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Abstract

Vision language pre-training aims to learn alignments between vision and lan-
guage from a large amount of data. Most existing methods only learn image-text
alignments. Some others utilize pre-trained object detectors to leverage vision
language alignments at the object level. In this paper, we propose to learn multi-
grained vision language alignments by a unified pre-training framework that learns
multi-grained aligning and multi-grained localization simultaneously. Based on it,
we present X2-VLM, an all-in-one model with a flexible modular architecture, in
which we further unify image-text pre-training and video-text pre-training in one
model. X2-VLM is able to learn unlimited visual concepts associated with diverse
text descriptions. Experiment results show that X2-VLM performs the best on base
and large scale for both image-text and video-text tasks, making a good trade-off
between performance and model scale. Moreover, we show that the modular design
of X2-VLM results in high transferability for it to be utilized in any language or
domain. For example, by simply replacing the text encoder with XLM-R, X2-VLM
outperforms state-of-the-art multilingual multi-modal pre-trained models without
any multilingual pre-training. The code and pre-trained models are available at
github.com/zengyan-97/X2-VLM.

1 Introduction

Figure 1: (a) Comparison of X2-VLM with existing image-text pre-training methods on the visual
reasoning task. (b) Comparison with existing video-text pre-training methods on video-text tasks. (c)
Comparison with existing multilingual multi-modal pre-training methods.

Vision language pre-training aims to learn vision language alignments from a large number of image-
text or video-text pairs. A pre-trained Vision Language Model (VLM) fine-tuned with a small amount
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of labeled data has shown state-of-the-art (SoTA) performances in many Vision Language (V+L)
tasks, such as image-text retrieval and visual question answering (VQA).

Existing work learning vision language alignments typically falls into two categories: coarse-
grained and fine-grained. Coarse-grained approaches use convolutional neural networks [1] or vision
transformers [2] to encode overall image features [3–5], which however have difficulties in learning
fine-grained vision language alignments, e.g., at the object level, from noisy image-text pairs which
are usually weak-correlated [6]. To learn fine-grained vision language alignments, many approaches
adopt pre-trained object detectors as the image encoder [7–13]. However, object detectors output
object-centric features unable to encode relations among multiple objects. Moreover, an object
detector can only recognize a limited number of object categories.

Ideally, a VLM should simultaneously learn multi-grained alignments between vision and language
in pre-training without being restricted to object-text alignments or image-text alignments. However,
learning multi-grained alignments is challenging, and previous work has failed to handle this issue.
The challenges come from four aspects: 1) what types of data to use to learn multi-grained vision
language alignments; 2) how to aggregate the different types of data in a unified way for vision
language pre-training; 3) how to represent multi-grained visual concepts, including objects, regions,
and images, by a single vision encoder; 4) how to efficiently learn multi-grained vision language
alignments from the data.

In this paper, we present an all-in-one VLM pre-trained with a unified framework to learn multi-
grained vision language alignments, namely X2-VLM. We leverage three types of data for vision
language pre-training, including object labels on images [14–16] such as “man” or “backpack”,
region annotations on images [17, 16] such as “boy wearing backpack”, and text descriptions for
images such as “The first day of school gives a mixed feeling to both students and parents.”. We
assume that learning multi-grained vision language alignments can help VLMs better understand
weak-correlated image-text pairs since the model has learned to align the components in images, e.g.,
objects or regions, to textual descriptions, e.g., words or phrases. We associate all visual concepts
with text descriptions instead of class labels, including objects, regions, and images. By associating
all visual concepts with language, the model can learn unlimited visual concepts described by diverse
texts in a unified way.

X2-VLM has a flexible modular architecture, with three modules for vision, text, and fusion, respec-
tively. All modules are based on Transformer [18]. We encode an image with vision transformer [2],
and we utilize certain patch features to represent multi-grained visual concepts in the image that can
be objects, regions, or the image itself. By doing so, X2-VLM outputs vision features for objects,
regions, and images in a unified form. Furthermore, we propose directly aligning the multi-grained
vision features with the paired text features and simultaneously locating multi-grained visual concepts
in the same image given different text descriptions for vision language pre-training. In fine-tuning and
inference, X2-VLM can leverage the learned multi-grained alignments to perform the downstream
V+L tasks without object or region annotations in the input images.

X2-VLM can be easily extended to video-text pre-training. For video encoding, we sample video
frames and encode the frames with vision transformer respectively. Then, we use the average in the
temporal dimension of patch features of frames to encode a video. The encoder parameters are shared
between video-text pre-training and image-text pre-training. By doing so, we leverage video-text
pairs to enable the model to understand visual concepts in temporal dimension and learn a more
versatile VLM.

Moreover, we show the flexibility of X2-VLM with the modular architecture. We investigate whether
the cross-modal ability can be transferred to other languages or domains after pre-training. This is an
important problem in real-world applications because many multi-modal tasks exist in non-English
languages. However, since collecting image-text pairs or video-text pairs in certain languages or
domains can be costly, recent SoTA VLMs are trained with English data and only applicable to
English texts, limiting their application scopes. We find that surprisingly X2-VLM can effectively
adapt to V+L tasks in different languages or domains by simply replacing the text module with a
language-specific or domain-specific one without further pre-training.

We conduct extensive experiments to verify the effectiveness of X2-VLM. First, we compare X2-
VLM with SoTA image-text pre-training methods on base and large scale and find that X2-VLM
substantially outperforms all of them in the image-text tasks, including retrieval, VQA, reasoning, and
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grounding. Moreover, X2-VLM outperforms SimVLM [19] and BLIP [20], which are designed for
generative tasks, in image caption generation. X2-VLM also outperforms MDETR [21] and OFA [22],
which also leverage image annotations of objects and regions, in cross-modal understanding tasks. X2-
VLMlarge with ∼590M parameters performs competitively to CoCa [23] and BEiT-3 [24] with ∼2B
parameters, especially on image-text retrieval and visual reasoning. In summary, X2-VLM makes
a good trade-off between performance and model scale, as indicated in Figure 1 (a). Besides, we
find that by training with large-scale image-text pairs, X2-VLM learns to locate diverse fine-grained
visual concepts in open-domain images, such as different sodas, cars, characters and celebrities.
Second, X2-VLM is also the new SoTA pre-trained model on video-text tasks, including video-text
retrieval and video VQA, as shown in Figure 1 (b). Most existing VLMs only tackle image-text
tasks, but X2-VLM with a unified framework achieves SoTA performances on both types of tasks.
Third, to verify the flexibility of the modular design, we replace the text encoder of X2-VLM with
XLM-R [25], a multilingual text encoder, after vision-language pre-training on English data. As
indicated in Figure 1 (c), X2-VLM outperforms SoTA multilingual multi-modal pre-training methods
that need multilingual image-text pairs [26, 27] and multilingual sentence pairs [28] which are costly
to collect.

