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Bin Zhao, Member, IEEE , Pengfei Han, Xuelong Li, Fellow, IEEE

Abstract—Satellites are capable of capturing high-resolution videos. It makes vehicle perception from satellite become possible.
Compared to street surveillance, drive recorder or other equipments, satellite videos provide a much broader city-scale view, so that
the global dynamic scene of the traffic are captured and displayed. Traffic monitoring from satellite is a new task with great potential
applications, including traffic jams prediction, path planning, vehicle dispatching, etc.. Practically, limited by the resolution and view, the
captured vehicles are very tiny (a few pixels) and move slowly. Worse still, these satellites are in Low Earth Orbit (LEO) to capture such
high-resolution videos, so the background is also moving. Under this circumstance, traffic monitoring from the satellite view is an
extremely challenging task. To attract more researchers into this field, we build a large-scale benchmark for traffic monitoring from
satellite. It supports several tasks, including tiny object detection, counting and density estimation. The dataset is constructed based on
12 satellite videos and 14 synthetic videos recorded from GTA-V. They are separated into 408 video clips, which contain 7,336 real
satellite images and 1,960 synthetic images. 128,801 vehicles are annotated totally, and the number of vehicles in each image varies
from 0 to 101. Several classic and state-of-the-art approaches in traditional computer vision are evaluated on the datasets, so as to
compare the performance of different approaches, analyze the challenges in this task, and discuss the future prospects. The dataset is
available at: https://github.com/Chenxi1510/Vehicle-Perception-from-Satellite-Videos.

Index Terms—remote sensing, tiny object detection, vehicle counting, density estimation.

✦

1 INTRODUCTION

Recently, with the significant progress of aerospace technology,
the commercial satellites are able to capture the Very High Reso-
lution (VHR) videos [1], [2]. For example, the Jilin-1 satellites can
observe the earth with the spatial resolution of 0.72m [3]. SkySat-
1 satellites provide the VHR videos with the resolution around
1m [4]. These satellites can monitor the ground dynamically in
city-scale, where the vehicles can be seen clearly [5]. VHR videos
from satellites provide a new perspective for traffic monitoring.

Traffic monitoring from satellite is quite different from those
street surveillance cameras on the ground. It has a variety of
advantages:

1) Geographical Boundlessness: Satellite transcends terrestrial
geographical constraints, encompassing urban, rural, and remote
terrains. It orbits dynamically, affording a panoramic vantage point
for comprehensive vehicular oversight. In contrast, surveillance
cameras are constrained to urban centers and pivotal transport
hubs. The installation of surveillance cameras worldwide is pro-
hibitively costly due to extreme geographical conditions. Yet, such
coverage is pivotal for traffic monitoring in remote areas and
holistic network analysis.

2) Real-time and Periodicity: Satellites furnish nearly real-time
imagery and data, facilitating immediate traffic monitoring and
emergency response. Furthermore, routine satellite missions yield
long-term time-series data for traffic trend and pattern analysis.
They swiftly monitor traffic conditions during natural disasters or
emergencies, providing crucial information for rescue operations.

3) Wide-area Surveillance: Satellite traffic monitoring spans
vast geographical regions, from cities to broader territories. This
has immense value for urban planning, traffic management, and
natural disaster monitoring, offering a global perspective. In
contrast to ground-based surveillance cameras that can only ob-
serve traffic in intersections, streets, or roundabouts, satellites
can monitor sprawling areas spanning square kilometers. Their
expansive field of view enables the surveillance of city-scale

(a) (b)

Fig. 1: Examples of (a) satellite images captured over Dubai
International Airport, and (b) the 1,214 vehicles in the scene
highlighted by yellow points.

traffic, providing a fresh perspective for traffic control, analysis,
and planning.

4) Monitoring Diverse Transport Modes: Satellites can mon-
itor not only road traffic but also railways, aviation, and mar-
itime transport, fostering multimodal traffic research. Additionally,
satellites can complement surveillance cameras, enabling layered
traffic monitoring in cities. Surveillance cameras offer localized
and detailed insights, while satellites provide global traffic mon-
itoring. They can be integrated to monitor the traffic from the
ground view and sky view hierarchically.

Apart from the above advantages, traffic monitoring from
satellite is also a challenging task:

1) The vehicles in satellite videos are tiny. Limited by the
resolution, the vehicles only contain a few pixels (10 pixels or so)
and lack of appearance information. Some of them cannot even
be recognized unless they are moving, as depicted in Fig. 1. The
detection and counting of such tiny vehicles are very difficult.
Traditional object detection and counting approaches cannot deal
with them effectively and efficiently.

