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Detecting Road Obstacles by Erasing Them
Krzysztof Lis, Sina Honari, Pascal Fua, Mathieu Salzmann

Abstract—Vehicles can encounter a myriad of obstacles on the road, and it is impossible to record them all beforehand to train a
detector. Instead, we select image patches and inpaint them with the surrounding road texture, which tends to remove obstacles from
those patches. We then use a network trained to recognize discrepancies between the original patch and the inpainted one, which
signals an erased obstacle.

✦

Figure 1. Detecting unexpected obstacles in good and bad
weather.Top: Objects one would not expect to see on a road and
that are not featured in standard databases. Middle: The road
area has been inpainted. Bottom: After comparing the original
and inpainted images, our discrepancy network returns a binary
mask that denotes the obstacle locations.

1 INTRODUCTION

Modern methods provide a nearly complete toolkit for
vision-based autonomous driving. That includes road seg-
mentation [1], [2], lane-finding [3], [4], vehicle and pedes-
trian detection [5], [6], [7], and multi-class semantic [8],
[9], [10], instance [11] and panoptic [12], [13] segmentation.
Moreover, vision-based assistance is now widely accepted
in the market [14] and enables vehicles to plan a path
within the predicted drivable space while avoiding other
traffic participants. However, the risk of missing strange and
unexpected obstacles lying on the road remains. Such obsta-
cles are as rare as they are diverse, which prevents direct
application of the now standard approach of training deep
networks by showing them an exhaustive set of annotated
samples.
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ieu.salzmann@epfl.ch, pascal.fua@epfl.ch

• This work was supported in part by the International Chair Drive for All
- MINES ParisTech - Peugeot-Citroën - Safran - Valeo.

In practice, detecting such unexpected obstacles often
requires LiDAR sensors [15] or multiple cameras [16]. Here,
we propose instead a method that only needs a single RGB
image to detect obstacles in the drivable area, under the
assumption that objects outside that area are irrelevant be-
cause a self-driving car will detect the road before planning
to drive and will not leave the drivable area of its own
accord. To demonstrate this to be a viable assumption, we
will show results given either the ground-truth location
of the road edges or only an imperfect road segmentation
produced by an off-the-shelf segmentation algorithm.

Our approach relies on the fact that obstacles look dif-
ferent from the surrounding road surface. We thus detect
them by inpainting image-patches using their surroundings
and then checking how similar the inpainted patch is to
the original one. While a similar intuition has been used
to detect anomalies in several application scenarios, such
as detecting manufacturing defects [17], [18] or anomalous
faces [19], the very constrained nature of these tasks made
it possible to rely on simple comparisons of handcrafted
features. By contrast, on roads, this would yield many false
positives due to road markings, diversity in road texture,
and obstacles extending beyond the inpainted patch.

Our solution is to introduce a discrepancy network trained
to recognize which differences between the inpainted patch
and the original one are significant. It returns a per-pixel
heatmap denoting the presence of obstacles. To train it to
handle objects that are not part of the training database, we
generate samples featuring synthetic obstacles by moving
existing training objects, such as road signs and people, onto
the road.

Our experiments show that our discrepancy network
trained solely on Cityscapes [20] objects successfully de-
tects obstacles on images depicting significantly different
road scenes, without requiring any annotated data nor
any re-training for these new scenes. In other words, our
method generalizes well to previously unseen real obstacles
and new road surfaces. It outperforms earlier monocular
road anomaly detectors [21], [22], [23], [24] on the Lost &
Found [16] data featured in the Fishyscapes benchmark [22],
as well as on our own newly collected dataset featuring
additional unusual objects and road surfaces.

Our contribution is therefore a simple but effective ap-
proach to detecting obstacles that never appeared in any
training database, given only a single RGB image. We also
contribute a new dataset for evaluating anomaly detection
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models. We will make our obstacle detection code1, our
semi-synthetic training dataset, and our new benchmark
dataset2 publicly available.

2 RELATED WORK

In this section, we briefly review methods that, as ours, rely
on a single RGB image for obstacle detection and do not use
explicit obstacle training sets. For a more complete survey
of obstacle detection algorithms, we refer the reader to [16],
[25], [26], [27].

2.1 Image Reconstruction for Anomaly Detection

If an image is reconstructed so as to preserve the appear-
ance in normal regions and discard anomalous ones, those
anomalies can be detected by comparing the input to the
reconstruction. This has been achieved in several ways we
now discuss.