The contributions of this paper are as follows:

• We propose to learn multi-grained vision language alignments by a unified pre-training
framework that learns multi-grained aligning and multi-grained localization simultaneously.
Based on it, we present X2-VLM, an all-in-one pre-trained VLM that can handle both
image-text and video-text tasks.

• Experiment results show that X2-VLM is the best model on base and large scale on both
image-text and video-text benchmarks. Furthermore, the results confirm that the proposed
framework for multi-grained vision language pre-training is scalable to massive data and
larger model sizes.

• We reveal the potential of the modular design of X2-VLM, showing that it can be utilized in
other languages or domains. By replacing the text encoder with XLM-R after pre-training
on English data, X2-VLM outperforms SoTA methods on multi-lingual multi-modal tasks.

2 Related Work

2.1 Image-Text Pre-training

The existing work on image-text pre-training typically falls into two categories: fine-grained and
coarse-grained. Fine-grained approaches [7–13] utilize a pre-trained object detector [29, 30] as the
image encoder, which is trained on annotations of common objects, e.g. COCO [14] and Visual
Genome [17]. An object detector first identifies all regions that probably contain an object, then
conducts object classification on each region. An image is then represented by dozens of object-
centric features of the identified regions. However, object-centric features cannot represent relations
among multiple objects in different regions. Therefore, it is difficult for this approach to effectively
encode multi-grained visual concepts. Moreover, object detectors can only detect common objects,
e.g. only 80 object categories for the COCO dataset. Thus, it is suboptimal to apply this approach
to encode various visual concepts in real-world applications. For example, the approach cannot
distinguish “Pepsi” from “Coca Cola” or “Audi” from “BMW”.

In contrast, the coarse-grained approaches build VLMs by extracting and encoding overall image
features with convolutional network [31, 3] or vision transformer [4, 5]. While being more efficient,
the performance of the coarse-grained approach is usually not as good as the fine-grained approach
since the latter leverages vision language alignments at the object level, which are shown to be critical
for downstream V+L tasks. However, with advanced vision transformers, e.g. Swin-Transformer [32]
and BEiT-2 [33], recent methods such as METER [34] and VL-BEiT [35], can outperform strongest
fine-grained approach VinVL [13].

There also emerge some methods attempting to learn both object-level and image-level alignments.
However, these approaches still rely on object detectors and thus suffer from the aforementioned
problems. For example, E2E-VLP [36] adds an end-to-end object detection module (i.e. DETR [37]).
KD-VLP [38] relies on external object detectors to perform object knowledge distillation. Different
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from these approaches, our framework for multi-grained vision language pre-training does not rely on
object detection, and it learns vision language alignments not restricted to object-level or image-level
in a unified way.

2.2 Video-Text Pre-training

Most existing VLMs only tackle image-text tasks. Only a few VLMs work on video-text pre-
training. Since a video consists of multiple images, video-text models usually share many similarities
with image-text models in both model architecture and training objectives. Though video-text
pre-training shares similarities with image-text pre-training, no existing method can achieve SoTA
performances on both types of tasks. Representative work on video-text pre-training including
ClipBERT [39], Frozen [40], ALPRO [41], VIOLET [42], and All-in-one [43]. There are other
methods optimized specifically for a downstream task, for either video-text retrieval [44, 45] or video
question answering [46]. Recently, OmniVL [47] is proposed to support both image-text tasks and
video-text tasks. It utilizes 3D patch embeddings for videos and 2D patch embeddings for images,
and adopts TimeSformer [48] for vision encoding.

2.3 Multilingual Multi-modal Pre-training

Multilingual multi-modal pre-training aims to make multi-modal models applicable to non-English
texts. While appealing, multi-lingual multi-modal pre-training has its own challenges. Unlike multi-
lingual pre-training and multi-modal pre-training where a relatively large amount of parallel data is
available, there exist only a few multi-lingual multi-modal corpora and their language coverage is
also limited. Therefore, M3P [49] utilizes 101G texts covering 100 languages for pre-training. It
makes English a pivot and alternates between English-only vision-language pre-training and multi-
lingual masked language modeling. Differently, UC2 [26] translates image-text pairs in English
into five different languages and uses all the data for pre-training. MURAL [27] collects large-scale
image-text pairs in 110 languages. CCLM [28] utilizes parallel multilingual text pairs and proposes a
simple framework that unifies cross-lingual and cross-modal pre-training with shared architecture and
objectives. All these methods require extra data to perform multilingual multi-modal pre-training. In
contrast, we show that X2-VLM can adapt to multilingual V+L tasks without the need for multilingual
multi-modal pre-training process by exploiting the potential of its modular architecture.

3 Method

3.1 Overview

Architecture: X2-VLM consists of vision, text, and multi-modal fusion modules. All modules
are based on Transformer [18]. The fusion module takes text features as input and fuses the vision
features with the text features through cross-attention at each layer, where the text features work as the
queries and the vision features work as the keys and values. In pre-training, the three modules work as
encoders, while the text and fusion modules can also be adapted for generation tasks if applying left-
to-right self-attention as shown in our experiments for image caption generation. Figure 3 illustrates
the architecture of X2-VLM and the way we perform multi-grained aligning and multi-grained
localization.