2) The movement in satellite videos is very complicated. As
depicted in Fig. 2 (a) and (b), the background and vehicles are both
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(a) (b)

(c) (d) (e) (f)

Fig. 2: Challenges in vehicle perception from satellite. The optical
flow maps in (a) and (b) indicate the movements are complex and
uneven. (c), (d), (e) and (f) display the noise in satellite videos.
They are shelter, clouds, specularity and shadow from left to right.

moving. Practically, the movement of background is correlated to
the view of satellite and the height of buildings, since the video
only captures the 2D projection of the 3D movement. As a result,
it is hard to separate the moving vehicles from the background.
Moreover, the gradual movement of the satellite engenders lo-
calized misalignment and dynamic intensity variations in some
stationary background objects. These changes serve no purpose in
discerning the motion of objects and may potentially give rise to
motion artifacts.

3) The satellite videos are full of noise. As evidenced in
Fig. 2 (c)-(f). The frames captured are subject to an array of
perturbations, including obstructions from edifices, clouds in the
sky, shadows cast by sunlight, and mirrored reflections on ground-
level glass surfaces. Under such circumstances, the local contrast
between the background and targets diminishes significantly. Ow-
ing to the complexity of the background and the presence of
image noise, targets occasionally amalgamate with the chaotic
background, resulting in localized obscurity. This noise exerts
substantial interference in the detection of vehicles.

4) The LEO satellites are incapable of perpetually hovering
over a certain urban domain. In such instances, satellites are
unable to sustain prolonged and continuous traffic surveillance.
Additionally, when the satellite platform is fixated on a specific
area of interest, the acquired satellite video evinces localized posi-
tional discrepancies and alterations in local intensity, attributable
to immobile objects. These objects may be erroneously discerned
as mobile entities, thereby exacerbating the incidence of false
positives in the data.

1.1 Motivation
Traffic monitoring from satellite is still in the preliminary stage.
The lack of released satellite videos and large-scale annotated
datasets are the key factors to limit the development. To the best
of our knowledge, only two videos are released with partially
annotations [1], [6]. The lack of data leads to the following
dilemmas in the research:

1) Most of existing approaches just evaluate their performance
on one or two videos. Such little test samples are not enough to
verify the effectiveness. Worse still, some of the annotations or
videos are not released publicly, which causes interference to the
fair comparison of different approaches.

2) Deep learning approaches are not applicable to this field.
Most existing approaches are developed based on traditional
detectors, since the annotated samples are not enough for training.

However, deep learning has become the mainstream and surpasses
traditional approaches in most computer vision tasks. The perfor-
mance of this field is impeded by the lack of annotated data.

1.2 Overview
Practically, the annotations of vehicles in satellite videos are
difficult, since the frames are in city-scale, the movements of
background are uneven, the sunlights are varying, and the vehicles
are very tiny and cannot even be recognized by human eyes.
In this paper, we make efforts to overcome these difficulties,
and construct a large-scale dataset for traffic monitoring from
satellite, which is named as TMS. TMS is composed of 408
videos collected from 12 real satellite videos and 14 synthetic
videos of GTA-V, where the synthetic videos are utilized to make
up for the lack of available satellite videos. In each video, the
coordinates of vehicles are annotated at 1 frame per second. The
numbers of vehicles in each frame vary from 0 to 101, and 128,801
vehicles are annotated totally. With the help of the TMS dataset,
three tasks are developed for traffic monitoring from satellite,
i.e., Tiny Object Detection (TOD), VEhicle Counting (VEC) and
Traffic Density Estimation (TDE). Numbers of classic and state-
of-the-art approaches are evaluated, including both traditional and
deep learning approaches, where the challenges of each task are
analyzed and the insights for researchers are presented.

1.3 Contributions
Overall, the main contributions of this paper can be summarized
as follows:

1) The largest satellite video dataset is constructed for traffic
monitoring. It can promote the research in this field by attracting
deep learning approaches and provide an evaluation platform for
different approaches.

2) The synthetic videos from GTA-V are integrated with real
videos to further augment the scale of real dataset. They are
annotated automatically, and provide a new perspective to relieve
the problem of lacking real data.

3) Three tasks are performed on this benchmark, including
Tiny Object Detection (TOD), VEhicle Counting (VEC), and Traf-
fic Density Estimation (TDE), so as to promote the development
of traffic monitoring from satellite.

2 RELATED WORKS

In the following subsections, the related tasks in remote sensing,
computer vision, and the recently proposed approaches of traffic
monitoring from satellite are reviewed.

2.1 Object Detection in Remote Sensing
Object detection is a long standing task in remote sensing, which
is also the basis of traffic monitoring from satellite. Numbers
of datasets are constructed, e.g., TAS [7], SZTAKI-INRIA [8],
NWPU VHR-10 [9], HRSC2016 [10], DOTA [11], etc.. The
images are mainly collected from satellite, aerial plane, and other
platforms, such as Google Earth, Tianditu and Quickbird. The
annotated objects are in multiple categories. Vehicle is the most
popular category for object detection, which shows its importance
in remote sensing [12]. Earlier object detection approaches are
developed based on template matching, geometry modeling, con-
text knowledge, and low-level feature extraction [13]. However,
object detection in remote sensing is quite complex with the
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factors of noise, size, lights and background [14]. These tradi-
tional approaches are not robust enough to be generalized to
different situations. Recently, deep learning is employed in this
task under the support of large-scale datasets. Most of them are
modified from mainstream object detection approaches in natural
scene images, e.g., Faster RCNN [15], SSD [16], YOLO [17].
By taking advantages of the non-linear learning ability, deep
learning approaches surpass traditional approaches, and boost the
performance significantly.