In [28], the distribution of inlier images is modeled by
training an autoencoder, followed by a feature comparison
between the input and reconstruction. Auto-encoding has
been used to find highway obstacles in [29], [30], where
input patches are passed through a Restricted Boltzmann
Machine. Its limited expressive power is supposed to pre-
serve the smooth road surface while altering obstacles. This
approach, however, does not address textured road surfaces.
As opposed to encoding the input image, the method of [31]
trains a generator to capture the training distribution and
searches for a latent vector producing an image most similar
to the input. However, this method operates on microscopic
scans of tissue samples, and, to our knowledge, it has
not been applied to data with distributions as diverse as
outdoor road scenes.

Other methods [21], [32] explicitly restrict the intermedi-
ate representation of the scene to a dense semantic map, and
synthesize a plausible matching image using conditional
GANs for image translation [33], [34]. Since the anomalous
regions are not represented by the typical semantic classes,
their appearance will be altered by this process. In [21], the
input and synthesized images are compared using a learned
discrepancy module, while [32] uses a feature distance
measure. JSRNet [35] takes a similar approach, but uses
the activations of the last layer as the bottleneck instead
of a semantic map. A reconstruction network then recreates
the image that is compared to the original using a SSIM
measure.

Rather than encoding the input, one can remove parts
of the image and inpaint them based on the surrounding
context. In [18] square patches are inpainted and compared
with an L1 metric to detect material defects; the method
of [17] combines the reconstructions obtained with a set of
random inpainting masks and uses a multi-scale gradient
magnitude similarity metric for comparison. In the context
of road scenes, [36] proposes to compare the road appear-
ance to similar images memorized from previous video
frames; however this would lead to false positives when

1 Code and semi-synthetic training set:
github.com/cvlab-epfl/erasing-road-obstacles

2Road Obstacles dataset:
www.epfl.ch/labs/cvlab/data/road-obstacles-2021

entering an area with a new road texture. Furthermore, these
methods assume high fidelity of the reconstruction, and
detect every visible difference as an anomaly. In outdoor
scenes with road markings and diverse surface textures,
the inpainting is bound to be imperfect. We address this
by training a discrepancy network to focus on the relevant
differences.

Methods specifically designed for removing dynamic
objects from traffic scenes have been presented in [37], [38],
but they rely on object masks being known a-priori without
having to detect them first.

2.2 Anomaly Detection in Semantic Segmentation

The problem of detecting anomalies can be posed as one
of open-set semantic segmentation. With standard, fully-
supervised semantic segmentation networks, all pixels, in-
cluding the anomalous ones, will be classified into one of the
training semantic categories. Open-set semantic segmenta-
tion then aims to find the outliers in the resulting semantic
maps. The method of [24] introduces an outlier detection
head sharing backbone features with the semantic segmen-
tation one. It is trained using extensive out-of-distribution
data, injecting outlier patches drawn from ImageNet-1k [39]
into the Cityscapes and Vistas [40] scenes.

The work of [22] proposes to learn the inlier distribution
of features extracted from a layer of the semantic segmenta-
tion network. It uses a normalizing flow to bijectively map
the features to latent vectors following a Gaussian distribu-
tion. The mapping is trained to maximize the likelihood of
the features observed in inlier samples.

Another approach involves estimating the uncertainty
of label prediction based on the assumption that outlier
regions should yield low classification confidence. Bayesian
deep learning treats the network weights and outputs as
probability distributions. In practice, dropout [41] is used to
approximate the distribution over model weights, applied to
semantic segmentation in [42], [43]. Alternatively an ensem-
ble of networks can be used [44], [45]. In [23], the Dirichlet
differential entropy is used as a measure of uncertainty. We
find that the performance of these statistical methods as
obstacle detectors degrades significantly when faced with
road surfaces differing from the training set, as the novel
textures are treated as anomalies. We will show that our
approach based on comparing the original image with an
inpainted one with a discrepancy detector does not suffer
from this drawback.