Data: X2-VLM is a unified approach that associates all visual concepts with text descriptions,
including image-text pairs, video-text pairs, and image annotations of objects and regions. That
is to say, an image may contain more than one visual concept and each of them is associated
with a text description, denoted as (I, T, {(V 1, T 1), ...}N ). {(V 1, T 1), (V 2, T 2)...}N are the image
annotations of objects or regions. Here, V i is an object or region in a bounding box bi = (cx, cy, w, h)
represented by the normalized center coordinates, width, and height of the box. When the image
itself represents a visual concept, b = (0.5, 0.5, 1, 1). T i for objects are originally object labels. If
an object annotation contains object attributes, e.g. color, we concatenate the attribute with the object
label as the text description. T i for regions are phrases that describe the regions. Note that, as listed
in Table 1, some images do not have associated texts, i.e., T is NaN, and some images do not have
annotations, i.e., N = 0. Nevertheless, we mix all types of data in a training batch, and thus for
each training iteration, we optimize the model by multi-grained aligning and multi-grained
localization simultaneously.
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Figure 2: Unified vision encoding For images, we extract the subset of patch features from the vision
transformer to represent an image and objects/regions in the image. For videos, each frame is first
encoded independently, and than a light-weight non-parametric temporal modeling layer is applied
across frames.

3.2 Unified Vision Encoding

X2-VLM unifies image and video encoding, as illustrated in Figure 2. Irrespective of the inputs, the
vision module of X2-VLM produces hidden states in the latent feature space of the vision transformer.
As a result, image-text pre-training and fine-grained pre-training mutually reinforce one another.
Moreover, the capability of image understanding can be better transferred for video comprehension.

Visual Concept Representation X2-VLM proposes an efficient way to obtain all multi-grained
visual concepts in an image with only one forward pass of the vision transformer. First, we process an
image into patch features. Then, X2-VLM represents an object or a region, e.g. V i, that corresponds
to a set of patches in the bounding box, e.g. bi, by aggregating information among the patches
as illustrated in Figure 2. Specifically, we flatten the corresponding patch features while keeping
their original positions. Then, we calculate the average of the patch features as the [CLS] patch
and prepend it. Accordingly, the representation of the entire image I is obtained by aggregating
information among all the patches.

Video Representation Since a video consists of multiple images, to leverage large-scale image-text
pre-training for better video understanding, we unify video encoding and image encoding in a simple
and efficient way. First, we sample one frame per second for videos. Then, for each training iteration,
we randomly sample a few frames of a video. The vision encoder will encode the frames into patch
features respectively. Finally, we add temporal information to the patch features of each frame and
calculate the average in temporal dimension to represent the video. By doing so, a video is encoded
by a sequence of patch features the same as an object/region/image, and thus we can apply a unified
pre-training framework for both video-text pairs and object/region/image-text pairs.

3.3 Multi-Grained Vision Language Pre-training

We mix all types of data in a training batch, and thus for each training iteration, as shown in Figure 3,
we optimize X2-VLM by two objectives simultaneously: 1) learning multi-grained alignments
between visual concepts and texts; 2) locating multi-grained visual concepts in images given different
text descriptions.
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Figure 3: Illustration of the proposed multi-grained vision language pre-training. X2-VLM
consists of vision, text, and fusion modules. After encoding visual concepts (a) and text inputs
(b), multi-grained vision features are then paired with corresponding text features for multi-grained
aligning (c). Besides, the image is paired with different textual descriptions for multi-grained
localization to predict the bounding box for each visual concept (d). All the datasets we used are
publicly available (see Section 4.1).

3.3.1 Multi-Grained Aligning

Since we have associated all visual concepts with text descriptions, we propose to align the multi-
grained visual concepts with the corresponding texts. Specifically, after encoding visual concepts
by the aforementioned method, we align the vision features in multiple granularities with the
corresponding text features in the same way. We simply choose three losses for optimization,
including contrastive loss, matching loss, and MLM loss. These losses have been well-studied by
previous work [11, 50, 5], but we propose to employ them on the visual concept-to-text level. Note
that V in this section represents a visual concept, including an object, region, image, or video.

We apply contrastive loss to predict (visual concept, text) pairs from in-batch negatives. Given a pair
(V, T ), T is the positive example for V , and we treat the other (N − 1) texts within the mini-batch as
negative examples. First, we define the similarity by:

s(V, T ) = gv(vcls)
⊤gw(wcls), (1)

where vcls and wcls are the output [CLS] embedding of the vision encoder and the text encoder
respectively. gv and gw are transformations that map the [CLS] embeddings to normalized lower-
dimensional representations. Based on it, we calculate the in-batch vision-to-text similarity as:

pv2t(V ) =
exp(s(V, T )/τ)∑N

i=1 exp(s(V, T
i)/τ)

, (2)

Similarly, the text-to-vision similarity is:

pt2v(T ) =
exp(s(V, T )/τ)∑N

i=1 exp(s(V
i, T )/τ)

, (3)

where τ is a learnable temperature parameter. Let yv2t(V ) and yt2v(T ) denote the ground-truth
one-hot similarity, in which only the positive pair has the probability of one. Finally, the contrastive
loss is defined as the cross-entropy H between p and y:

Lcl =
1

2
EV,T∼D

[
H(yv2t(V ),pv2t(V )) + H(yt2v(T ),pt2v(T ))

]
(4)

We also utilize the matching loss to determine whether a pair of visual concept and text is matched.
For each visual concept in a mini-batch, we sample an in-batch hard negative text by following
pv2t(V ) in Equation 2. Texts that are more relevant to the concept are more likely to be sampled. We
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also sample one hard negative visual concept for each text. We then put the pairs as inputs for the
fusion module, and then we use xcls, the output [CLS] embedding of the fusion module, to predict
the matching probability pmatch, and the loss is:

Lmatch = EV,T∼DH(ymatch,pmatch(V, T )), (5)

where ymatch is a 2-dimensional one-hot vector representing the ground-truth label.

Furthermore, we apply masked language modeling loss to predict the masked words in the text
based on the visual concept. We randomly mask out the input tokens with a probability of 40%, and
the replacements are 10% random tokens, 10% unchanged, and 80% [MASK]. We use the fusion
encoder’s outputs and append a linear layer followed by softmax for prediction. Let T̂ denote a
masked text, and pj(V, T̂ ) denote the probability of the masked token tj predicted by the fusion
module. We minimize the cross-entropy loss:

Lmlm = Etj∼T ;(V,T )∼DH(yj ,pj(V, T̂ )), (6)

where yj is a one-hot distribution in which the ground-truth token tj has the probability of one.