2.2 Relevant Tasks in Computer Vision

Object detection is a classic computer vision task for natural
scene images. Traditional approaches follow a pipeline of region
selection (e.g., superpixels [18], sliding window [19], selective
search [20]), feature extraction (e.g., SIFT [21], HOG [22]) and
classifier (e.g., SVM [23], Adaboost [24]). However, traditional
approaches and hand-crafted features are not capable enough to
generalize to the variance of size, shape, occlusion and noise in
object detection. Till now, deep learning approaches are taking
the leading position, including RCNN series [15], [25], YOLO
series [26], [27], [28], etc.. They are mostly developed based
on challenges, i.e., PASCAL VOC1, ILSVRC2 and MS-COCO
Detection3. Object detection in natural images can inspire vehicle
detection in satellite videos. Object counting and density estima-
tion are important for crowd analysis as well as traffic congestion
prediction. Apart from adopting object detectors directly, CNN-
based regression models are widely used in this task. Most of them
are developed based on Fully Convolutional Network (FCN) [29]
with the instance-level or image-level annotations. TRANCOS
[30] and VisDrone2019 Veheicle [31] are two datasets specially
designed for vehicle counting and density estimation, which can
benefit traffic monitoring from satellite.

2.3 Traffic Monitoring from Satellite

With the release of several satellite videos from Jilin-1 and SkySat-
1, traffic monitoring from satellite draws increasing attention
[1], [6]. Most works are presented in recent years. In [32], the
vehicles are detected by background subtraction, where mathe-
matic morphology and statistical analysis are utilized to estimate
background of each frame. The performance is evaluated on one
satellite video from SkySat-1. The low-rank matrix decomposition
is modified in [4], in order to model background and foreground
with the regularization of low-rank and sparsity. Furthermore,
matrix decomposition assisted with moving confidence is devel-
oped in [1], which can promote the motion of vehicles meanwhile
suppress that of the background. The performance is evaluated on
two satellite videos and two surveillance videos. Overall, traffic
monitoring from satellite is still in its early stages, and requires
large-scale datasets and benchmarks to advance the development.

3 THE TMS DATASET

3.1 Data Collection and Preprocessing

We tried our best to collect the satellite videos that can be used
for traffic monitoring from satellite. The real part of TMS is
composed of 12 full satellite videos. They are captured by the

1. http://host.robots.ox.ac.uk/pascal/VOC/index.html
2. https://image-net.org/challenges/LSVRC/2017/
3. https://cocodataset.org/#home

(a) (b) (c) (d)(a) (b) (c) (d)

Fig. 3: The annotation process of each real image in TMS. (a) is
the original image. (b) shows the difference between consecutive
frames. (c) is the difference of registered consecutive frames. (d)
displays the final annotation of vehicles.

non-stationary satellite platform, i.e., Jilin-1 and SkySat-1, with
the ground sample distance of 1m or so. In this case, the vehicles
only contain 5-20 pixels. The videos are recorded over the sky of
Boston, Dubai, Valencia, Jeddah, LasVegas, Hong Kong, Aleppo,
Bangkok, and Tokyo. The captured scenes include city street,
airport, suburbs, and port. Five of the videos are freely provided
by the official website of Jilin-14, and the others are crawled from
YouTube5, since the officially released versions are not available.

The synthetic part of TMS contains 14 videos obtained from
the game of GTA-V. GTA-V builds a fictional city with Los
Angels as the prototype, namely, Los Santos. The map in the game
covers 252 square kilometers. The scene rendering, lights, shadow,
weather effects and other conditions are quite similar to those in
the real world, so that the players can immerse themselves into
it. Furthermore, GTA-V is allowed to be developed by players
for non-commercial use, such as academic use. Different from
capturing videos from the egocentric view of the player, the videos
are recorded from the satellite view of GTA-V in this paper. These
videos display different city streets or suburbs in the map of the
game. They are recorded by the screen recording software of
Windows 10, i.e., Xbox Game Bar.

The real and synthetic satellite videos are combined together
to form the TMS dataset. Each video is with the resolution
of 1080x1920 or 3072x4096, which covers an area of several
square kilometers. For simplicity, these full satellite videos are
segmented spatially into subareas. In this case, those videos with
the resolution of 1080x1920 are segmented evenly into 540x480
subareas by 2x4 grid, and those videos with the resolution of
3072x4096 are segmented evenly into 512x512 subareas by 6x8
grid. Totally, 408 videos are obtained by segmenting full videos
into subareas, including 296 real videos and 112 synthetic videos.
Besides, to simplify the annotation, each video is sampled by 1 fps.
Finally, TMS contains 9,296 images. The number of real images
and synthetic images are 7,336 and 1,960, respectively.