In [46], generalization is achieved by training the seg-
mentation network to maximize the output entropy on ex-
plicit out-of-distribution samples. This is done by injecting
COCO [47] objects into Cityscapes frames. According to our
experiments this is effective for some types of obstacles,
presumably ones more similar to COCO objects, but not
all of them. The additional samples can also be created by
a generative model jointly optimized with the detector to
output points on the edge of the training distribution [48].
A normalizing flow is used to generate synthetic training
anomalies in a similar manner in [49]. We also use syn-
thetic data to train our discrepancy network but our object-
pasting scheme is much simpler. Hence, these approaches
are complementary to ours, which focuses on the inference

https://github.com/cvlab-epfl/erasing-road-obstacles
https://www.epfl.ch/labs/cvlab/data/road-obstacles-2021/
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mechanism. Hence it, would make sense to combine them
in future work.

Finally, the SynBoost [50] method fuses resynthesis
dissimilarity with semantic segmentation uncertainty esti-
mates. This improves upon previous resynthesis-based ap-
proaches. However, we will show that our method outper-
forms SynBoost while requiring neither detailed semantic
segmentation nor associated uncertainty; we only need to
segment the road area to guide our inpainter.

Another way to detect semantic anomalies is to analyze
the distribution of the predicted semantic logits. A low
value of the maximum logit implies an anomaly as none of
the classes is confidently predicted [51]. However the logit
values differ strongly between each class, making a single
threshold work poorly. The method of [52] standardizes
the logit values to align distributions between classes. It
also removes spurious detections on object edges by post-
processing. In our approach we do not reason about the
semantic predictions - we only use the semantic network as
a convenient way to segment the road but a simpler road or
lane detector could be used instead.

3 APPROACH

Our goal is to identify obstacles that are objects on the road
the vehicle could collide with. This means that they are
within the space deemed drivable by a previous stage in
the self-driving perception pipeline. As such, they are the
most relevant obstacles as a competent driving system will
only plan trajectories within that space.

In other words, our chosen task is to identify all pixels,
within that estimated road area, that denote obstacles. This
is difficult because obstacles can take many forms. Further-
more, because they are unexpected, there is no guarantee
that they were present in the database used to train a
network to recognize them. Hence, the network must be
made to respond to objects that does not belong to the road
without any clear description, or even exemplars, of these
objects.

To this end, given a binary mask denoting the drivable
area in the image, we propose the following two-step ap-
proach:

1) Erase the obstacles by removing road patches and
inpainting them in a sliding-window manner;

2) Use a discrepancy network to compare the original
image to the inpainted one and decide if they are
similar enough.

The intuition behind this scheme is that, if there is an
obstacle, the inpainted area will look very different from the
original image. However, even if there is no obstacle, the
inpainted area will be similar to the original one, but not
strictly equal. Hence, the discrepancy network is needed
to assess if they are dissimilar enough to flag a potential
obstacle. It yields a heatmap denoting the likelihood for each
pixel in the drivable area of belonging to an obstacle. In the
remainder of this section, we discuss these two steps in more
detail.

Figure 2. Drivable space from semantic segmentation.Top:
Input images. Middle: Semantic segmentation performed by
PSP-Net [8], the class colors follow Cityscapes convention.
Bottom: We take the drivable space to be the union of road
(purple) and sidewalk (magenta) pixels. The parts of obstacles
can sometimes be classified as non-road, so we include the
regions of other classes fully enclosed within the road area. In
Lost & Found, the known ego-vehicle mask is excluded.

3.1 Drivable Area

A self-driving system must determine the road area within
which it can move. Our method detects obstacles within the
area identified as drivable, as these are the only ones that
might be on the vehicle’s planned path and can endanger
it. Of course, a part of the road may be mistakenly marked
as non-drivable, causing obstacles it contains to be ignored
as shown Fig. 8. However, this does not compromise safety
because the vehicle will never attempt to go there.

Our approach can exploit any method that delivers the
required drivable area information. In our experiments,
we use the PSP-Net semantic segmentation network of [8]
trained on the Cityscapes dataset [20], as implemented in
the framework of [53]. We take the road area to be all
pixels classified as either road or sidewalk, since the many
road textures we are targeting can be classified as either.
Note that standard categories, such as car and pedestrian, are
inherently accounted for by PSP-Net. Hence, we focus on
the unusual obstacles for which no training data, either su-
pervised not unsupervised, is available. Nevertheless, since
such unusual obstacles could be partially classified as non-
road, we include the regions containing other classes that
are fully enclosed within the road area. Fig. 2 demonstrates
this process. As a limit case, we also evaluate the case of
perfect road detection by using the ground truth road mask.