3.3.2 Multi-Grained Localization

We have aligned visual concepts with texts in different granularity. We further optimize X2-VLM by
training it to locate different visual concepts in the same image given corresponding text descriptions.
Specifically, we introduce bounding box prediction task into vision language pre-training, where the
model is asked to predict the bounding box bi = (cx, cy, w, h) of a visual concept V i:

b̂i(I, T i) = Sigmoid(MLP(xi
cls)), (7)

where Sigmoid is for normalization, MLP denotes multi-layer perceptron, and xi
cls is the output

[CLS] embedding of the fusion module given the features of I (the entire image) and T i (the
description of the visual concept).

For bounding box prediction, ℓ1 is the most commonly-used loss. However, it has different scales
for small and large boxes, even if their relative errors are similar. To mitigate this issue, we use a
linear combination of the ℓ1 loss and the generalized Intersection over Union (IoU) loss [51], which
is scale-invariant. The overall loss is defined as:

Lbbox = E(V i,T i)∼I;I∼D[Liou(b
i, b̂i) + ||bi − b̂i||1] (8)

Finally, the pre-training objective of X2-VLM is defined as:

L = Lbbox + Lcl + Lmatch + Lmlm (9)

4 Experiment

4.1 Pre-training Datasets

We pre-train X2-VLM with two sets of data. The 4M pre-training dataset consists of two in-
domain datasets, COCO [14] and Visual Genome (VG) [17], and two out-of-domain datasets, SBU
Captions [52] and Conceptual Captions (CC) [53]. This pre-training dataset is widely utilized by
previous work, and thus we choose this setting to make a fair comparison with other methods. We
also include annotations for COCO and VG images from RefCOCO [54], GQA [55], and Flickr
entities [56] following OFA [22] and MDETR [21].

Then, we scale up the pre-training dataset by including out-of-domain and much noisier image-text
pairs from Conceptual 12M dataset (CC-12M) [57] and LAION [58], and object annotations from
Objects365 [15] and OpenImages [16]. Besides, to support video-text downstream tasks, we include
video-text pairs from WebVid2.5M [40], Howto100M [59], and YT-Temporal 180M [60] for pre-
training. Note that all the datasets we used are public available and have been exploited in previous
work [5, 13, 20, 22, 43]. Besides, since most downstream tasks are built on top of COCO and VG,
we exclude all images that also appear in the test sets of downstream tasks to avoid information leak.
We give data filtering details in Appendix.
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Dataset # Images # Captions # Objects # Regions

COCO 0.11M 0.55M 0.45M -
VG 0.10M - 2.0M 3.7M
SBU 0.86M 0.86M - -
CC-3M 2.9M 2.9M - -

CC-12M 11.1M 11.1M - -
Objects365 0.58M - 2.0M -
OpenImages 1.7M - 4.2M -
LAION 1.3B 1.3B - -
WebVid2.5M 2.5M 2.5M - -
Howto100M 1.7M 1.7M - -
YTT180M 5.3M 5.3M - -

Table 1: Statistics of the pre-training datasets. We pre-train X2-VLM with two sets of data: one
contains COCO, VG, SBU, and CC-3M, where the total number of images is 4M; the other one
includes more noisy image-text pairs and video-text pairs.

Model Hidden
Vision Text Fusion

Layers Params Layers Params Layers Params

X2-VLMbase 768 12 86M 12 111M 6 55M
X2-VLMlarge 1024 24 303M 12 190M 6 95M

Table 2: Size variants of X2-VLM. All modules consist of transformer layers.

4.2 Implementation Details

Table 2 lists the parameters of X2-VLM. Considering the trade-off between performance and model
scale [61], X2-VLMlarge also uses a 12L text encoder. The vision encoder is initialized with BEiT-
2 [33]. The text encoder is initialized with BERT [62]. X2-VLM is pre-trained at image resolution of
224× 224 using 16× 16 patch size. We mix all types of data in a training batch, and thus for each
training iteration, we optimize the model by multi-grained aligning and multi-grained localization
simultaneously. With 4M data, we pre-train X2-VLMbase for 500K steps with a batch size of 1024 on
8 A100 and X2-VLMlarge for 250K steps on 16 A100, which takes ∼ 1 week. The learning rate of
X2-VLMbase is warmed-up to 1e−4 in the first 2500 steps and decayed following a linear schedule.
The learning rate is 5e−5 for X2-VLMlarge. With large-scale data, training X2-VLM takes 2-3 weeks
on 32 A100 for the base model and 64 A100 for the large model. We describe the implementation
details in Appendix.

4.3 Image-Text Downstream Tasks

We compare X2-VLM with the most well-known state-of-the-art approaches on five widely used
image-text downstream tasks. In general, we follow the settings in the previous work on fine-tuning.
We describe how we implement fine-tuning as follows.

4.3.1 Image-Text Retrieval

We evaluate X2-VLM on both MSCOCO and Flickr30K [56] datasets. We adopt the widely used
Karpathy split [63] for both datasets. We optimize Lcl and Lmatch for fine-tuning. We set the batch
size to 1024. The resolution of input images is set to 384x384. Following the previous work [5],
X2-VLM first encodes images and texts separately and calculates in-batch text-to-image and image-
to-text similarities to obtain the top-k candidates, and then uses the fusion encoder to re-rank the
candidates. k is set to 80 for the MSCOCO dataset and 32 for Flickr30K.

