r.t. iteration

random init

w/ pre-train

Fig. 10. Fine-tuning impact on the training process

We further plot the curves of loss and msAP in Fig. 10.
The red curves are trained from the pre-trained model, and
the green curves are trained from scratch using random ini-
tialization. It is clear that fine-tuning the pre-trained model
can speed up the convergence and improve the final perfor-
mance. These results indicate a notable difference between
the synthetic and the real-world dataset, which seriously
affects the model’s generalization ability when evaluating
from simulation to the real world. Nevertheless, the large-
scale synthetic dataset is helpful for model pre-training,
thus releasing the data annotation labor and improving the
convergence speed and accuracy on the real dataset.

4.4 Main results for comparison

To evaluate the performance of the proposed FE-LSD, suf-
ficient comparisons are conducted on the synthetic FE-
Wireframe and real FE-Blurframe datasets, respectively. The
competitors include traditional LSD [5], FBSD [11] (de-
signed for blurred images), the learning-based methods
L-CNN [15], HAWP [6], LETR [12]. These learning-based
methods are directly evaluated using the officially trained
models on the motion-blurred images. For FE-Wireframe,
we additionally use the official HAWP and ULSD models
on the deblurred images with RED-Net [51], i.e., HAWP†

and ULSD†. Finally, since the proposed FE-LSD takes both

image and event data inputs, these methods are retrained
on concatenating images and EST to give fair play (i.e., L-
CNN‡, HAWP‡, ULSD‡ and LETR‡).

4.4.1 Results on the FE-Wireframe dataset
Fig. 11 shows the qualitative comparisons on the FE-
Wireframe dataset. The first row is the input motion-blurred
images, and the second is the corresponding event inputs.
For better result visualization, the detected lines and the
manually-labeled lines are plotted on the clear RGB image
at the end moment of exposure. Since LSD and FBSD are
gradient-based methods, they can detect a large number of
segments in motion-blurred images. However, the majority
of the line segments are false detection or fragmented seg-
ments, resulting in low quantitative metrics. On the other
hand, the learning-based methods HAWP and LETR have
a low detection rate on blurry images when using the
pre-trained models. This is because the officially trained
models are driven by clear images and cannot handle the
motion-blur issues. However, when we retrain them using
the concatenation of blurry images and events, the correct
detection is significantly increased. Finally, the proposed FE-
HAWP and FE-ULSD have the best performance with the
highest detection rate and the lowest false alarm compared
to the ground truth.

TABLE 5
Quantitative comparisons on synthetic FE-Wireframe dataset

Method sAP5 sAP10 sAP15 msAP mAPJ APH FPS

LSD [5] 0.1 0.6 1.1 0.6 3.0 19.5 76.7
FBSD [11] 0.2 0.4 0.9 0.5 2.9 24.9 21.7
L-CNN [15] 3.4 5.1 6.2 4.9 7.0 22.7 28.8
HAWP [6] 3.5 5.1 6.3 5.0 6.8 21.7 36.6
HAWP† 7.0 9.8 11.2 9.3 9.3 24.8 39.7
ULSD [7] 3.5 5.3 6.8 5.2 7.5 20.2 39.7
ULSD† 6.8 9.8 11.6 9.4 10.6 16.6 41.0
LETR [12] 2.8 5.0 6.5 4.8 7.3 21.9 4.2
L-CNN‡ 40.6 45.8 48.2 44.8 45.6 70.5 10.6
HAWP‡ 45.1 50.4 52.9 49.5 46.8 75.0 26.8
ULSD‡ 47.0 52.7 55.2 51.7 48.8 72.2 32.2
LETR‡ 24.7 34.7 39.7 33.1 25.4 66.1 3.9
FE-HAWP 48.7 53.9 56.2 53.0 49.4 77.1 13.1
FE-ULSD 50.9 56.5 58.8 55.4 51.1 75.3 13.9
† deblur first using [51] and detect line segments using the
corresponding official models.
‡ retrain with the concatenation of image and EST.