Our approach needs only a coarse mask of the drivable
area, so in a practical deployment the semantic segmen-
tation can be replaced by computationally more efficient
system, for instance predicting just the road edges and
filling the space between them.

3.2 Inpainting

To erase the obstacles while preserving the surrounding
road appearance, we use a general-purpose inpainter [54]
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Figure 3. Sliding window inpainting of the road surface. We ex-
tract 400 × 400 context patches then erase and inpaint the road area
contained within the central 200 × 200 of the patch. Finally we fuse
the inpaintings which reconstructs the road appearance while removing
localized obstacles. Note how the process was able to preserve the
shadow of the trees.

that relies on an adversarial approach to ensure that the
inpainted image looks realistic. We use a version of this
model trained on the scene recognition dataset Places2 [55],
and do not train it further.

The inpainter is given an image in which a part has been
replaced by black pixels and the pixel mask of the removed
area. It outputs an image with the missing part filled in so
as to best maintain the continuity and content of the scene.

A naive way to use it would be to inpaint the entire road
area at once. This, however, would provide no indication to
the inpainter of the road appearance, leading to inpainted
images that differ from the original ones in the whole road
region, thus precluding subsequent obstacle detection. In-
stead, we inpaint road patches to provide sufficient context
for the network to reconstruct the road surface, as shown
in Fig. 3. The patches nonetheless need to be large enough
to encompass obstacles whose size we do not know a priori.
We therefore follow a sliding-window approach, inpainting
patches of 200×200 pixels of drivable area within 400×400
image regions to provide context.

While an obstacle is usually nicely erased when the area
to inpaint encloses it completely, the inpainter is able to re-
create the obstacles that are only partially contained in the
inpainted region. To resolve this, we use consecutive patches
with a relative overlap of 0.7, increasing the likelihood of
having at least one patch that covers the entire obstacle. This
means that each image pixel is inpainted multiple times. We
then fuse the multiple inpaintings of each pixel by weighted
averaging, where the weight of each inpainting is computed
based on the Manhattan distance between the correspond-
ing patch center and the pixel location of interest. Formally,
a patch centered at location cj = [uj , vj ]

⊤ contributes to the
inpainting of a pixel at location p = [u, v]⊤ with a weight

w =
1− 2

s max(|u− uj |, |v − vj |)∑
[ui,vi]∈Π(u,v) 1− 2

s max(|u− ui|, |v − vi|)
, (1)

where s is the patch width or height and Π(u, v) is the set of
patches overlapping the [u, v]⊤ pixel, with patch i centered
at [ui, vi].
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Figure 4. Architecture of the discrepancy network

Our inpainting strategy enables us to generalize to new
road surfaces, such as those of our Road Obstacles dataset.
By contrast, the GAN synthesizers of [21], [32], [50] always
produce images resembling the Cityscapes training set.

3.3 Discrepancy Network
While our inpainting strategy preserves the general ap-
pearance of the road surface, it still yields unavoidable
imperfections due to road markings, texture details, and
the non-zero contributions of obstacles located close to the
patch edges. Thus, simply comparing the original image
with the inpainted one via pixel difference would yield
many false positive detections. To handle this, we introduce
a discrepancy network that we train to distinguish significant
differences from inpainting artifacts.

We implement our discrepancy network using a two-
stream architecture, shown in Fig. 4, that takes as input
the original image and the inpainted one. Both inputs are
first processed by a ResNeXt101 [56] feature extractor, pre-
trained for ImageNet [39] and frozen at training time. The
resulting features are then concatenated and fused through
1 × 1 convolutions. Furthermore, we compute a point-wise
correlation map: At each location in the feature map, we
calculate the dot product between the image feature vector
and the corresponding inpainting feature vector. We append
these dot products as an additional channel to the output of
the 1 × 1 convolutions. The concatenated features are then
passed to an upconvolution pyramid, and we obtain the
desired heatmap via a softmax.

3.3.1 Training the Discrepancy Network
Recall that we target unusual road obstacles that may never
have been seen at training time. Therefore, we need the
discrepancy network to generalize to previously-unseen
objects.