Table 3 shows that X2-VLM achieves SoTA results on image-text retrieval tasks especially on
Flickr30K benchmark even though existing approaches either have more model parameters or more
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Model # Params
MSCOCO (5K test set) Flickr30K (1K test set)
TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Models Pretrained on COCO, VG, SBU and CC datasets (4M)
ALBEF 210M 73.1 91.4 96.0 56.8 81.5 89.2 94.3 99.4 99.8 82.8 96.7 98.4
VLMobase† 175M 74.8 93.1 96.9 57.2 82.6 89.8 92.3 99.4 99.9 79.3 95.7 97.8
VL-BEiT 175M 79.5 - - 61.5 - - 95.8 - - 83.9 - -
OmniVL 288M 76.8 93.6 97.3 58.5 82.6 89.5 94.9 99.6 99.9 83.4 97.0 98.6
X2-VLMbase 255M 80.5 95.5 97.8 62.7 84.7 90.7 97.4 99.9 100 90.0 98.6 99.3
VLMolarge† 562M 78.2 94.4 97.4 60.6 84.4 91.0 95.3 99.9 100 84.5 97.3 98.6
X2-VLMlarge 593M 82.3 96.2 98.3 65.2 86.4 91.9 99.1 100 100 91.1 98.6 99.4

Models Pretrained on More Data
BLIPbase 240M 81.9 95.4 97.8 64.3 85.7 91.5 97.3 99.9 100 87.3 97.6 98.9
OmniVL 288M 82.1 95.9 98.1 64.8 86.1 91.6 97.3 99.9 100 87.9 97.8 99.1
X2-VLMbase 255M 83.5 96.3 98.5 66.2 87.1 92.2 98.5 100 100 90.4 98.2 99.3
ALIGN† 490M 77.0 93.5 96.9 59.9 83.3 89.8 95.3 99.8 100 84.9 97.4 98.6
FLIP† 420M 78.9 94.4 97.4 61.2 84.3 90.6 96.6 100 100 87.1 97.7 99.1
BLIPlarge 452M 82.4 95.4 97.9 65.1 86.3 91.8 97.4 99.8 99.9 87.6 97.7 99.0
X2-VLMlarge 593M 84.4 96.5 98.5 67.7 87.5 92.5 98.8 100 100 91.8 98.6 99.5

Table 3: Results of image-to-text retrieval (TR) and text-to-image retrieval (IR) on COCO and
Flickr30K. † denotes dual-encoder retrieval models, and others use a fusion module to re-rank top-k
candidates following ALBEF [5].

# Params MSCOCO Flickr30K
TR IR TR IR

BEiT-3 1.9B 84.8 67.2 98.0 90.3
X2-VLMlarge 593M 84.4 67.7 98.8 91.8

Table 4: X2-VLM compared with the SoTA giant model, BEiT-3, on image-text retrieval benchmarks.
We report Recall@1 for both image-to-text retrieval (TR) and text-to-image retrieval (IR).

training data. Concretely, X2-VLMbase outperforms FLIP [64], BLIPbase and BLIPlarge which also
exploits large-scale image-text pairs from LAION, and X2-VLMlarge further improves the image-text
retrieval performance. Compared to OmniVL which also supports both image-text tasks and video-
text tasks, X2-VLMbase substantially outperforms it when pre-trained with the 4M data or with more
data. These results validate the advantage of learning multi-grained vision language alignments.

We also compare X2-VLMlarge with BEiT-3, a giant foundation model with 1.9B model parameters in
Table 4. Experimental results show that though being much smaller, X2-VLMlarge has a comparable
or even better performance compared with BEiT-3. Moreover, as shown in Table 3, X2-VLMbase

substantially outperforms VL-BEiT which is the base version of BEiT-3 in the 4M setting. On the
other hand, when comparing X2-VLM’s performances in different settings in Table 3, we can see that
the proposed framework for multi-grained vision language pre-training has good scalability which
can benefit from a larger model size and large-scale out-of-domain image-text pairs.

4.3.2 Visual Question Answering

The task requires the model to predict an answer given an image and a question. We evaluate
X2-VLM on the VQA v2.0 dataset [65]. Following existing methods [7, 11, 5], we use both train
and validation sets for training and include additional question-answer pairs from Visual Genome.
Following ALBEF, we use a six-layer Transformer decoder to generate answers based on the outputs
of the fusion module. Then, the model is fine-tuned by optimizing the auto-regressive loss. During
inference, we constrain the decoder to only generate from the 3,129 candidate answers to make a fair
comparison with existing methods. Note that there is a NULL answer. Thus, the actual number of
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Method # Params VQA NLVR2 RefCOCO+ COCO Caption
test-dev test-std dev test-P val testAd testBd BLEU@4 CIDEr

Models Pretrained on COCO, VG, SBU and CC datasets (4M)
ALBEF 210M 74.5 74.7 80.2 80.5 - - - - -
VLMobase 175M 76.6 76.9 82.8 83.3 - - - - -
METER 341M 77.7 77.6 82.3 83.1 - - - - -
VL-BEiT 175M 77.5 77.8 81.9 82.7 - - - - -
X2-VLMbase 255M 79.2 79.3 85.9 86.1 85.4 89.2 77.3 41.0 133.6
VLMolarge 562M 79.9 80.0 85.6 86.9 - - - - -
X2-VLMlarge 593M 80.5 80.5 87.2 87.6 86.9 90.1 80.2 42.0 136.7

Models Pretrained on More Data
OmniVL 288M 78.3 78.4 - - - - - 39.8 133.9
SimVLMbase 273M 77.9 78.1 81.7 81.8 - - - 39.0 134.8
OFAbase 182M 78.0 78.1 - - 81.4 87.2 74.3 41.0 138.2
BLIPbase 240M 78.2 78.2 82.5 83.1 - - - 39.4 131.4
X2-VLMbase 255M 80.4 80.2 86.2 87.0 85.2 90.3 78.4 41.7 136.1

SimVLMlarge 783M 79.3 79.6 84.1 84.8 - - - 40.3 142.6
OFAlarge 472M 80.3 80.5 - - 85.8 89.9 79.2 42.4 142.2
X2-VLMlarge 593M 81.9 81.8 88.7 89.4 87.6 92.1 81.8 42.6 139.1

Table 5: Results on downstream image-text tasks, including visual question answering (VQA),
visual reasoning (NLVR2), visual grounding (RefCOCO+), and image caption generation (COCO
Caption).

candidate answers is 3,128. Following previous work [22–24], the resolution of input images is set to
768x768.