Table 5 summarizes the quantitative comparisons on the
synthetic FE-Wireframe dataset, while Fig. 12 shows the PR
curve of sAP10 and APH , respectively. When only given the
motion-blurred images, the traditional LSD, FBSD, and deep
learning-based L-CNN, HAWP, ULSD and HAWP have low
accuracy. The highest msAP is obtained by ULSD for 5.2%,
and FBSD obtains the highest APH for 24.9%, respectively.
Image deblur with events can improve the subsequent line
segment detection performance. However, these results are
far from the standard for SLAM and 3D reconstruction.
Then, when taking both image and EST inputs, the retrained
models perform much better than only blurry image input.
The highest msAP is obtained by the retrained ULSD‡ for
51.7%. These improvements demonstrate that the event data
can enhance the edge awareness for motion-blurred images.
Finally, we obtain the highest performance for all metrics
using our proposed frame-event fusion module. The msAPs

10

Fig. 11. Result comparisons on FE-Wireframe dataset (Lines are plotted on clear images but detected on the motion-blurred images and events)

11

of FE-HAWP and FE-USLD are higher than the retrained
ULSD‡ for 1.3 and 3.7 points, respectively. Except for APH ,
FE-ULSD obtains the highest accuracy, while APH is slightly
lower than FE-HAWP. This is caused by the low recall rate
of FE-ULSD when the confidence threshold is set to 0.5, as
shown in the APH PR curves.

Regarding to the detection speed, both FE-ULSD and
FE-HAWP are slower than the original methods because
they use a feature fusion backbone with one more encoder
branch than the original stacked hourglass network and
introduce the more time-consuming Transformer for feature
fusion. Nevertheless, compared with the transformer-based
method LETR [12], the proposed method is nearly three
times faster. These results prove the effectiveness of the
proposed method.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR Curve for sAP10

[sAP10= 0.6] LSD

[sAP10= 0.4] FBSD

[sAP10=45.8] L-CNN (Retrained)

[sAP10=50.4] HAWP (Retrained)

[sAP10=52.7] ULSD (Retrained)

[sAP10=34.7] LETR (Retrained)

[sAP10=53.9] FE-HAWP (Ours)

[sAP10=56.5] FE-ULSD (Ours)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR Curve for APH

[APH=19.5] LSD

[APH=24.9] FBSD

[APH=70.5] L-CNN (Retrained)

[APH=75.0] HAWP (Retrained)

[APH=72.2] ULSD (Retrained)

[APH=66.1] LETR (Retrained)

[APH=77.1] FE-HAWP (Ours)

[APH=75.3] FE-ULSD (Ours)

Fig. 12. PR curves of sAP10 and APH on the FE-Wireframe dataset

4.4.2 Results on FE-Blurframe dataset
Table 6 and Fig. 13 give the quantitative comparisons on
the collected FE-Blurframe dataset. The proposed FE-HAWP
and FE-ULSD still achieve the best accuracy compared with
other learning-based methods. FE-HAWP obtains 52.0%
msAP, 9.4 points higher than the retrained HAWP†. FE-
ULSD obtains 51.8% msAP, 5.1 points higher than the
retrained ULSD†. Because the Bezier equipartition represen-
tation of line segments in ULSD is more sensitive to image
noises than the attraction field map representation in HAWP,
the gain of FE-ULSD is not as significant as FE-HAWP for
real images. Furthermore, if we use the transfer learning
strategy of fine-tuning on the pre-trained models, i.e., FE-
HAWP‡ and FE-ULSD‡, the performances are improved by
11.3 and 11.1 points compared with FE-HAWP and FE-
ULSD, respectively.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR Curve for sAP10

[sAP10= 2.8] LSD

[sAP10= 1.9] FBSD

[sAP10=40.3] L-CNN (Retrained)

[sAP10=43.9] HAWP (Retrained)

[sAP10=47.8] ULSD (Retrained)

[sAP10=33.8] LETR (Retrained)

[sAP10=53.0] FE-HAWP (Ours)

[sAP10=52.9] FE-ULSD (Ours)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

PR Curve for APH

[APH=29.4] LSD

[APH=34.2] FBSD

[APH=66.0] L-CNN (Retrained)

[APH=67.9] HAWP (Retrained)

[APH=67.0] ULSD (Retrained)

[APH=57.7] LETR (Retrained)

[APH=74.0] FE-HAWP (Ours)

[APH=72.9] FE-ULSD (Ours)

Fig. 13. PR curves of sAP10 and APH on FE-Blurframe.