To tackle this challenge, we built a synthetic training set
from only the Cityscapes [20] dataset, which contains no un-
usual traffic obstacles. We extracted instances of people and
vehicles using the instance annotations, together with traffic
lights and traffic signs, which lack instance labels, but can be
extracted as connected components within their pixel-wise
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Figure 5. Synthetic training obstacles. Using the Cityscapes dataset,
we transplant random object instances onto the road to appear as
small obstacles (top). Results of the inpainting process (middle). Labels
(bottom): the discrepancy network is trained to distinguish obstacles
(red) from the road area (black), while the background grey region is
ignored in training.

semantic label mask. Since many road obstacles are small
and difficult to detect, to simulate small obstacles seen from
a far distance, we selected from the whole dataset instances
of size ranging from 10 to 150 pixels, and area between 100
and 5000 pix2. We then sampled random objects from this
database and overlaid them onto the drivable area to mimic
obstacles. Fig. 5 features several images synthesized in this
way.

3.3.2 High frequency textures
The Cityscapes training set features mostly smooth road
surfaces. Hence, test images featuring rougher road surfaces
could produce false false positives. To prevent this, we
eliminate high frequencies by means of a simple 5 × 5
Gaussian blur. In the ablation study of Section 4.5 we show
this to effective against domain shift.

4 EXPERIMENTS

In this section, we first present the baselines, evaluation
metrics, and datasets used in our experiments. We then
compare our approach to the baselines and finally perform
an ablation study.

4.1 Baselines
We compare against the following approaches.

Resynthesis [21] performs semantic segmentation of
the image and then synthesizes an image solely from the
resulting semantic map using a conditional GAN [34]. The
differences between the original and reconstructed images
are detected using a discrepancy network similar in purpose
to the one we use, but trained by synthetic anomalies; those
are produced by selecting object instances and swapping
their semantic class to a random different one prior to
resynthesis.

JSRNet [35] likewise performs image reconstruction but
the bottleneck is the semantic segmenter’s last layer acti-
vation. The reconstructed image is then compared to the
original one using an SSIM measure.

SynBoost [50] expands the resynthesis approach by pro-
viding uncertainty estimates of the semantic segmentation
as an additional input to its dissimilarity network, which
predicts the anomaly score.

Figure 6. Example ground-truth labels. We consider the task of distin-
guishing obstacle pixels (orange) from the road area (light green), while
the background (unmarked) is excluded from the evaluation.

Entropy Maximization [46] trains the segmentation net-
work to maximize the output entropy on explicit OOD sam-
ples obtained by adding COCO [47] objects into Cityscapes
frames. It also performs post-processing on connected com-
ponents of obstacle pixels, but this part is not applicable in
our per-pixel evaluation.

Learned Embedding Density [22] learns the inlier
distribution of features extracted from a DeepLab [57] layer.
It then maps the features to latent, Gaussian-distributed
vectors via a normalizing flow. The mapping is trained to
maximize the likelihood of the features observed in inlier
samples.

Void Classifier [22] uses the Cityscapes void areas as
examples of outliers. It can then either explicitly add void to
the set of predicted classes, or learn to maximize the softmax
entropy in the void regions.

Bayesian DeepLab [58] introduces dropout layers into
the DeepLab network. At inference time, it draws samples
by randomizing the dropout. The uncertainty is measured as
the mutual information between the resulting distribution
and the network weights.

Maximum Softmax [51] measures the predicted softmax
probability of the most probable class (max softmax) - with
a low value indicating uncertain prediction and a likely
semantic anomaly.

4.2 Evaluation Metrics

We follow the evaluation protocol of the Segment Me If You
Can [59] benchmark and specifically the obstacle track. Since
we focus on detecting obstacles on the road, we take the
Region of Interest (ROI) for evaluation purposes to be the
ground-truth road area as shown in Fig. 6. This restriction of
ROI to drivable space follows the evaluation protocol of the
original Lost and Found [16] road obstacle benchmark and
matches the area relevant to self-driving, that is, the road
area where the vehicle is going to move and can encounter
obstacles. Our method, like the baselines we compare with,
outputs a heatmap in the [0, 1] range denoting the likelihood
for each pixel within the ROI of belonging to an obstacle.
The benchmark measures performance in terms of obstacle
pixel classification and obstacle instance detection.

• The primary pixel metrics is Average Precision (AP),
that is, the area under the precision-recall curve. This
metric is more meaningful than metrics based on the
receiver operating curve (ROC) due to strong class
imbalance, as obstacles typically cover less than 2%
of the total road surface.

