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Abstract—Masked image modeling (MIM) has achieved promising results on various vision tasks. However, the limited discriminability
of learned representation manifests there is still plenty to go for making a stronger vision learner. Towards this goal, we propose
Contrastive Masked Autoencoders (CMAE), a new self-supervised pre-training method for learning more comprehensive and capable
vision representations. By elaboratively unifying contrastive learning (CL) and masked image model (MIM) through novel designs, CMAE
leverages their respective advantages and learns representations with both strong instance discriminability and local perceptibility.
Specifically, CMAE consists of two branches where the online branch is an asymmetric encoder-decoder and the momentum branch
is a momentum updated encoder. During training, the online encoder reconstructs original images from latent representations of
masked images to learn holistic features. The momentum encoder, fed with the full images, enhances the feature discriminability via
contrastive learning with its online counterpart. To make CL compatible with MIM, CMAE introduces two new components, i.e. pixel
shifting for generating plausible positive views and feature decoder for complementing features of contrastive pairs. Thanks to these novel
designs, CMAE effectively improves the representation quality and transfer performance over its MIM counterpart. CMAE achieves the
state-of-the-art performance on highly competitive benchmarks of image classification, semantic segmentation and object detection.
Notably, CMAE-Base achieves 85.3% top-1 accuracy on ImageNet and 52.5% mloU on ADE20k, surpassing previous best results by

0.7% and 1.8% respectively. The source code is publicly accessible at hitps://github.com/ZhichengHuang/CMAE.

Index Terms—Masked image modeling, constrastive learning, self-supervised learning.

1 INTRODUCTION

ASKED image modeling (MIM) [23, 30, 56] has been
M attracting increasing attention recently in the self-
supervised learning field, due to its method simplicity
and capability of learning rich and holistic representations.
Following the idea of masked language modeling in NLP [19],
they randomly mask a large portion of the training image
patches and use an auto-encoder [31] to reconstruct the origi-
nal signals (e.g., raw pixels, offline extracted features) of the
masked patches. It has been shown in [23, 30, 56] that such
a simple framework outperforms previous self-supervised
learning methods in both ImageNet classification [18] and
some downstream tasks, like object detection and semantic
segmentation.

When we reflect on the success of MIM, it is inevitable
to compare it with another well-proven and prevailing SSL
method, i.e. contrastive learning (CL) [2, 42]. By adopting a
simple discriminative idea that pulling closer representations
from the same image and pushing away different images, CL
methods naturally endow the pretained model with strong in-
stance discriminability. In contrast to CL, MIM focuses more
on learning local relations in input image for fulfilling the
reconstruction task, instead of modeling the relation among
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different images [35]. Therefore, it is suspected that MIM is
less efficient in learning discriminative representations. This
issue has been manifested by experimental results in [30, 56].
Based on above analysis, it is thus natural to ask such a ques-
tion: can we leverage contrastive learning to further strengthen
the representation learned by MIM methods? or, in other words,
would MIM methods benefit from contrastive learning? Along
this direction, a few contemporary works attempt to train
vision representation models [46, 65] by simply combining
contrastive learning and MIM learning objectives. But they
only show marginal performance gain compared to MIM
methods. These results signify that it is non-trivial to fully
leverage the advantages of both frameworks. The challenges
are ascribed to various distinctions between them, including
input augmentations, training objectives, model architectures,
etc.

To overcome the challenges and learn better image
representations for downstream tasks, we aim to explore
a possible way to boost the MIM with contrastive learning in
a unified framework. With a series of careful studies, we find
that input view augmentation and latent feature alignment
play important roles in harmonizing MIM and contrastive
learning. We thus put dedicated efforts to these components
to develop our method.

An overview of the proposed method is shown in Figure 1.
More specifically, our method introduces a contrastive MAE
(CMAE) framework for representation learning. It adopts a
siamese architecture [5]. One branch is an online updated
asymmetric encoder-decoder that learns latent represen-
tations to reconstruct masked images from a few visible
patches, similar to MAE. The other branch is a momentum
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Fig. 1: Overview of CMAE. CMAE improves over its MIM
counterpart by leveraging contrastive learning through novel
designs. To make contrastive learning compatible with MIM,
we propose a feature decoder to complement the masked
features and a weakly spatial shifting augmentation method
for generating plausible contrastive views.

encoder that provides contrastive learning supervision. To
leverage the contrastive learning to improve the feature
quality of encoder output, we introduce an auxiliary feature
decoder into the online branch, whose output features are
used for contrastive learning with the momentum encoder
outputs.

We carefully design each CMAE component to enable
contrastive learning to benefit the MIM. Different from online
encoder whose inputs only contain the visible patches, the
CMAE momentum encoder is fed with the full set of image
patches. This design ensures semantic integrity of its output
features to guide the online encoder. Another notable design
choice is: our method uses two decoders, one is to predict
the image pixel and perform the MIM task; and another is to
recover the features of masked tokens. Since the semantics of
each patch are incomplete and ambiguous, it is problematic
to use the features of patches directly for contrastive learning.
Using an auxiliary feature decoder can address this issue
and thus benefit the latent representation learning within the
online branch. Moreover, different from existing methods
that use strong spatial data augmentations for inputs, we
propose a pixel shifting augmentation method for generating
more plausible positive views in contrastive learning. Such a
simple augmentation is proven effective for improving MIM
with contrastive learning. With the above novel designs,
the online encoder of our CMAE method can learn more
discriminative features of holistic information and achieve
state-of-the-art performance on various pre-training and
transfer learning vision tasks.