Fig. 14 shows the qualitative results on FE-
Blurframe dataset. The conventional LSD and FBSD
have consistent performances as on the synthetic FE-
Wireframe dataset. The officially trained models, HAWP

TABLE 6
Quantitative comparisons on the FE-Blurframe dataset

Method sAP5 sAP10 sAP15 msAP mAPJ APH FPS

LSD [5] 1.1 2.8 4.1 2.7 5.1 29.4 61.0
FBSD [11] 0.9 1.9 2.7 1.8 5.1 34.2 15.9
L-CNN [15] 7.5 11.5 13.7 10.9 12.4 27.9 29.7
HAWP [6] 8.4 12.8 15.3 12.2 12.4 32.0 38.1
ULSD [7] 6.8 10.8 13.0 10.2 11.8 26.7 40.6
LETR [12] 7.1 13.0 16.8 12.3 12.1 30.2 3.6
L-CNN† 34.0 40.3 43.0 39.1 40.3 66.0 17.7
HAWP† 37.0 43.9 46.9 42.6 41.6 67.9 29.0
ULSD† 42.0 47.8 50.4 46.7 48.5 67.0 32.2
LETR† 22.6 33.8 38.8 31.7 23.2 57.7 3.3
FE-HAWP 47.5 53.0 55.4 52.0 50.9 74.0 12.9
FE-ULSD 47.3 52.9 55.2 51.8 52.2 72.9 12.9
FE-HAWP‡ 59.8 64.2 65.9 63.3 60.1 82.0 13.3
FE-ULSD‡ 59.3 63.8 65.7 62.9 61.0 77.8 13.9
† retrain with the concatenation of image and EST.
‡ pre-train on FE-Wireframe and fine-tune on FE-Blurframe.

and LETR, still have large missing detection but with
higher accuracy than the same model on the synthetic
FE-Wireframe dataset. This is because of the significant
data differences between synthetic and real-world datasets.
Then retraining on the concatenation of images and events
greatly improves the performance and yields more detected
line segments. Similar to the results on FE-Wireframe, the
proposed FE-HAWP and FE-ULSD detect the most line
segments with the highest similarity to the ground truth
labels, reflecting the effectiveness of the proposed method.

4.5 Discussions
By fusing image and event data, we effectively improve the
performance of line segment detection on motion-blurred
images. However, it is still hard to determine the perfor-
mance of the fusion over diverse camera motions. Therefore,
we analyze the motion blur degree by counting the average
displacement of junctions. The distributions of displace-
ment and the corresponding line detection performance
are plotted in Fig. 15, where FE-HAWP and HAWP are
evaluated. The x-axis represents the blurriness, which is
computed by averaging junction flow from the start image
to the end image for each data. It can be observed that the
blurriness is between 0-60 pixels, and the blur distributions
of the synthetic FE-Wireframe and the real FE-Blurframeare
slightly different. The msAP distributions of official HAWP
indicate that larger blurs will result in lower line detection
accuracy. Then when using the proposed FE-HAWP on the
fusion of images and events, the line detection accuracy is
much higher and more robust to the different blurriness.

5 CONCLUSION

In this paper, we have presented a line segment detection
method using events to address its performance degrada-
tion in motion-blurred images. The proposed frame-event
feature fusion backbone fully exploits the complementary
information between images and event data with shallow
and multi-scale decoder fusion. Therefore, the structural
edge information can be well extracted in the feature map
regardless of slow or fast camera motions. The state-of-
the-art line segment detectors, HAWP and ULSD, are then
employed to conduct the end-to-end line segment detection.