The annotation of satellite videos is quite arduous. It is because
the vehicles are tiny and lack of appearance features, so that they
can hardly be recognized from background. To address this prob-
lem, a motion based annotation method is conducted in our work.
Specifically, the motion of vehicles is larger than the surrounding
background. In this case, the vehicles can be distinguished from
background by comparing the difference between two consecutive
frames. To amplify the difference, two frames with the temporal
interval of one second are compared, so that the difference can be
recognized by human eyes. As depicted in Fig. 3, the differences
are highlighted by colors. The green color means the pixel value
of current frame at this region is higher than the next frame,
which indicates the location of vehicles. In contrast, the red
color indicates the vehicle locations of next frames. However, the

4. https://mall.charmingglobe.com/Sampledata
5. https://www.youtube.com/

http://host.robots.ox.ac.uk/pascal/VOC/index.html
https://image-net.org/challenges/LSVRC/2017/
https://cocodataset.org/#home
https://mall.charmingglobe.com/Sampledata
https://www.youtube.com/
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TABLE 1: Statistics of reported datasets of traffic monitoring from satellite.

Datasets #Videos #Resolution #Images #Vehicles Tasks AvailabilityMin Max Total TOD VEC TDE
SHDV [33] 1 400*400 700 – – – ! % % No
Valencia [6] 3 500*500 168 7 41 3,211 ! % % Yes

Las Vagas [4] 2 400*400, 600*400 1,400 27 86 80,047 ! % % Yes
Jilin-1 [1] 3 (400∼700)*(400∼600) 900 – – – ! % % No
SkySat [1] 6 (400∼600)*(400∼600) 3,500 – – – ! % ! Partially

TMS 408 512*512, 540*480 9,296 0 101 128,801 ! ! ! Yes
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Fig. 4: Image distribution of different datasets over the number of
vehicles. Note that TMS-Real and TMS-Game represent the real
and synthetic parts of TMS, respectively.

motions from vehicles and background are intertwined. It makes
the annotation in a complete daze, as shown in Fig. 3 (b).

To further reduce the interference caused by background
motion, the translation of background is removed by the intensity-
based image registration method6. In this case, the annotator can
localize the vehicles effortlessly. Each vehicle is annotated with a
point which indicates the location. Practically, the annotation tool
is developed based on Matlab R2019b.

In synthetic videos, the locations of vehicles are obtained
automatically by transforming the map coordinate into the screen
coordinate. The annotation tool is designed based on the game
plugin developer, Script Hook V [34]. It can save much labor
force in the annotation process. Besides, it can generate lots of
automatically annotated synthetic videos, in order to augment the
training data and boost the performance on real satellite videos. It
provides an efficient way to remedy the lack of real data in VHR
satellite videos.

We want to emphasize that, different from the previously
released Valencia dataset [6], the IDs of vehicles in different
frames are not provided in the proposed TMS dataset7. It is for
the following reasons: 1) Valencia is a partially annotated dataset,
where the annotated regions are selected manually. In contrast,
TMS is a fully annotated dataset. The vehicles are very dense
and lack of appearance features. It can hardly be identified by
annotators. 2) The VHR videos are captured by satellites in low
earth orbit. The view of satellite is non-stationary, so that it can
only gaze the city at a quite short time, which makes it infeasible
to track vehicles effectively. In this case, the vehicle tracking task
is not developed in this paper.

Overall, in our work, 14 annotators are employed in the

6. https://www.mathworks.com/help/images/ref/imregister.html#description
7. Practically, our plugin is able to identify the vehicles in different frames.
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Fig. 5: Vehicle density distribution of TMS-real (a) and TMS-
game (b).

annotation process, and more than 500 working hours are spent.
Furthermore, each annotator also plays the role of checker, in order
to guarantee the correctness of annotations for each image.

3.2 Data Statistics
The TMS dataset is constructed from 26 real and synthetic satellite
videos, where 408 video clips and 9,296 images are obtained.
In each image, the locations of vehicles are annotated, and the
number of vehicles varies from 0 to 101. In total, 128,801 vehicles
are annotated.

Table 1 presents the statics of existing datasets. At present,
TMS is the largest dataset for traffic monitoring from satellite. It is
also the only one publicly available large-scale dataset in this task.
Compared to existing datasets, it has the following advantages:

1) The real part of TMS is created based on 12 fully annotated
satellite videos, each covers an area of several square kilome-
ters, and 7,336 annotated images are obtained. However, existing
datasets only contain one or two partially annotated videos. With
the large-scale TMS dataset, the deep learning approaches are
applicable to the tasks of traffic monitoring from satellite. The
evaluation can also be conducted effectively.