Our contributions are summarized as follows. 1) We pro-
pose a new CMAE method to explore how to improve the rep-
resentation of MIM by using contrastive learning. Its learned
representations not only preserve the local context sensitive
features but also model the instance discriminativeness
among different images. 2) To impose contrastive learning
upon MIM, we propose a feature decoder to complement the
masked features and a weakly spatial shifting augmentation
method for generating plausible contrastive views, both
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Fig. 2: Comparisons with previous state-of-the-art MIM methods
on ImageNet-1K in terms of top-1 accuracy at different pre-
training epochs.

of which are effective in improving the encoder feature
quality. 3) As shown in Figure 2, our method significantly
improves the learned representation of MIM and sets new
state-of-the-art performance. Notably, compared with prior
arts, CMAE achieves absolute gains of 0.7% on ImageNet-
1k classification validation split, 1.8% mlIoU on ADE20K
semantic segmentation validation dataset and 0.4% AP® and
0.5% AP™ on CoCo validation split.

2 RELATED WORK

Self-supervised learning is attracting increasing attention in
computer vision. A bunch of methods have been proposed to
advance this technique from different perspectives [4, 12, 22,
26, 30, 42, 60, 65]. Broadly speaking, these methods can be
categorized into two groups depending on their employed
pretext tasks, i.e., contrastive learning [27, 29, 32] and mask
image modeling [3, 30, 56].

Contrastive learning aims to learn instance discriminative
representations to distinguish an image from the others.
This is achieved by pulling together the representation of
different views of an individual image and pushing away the
other images. Thus most contrastive methods adopt siamese
network [13, 26, 29]. To create different view for the same
image, a plentiful of methods have been deployed [12, 42, 47].
Among these methods, data augmentations are most com-
monly in contrastive learning and investigated in Sim-
CLR. [12]. In practice, contrastive methods rely heavily on a
large number of negative samples [12, 29, 47, 53]. To better
utilize negative samples, MoCo [29] uses a large queue to
cache negative examples in memory such that it can take in
more negative examples for contrastive learning. BYOL [26]
uses an online encoder to predict the output of a momentum
encoder, where the momentum encoder is key to avoiding
training collapse. To simplify BYOL, SimSiam [13] proposes
the stop-gradient technique to replace the momentum updat-
ing. Besides, there are some methods to solve this issue from
different views [7, 8, 9, 60]. SWAV [9] proposed an online
clustering method and adopted the Sinkhorn-Knopp [16]
transform to assist the clustering for each batch. Barlow
Twins [60] adopts the cross-correlation matrix to constrain
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Fig. 3: Overall pipeline. Our method contains three components: the online encoder, momentum encoder, and online decoder.
Given a training image, it applies pixel shifting to generate different views, which are then fed into the online and momentum
encoders respectively. The online encoder randomly masks a fraction of the image patches and operates on the visible ones. The
momentum encoder operates on the whole view after pixel shifting. The pixel decoder learns to reconstruct the input image from
the image tokens (along with MASK tokens) provided by the online encoder, while the feature decoder learns to predict the features
of the input image for contrastive learning with the momentum encoder output features. During pre-training, the parameters of the
momentum encoder and projection head are updated using an exponential moving average algorithm. After the pre-training, only

the online encoder is kept for downstream applications.

the network to void training collapse. Recently, MoCo-v3 [14]
and DINO [10] are proposed to extend MoCo [29] and
BYOL [26] respectively by using Vision Transformer (ViT)
as their model backbones. Although contrastive learning
methods provide discriminative vision representations, most
of them focus on learning global representations while
lacking spatial-sensitive representation.

Mask image modeling [3, 11, 21] is inspired by the success
of Masked Language Modeling in NLP [19, 43] and learns
vision representation by constructing the original signal
from partial observations. Based on the reconstruction target,
these methods can be devided into: pixel-domain recon-
struction [22, 30, 38, 50, 56] and auxiliary features/tokens
prediction [3, 15, 20]. SImMIM [56] and MAE [30] pro-
pose to reconstruct the raw pixel values from either the
full set of image patches (SImMIM) or partially observed
patches (MAE) to reconstruct the raw image. Compared
with SimMIM, MAE is more pre-training efficient because of
masking out a large portion of input patches. To learn more
semantic features, MaskFeat [50] introduces the low-level
local features (HOG [17]) as the reconstruction target, and
Ge?-AE adopts the MIM task in frequency domain [38], while
CIM [22] opts for more complex input.

Several methods adopt an extra model to generate the
target to pre-train the encoder. For instance, BEiT [3] uses
the discretized tokens from an offline tokenizer [44] to
train the encoder. PeCo [20] instead uses an offline visual
vocabulary to guide the encoder. Differently, CAE [15] uses
both the online target and offline network to guide the
training of encoder. Furthermore, iBOT [65] introduces an
online tokenizer to produce the target to distill the encoder.
MVP [51] adopts a structure identical to BEiT [3] and replaces

the tokenizer (e.g. d-VAE in BEiT [3]) with the vision branch
of a multimodal model like CLIP that is pre-trained on image-
text pairs. Similarly, SIM adopts the siamese network to
reconstruct the representations of tokens, based on another
masked view [46]. MSN [1] matches the representation
of masked image to that of original image using a set of
learnable prototypes.

Despite MIM models exhibiting favorable optimization
properties [52] and delivering promising performance, their
focus is on learning relationships among the tokens in the
input image, rather than modeling the relation among differ-
ent images as in contrastive learning, which results in less
discriminative learned representations. Our method diverges
from existing works by proposing innovative designs to fully
leverage the advantages of MIM and contrastive learning,
thereby providing local context-sensitive representations
with the desired discriminativeness for input images.