12

Fig. 14. Result comparisons on real FE-Blurframedataset (Lines are plotted on clear images but detected on the motion-blurred images and events)

13

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Blur (pixel)
0

1

2

3

4

5

6

7
Pe

rc
en

ta
ge

 (%
)

train
test

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Blur (pixel)
0

2

4

6

8

10

Pe
rc

en
ta

ge
 (%

)

train
test

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Blur (pixel)

0

10

20

30

40

50

60

m
sA

P
(%

)

HAWP
FE-HAWP

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Blur (pixel)

0

10

20

30

40

50

60

70

m
sA

P
(%

)

HAWP
FE-HAWP

Fig. 15. Motion blur distributions and the line detection results upon
the displacements. Top-left: Motion blur distributions on FE-Wireframe;
Top-right: Motion blur distributions on FE-Blurframe; Bottom-left: msAP
distributions of HAWP and FE-HAWP on FE-Wireframe; Bottom-right:
msAP distributions of HAWP and FE-HAWP on FE-Blurframe.

To train our model and contribute to the community, two
frame-event line segment detection datasets, FE-Wireframe
and FE-Blurframe, are constructed with motion-blurred im-
ages and spatially-temporally-aligned event data. Extensive
component configuration analyses validate the reasonability
of our design, and comprehensive comparisons to the state-
of-the-arts demonstrate the effectiveness of the proposed
method. In the future, we will further explore the line
endpoints flow in event streams to facilitate line segment
detection and improve efficiency.

REFERENCES

[1] M. Jin, G. Meishvili, and P. Favaro, “Learning to extract a video
sequence from a single motion-blurred image,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 6334–6342. 1

[2] F. Munir, S. Azam, M. Jeon, B.-G. Lee, and W. Pedrycz, “LDNet:
End-to-end lane marking detection approach using a dynamic vi-
sion sensor,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 7, pp. 9318–9334, 2022. 1, 3

[3] R. Gomez-Ojeda, F.-A. Moreno, D. Zuniga-Noël, D. Scaramuzza,
and J. Gonzalez-Jimenez, “PL-SLAM: A stereo SLAM system
through the combination of points and line segments,” IEEE
Transactions on Robotics, vol. 35, no. 3, pp. 734–746, 2019. 1

[4] Q. Wang, T. Han, Z. Qin, J. Gao, and X. Li, “Multitask attention
network for lane detection and fitting,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 3, pp. 1066–1078, 2022.
1, 2

[5] R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall,
“LSD: A fast line segment detector with a false detection con-
trol,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 4, pp. 722–732, 2010. 1, 2, 3, 7, 9, 11

[6] N. Xue, T. Wu, S. Bai, F. Wang, G.-S. Xia, L. Zhang, and P. H.
Torr, “Holistically-attracted wireframe parsing,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 2788–2797. 1, 2, 4, 5, 6, 7, 8, 9, 11

[7] H. Li, H. Yu, J. Wang, W. Yang, L. Yu, and S. Scherer, “ULSD: Uni-
fied line segment detection across pinhole, fisheye, and spherical
cameras,” ISPRS Journal of Photogrammetry and Remote Sensing, vol.
178, pp. 187–202, 2021. 1, 4, 5, 6, 7, 9, 11

[8] Y. Xu, W. Xu, D. Cheung, and Z. Tu, “Line segment detection
using transformers without edges,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
4255–4264. 1, 2, 3

[9] W. Xu and S. McCloskey, “2d barcode localization and motion
deblurring using a flutter shutter camera,” in Proceedings of the
IEEE Workshop on Applications of Computer Vision, 2011, pp. 159–
165. 1

[10] K. Purohit, A. Shah, and A. Rajagopalan, “Bringing alive blurred
moments,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 6830–6839. 1