2) TMS is the first to utilize synthetic videos to augment the
dataset. It can address the problem of lacking of publicly available
satellite videos. Synthetic videos can be annotated automatically,
which can reduce the labor costs significantly. By utilizing syn-
thetic videos, TMS pioneers researchers a new perspective to
develop approaches and boost the performance.

3) In TMS, the videos are captured over different cities all
around the world as well as the virtual city. The scenes include
downtown, suburbs, harbor, airport, etc.. The vehicles in each
image vary in a large range from 0 to 101. However, existing
datasets only contain one or two scenes with dense traffic, which

https://www.mathworks.com/help/images/ref/imregister.html#description
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cannot meet the demand of traffic monitoring in different places
and situations. In this case, TMS can improve the generality of
developed approaches.

Furthermore, Fig. 4 and 5 plot the distribution of samples over
the number of vehicles and traffic density. It can be observed that
TMS holds the largest range over the number of vehicles among
different datasets, i.e., from 0 to 100+. Besides, only TMS contains
negative samples in which the number of vehicles is zero. The
other two datasets, Valencia and Las Vagas, lack of null and sparse
traffic scenes, since most of the samples are with the vehicles over
10. Furthermore, we can see from Fig. 5 that both the real part and
synthetic part of TMS cover the null, sparse, normal and dense
traffic scenes. It shows the superiority of TMS compared with
existing publicly available datasets. In conclusion, TMS is more
applicable to the real scenarios of traffic monitoring from satellite.

3.3 Applicable Tasks

To monitor traffic from satellite effectively, three tasks are devel-
oped based on the TMS dataset. They are Tiny Object Detection
(TOD), VEhicle Counting (VEC) and Traffic Density Estimation
(TDE). For the TMS dataset, we randomly allocated 50% as the
training set, 25% as the valiadation set, and the rest for testing,
adhering to this criterion across all tasks. Note that the dataset
is allocated in video clip-wise (i.e., 408 clips totally) while not
image wise, since two temporally adjacent images are similar and
may result in training information leakage.

The target of TOD is to localize the vehicles in each image.
It can be conducted by two strategies. One is the single-image
detection strategy, where the objects are detected by applying
detectors to single image. The other is motion-based detection
strategy. The detectors operate on the video. The motion among
consecutive frames is utilized to distinguish objects from back-
ground. Following existing detection protocols, the annotated
points are modified to bounding boxes with the height and width
of six pixels. The size of bounding boxes is large enough to cover
most vehicles. In the evaluation, Precision, Recall and F-score are
utilized as the metrics.

The task of VEC is to count the number of vehicles in the
screen. It is a basic factor to estimate the traffic congestion.
Different from TOD, VEC focuses on the global traffic situation,
which is not necessary to localize each vehicle in the image. In
this paper, the Mean Average Error (MAE) and Mean Square Error
(MSE) are adopted as the evaluate metric, which can measure the
difference of the esimated number and annotated number.

TDE aims to estimate the traffic density map in each image. It
provides a vivid visualization of traffic congestion. In practice, to
generate the ground truth of density maps, the annotated location
marks are blurred by the Gaussian kernel, where the kernel size
is fixed as 29, and σ = 4. Two popular metrics are adopted in
TDE, i.e., Structural Similarity in Image (SSIM) and Peak Signal-
to-Noise Ratio (PSNR). They measure the performance of density
map estimation.

4 EXPERIMENTS

4.1 Experiments on Tiny Object Detection

In the TOD task, three kinds of approaches are evaluated, i.e.,
background subtraction, deep object detector, deep object local-
izer. They are described in the following subsections.

4.1.1 Background Subtraction
R-PCA: Robust Principle Component Analysis [35]. It separates
the background and foreground into a low-rank matrix and a sparse
matrix, respectively. It is optimized jointly by the principle com-
ponent pursuit and fast low-rank approximation. The foreground
pixels are obtained by morphological segmentation.
GMM: Gaussian Mixture Model [36]. It is developed with the
assumption that the each pixel follows the Gaussian distribution
temporally. It models the background with several Gaussian dis-
tributions. One pixel is identified as the background point once
it belongs to one of distributions, and the background is updated
iteratively.
ViBe: Visual Background extractor [37]. It models each back-
ground pixel with several neighbors. In this case, the background
can be initialized in single frame. With the assumption that
stochastic models can simulate the uncertainty of pixel change,
the background is updated with one random neighbor if one point
is identified as the background.
TFD: Three Frame Difference [38]. It subtracts the background by
detecting the changes among frame sequence. Three consecutive
frames are utilized to compute the changes pairwisely, which can
effectively reduce the interference caused by occlusions and noise.
LSD: Low-rank and Structured sparse Decomposition [39]. It de-
composes the foreground and background with the regularization
of low-rank norm and structured sparse norm.
DECOLOR: DEtecting Contiguous Outliers in the LOw-rank
Representation [40]. It represents the video frames as a low-
rank matrix with the assumption that the background are linearly
correlated, and objects are detected as outliers.