3 METHOD
3.1

The overall framework of our method is illustrated in
Figure 3 that consists of three components. The online encoder
and decoder learn to reconstruct input images from masked
observations. Different from existing MIM methods (e.g.,
MAE [30] and SimMIM [56]), our method further processes
the input image via a spatially shifted cropping operation.
More importantly, our decoder incorporates an additional
feature decoder for predicting the input image features. The
momentum encoder transforms the augmented view of the
input image into a feature embedding for contrastive learning
with the predicted one from the online feature decoder. In

Framework
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this way, the learned representations by the online encoder
capture not only holistic features of the input images but also
discriminative features, thus achieving better generalization
performance. We now elaborate on these components in
detail.

Let us denote the input image I to the online encoder
as being tokenized into a sequence of [V image patch tokens
{23} |, where N is the total number of image patches.
For the masked version of I, the set of visible tokens
is represented as {z"}. Similarly, the input image I; is
tokenized into a sequence of image patch tokens {} ;-V:l to
serve as the input to the momentum encoder.

Online encoder. The online encoder F; maps the visible
tokens z? to embedding features z{. Given the token se-
quence {x$}Y ,, we mask out a large ratio of patches and
feed the visited patches to the online encoder. The online
encoder adopts the Vision Transformer (ViT) architecture [21],
following MAE [30]. It first embeds the visible tokens x?
by linear projection as token embeddings, and adds the
positional embeddings [49] pY. We feed the fused embedding
to a sequence of transformer blocks, and get the embedding
features z7.

20 = Fu(al +pY) M

After pre-training, the online encoder F; is used for extract-
ing image representations in downstream tasks.
Momentum encoder. The momentum encoder is introduced
for providing contrastive supervision for the online encoder
to learn discriminative representations. Different from exist-
ing siamese-based methods [10, 65], our momentum encoder
Fi only serves for contrastive learning, as well as guiding
the online encoder to learn more discriminative features.
It shares the same architecture as the online encoder Fj,
but takes the whole image as input, in order to reserve
the semantic integrity and the discriminativeness of the
learned representations. Using the whole image as input
to the momentum encoder is important for the method
performance, which is experimentally verified in Section 4.4.
Unlike tokens in NLP, whose semantic are almost certain,
image token is ambiguous in its semantic meaning [65].
To avoid ambiguity, we adopt global representations for
contrastive learning. The mean-pooled feature of momentum
encoder is used for its simplicity, i.e.

t 1 & t
2t = szt(%)v )
j=1

where 2% is the input token for momentum encoder, 2} is

the output sequence of momentum encoder and z' is the
feature obtained after performing mean pooling operation
on the output sequence zﬁ, which is used to represent the
input image.

Different from the online encoder, we update parameters
of the momentum encoder by exponential moving average
(EMA). That is, denoting the parameters of F; and F; as
05 and 6, respectively, the parameters are updated by 6; <
1B+ (1—p)8s. Here p is fixed as 0.996 across the experiments.
Momentum update is used since it stabilizes the training by
fostering smooth feature changes, as found in MoCo [29] and
BYOL [26].

Online decoder. The decoder aims to map the latent features
zJ and MASK token features to the feature space of the

4

momentum encoder and the original images. Specifically,
the decoder receives both the encoded visible tokens z; and
MASK tokens z".

Similar to MAE [30], position embeddings are added to
input tokens. Due to different mapping targets, our online
decoder has two branches of decoder structure, one is a pixel
decoder, and another is a feature decoder. The pixel decoder
G, learns to reconstruct the pixel of the masked patches. We
use the full set of tokens, which contains both z¢ and z7*, to
predict the pixel of patches y™. This module can promote
the model to learn holistic representation for each patch in
an image. We set the pixel decoder to be stacked transformer
blocks:

yﬁnzﬂgp(zg,z;”), 3)

where I is an indicator to only select the prediction corre-
sponding to masked tokens from output sequence y?, and
yn, is the output prediction for the masked patches.

To align with the output of the momentum encoder,
feature decoder G is applied to recover the feature of masked
tokens. The feature decoder has the same structure as the
pixel decoder but non-shared parameters for serving a differ-
ent learning target. The prominence of such design choices
will be discussed in the architecture part in Section 3.4. Given
the encoded visible tokens 2, we add the masked tokens 2"
and use this full set to predict the feature of masked tokens.
Similar as done in momentum encoder, we apply the mean
pooling operation on the output of feature decoder y/ as the
whole image representation y,, and then use this feature for
contrastive learning.

1
ve =~ D Gp( 200, 4)

where N is the total number of tokens in the full set.

3.2 View augmentations

Typically, masking image modeling pre-training tasks only
utilizes a single view of the input image, which only contains
visited patches. But contrastive learning often adopts two
different augmented views. To make MIM and contrastive
learning be compatible with each other, our method also
generates two different views and feeds them to its online
and momentum branches, respectively.

In contrastive learning, the most commonly used view
augmentations can be divided into two types: spatial trans-
fer (e.g., random resized cropping, flipping) and color
transfer (e.g., color jittering and random grayscaling). For
MIM tasks, color enhancements degrade the results [30], so
we do not apply them to the input of the online branch.
Spatial and color data augmentations are applied to the
momentum branch input to avoid a trivial solution.