[11] P. Even, P. Ngo, and B. Kerautret, “Thick line segment detection
with fast directional tracking,” in Proceedings of the International
Conference on Image Analysis and Processing, 2019, pp. 159–170. 1, 2,
3, 8, 9, 11

[12] Y. Xu, W. Xu, D. Cheung, and Z. Tu, “Line segment detection
using transformers without edges,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
4255–4264. 1, 9, 11

[13] I. Debled-Rennesson, F. Feschet, and J. Rouyer-Degli, “Optimal
blurred segments decomposition of noisy shapes in linear time,”
Computers & Graphics, vol. 30, no. 1, pp. 30–36, 2006. 2

[14] L. Buzer, “A simple algorithm for digital line recognition in the
general case,” Pattern Recognition, vol. 40, no. 6, pp. 1675–1684,
2007. 2

[15] Y. Zhou, H. Qi, and Y. Ma, “End-to-end wireframe parsing,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 962–971. 2, 7, 9, 11

[16] S. Tulyakov, D. Gehrig, S. Georgoulis, J. Erbach, M. Gehrig, Y. Li,
and D. Scaramuzza, “Time lens: Event-based video frame inter-
polation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 16 155–16 164. 2

[17] S. Seifozzakerini, W.-Y. Yau, B. Zhao, and K. Mao, “Event-based
hough transform in a spiking neural network for multiple line de-
tection and tracking using a dynamic vision sensor,” in Proceedings
of the British Machine Vision Conference, 2016, pp. 94.1–94.12. 2, 3

[18] C. Brandli, J. Strubel, S. Keller, D. Scaramuzza, and T. Delbruck,
“ELiSeD — an event-based line segment detector,” in Proceedings
of the Second International Conference on Event-based Control, Com-
munication, and Signal Processing, 2016, pp. 1–7. 2, 3

[19] Z. Xu, B.-S. Shin, and R. Klette, “Accurate and robust line segment
extraction using minimum entropy with hough transform,” IEEE
Transactions on Image Processing, vol. 24, no. 3, pp. 813–822, 2015. 2

[20] E. J. Almazàn, R. Tal, Y. Qian, and J. H. Elder, “MCMLSD: A
dynamic programming approach to line segment detection,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 5854–5862. 2

[21] C. Akinlar and C. Topal, “EDLines: A real-time line segment
detector with a false detection control,” Pattern Recognition Letters,
vol. 32, no. 13, pp. 1633–1642, 2011. 2, 3

[22] N.-G. Cho, A. Yuille, and S.-W. Lee, “A novel linelet-based repre-
sentation for line segment detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 5, pp. 1195–1208, 2018.
2

[23] K. Huang, Y. Wang, Z. Zhou, T. Ding, S. Gao, and Y. Ma, “Learning
to parse wireframes in images of man-made environments,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 626–635. 2, 6, 7

[24] N. Xue, S. Bai, F.-D. Wang, G.-S. Xia, T. Wu, L. Zhang, and
P. H. Torr, “Learning regional attraction for line segment detec-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 43, no. 6, pp. 1998–2013, 2021. 2

[25] Z. Zhang, Z. Li, N. Bi, J. Zheng, J. Wang, K. Huang, W. Luo, Y. Xu,
and S. Gao, “PPGNet: Learning point-pair graph for line segment
detection,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 7098–7107. 2

[26] Q. Meng, J. Zhang, Q. Hu, X. He, and J. Yu, “LGNN: A context-
aware line segment detector,” in Proceedings of the 28th ACM
International Conference on Multimedia, 2020, pp. 4364–4372. 2

[27] Y. Lin, S. L. Pintea, and J. C. van Gemert, “Deep hough-transform
line priors,” in Proceedings of the European Conference on Computer
Vision, 2020, pp. 323–340. 2

[28] R. Pautrat, J.-T. Lin, V. Larsson, M. R. Oswald, and M. Pollefeys,
“SOLD2: Self-supervised occlusion-aware line description and
detection,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 11 363–11 373. 3