4.1.2 Deep Object Detector
Faster RCNN: Faster Region-CNN [15]. It is a popular anchor-
based deep object detector. It firstly utilizes the Region Proposal
Network (RPN) to generate region proposals, and then apply the
Region-CNN to regress the coordinate of detected objects.
SSD: Single Shot multibox Detector [16]. It is a one-stage object
detector that localizes and recognizes objects jointly. It is much
efficient than Faster RCNN. In this paper, VGG-16 is adopted as
the backbone of SSD.
YOLO series: The fourth, fifth, sixth, seventh, and eighth version
of You Only Look Once [28]. YOLO is an anchor-free deep object
detector. It segments the whole image into grid cells, and regresses
the localization directly. YOLO v4 [28], YOLO v5 8, YOLO
v6 [41], YOLO v7 [42], and YOLO v8 [43] are quite similar.
They both utilize techniques, such as cropping, rotation, flipping,
mosaic, etc., to augment the training data.
Tood: Task-aligned one-stage object detection [45]. It is a one-
stage object detector [45], which explicitly aligns object classi-
fication and localization in a learning-based manner. It utilizes
ResNet as the backbone and follows an overall pipeline of
backbone-FPN-head.
Dino: DETR with Improved deNoising anchOr boxes [44]. It is a
robust end-to-end approach for improved denoising anchor boxes
in object detection, and Transformer is adopted as the backbone.

4.1.3 Deep Object Localizer
RAZNet: Recurrent Attentive Zooming Network [47]. It is origi-
nally proposed for crowd localization. In this paper, it is utilized
to localize the vehicles just with the point annotations. It is good

8. https://github.com/ultralytics/yolov5

https://github.com/ultralytics/yolov5
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Fig. 6: Visualization exemplar results of different approaches on the TOD task across the TMS dataset. The first column denotes the
annotated detection results, and the other columns represent the final detection results of different methods.

TABLE 2: TABLE II TOD RESULTS OF DIFFERENT APPROACHES ON TMS. THE BEST RESULTS ARE MARKED IN BOLD.

Setting Real Game Augmented
Metrics Precision↑ Recall↑ Fscore↑ Precision↑ Recall↑ Fscore↑ Precision↑ Recall↑ Fscore↑

R-PCA [35] 6.67 0.59 0.97 1.43 4.64 2.03 −− −− −−
GMM [36] 23.60 3.07 5.19 15.09 4.18 6.15 −− −− −−
ViBe [37] 54.63 9.51 14.92 30.68 17.56 21.49 −− −− −−
TFD [38] 69.33 9.28 15.63 7.96 2.69 3.89 −− −− −−
LSD [39] 46.15 13.61 19.61 38.00 29.76 32.98 −− −− −−

DECOLOR [40] 52.48 56.65 52.67 32.21 46.01 37.23 −− −− −−
Faster RCNN [15] 2.56 3.92 3.00 1.68 7.13 3.00 1.91 3.39 2.00

SSD [16] 3.20 3.55 1.00 0.25 3.41 0.63 0.32 3.58 1.00
YOLO v4 [28] 35.99 14.75 22.00 39.41 15.71 22.00 45.21 23.52 31.00

YOLO v5 39.8 27.1 32.2 24.2 16.3 26.1 40.6 28.5 33.5
YOLO v6 [41] 35.11 31.3 36.43 37.63 17.85 31.06 43.5 35.2 37.6
YOLO v7 [42] 28.03 31.1 29.45 22.4 17.2 19.47 31.6 23.5 33.2
YOLO v8 [43] 35.61 32.71 39.81 40.13 19.63 25.82 47.1 28.4 35.9

Dino [44] 5.4 45.9 9.7 6.3 40.9 10.9 6.92 49.1 12.3
Tood [45] 14.0 40.3 20.7 8.8 33.1 13.9 19.3 46.5 22.8

SCAL Net [46] 0.34 6.92 2.17 0.33 0.19 0.24 0.37 5.47 2.16
RAZNet [47] 42.77 53.24 47.53 28.05 59.04 38.03 51.31 62.12 56.78

at detecting tiny objects by operating recursively on small image
regions and zooming them into high-resolution.
SCAL Net: A Simple yet effective Counting And Localization
Network [46]. It proposes a joint framework for vehicle counting
and localization, which tackles them as a pixel-wise dense predic-
tion problem.