We first consider two branches using two different
random crops, following the common practice in contrastive
learning. However, we observe this recipe has an adverse
effect on model performance (refer to Section 4.4). We
conjecture that this issue is related with the large disparity
between the inputs of online/momentum encoders when
randomly cropped regions are far apart or scarcely semantic-
relevant. Different with using intact paired views in usual
contrastive methods, the operation of masking out a large
portion of input in MIM may amplify such disparity and
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Training objective Input Architecture
- - - - - - Accuracy
reconstruct  intra-view  inter-image | positive view feature separate
loss match contrast alignment complement  encoder/decoder
MSN [1] X v X X X X 83.4
ExtreMA [54] X v X v X X 83.7
MAE [30] v X X N.A. N.A. v 83.6
CAE [15] v X X X X v 83.9
iBot [65] v v X X X X 84.0
SIM [46] v v v X X v 83.8
CMAE | v v v | v | v v | 847

TABLE 1: Comparison of CMAE with previous methods on training objective, input generation and architecture. The top-1 accuracy
on ImageNet is also presented. Please refer to Section 3.4 for more detailed explanations.

therefore creates false positive views. Consequently, per-
forming contrastive learning on these misaligned positive
pairs actually incurs noise and hampers the learning of
discriminative and meaningful representations.

To address the above issue, we propose a weakly aug-
mentation method named pixel shifting for generating the
inputs of online/momentum encoders. The core idea is first
to obtain a master image by a resized random cropping
from the original image. Then two branches share the same
master image and generate respective views by slightly
shifting cropping locations over the master image. In more
details, we denote the master image as I. The shape of
Iis (w+ p,h + p,3), where w, h is the width and height
of target input size for our model and p is the longest
shifting range allowed. For online branch, we use the region
of [0 : w,0 : h,:] as our input image I,. For momentum
branch, we use the region of [ry, : 7y + w, T = T + b,
as our input image I;. 7, and 1}, are independent random
values in the range of [0,p). Subsequently, we only apply
masking operation without color augmentation for the input
of online encoder I;, which is consistent with MAE. For
the momentum encoder’s input image, we utilize color
augmentation but do not apply masking operation. The
distinct augmentations for each encoder input generate
different views of the same image to facilitate contrastive
learning between the online and momentum encoders.

3.3 Training Objective

Reconstruction loss. Following [30], we use the normalized
pixel as target in the reconstruction task. We adopt the Mean
Squared Error (MSE) as loss function and compute the loss
only on masked patches between the pixel decoder prediction
and the original image. The math formulation is

1
LT‘ - Ni Z(y;n - ym)27 (5)

where IV, is the number of masked patches in an image, and
L, is the loss value.

Contrastive loss. For clarity, we describe the contrastive
loss design of our method from two aspects: loss function
and head structure. Two widely used loss functions are
taken into consideration, i.e. InfoNCE [12, 29] loss and
BYOL-style [10, 26] loss. The former seeks to simultaneously
pull close positive views from the same sample and push
away negative samples while the latter only maximizes the
similarity between positive views. Although some recent

works find they may be inherently unified [45], we still
analyze them separately due to their diverse effects on
representation learning. In our method, we observe better
performance using InfoNCE [42] so we use it defaultly.
Details are referred to Section 4.4. For the head structure,
we adopt the widely used "projection-prediction” structure
following [14, 26]. Specifically, we append the "projection-
prediction” and "projection" head to feature decoder and
momentum encoder respectively. The projection head H;
with momentum encoder is also updated by exponential
moving average. Due to the large differences on generating
inputs for online/momentum encoder (refer to Section 3.2),
we use asymmetric contrastive loss, which is distinguished
from previous methods [14, 26]. The representation from fea-
ture decoder y; is transformed by the "projection-prediction”
structure to get y?. Similarly for the representation from
momentum encoder z¢, we apply the projection head and get
z; . We then compute the cosine similarity p between them:

yb - 2}
p= I (6)
9811, 112 1l

We denote p™ as the positive pairs cosine similarity, which is
constructed by y? and 2{ from the same image. p; indicates
the cosine similarity for the j-th negative pair. We use the z
from different images in a batch to construct negative pairs.
The loss function of InfoNCE loss is

+

exp(p™ /T

og——— R0 )
exp(p™/7) + 3252 (exp(p; /7))

where 7 is the temperature constant, which is set to 0.07. K

is the batch size.

The overall learning target is a weighted combination of
reconstruction loss L, and contrastive loss L. defined as:

L =1L, +\Le. 8)

L.=-

3.4 Connections and analysis

To elucidate the correlations and distinctions between the
CMAE and preceding methodologies, we undertake com-
parative assessments from various perspectives such as
training objective, input, and architecture. The outcomes
are demonstrated in Table 1. Our primary focus is on
methodologies that utilize either contrastive information in
MIM or masked image input. Approaches that solely employ
MIM or contrastive learning are not within the purview
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Method Pre-training epochs ~ Params.(M) Supervision Accuracy
MoCo-v3 [14] 300 86 RGB 83.2
DINO [10] 300 86 RGB 82.8
CIM [22] 300 86 RGB 83.3
BEIT [3] 800 86 DALLE 83.2
SimMIM [56] 800 86 RGB 83.8
PeCo [20] 800 86 Perceptual Codebook 84.5
MaskFeat [50] 1600 86 HOG 84.0
CAE [15] 1600 86 DALLE+RGB 83.9
iBOT [65] 1600 86 RGB 84.0
SIM [46] 1600 86 RGB 83.8
MAE [30] 1600 86 RGB 83.6
CMAE (ours) 800 86 RGB 84.4
CMAE (ours) 1600 86 RGB 84.7
ConvMAE' [23] 800 86 RGB 84.6
ConvMAE' [23] 1600 86 RGB 84.6
CMAE’ (ours) 800 86 RGB 85.0
CMAE (ours) 1600 86 RGB 85.3

TABLE 2: Comparison of our model with existing methods on ViT-B. We evaluate them with the top-1 accuracy on ImageNet. The
symbol of  throughout experiments denotes using convolutions instead of linear transformation as the tokenizer for visual patches.

of this discussion, as they are evidently distinct from our
method.