We report the experimental results of VQA in Table 5. We can see that X2-VLMbase and X2-
VLMlarge outperforms other approaches with similar scale of model size. Specifically, X2-VLMbase

substantially outperforms ALBEF, VLMo, METER, and VL-BEiT in the 4M setting. Besides, with
more pre-training data, X2-VLMbase outperforms BLIP which also exploits large-scale image-text
pairs from LAION. Compared to OmniVL which also supports both image-text tasks and video-text
tasks, X2-VLMbase substantially outperforms it, achieving an absolute improvement of 2%. X2-VLM
also substantially outperforms SimVLM and OFA on both base and large scales. SimVLM utilizes
an in-house 1.8B image-text dataset. OFA also leverages image annotations of objects and regions
the same as X2-VLM. These results confirm the effectiveness of the proposed framework for multi-
grained vision language pre-training. Furthermore, when comparing X2-VLM’s performances in
different settings in Table 5, we can see that the proposed framework has good scalability which can
benefit from a larger model size. When pre-training a larger model with more data, the performance
improvement is even more remarkable.

4.3.3 Visual Reasoning

We evaluate X2-VLM on widely used benchmark NLVR2 [66]. The task lets the model determine
whether a text describes the relations between two images. Following previous work [67, 35], we
formulate the triplet input to two image-text pairs, each containing the text description and one image.
We then concatenate the final output [CLS] features of the fusion module of the two pairs to predict
the label. The resolution of input images is set to 384x384. Given the results in Table 5, we can
observe that the visual reasoning task benefits more from the model size than the pre-training data
scale. Comparing to other base-scale models, e.g. ALBEF, VLMo, VL-BEiT, SimVLM, and BLIP,
X2-VLMbase has much better performance, achieving ∼ 3-4% absolute improvement, no matter
when pre-training with 4M data or with much more noisy data. X2-VLMlarge also substantially
outperforms other large-scale models, including VLMolarge and SimVLMlarge.
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Winoground OVAD
Group Text Image All Head Medium Tail

Random 12.5 25.0 25.0 8.6 36.0 7.3 0.6

CLIP 8.0 30.7 10.5 17.0 44.3 18.4 5.5
ALBEF4M 11.0 29.2 15.5 15.6 43.1 17.3 3.7
BLIP 11.7 35.5 15.0 24.3 51.0 28.5 9.7
BLIP-2 18.2 43.0 22.0 - - - -
UNITERlarge 10.5 38.0 14.0 - - - -
PEVL 12.2 33.2 15.7 - - - -
OVADetector - - - 21.4 48.0 26.9 5.2

X2-VLMbase4M 22.5 46.3 25.3 24.0 51.9 29.7 7.2
X2-VLMlarge4M 25.5 49.5 31.0 27.7 54.0 34.4 10.1
X2-VLMbase 24.5 47.3 29.8 27.6 52.2 34.7 10.3
X2-VLMlarge 25.8 52.5 32.5 29.2 55.1 36.4 11.3

Table 6: Zero-shot evaluation results on fine-grained downstream tasks: Winoground, a fine-
grained image-text matching task, and OVAD, Open-vocabulary Attribute Detection(mAP).

4.3.4 Visual Grounding

We evaluate X2-VLM on RefCOCO+ [54]. Given an image as the input and a text description as
the query, the final output [CLS] features of the fusion module is utilized to predict the bounding
box of the visual concept. The resolution of input images is set to 384x384. As indicated in
Table 5, X2-VLM outperforms OFA [22] which also utilizes image annotations of objects and regions
for pre-training. Differently, OFA with an encoder-decoder architecture formulates all the data in
the form of sequence-to-sequence. Furthermore, X2-VLM for general V+L purposes outperforms
MDETR [21] specialized for visual grounding tasks, achieving absolute improvements of ∼ 7%
(average on metrics). These results confirm the effectiveness of the proposed multi-grained vision
language pre-training compared to other approaches that also leverage image annotations of objects
and regions.

4.3.5 Image Captioning

The task requires a model to generate text descriptions of input images. Though X2-VLM is
more for cross-modal understanding, we also evaluate its generation performance on the COCO
Captioning dataset [68]. Following UniLM [69] and BEiT-3, we use left-to-right MLM for generation.
Specifically, we employ the text module and fusion module as decoder with left-to-right self-attention
and adopt the method [70] that decreases finetune-generation discrepancy in MLM generation. The
resolution of input images is set to 480x480. We report BLEU-4 and CIDEr scores on the Karparthy
test split. As shown in Table 5, X2-VLMbase outperforms BLIP [20] and SimVLM [19] which are
designed for generative tasks. BLIP exploits large-scale image-text pairs from LAION the same
as X2-VLM. SimVLM utilizes an in-house 1.8B image-text dataset. X2-VLM also outperforms
OFA [22] in image captioning in terms of BLEU-4. OFA has an encoder-decoder architecture and
formulates all downstream tasks into sequence-to-sequence form for pre-training. In general, though
X2-VLM is more for cross-modal understanding, it performs competitively or sometimes better
compared with SoTA generative methods.

4.3.6 Winoground

Winoground [71] presents a challenging task: given two images and two captions, the goal is to
match them correctly, where the captions contain identical sets of words, but in a different order.
Three metrics, namely Text (whether a model can match the correct caption for a given image), Image
(vice versa), and Group (whether a model can match each pair), are used to evaluate the performance.
Several competitive VLMs have been shown to perform close to or even below random chance.
Experimental results in Table 6 shows that even when trained on 4M data X2-VLM substantially
outperforms other models such as UNITERlarge, which is based on a large pre-trained object detector,
and BLIP-2, which consists of giant ViT and FlanT5 large language model [72] and is pre-trained
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Model # Params Video-QA MSRVTT (1K test set)
MSRVTT MSVD R@1 R@5 R@10

ALPRO 513M 42.1 45.9 - - -
VIOLET 163M 43.9 47.9 - - -
All-in-one 110M 44.3 47.9 37.9 68.1 77.1
OmniVL 288M 44.1 51.0 47.8 74.2 83.8

X2-VLMbase 255M 45.0 52.8 47.6 74.1 84.2
X2-VLMlarge 593M 45.5 54.6 49.6 76.7 84.2

Table 7: Fine-tuning results on video-text tasks, including video question answering on MSRVTT
and MSVD datasets, and text-to-video retrieval on MSRVTT. We report classification accuracy for
VQA and Recall@K for text-to-video retrieval.

on a much larger dataset with 129M images. Notably, the performance of X2-VLM can be further
improved by increasing the model size or pre-training dataset.