[29] N. Kong, K. Park, and H. Goka, “Hole-robust wireframe detec-
tion,” in Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, 2022, pp. 2684–2693. 3

[30] I. Debled-Rennesson, R. Jean-Luc, and J. Rouyer-Degli, “Segmen-
tation of discrete curves into fuzzy segments,” Electronic Notes in
Discrete Mathematics, vol. 12, pp. 372–383, 2003. 3

14

[31] B. Kerautret and P. Even, “Blurred segments in gray level images
for interactive line extraction,” in International Workshop on Combi-
natorial Image Analysis, 2009, pp. 176–186. 3

[32] D. Reverter Valeiras, X. Clady, S.-H. Ieng, and R. Benosman,
“Event-based line fitting and segment detection using a neuro-
morphic visual sensor,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 4, pp. 1218–1230, 2019. 3

[33] F. Tschopp, C. von Einem, A. Cramariuc, D. Hug, A. W. Palmer,
R. Siegwart, M. Chli, and J. Nieto, “Hough2Map – iterative event-
based hough transform for high-speed railway mapping,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 2745–2752, 2021. 3

[34] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis,
and D. Scaramuzza, “Event-based vision: A survey,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp.
154–180, 2022. 3

[35] L. Everding and J. Conradt, “Low-latency line tracking using
event-based dynamic vision sensors,” Frontiers in Neurorobotics,
vol. 12, 2018. 3

[36] W. Cheng, H. Luo, W. Yang, L. Yu, S. Chen, and W. Li, “Det: A
high-resolution dvs dataset for lane extraction,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2019, pp. 0–0. 3

[37] A. Dietsche, G. Cioffi, J. Hidalgo-Carrió, and D. Scaramuzza,
“Powerline tracking with event cameras,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2021, pp. 6990–6997. 3

[38] A. I. Maqueda, A. Loquercio, G. Gallego, N. Garcı́a, and D. Scara-
muzza, “Event-based vision meets deep learning on steering pre-
diction for self-driving cars,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 5419–5427. 4,
8

[39] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi,
“Event-based visual flow,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 25, no. 2, pp. 407–417, 2013. 4, 8

[40] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Unsupervised
event-based learning of optical flow, depth, and egomotion,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 989–997. 4, 8

[41] D. Gehrig, A. Loquercio, K. Derpanis, and D. Scaramuzza, “End-
to-end learning of representations for asynchronous event-based
data,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 5632–5642. 4, 8

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778. 4

[43] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in Proceedings of the European Conference
on Computer Vision, vol. 9912, 2016, pp. 483–499. 5

[44] J. Guo, K. Han, H. Wu, C. Xu, Y. Tang, C. Xu, and Y. Wang,
“CMT: Convolutional neural networks meet vision transformers,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2022, pp. 12 175–12 185. 5, 6

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in Neural Information Processing Systems, vol. 30, 2017. 5

[46] N.-G. Cho, A. Yuille, and S.-W. Lee, “A novel linelet-based repre-
sentation for line segment detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 5, pp. 1195–1208, 2017.
6

[47] H. Rebecq, D. Gehrig, and D. Scaramuzza, “ESIM: an open event
camera simulator,” in Proceedings of the 2nd Conference on Robot
Learning, 2018, pp. 969–982. 6

[48] Z. W. Wang, P. Duan, O. Cossairt, A. Katsaggelos, T. Huang,
and B. Shi, “Joint filtering of intensity images and neuromorphic
events for high-resolution noise-robust imaging,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1606–1616. 7

[49] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller,
and J. Kautz, “Super slomo: High quality estimation of multiple
intermediate frames for video interpolation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 9000–9008. 7

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proceedings of the International Conference on Learning
Representations, 2015. 7

[51] F. Xu, L. Yu, B. Wang, W. Yang, G.-S. Xia, X. Jia, Z. Qiao, and
J. Liu, “Motion deblurring with real events,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
2583–2592. 9