Training objective. The CMAE leverages both the recon-
struction loss and contrastive loss during optimization. As
inferred from Eq. (7), the contrastive loss in CMAE encom-
passes both intra-view matching and inter-image contrast.
Consequently, the generated representations are encouraged
to exhibit desirable characteristics of instance discrimination
and spatial sensitivity. In contrast, methodologies such as
MSN [1] and ExtreMA [54], which have divergent motiva-
tions from ours, disregard reconstruction loss and employ
masked input for regularization or data augmentation pur-
poses. iBot [65] exclusively adopts a distillation loss between
positive views by maximizing intra-view matching scores,
overlooking contrastive learning with negative samples.
Additionally, CMAE only adopts an asymmetric loss for
contrastive learning, which is less computationally expensive
than iBot. Although SIM [46] also utilizes both losses, it
differs from CMAE in terms of the reconstruction target.
While CMAE restores the masked content of the same view,
SIM reconstructs the features of another view. Our empirical
results demonstrate that CMAE is not just simpler but also
more effective in representation learning, as evidenced by
superior performance.

Input. The majority of prior contrastive learning meth-
ods [12, 29] implement robust augmentation techniques (e.g.,
random crop, random scale) to generate positive views from
the same image. These operations are also commonly used in
contrastive learning models under the masked image mod-
eling scenario, such as the iBot. However, considering that
the masking operation, which utilizes a large masking ratio
(e.g. 75% in [30]), already significantly degrades the input,
applying these augmentations further could generate invalid
positive views, thereby hindering contrastive learning. In
contrast, we propose a novel, moderate data augmentation
operation called pixel shifting for achieving better alignment
between positive views. Compared to ExtreMA [54], which
employs the exact same view in two siamese branches, pixel
shifting introduces a moderate input variance, which proves

beneficial for contrastive learning (refer to Table 4a).
Architecture. In CMAE, a lightweight feature decoder is
appended after the online encoder to supplement the masked
features. This is a notable distinction from other methods,
such as SIM and iBot, which directly utilize the representa-
tions of the visible patches to match that of the unmasked
view. We contend that conducting contrastive learning
between the features of the masked parts and the input
images is impractical, considering they exhibit different levels
of abstraction and semantic coverage. The feature decoder
is anticipated to facilitate optimization by diminishing the
distribution gap between contrastive features. The efficacy
of the feature decoder is empirically validated, as shown
in Table 4c. Notably, the design of CMAE is non-intrusive,
allowing for its straightforward application to existing MIM
models, such as MAE and ConvMAE, without necessitating
significant modifications to the MIM model.

4 EXPERIMENTS
4.1

Pre-training. We follow the settings of MAE [30] to pre-train
our model. We adopt AdamW [40] optimizer as default,
and the momentum is set to 81 = 0.9, 82 = 0.95. Besides,
the weight decay is set to 0.05. We use the linear scaling
rule [25]: Ir = base_lr x batch_size/256 to set the learning
rate. The base learning rate is 1.5 x 10™* with a batch size
of 4096. Cosine learning rate schedule [39] with a warmup
of 40 epochs is adopted. All pre-training experiments are
conducted on 32 NVIDIA A100 GPUs.

Encoder Structure. We use the ViT [21] base model as
our default setting. To further validate the extensibility of
our proposed model, we replace the ViT with a hybrid
convolutional ViT which is also used by ConvMAE [23].
In the hybrid ViT, a multi-layer convolutional network [34]
is used as token projection. Note the hybrid ViT is made
to have the same model size as the ViT counterpart for fair
comparison. We also experiment with scaled up encoders for
evaluating the scalability of our method.

Implementation Details
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Method Pre-Epochs ~ mloU Method Pre-Epochs APPo” AP™esk
MoCo-v3 [14] 300 47.3 MoCo-v3 [14] 300 479 427
DINO [10] 400 47.2 BEIT [3] 800 49.8 444
BEiT [3] 800 471 CAE [15] 1600 50.0 44.0
CIM [22] 300 43.5 iBOT? [65] 1600 51.2 442
CAE [15] 1600 50.2 PeCo [20] 800 449 404
iBOT [65] 1600 50.0 SIM [46] 1600 49.1 43.8
PeCo [20] 800 48.5 MAE' [30] 1600 51.7 459
MAE [30] 1600 48.1 MAE [30] 1600 50.3 449
CMAE 1600 51.0 CMAE 1600 52.4 46.5
ConvMAE' [23] 1600 50.7 ConvMAE' [23] 1600 52.5 46.5
CMAE' 1600 52.5 CMAE' 1600 52.9 47.0

(a) Semantic segmentation results on ADE20K. We use (b) COCO object detection and segmentation. We use the Mask R-CNN model [28]

UperNet [55] as our default segmentation framework.

as our framework. ¥ means using Cascade Mask R-CNN [6].

TABLE 3: Performance comparison on downstream tasks, including semantic segmentation and object detection. The symbol of *
denotes using convolutions to embed visual patches. T denotes reproduced results of ours.