4.3.7 Open-vocabulary Attribute Detection

Open-Vocabulary Attribute Detection (OVAD) [73] aims to recognize an open set of objects in
an image together with an open set of attributes for every object. We follow the benchmark and
evaluate zero-shot performance of vision language models on attributes in the box-oracle setting. The
experimental results are given in Table 6. X2-VLMbase pre-trained with 4M dataset has already been
comparable to BLIP pre-trained with 129M dataset. X2-VLMbase also outperforms OVADetector
which consists of a frozen CLIP text encoder and an object detector based on Faster-RCNN. Moreover,
scaling X2-VLM with larger pre-training datasets or larger model size consistently improve its
performance as in other tasks.

4.4 Video-Text Downstream Tasks

X2-VLM unifies image-text and video-text pretraining. In this section, we evaluate X2-VLM on
three widely used video-text tasks, including both Video-Text Retrieval (MSRVTT [74]) and Video
Question Answering (MSRVTT-QA [75] and MSVD-QA [75]). We implement a text-to-video
retrieval model the same as image-text retrieval by first calculating top-k candidates and then re-
ranking the candidates using the fusion module. k is set to 32. During training and inference, we
sample five frames for each video. The image resolution is set to 384. Video question answering
requires a model to generate an answer given a video and a question. Following previous work,
we formulate it as a classification task given candidate answers. During training and inference,
we sample five frames for each video in the MSRVTT dataset, and eight frames for the MSVD
dataset. The image resolution is set to 320 for MSRVTT and 224 for MSVD. We compare with
SoTA video-language foundation models: ALPRO [41], VIOLET [42], and All-in-one [43]. We
also compare X2-VLM with OmniVL which also supports both image-text tasks and video-text
tasks. There are other methods optimized specifically for either video-text retrieval [44, 45] or video
question answering [46], which are not included in our comparison.

The results are given in Table 7. We can see that X2-VLMbase outperforms previous video-language
foundation models on both video question answering and text-to-video retrieval, and X2-VLMlarge

further advance the performance, achieving new SoTA results of video-text pre-training. Besides, we
compare X2-VLM with OmniVL on both image-text (Table 3 and Table 5) and video-text benchmarks.
In general, X2-VLMbase substantially outperforms OmniVL on all image-text downstream tasks,
including image-text retrieval, visual question answering, image caption generation, and video
question answering.

4.5 Multilingual Multi-modal Tasks

In X2-VLM architecture, text encoding, vision encoding and fusion are separated. Accordingly, the
capabilities of vision encoding and fusion would be kept when replacing the text encoder, leading
to an efficient adaptation of the new text encoder. Our study demonstrates that we can replace the
text encoder after pre-training on English data with a language-specific or domain-specific one to
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Model Flickr30K MSCOCO
EN DE FR CS EN ZH JA

Models with Multilingual Multimodal Pretraining
M3P 87.7 82.7 73.9 72.2 88.7 86.2 87.9
UC2 88.2 84.5 83.9 81.2 88.1 89.8 87.5
MURALbase† 92.2 88.6 87.6 84.2 88.6 - 88.4
MURALlarge† 93.8 90.4 89.9 87.1 92.3 - 91.6
CCLM 96.0 93.3 93.7 92.8 94.1 93.0 94.3

X2-VLMbase 96.7 94.0 93.5 92.9 94.9 93.0 95.2
X2-VLMlarge 97.1 94.5 95.1 94.9 95.3 93.3 95.6

Table 8: Results on multilingual multi-modal tasks. All the methods except X2-VLM rely on
data that are costly to collect to perform multilingual multi-modal pre-training. We evaluate model
performance in English (EN), German (DE), French (FR), Czech (CS), Chinese (ZH), and Japanese
(JA). Following previous work, we report the average Recall@K for both image-to-text retrieval and
text-to-image retrieval with K = 1, 5, 10.

Flickr30K VQA RefCOCO+ OVAD
TR IR test-dev testAd testBd mAP

Ours 98.0 89.0 78.4 88.6 76.7 27.9
w/o X2-VLM 96.0 85.9 77.6 78.6 59.0 20.6

w/o multi-grained align 96.6 86.2 77.7 87.3 75.3 23.1
w/o bbox loss 97.4 89.6 78.2 83.6 66.0 26.8

w/o object data 97.2 86.8 78.1 88.1 76.5 26.4
w/o region data 97.8 89.0 78.0 84.8 69.3 22.3

Table 9: Ablation study of different components in the proposed framework and different types of
data utilized.

support more applications in different languages or domains. Such a feature is hard to achieve with
unified models like OFA and BEiT-3. For instance, BEiT-3 shares image, text, and fusion in a single
Transformer, and thus replacing the text encoder can cause the capabilities of image encoding and
fusion to be lost as well.

In this section, we replace the English text encoder of X2-VLM with a multilingual text encoder
XLM-R [25]. Then, without a second step multilingual multi-modal pre-training, we simply finetune
X2-VLM on multilingual multi-modal downstream tasks. We choose Multi30K [76] and multilingual
MSCOCO [68, 77, 78] for evaluation since other multilingual multi-modal benchmarks such as
IGLUE [79] do not have a training set. Following previous work, we compute the average Recall@K
for both image-to-text retrieval and text-to-image retrieval with K = 1, 5, 10, as the evaluation metric.

We compare X2-VLM with SoTA multilingual multi-modal pre-training methods. M3P [49] utilizes
101G texts covering 100 languages. UC2 [26] translates image-text pairs in English into five different
languages. MURAL [27] collects large-scale image-text pairs in 110 languages. CCLM [28] utilizes
parallel multilingual text pairs. All these methods rely on data that are costly to collect, while
X2-VLM relieves the multilingual multi-modal pre-training process. As shown in Table 8, X2-VLM
surprisingly outperforms all these methods in all six languages. The results indicate the potential
of X2-VLM being applicable to other domains or languages using a different text encoder without
further pre-training.