• A secondary pixel metric is false positive rate (FPR)
at a 95% true positive rate (TPR), which we denote
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as FPR95. To compute it, the binary classification
threshold is lowered until 95% of the obstacle pixels
are detected and we then measure how many false
positives are introduced.

• The main instance metric is the average F1 which
summarizes the numbers of true positives, false pos-
itives, and false negatives, averaged over several IoU
thresholds.

• The sIoU is the the average of the pixel intersection-
over-union calculated for each obstacle instance, ad-
justed to account for predictions covering multiple
instances, as described in [59].

• PPV is the positive predictive value (precision) calcu-
lated separately for each instance and then averaged.

4.3 Datasets
We report empirical results on two datasets, the well-
established Fishyscapes Lost & Found [16] benchmark and a
new RoadObstacles21 dataset that we acquired in collabora-
tion with colleagues at the University of Wuppertal as part
of the Segment Me If You Can benchmark [59].

Lost and Found Dataset [16]. It contains 1030 frames
from image sequences captured by a vehicle approaching
lost cargo items placed on parking lots and streets. We use
the Test No Known subset of the test split where the training
Cityscapes objects such as pedestrians and vehicles have
been removed. By ensuring that all obstacles are semantic
anomalies, this allows the evaluation of anomaly-detection
methods in the role of obstacle detectors.

RoadObstacles21 Dataset [59]. Lost and Found features
urban environments similar to those in the Cityscapes train-
ing data. To evaluate our obstacle detector on a wider
variety of road surfaces and objects, such as those depicted
by Fig. 7, we collected our own Road Obstacles dataset.

It features 8 different road textures and comprises a total
of 327 labeled 1920 × 1080 frames. The labels include pixel
masks for individual obstacle instances along with approx-
imate outlines of the drivable area. We take the evaluation
ROI to be the area within these outlines. If an object has a
hole, such as a basket with a handle, we label the hole as
outside of the ROI and ignore it in our evaluations, as we
do for the background.

4.4 Comparative Results
We tested two versions of our method, one that operates on
the road area given in the ground truth and the other on
the drivable area segmented by the network of [8]. They
are referred to as “Ours road ground truth” and “Ours
road segmentation”, respectively, in Table 1. A qualitative
comparison and further examples of our method’s outputs
are shown in Fig. 9 and Fig. 10, respectively.

Our method outperform all others in terms average
instance F1, the primary instance metric in [59], on both
datasets. As for pixel Average Precision (AP), it outperforms
baselines on the Lost and Found dataset. On RoadObsta-
cles21 only two methods, SynBoost and Entropy Maximiza-
tion, achieve a better AP. The ‘Ours road segmentation”
variant achieves an abysmal score of the FPR95 secondary
pixel metric on Lost and Found but the score using the
ground truth is excellent. This points to the cause of the

Figure 7. Road Obstacles 19 dataset. Top: Example frames representing
each of the 7 scenes. Bottom: Some of the objects featured in the
dataset.

problem: The segmentation algorithm we use only found
a part of the drivable area and, since we only look for
obstacles there, we missed all those that were elsewhere,
making it impossible to reach a 95% TPR in some of the
images. Fig. 8 illustrates this problem. Nevertheless, even
in this situation, safety is maintained because the vehicle
controller will only drive within the predicted road space.
Hence, obstacles outside of it do not pose a risk of collision.
Furthermore, as evidenced by the good results of “Ours road
ground truth”, this problem will gradually fade away as
road boundary detection algorithms improve.

While most methods including ours use solely the
Cityscapes dataset for training, some others [46] sample the
objects injected as synthetic obstacles from other datasets,
such as COCO or ImageNet-1k. This strategy works well
for some obstacle types, particularly the distinct and col-
orful ones in the RoadObstacles21 set, but falls short in
the Fishyscapes set. In other words, extending the original
dataset with others is effective if the test obstacles are similar
to the ones in the additional dataset but does not necessarily
promote generalization.