Setting | Accuracy Rand crop Pixel shift Color Aug. |  Accuracy
Baseline [30] 82.9 X X X 82.9
+ Contrastive learning 83.1 v X X 83.0
+ Pixel shifting aug. 83.6 X v X 83.4
+ Feature decoder 83.8 X v v 83.8
(a) Component analysis. (b) Data augmentation analysis.
#Blocks | Share weight Accuracy Loss weight | Accuracy Masking ratio | Accuracy

0 X 83.6 0.1 83.3 0 83.8

2 X 83.8 0.5 83.7 0.25 83.6

2 v 83.4 1.0 83.8 0.5 83.3

4 X 83.8 15 83.5 0.65 83.3

4 v/ 83.5 2.0 83.2 0.75 83.0

(c) Feature decoder analysis.

(d) Contrastive loss weight.

(e) Momentum encoder masking ratio.

TABLE 4: Ablations. We evaluate all models on ImageNet-1k with their top-1 classification accuracies. Each model is pre-trained for

300 epochs.

4.2 Results on ImageNet

Following existing works [3, 14, 30, 56], we use ImageNet-
1K [18] which consists of 1.3M images of 1k categories as the
pre-training and fine-tuning dataset. The dataset contains
two subsets: the training set and the validation set. We only
use the training set to pre-train CMAE. After pre-training, the
CMAE online encoder is used for fine-tuning on ImageNet-
1k training set for 100 epochs. For the model pre-trained
with 300 epochs, we adopt 5.~ as the base learning rate
in fine-tuning. Since the longer pre-training schedule (1600
epochs) makes the model learn better initialization weights
for fine-tuning [57], we set a smaller base learning rate of
2.5¢ 4. Besides, we follow the common fine-tuning practices
to regularize the model using mixup [61], cutmix [59], drop
path [33], etc.

In Table 2, we compare CMAE with competing methods
on the fine-tuning classification accuracy on ImageNet.
CMAE achieves a top-1 accuracy of 84.7%, which is 1.1%
higher than MAE [30]. Among all models using ViT archi-
tecture, CMAE achieves the best performance. Compared
with contrastive learning based methods Moco-v3 [14] and
DINO [10], our model can significantly outperform them

by 1.5% and 1.9% respectively. Compared with iBOT and
SIM which also use contrastive objective in MIM, our CMAE
achieves higher performance with a gain of 0.7% and 0.8%,
respectively. Above results strongly evidence the superiority
of CMAE.

When we replace the vanilla ViT encoder with a hybrid
convolutional ViT, as done in ConvMAE [23], CMAE further
improves to 85.0% and 85.3% with the pre-training of
800 epochs and 1600 epochs, respectively. These results
surpass those of ConvMAE under the same pre-training
setting by 0.4% and 0.7% respectively, verifying the excellent
extendibility of CMAE to various network structures.

Remarkably, CMAE can gain a noticeable improvement
with a prolonged training schedule (from 800 epochs to
1600 epochs) while ConvMAE is observed to saturate at 800
epochs. This result suggests the stronger capability of CMAE
on learning better representations.

4.3 Transfer Learning

To further validate the transferability of CMAE, we follow
previous methods to evaluate pre-trained models on the
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Method | iNat2017 | iNat2018 | iNat2019 | Places365

MAE 70.5 754 80.5 57.9
CMAE 72.2 76.4 82.2 58.9

TABLE 5: Transfer learning accuracy on classification datasets.

semantic segmentation dataset ADE20K [64], the object
detection dataset COCO2017 [37] and classification datasets.
Semantic segmentation. ADE20K [64] has 25,562 images
of 150 fine-grained categories. We adopt Upernet [55] as
the default model for this task, following the settings of
compared methods. The backbone ViT-B is initialized from
pre-training while other modules are initialized with the
Xavier [24] initialization. The model is fine-tuned on the
training set of ADE20K and tested on standard validation
split.

Following previous works, we report the Mean Intersec-

tion over Union (mloU) performance of CMAE in Table 3a.
We notice that CMAE significantly surpasses MAE by 2.9%,
which verifies the stronger transferability of CMAE. Besides,
CMAE also improve by 1.0% and 0.8% compared with
iBOT [65] and CAE [15] respectively. With the same hybrid
ViT backbone, CMAE significantly outperforms ConvMAE
by 1.8%. Remarkably, CMAE sets a new state-of-the-art result
of 52.5 by surpassing all competing methods with a large
margin.
Object Detection and Segmentation. We adopt the widely
used object detection and instance segmentation framework
Mask-RCNN [28, 36] for benchmarking on this task. ViT-B
is used as the backbone and initialized with our pre-trained
model. Following MAE, we fine-tune the model on COCO
train2017 split, and report box AP for object detection and
mask AP for instance segmentation on val2017 split. We
fine-tune the model for 100 epochs. The base learning rate
is 1.e~* with a cosine annealing schedule, and the weight
decay is set to 0.1.

The comparison results with other self-supervised learn-

ing methods are shown in Table 3b. As one can see, CMAE
improves over MAE from 51.7 to 52.4 on AP" and from
45.9 to 46.5 on AP™. With the hybrid ViT structure, CMAE
consistently surpasses the competing method ConvMAE:
APP increases from 52.5 to 52.9 and AP™ increases from
46.5 to 47.0. Above promising results again verify the
effectiveness of our method.
Classification tasks. To further study transfer learning on
classification tasks, we validate our model on the iNatu-
ralists [48] and Places [63] in Table 5. Experiments across
four classification tasks on these datasets showed consistent
improvements of 1.0% to 1.7% in top-1 accuracy over the
MAE [30]. These results provide further evidence for the
efficacy of our method in enhancing the discriminative
capabilities of pretaining model.