4.1.4 Results and Discussions

Table 2 presents the results of different approaches on the task
of tiny object detection. It can be observed that TOD is really a
challenging task, since most of the classic and popular approaches
perform worse than they are on traditional object detection tasks.
For background subtraction approaches, R-PCA gets really poor
performance. It is mainly because the foreground in R-PCA is
obtained by morphological segmentation, while these vehicles are
so tiny that their morphological features can hardly be recognized.
Worse still, other background modeling approaches, including
GMM, ViBe and LSD, also suffer from the extremely unbal-
anced distribution of foreground and background pixels. TFD
distinguishes vehicles from background by the changes among
three consecutive frames. However, as aforementioned, the motion
in satellite videos are quire complex. DECOLOR takes vehicles
as outliers with the assumption that the background are linearly

correlated in the frame sequence, which performs the best in
background subtraction approaches.

Deep learning based object detection has achieved great suc-
cess in the computer vision field. However, TOD is an extremely
challenging task, since the vehicles in satellite videos are too tiny
to be captured by the detector. It can be observed that Faster
RCNN and SSD get poor performance, even worse than traditional
detectors. It is mainly because that the scales of vehicles only
take a minor part of the whole image. The appearance of vehicles
is vanished from feature maps after the encoding of several
convolutional and pooling layers. To maintain the vehicle features,
YOLO v4, v5, v6, v7, and v8 utilize a more powerful and deeper
backbone network to extract richer feature representations. In this
case, their performance surpasses that of Faster RCNN and SSD,
as well as outperforms Dino and Tood, which utilize multi-scale
feature interactions.

The results of two deep object localizers are also presented
in Table 2. They detect vehicles from point annotations, which is
quite different from object targeting approaches. We can see that
SCAL Net performs poor. It is because the vehicles are tiny and
much smaller than the instance in the crowd. RAZNet achieves
much better results on the real part of TMS. It is mainly benefited
from its zooming strategy, which is operated on small regions and
zooming into high-resolution recursively.
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Fig. 7: Visualization of the crowd density maps of different methods on the VEC and TDE tasks across the TMS dataset. The first and
second columns denote the annotated density maps, and the other columns represent the final density estimation results of different
methods. Note that the heat of each pixel indicates the vehicle density. The red numbers denote the annotated and predicted counting
results.

TABLE 3: VEC AND TDE RESULTS OF DIFFERENT APPROACHES ON TMS. THE BEST RESULTS ARE MARKED IN BOLD.

Setting Real Game Augmented
Metrics MAE/MSE ↓ PSNR/SSIM ↑ MAE/MSE↓ PSNR/SSIM↑ MAE/MSE ↓ PSNR/SSIM ↑

MCNN [48] 7.15/113.83 29.02/0.90 7.28/107.37 30.89/0.93 6.92/106.43 29.33/0.90
C3F-VGG [49] 6.99/97.75 29.09/0.90 10.23/189.95 30.37/0.97 5.98/83.25 29.31/0.93
CSRNet [50] 6.75/139.18 29.31/0.89 10.46/195.96 31.03/0.94 6.02/77.83 29.36/0.94
SFCN+ [51] 4.75/70.62 28.95/0.97 11.28/234.42 30.65/0.97 12.34/287.61 28.66/0.79
SCAR [52] 6.70/146.64 29.70/0.96 8.01/125.58 30.58/0.94 5.79/105.49 29.71/0.96

RAZNet [47] 7.17/102.47 30.17/0.94 7.85/130.33 29.79/0.97 6.74/96.57 31.28/0.97
SCAL Net [46] 13.02/354.57 8.74/0.56 10.87/182.47 17.57/0.78 12.97/329.33 9.23/0.67

GSCC [53] 5.19/78.61 28.22/0.87 5.28/97.39 29.55/0.89 4.89/78.05 29.25/0.91
P2PNet [54] 5.96/117.36 29.87/0.91 5.38/105.1 31.42/0.96 5.03/74.29 30.76/0.95

CCTrans [55] 5.34/ 84.37 29.57/0.92 4.42/59.62 29.87/0.95 5.96/87.35 29.54/0.92

Fig. 6 presents the results of different approaches on the
TOD task. Note that those approaches perform extremely poor
in Table 2 are not displayed. We can see that the results of
GMM, ViBe and TFD contain lots of false positive samples.
Others performs better but far from satisfactory. Overall, from
the results in Table 2 and Fig. 6, we can simply conclude that
TOD is a challenging task due to the tiny size of vehicles. As a
result, most traditional approaches get much worse performance
than they are on the typical object detection task. Besides, deep
learning based detectors and localizers show less superiority as
well. Fortunately, spatial zooming and feature fusion provide some
meaningful insights for future researches.

4.2 Experiments on Vehicle Counting and Traffic Den-
sity Estimation

Vehicle counting and density estimation are two relevant tasks.
They follow similar protocols in the literature. In this case, the
experiments of VEC and TDE are conducted and discussed in this
subsection together.

4.2.1 Methods for Comparison and Evaluation

MCNN: Multi-Column CNN [48]. By designing kernel in differ-
ent sizes, a multi-column scheme is conducted, which can adapt
to arbitrary crowd density and perspective map of images.