4.5 Ablation study

In Table 2, we report the results of an ablation study during
which the discrepancy network was retrained with selected
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Lost and Found - test no known RoadObstacles21 - test
Pixel-level Segment-level Pixel-level Segment-level

AP ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑ AP ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑
Ours - road ground truth 87.1 2.3 55.9 58.7 61.1 67.8 30.1 58.9 52.5 51.1

Ours - road segmentation 82.3 68.5 49.3 55.6 54.0 67.5 32.8 59.3 52.4 50.8
SynBoost [50] 81.7 4.6 36.8 72.3 48.7 71.3 3.2 44.3 41.8 37.6
Entropy Maximization [46] 77.9 9.7 45.9 63.1 49.9 85.1 0.8 47.9 62.6 48.5
JSRNet [35] 74.2 6.6 34.3 45.9 36.0 28.1 28.9 18.6 24.5 11.0
Embedding Density [22] 61.7 10.4 37.8 35.2 27.5 0.8 46.4 35.6 2.9 2.3
Image Resynthesis [21] 57.1 8.8 27.2 30.7 19.2 37.7 4.7 16.6 20.5 8.4
Bayesian DeepLab [58] 36.8 35.5 17.4 34.7 13.0 4.9 50.3 5.5 5.8 1.0
Max Softmax [51] 30.1 33.2 14.2 62.2 10.3 15.7 16.6 19.7 15.9 6.3
Void Classifier [22] 4.8 47.0 1.8 35.1 1.9 10.4 41.5 6.3 20.3 5.4

Table 1
Obstacle detection scores. The primary metric is average precision of detecting obstacle pixels and average F1 of instance detection.

Lost and Found - test no known RoadObstacles21 - validation
Pixel-level Segment-level Pixel-level Segment-level

AP ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑ AP ↑ FPR95 ↓ sIoU ↑ PPV ↑ F1 ↑
Ours 82.3 68.5 49.3 55.6 54.0 91.0 100.0 59.4 57.0 60.0

Resynthesis 65.0 100.0 44.2 35.9 35.6 83.7 100.0 55.4 39.6 45.2
Blur 78.5 50.7 49.7 51.0 50.3 89.3 100.0 58.4 51.6 55.3
No Inpainting 81.9 36.2 49.2 56.5 54.6 89.9 100.0 62.2 46.9 54.7
No Discrepancy 19.6 83.7 26.7 16.7 7.8 13.1 92.9 13.5 45.5 11.1
Segmentation Alone 36.5 100.0 14.4 91.3 23.1 28.3 100.0 22.3 48.8 26.1

No input blur 82.4 100.0 51.5 56.9 56.2 87.7 100.0 63.3 54.3 59.7
Table 2

Ablation study results.

Figure 8. Obstacle outside of predicted drivable area failure
mode. Top-left: An obstacle is located near a vehicle shadow.
Top-right: The semantic segmenter classifies it as part of the
background. Bottom-left: Consequently it is not included in the
drivable space where our obstacle detector is applied. Bottom-
right: Ground truth road label used as the region-of-interest for
evaluation purposes. This obstacle will be counted as missed.

components altered or disabled.
In the Resynthesis variant, the inpainting described in

Section 3.2 is replaced by an image synthesizer [34] from
predicted semantic labels as in [21]. While the inpainter can
reconstruct novel road textures based on the visual context,
the generator produces a texture similar to the training
roads, and this is reflected by degraded performance on
Road Obstacles.

The Blur variant replaces inpainting by a Gaussian blur
operation. We took the kernel size to be 200 to match the size

of the inpainting window. The No Inpainting variant does
away with inpainting. We keep the architecture unchanged,
but pass two copies of the image into both input streams
and retrain the network. This also degrades performance,
thus confirming the importance of inpainting. We can also
do the reverse, that is, remove the discrepancy network,
and compute the L1 distance between the RGB values of
the input image and the inpainted result. The results of the
corresponding No Discrepancy variant are even worse.

The Segmentation Alone entry corresponds to detections
made by finding groups of non-road pixels enclosed within
the road region detected by the segmentation algorithm [8].
This by itself clearly fails, thereby justifying the extra step
we propose in this paper.

4.6 Limitations

Erasing Safe Regions. The out-of-distribution regions de-
tected by our approach can include both genuine obstacles
and distinctive but safe road regions such as manholes, road
cracks, and leaves. The discrepancy network of Section 3.3
alleviates this problem by learning what altered regions can
be safely ignored, but that relies on examples being present
in the training set. For further improvements, an approach
would be to look into methods that expand the training set,
such as [48], [49].

Perspective effects. Our approach does not explicitly
account for obstacles that are a further to be smaller, due
to perspective effects. Correcting for this, as we did in [60],
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SynBoost [50] Resynthesis [21] Bayesian DeepLab [58]

Figure 9. Qualitative comparison of method outputs. The darkened area corresponds to the ground-truth drivable space.

should also help reduce false-positives, especially in regions
close to the camera.