4.4 Method Analysis

To understand the effects of key components and validate
design choices we adopt in CMAE, we conduct a series of
ablation experiments. Unless otherwise stated, we report the
performance of our model with 300 pre-training epochs in
this subsection. The ablative results are listed in Table 4. In

8

the following, we verify the effectiveness of our main design
ideas, then conduct ablation experiments for each component
separately.

Ablation of components. In Table 4a, we show how each
component, i.e. contrastive learning, pixel shifting data
augmentation and feature decoder affects model’s perfor-
mance. We start with a vanilla implementation of contrastive
learning on MAE. Specifically, following the input generation
approach in contrastive methods, random cropped regions
with masking are fed into online/momentum encoder. The
same contrastive objective as introduced in Section 3.3
are optimized between the output of online encoder and
momentum encoder. As can be seen from Table 4a, such
an intuitive approach only leads to marginal improvement
(0.2%). Apparently, the power of contrastive learning is not
fully unleashed due to ignoring its compatibility with MIM.
By using the proposed moderate data augmentation, i.e. pixel
shifting, the result can increase from 83.1% to 83.6%, which
evidences the advantage of pixel shifting. Moreover, applying
feature decoder further boosts the model’s learning capability
by improving the performance to 83.8%, demonstrating its
effectiveness in our method.

Contrastive loss. To explore the effect of contrastive loss
in CMAE, we experiment with various loss weights, i.e. .
in Eq. (8). The results are shown in Table 4d. Note CMAE
degenerates to the baseline MAE when loss weight is 0. When
increasing the weights from 0 to 1, the model’s performance
increases accordingly, which verifies the importance of
contrastive learning on enhancing the learned representa-
tions. When the weight of contrast learning is greater than
that of MIM, we observe the phenomenon of imbalanced
training occurs which adversely affects the final performance.
This experiment demonstrates that both contrastive loss
and reconstructive loss are critical for learning capable
representations. We therefore set A\, = 1 throughout our
experiments.

We also conduct controlled experiments with different

contrastive loss forms to compare their influences on pre-
training. Under the same configuration, we observe that
the model trained with InfoNCE loss achieves higher per-
formance than BYOL-style loss (83.8% vs. 83.4%). This
result suggests that the way of utilizing negative samples in
InfoNCE is more effective in our method.
Pixel shifting augmentation. In this section, we ablate on the
importance of data augmentations. In contrast to the common
practices of applying heavy data augmentation in contrastive
learning, we find a moderate data augmentation is more
effective in aligning contrastive learning and MIM. We divide
data augmentation methods into two kinds: spatial transfer
and color transfer, and evaluate their effect respectively. For
spatial transfer, we compare our proposed pixel shifting with
the commonly used randomly resized cropping. For color
transfer, we compare two cases, i.e. with or without using
color jittering for the momentum branch.

As can be seen from Table 4b, pixel shifting significantly
surpasses random crop (83.4% vs. 83.0%). The superiority of
pixel shifting should be attributed to its ability of generating
more plausible positive views. As introduced in Section 3.2,
this property helps contrastive learning better collaborate
with MIM in our framework. By using color transfer, the
result further improves to 83.8%, suggesting color transfer is
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Fig. 4: Performance comparison on ImageNet-1k with partial fine-tuning and model scaling. In partial fine-tuning, we adopt the
model weights pre-trained with 1600 epochs. In model scaling experiments, all models are pre-trained with 1600 epochs.

0-15 031 0-47
83.68 8378 83.82 8371

0-63 32-47 48-63
83.64 83.54 8348

Shift value ‘ random crop 0
83.29

Accuracy ‘

TABLE 6: Impact of varying pixel shift ranges on the ImageNet-
1k classification task. “Random crop” serves as the baseline
method for comparison against our proposed pixel shift ap-
proach.

complementary to our method.

We investigate the impact of different pixel shift ranges

by varying the maximum allowable shift. Intuitively, larger
shift ranges introduce greater misalignment between the
two augmented views. As evident in Table 6, excessive
shifts severely degrade model performance, conforming
to our hypothesis that severely misaligned positive pairs
introduce noise detrimental to contrastive learning. The
results demonstrate an optimal balance exists between view
diversity and alignment. Based on the observed performance
across different shift ranges, we select a maximum pixel shift
of 31 as the default parameter setting to maximize contrastive
learning while preserving sufficient alignment.
Feature decoder. Different from existing works, we introduce
a feature decoder to recover the features of masked patches
when performing contrastive learning. To investigate its
effectiveness, we present experiments under following two
settings: sharing the weight between feature decoder and
pixel decoder or not, and changing the depth of feature
decoder.

In Table 4c, number “0” means not using feature decoder,
i.e. the output of the online encoder which contains only
the features of visible tokens is used for contrastive learning.
Under this setting, our method performs worse than using a
lightweight two-layer feature decoder. When increasing the
depth of feature decoder, there is no significant impact on
performance. However, when the depth increases to 8, we
obtain a trivial solution, possibly due to the optimization
difficulty caused by deeper structure. To strike a balance
between efficiency and effectiveness, we set the depth to be 2.
Besides, when the feature decoder shares the weight with the
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Fig. 5: Convergence speed compared with MAE. All models are
pre-trained with 1600 epochs.

pixel decoder, the method performs the worst. A plausible
explanation is that the two branches have different targets,
thus should adopt independent weights.