C3F-VGG: A variant of VGG-16 [49]. The first 10 convolutional
layers of VGG-16 are adopted for representation learning, and
another two regression layers are added to estimate the density
map.
CSRNet: Congested Scene Recognition Network [50]. It also
takes VGG-16 as the backbone, and designs a dilation module
on the top.
SFCN+: Spatially Fully Convolutional Network [51]. It takes
ResNet-101 [56] as the backbone, and adds dilation convolution,
spatial encoder and regression to predict the density map directly.
SCAR: Spatial-Channel-wise Attention Regression [52]. It oper-
ates self-attention on the spatial axis and channel axis of feature
map, which can capture the global contextual information.
GSCC. Generalized losS function for Crowd Counting [53]. It
learns density map representations through the optimization of
the non-equilibrium problem, and introduces a generalized loss
function for acquiring density maps used in crowd counting and
localization.
P2PNet. Point to Point Network [54]. It presents a purely point-
based framework, allowing for a more precise and seamless
integration of individual localization with crowd counting.
CCTrans. Crowd Counting with Transformer [55] It leverages
a pyramid visual transformer backbone to capture overarching
crowd information, followed by the utilization of another pyramid
visual transformer backbone to further encapsulate global crowd
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insights.
RAZNet and SCAL Net.

4.2.2 Results and Discussions
Table 3 presents the results of different approaches on vehicle
counting and traffic density estimation. Ten recently proposed
approaches are compared totally. They are all effective deep
learning approaches adopted from the typical computer vision
task, i.e., crowd counting. It can be observed that most of them
perform comparably. Specifically, SFCN+ performs the best on the
real part of TMS in vehicle counting task, which is a spatially fully
convolutional network. RAZNet outperforms most of the others in
traffic density estimation. It demonstrates the effectiveness of the
zooming strategy in tiny vehicle perception once again. While
CCTrans achieves the best results in terms of MAE and MSE on
the game part of TMS, its performance on real part is subpar.

Besides, most approaches perform better on the game part
of TMS rather than the real part, although much more training
samples are provided in the real part. It is mainly because the
number of vehicles varies largely in the satellite videos. Worse
still, the satellite videos contain lots of noise. In contrast, the
game videos are much simple. Furthermore, we can see that
the performance of most approaches is boosted by conducting
the augmentation strategy. It verifies the feasibility of utilizing
synthesized data to make up for the lack of real satellite videos.

Fig. 7 presents the results of different approaches on the VEC
and TDE task. Note that SCAL Net performs extremely bad, so its
results are not displayed. It can be observed that most of these deep
learning based approaches perform well to localize the vehicles
and estimate the number as well as the density. It provides an
effective way to monitor the traffic from satellite.

5 CONCLUSION AND OUTLOOK

The VHR videos captured by commercial satellites enable traffic
monitoring from satellite. To boost the development, we build
a large-scale dataset, i.e., TMS. It is composed of 12 satellite
videos and 14 synthetic videos. 9296 images are obtained and fully
annotated with 128,801 vehicles. It enables the application of deep
learning approaches in this field and provides a new perspective
to augment data from GTA-V. Three tasks are developed based on
TMS, including tiny object detection, vehicle counting and density
estimation. Several classic and popular approaches are tested. The
results have demonstrated the challenges and superiority of TMS.
The TMS dataset, annotation tools and developed tasks provide
insights for traffic monitoring from satellite.

Based on the results derived from both quantitative and
qualitative analysis, we have discerned captivating patterns and
unveiled new challenges that demand consideration within the task
of vehicle perception from satellite.

1) How to compensate for the performance variance of differ-
ent regions? The satellite videos captured over different cities are
quite different, which may cause interference to the generality of
trained models and their performance vary largely. To address this
problem, researchers can place particular emphasis on addressing
the challenge of vehicle perception from satellite videos through
domain adaptation. Furthermore, they can delve deeper into the
extraction of more effective domain-invariant features from the
interplay between synthetic data and real-world data.

2) How to introduce visual foundation models to this task?
Recently, several visual foundation models are proposed, such as

SAM [57], Dino [44], GPT-4V 9. They exceed the performance of
visual perception and outperform traditional and deep learning
methods significantly, which lead the datacentric research in
computer vision. Researchers are encouraged to employ or tune
these foundation models to the tasks of vehicle perception from
satellite.

3) How to effectively address the satellite’s view displacement
issue? As mentioned in the paper, VHR videos are captured
by low Earth orbit satellites. The satellite’s perspective is non-
stationary, allowing only a brief gaze upon the city. This renders
effective vehicle tracking unfeasible. In this context, the paper
did not embark on vehicle tracking tasks. Future researchers may
employ techniques such as image stitching and image alignment
to integrate data from multiple orbits into a coherent and real-
time traffic monitoring system, enabling continuous surveillance
of traffic within satellite videos.
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