Computational Cost. The sliding window inpainting
algorithm is computationally expensive, requiring multiple
executions of the inpainter. The current naive implementa-
tion takes 6.7 s (inpainting) plus 0.2 s (discrepancy network)
per frame on a single A100 GPU, as measured on the
RoadObstacles21 validation dataset. As this work is intended
as a proof-of-concept, we used off-the-shelf inpainting code
without production optimization. One way to remedy this
would be to switch to 16-bites precision, which is much
more efficient on modern GPUs. Another would be to par-
allelize the inpainting. Furthermore, even the slow version
of our approach can be used effectively: Since our algorithm
detects previously unseen obstacles, it can be used to extract
obstacles from unlabeled videos for additional supervised
training, even without real-time inference.

5 CONCLUSION

We have introduced a pipeline capable of detecting road
obstacles in driving scenarios, given only single monocular
images as input. We perform inpainting of the drivable
area, erasing the localized obstacles while preserving the
road surface. Our discrepancy network learns to accurately
detect the removed obstacles and ignore irrelevant artifacts
of reconstruction. This detector, trained only with synthet-
ically altered Cityscapes data, is capable of generalizing
to a variety of real-world obstacles and road surfaces. We
have demonstrated this on the Fishyscapes Lost & Found
benchmark, as well as on our newly collected dataset. We
will release our dataset to the community to help researchers
in this field.

In the future, we fill work on coupling more tightly the
algorithms that detects the drivable area and ours for im-
proved results and for potential integration into a full self-
driving system. We also plan to exploit adaptive inpainting
patch sizes to account for perspective distortion.
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Input image Inpainting of the road area Discrepancy score

Figure 10. Example outputs of our method. Left: Input images featuring challenging or distant obstacles. Center: The result of sliding-window
inpainting of the road area. Right: The discrepancy score calculated by our network given the two previous images. The darkened area corresponds
to the ground-truth drivable space.
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APPENDIX A
IMPLEMENTATION DETAILS

In this section, we present details on the discrepancy net-
work architecture and training.

A.1 Discrepancy Network Architecture
The architecture is shown in Fig. 12. The network has two
input streams: the original image and the image where
the road area has been inpainted. We use the pretrained
ResNeXt101 network of [56] to extract features from both
images. We use the PyTorch implementation [61], [62] of
this backbone and take the outputs of layers labeled relu,
layer1, layer2, layer3. At four levels of the feature
pyramid, we fuse the two streams of features in these two
parallel ways:

• Concatenate stream 1 and 2, followed by a 1 × 1
convolution,

• Calculate pixel-wise correlation of features, follow-
ing [63].

The results of the above are concatenated and passed on
to an up-convolution pyramid which uses the SeLU [64]
activation function. In the final step, the discrepancy score
is multiplied by the binary drivable space mask, since the
outputs are only valid within the road area.

A.2 Discrepancy Network Training
The discrepancy network was trained for 65 epochs. Each
epoch iterates over the 2975 frames of our synthetic training
set. The training is done using 768 × 384 crops of the road
area. To improve training reproducibility, we pre-define the
crops and their ordering in each epoch, and train all variants
of the discrepancy network with the same sequence of
samples.

We use binary cross entropy loss and the Adam [65]
optimizer. We set the initial learning rate to 10−4 and
then adjust it dynamically, if there is no improvement of
validation loss for 5 consecutive epochs, the learning rate
is reduced 10 times. We generate the validation set from
Cityscapes validation subset in the same way as the training
set.

APPENDIX B
LOST&FOUND REGION OF INTEREST

When using the Lost&Found dataset [16], we constrain the
evaluation to the area of the ground truth free-space label,
and exlude the rest of the image. This region is visualized in
Fig. 7 in the main article.

While it would be interesting to test the detection of
other clutter objects visible in the dataset, the obstacles
outside of the aforementioned free-space are not labeled.
Only the central objects are labeled, leaving the off-center
obstacles (trash cans, pallets, fences, poles) marked as back-
ground. For example, in Fig. 11, a wooden pallet is labeled
as an obstacle when in front of the car but as background
when leaning against a wall.

Figure 11. In Lost&Found only the central obstacles are labeled.
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