Masking ratio for the momentum branch. In this experiment,
we investigate whether masking a portion of image patches
for the momentum branch affects the model performance.
Following previous works, we select a set of masking ratios,
including {0, 0.25,0.5,0.65,0.75} for the momentum branch
and see how the performance changes. As shown in Table 4e,
one can observe that using the complete set of the image
tokens yields the best results. A possible reason is that: since
the aim of adding the momentum branch is to provide our
model with the contrastive supervision, incorporating the full
semantics of an image is preferred. Otherwise, the masked
input with degenerated semantic information may lead to a
sub-optimal solution in contrastive learning. Based on this
observation, the momentum branch in our model uses the
whole image as input throughout our experiments.
Convergence speed. To further show our method’s effective-
ness, we compare the convergence behavior of CMAE and
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Fig. 6: Analysis of features of pre-training models. In terms of intra-class distance, our model achieves a lower standard deviation
relative to MAE on the ImageNet-1k validation set. With respect to inter-class center distance, our model displays greater inter-class
distances than MAE for 811 out of the 1000 categories, and manifests a reduced standard deviation of distances among category

centers.

MAE when fine-tuning on ImageNet-1k. The pre-trained
weights with 1600 epochs are used as initialization. As
shown in Figure 5, we observe that CMAE converges much
faster compared with MAE: with only 55 fine-tuning epochs,
CMAE already surpasses the final performance of MAE.
This result demonstrates that the representations learned
by CMAE can be more easily adapted for specific tasks, an
appealing property which is in line with the purposes of
self-supervised pre-training.

4.5 Partial Fine-tuning and Linear Probing

In the context of task-specific training, both partial fine-
tuning [30, 41, 58, 62] and linear probing methodologies
retain the majority of the model components in a frozen
state. However, a key distinction lies in the nature of
the head being tuned: partial fine-tuning employs a non-
linear head, whereas linear probing utilizes a linear one.
As underscored by [30], given that linear probing exhibits
minimal correlation with transfer learning performance,
partial fine-tuning emerges as a superior protocol for the
evaluation of non-linear, yet more potent, representations. In
light of these observations, our study also places emphasis
on the partial fine-tuning metric.

Specifically, we follow the experimental settings of [30] to
ablate the CMAE base model with 1600 epoch pre-training.
As shown in Figure 4a, the performances of our model are
consistently better than MAE in all tested settings, e.g. when
fine-tuning one block, we get a 2.5% gain over MAE. Above
results demonstrate that our model can effectively improve
the representation quality of baseline method. Note when
the number of fine-tuned blocks is “0”, it degenerates to
linear probing. In this case, our model achieves significant
improvement (5.9%) over MAE. These results indicate that
our method is able to improve the representation quality
under both evaluation metrics. Furthermore, in comparison
to the typical contrastive model MoCo-V3 [14], MoCo-V3
exhibits superior performance in the linear probing setting.
However, under the partial fine-tuning setting, CMAE sur-
passes MoCo-V3 in all aspects, particularly when fine-tuning
only one block, where CMAE yields a 3.8% enhancement.
This also serves as evidence that the features learned by our
model are of higher quality.

4.6 Model Scaling

To study the scalability of our method for models of differ-
ent sizes, we adopt ViT-small, ViT-base, and ViT-large as
encoders and report their performance on ImageNet-1k fine-
tuning. As shown in Figure 4b, CMAE can consistently boost
the performance of MAE at all scales. These results clearly
demonstrate the excellent scalability of CMAE.

4.7 Feature Analysis

In order to more effectively scrutinize the features obtained
by our model, we utilize the ViT-base model for our investi-
gation. Following the completion of pre-training, we extract
features from the ImageNet-1k validation set and compute
the following metrics:

e Average intra-class distance: This metric measures the
mean distance between all pairs of images within the
same class.

e Standard deviation of intra-class distances: This
metric measures the variation in distances between
images in the same class.

o Average inter-class distance: This metric measures
the mean distance between all pairs of images from
different class centers.

e Standard deviation of inter-class distances: This
metric measures the variation in distances between
images from different class centers.

When we compute the average intra-class distance,
CMAE achieves a lower average intra-class distance of 0.0377
than MAE’s 0.0380. Furthermore, as shown in Figure 6a,
CMAE has a smaller standard deviation of intra-class dis-
tances than MAE (0.0189 vs. 0.0371). These results suggest
that the features extracted by CMAE are more compactly
clustered in the latent space. Regarding inter-class distances,
we compute the average distance of each class center to
other class centers and the standard deviation of distances to
other class centers. As shown in Figures 6b and 6c, CMAE
demonstrates larger average inter-class distances (0.0340
vs. 0.0309) and a smaller standard deviation for inter-class
distances (0.0152 vs. 0.0310). This indicates that the features
extracted by CMAE have a more uniform distribution for
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each category in the latent space and larger inter-class
distances.

In summary, the aforementioned results provide evidence
that our model is capable of learning superior visual rep-
resentations with enhanced discriminability compared to
MAE.

5 CONCLUSION

This paper introduces a novel self-supervised learning
framework named contrastive masked autoencoder (CMAE)
which aims to improve the representation quality of MIM
by leveraging contrastive learning. In CMAE, we propose
two novel designs from the perspective of input genera-
tion and architectures respectively to harmonize MIM and
contrastive learning. Through extensive experiments, it is
demonstrated that CMAE can significantly improve the
quality of learned representation in pre-training. Notably,
on three well-established downstream tasks, i.e. image
classification/segmentation/detection, CMAE achieves state-
of-the-art performance. In the future, we will investigate
the scaling up of CMAE to larger datasets and incorporate
image-dense caption as another view for contrastive learning
training based on CMAE.
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