4.6 Ablation Study

We conduct an in-depth ablation study and the results are given in Table 9. We describe the
experimental settings in Appendix. First, we investigate the role of different components in the
proposed framework and conduct an ablation of multi-grained aligning and box prediction loss
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Figure 4: Visualization of X2-VLM generating image captions and locating visual concepts
given manual input texts. Only the image in the upper left corner is from the COCO dataset. Others
are out-of-domain images from the internet. We give more examples in Appendix where we test
X2-VLM on images from robot grasping, e-commerce websites, and children’s textbooks.

respectively. It should be noted that both object and region data are utilized in these two variants.
The experimental results demonstrate that multi-grained aligning is more important for the model
performance than the box prediction loss in all tasks, except the visual grounding task. The box
prediction loss is critical to performance on visual grounding tasks, and combining the box prediction
with multi-grained aligning further improves the model performances (Ours vs. w/o bbox loss).

Second, we explore the impact of different types of annotation data used in X2-VLM, and ablate
object data and region data respectively. Both multi-grained aligning and box prediction loss are
applied in these two variants. The results indicate that both types of annotations are important
to performance. Object data improve image-text retrieval, while region data are critical to visual
grounding and open-vocabulary attribute detection. Combining object and region data yields the
best performances (Ours vs. w/o object and w/o region). The w/o X2-VLM variant, which ablates
both multi-grained aligning and box prediction loss, or both object and region data, has the worst
performances in all the tasks. We also provide an ablation study on temporal modeling methods in
Appendix.

4.7 Qualitative Study of Multi-Grained Alignments

In this section, we provide a qualitative study of what vision language alignments have been learned
by X2-VLM. To this end, we ask X2-VLM to generate image captions to see if it can describe an
image appropriately. We also ask X2-VLM to locate visual concepts in an image given manual input
descriptions to see whether it can understand fine-grained objects or regions in an image. We use
X2-VLMlarge fine-tuned on COCO Caption and RefCOCO+ dataset respectively for this evaluation.
We visualize the results in Figure 4, in which we choose some out-of-domain images from scientific
posters, video games, cartoons, etc.
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The visualization examples show that X2-VLM can describe all these images appropriately with a
precise understanding of the main characters or objects and their relationships. When asking X2-VLM
to locate visual concepts in an image according to the descriptions we provided, we find that it can
capture small objects in the background or objects which have been partially obscured. Moreover,
X2-VLM can recognize different brands of soda or cars or distinguish “Luffy” and “Zoro” from other
cartoon characters. We give more examples in Appendix, where X2-VLM can also recognize “Albert
Einstein”, “Edison”, “Ultraman”, and “Doraemon”. It is surprising since the annotations of objects
or regions we exploited in pre-training are only about common objects such as “soda”, “car”, or
“man”. The results indicate that X2-VLM learns to localize diverse fine-grained visual concepts from
large-scale noisy image-text pairs.

5 Conclusion and Discussion

In this paper, we have proposed to learn multi-grained alignments between vision and language
in pre-training. To this end, we have proposed a unified framework for multi-grained vision lan-
guage pre-training that directly aligns the multi-grained vision features with the paired text features
and simultaneously locates multi-grained visual concepts in the same image given different text
descriptions. Based on it, we have presented X2-VLM, an all-in-one pre-trained VLM with a flexible
modular architecture, in which we have further unified image encoding and video encoding to make
it able to handle both image-text tasks and video-text tasks.

We have conducted extensive experiments to verify the effectiveness of X2-VLM. The results have
shown that X2-VLM substantially outperforms SoTA image-text pre-training methods on base and
large scale in many downstream image-text tasks, making a good trade-off between performance
and model scale. X2-VLM is also the new SoTA pre-trained model on video-text tasks, including
video-text retrieval and video VQA. Experimental results also show that the proposed framework
for multi-grained vision language pre-training is scalable to massive data and a larger model size.
Moreover, we have revealed the potential of the modular design of X2-VLM, showing it can be
utilized in other languages or domains. By replacing the text encoder with XLM-R after pre-training
on English data, X2-VLM outperforms SoTA methods on multi-lingual multi-modal tasks.

We also have provided an in-depth ablation study to investigate the role of different components
in the proposed framework. Experimental results have shown that both multi-grained localization
and multi-grained aligning are critical components of the proposed method. Furthermore, we have
conducted a qualitative study of what vision language alignments have been learned by X2-VLM.
We have found that by training with large-scale image-text pairs, X2-VLM learns to locate diverse
fine-grained visual concepts in open-domain images, such as different brands of sodas, cars, and
characters or celebrities.
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A Appendix

A.1 Pre-training Datasets

As follows, we give some data filtering details. Since LAION and the video-text datasets are too
large, we have filtered the datasets to speed up the pre-training. Specifically, for LAION, we use
English data only. Following BLIP [20], we remove an image if the shorter edge is smaller than 224
pixels. We also remove an image if the ratio of height/width or width/height is larger than 3. For
video clip-text pairs, we remove a pair if the number of words is less than 2. Following previous
work, we use CLIP score to filter video data. We sample a frame for a video clip and we calculate
the CLIP score between the frame and the text. We remove a video clip-text pair if the score is less
than 0.25. For image annotations of objects and regions, we remove a sample because of: 1) invalid
annotations (e.g. negative values for bounding boxes or boxes being outside of the images); 2) boxes
being too small (less than a patch); 3) highly overlapped text descriptions of regions (> 75%), etc.
For an object annotation, if it contains an object attribute, e.g. color, we concatenate the attribute with
the object label as the text description. Moreover, some images in the OpenImages dataset contain
relationship annotations, indicating pairs of objects in particular relations (e.g. "woman playing
guitar", "beer on table"), object properties (e.g. "table is wooden"), and human actions (e.g. "woman
is jumping"). We also utilize this part of data.

A.2 Implementation Details

X2-VLM is pre-trained at image resolution of 224 × 224 using 16 × 16 patch size. Though, as
indicated in previous work such as OFA [22] and CoCa [23], increasing resolution will improve
model performance, we keep it small to accelerate pre-training. Besides, we apply mixed precision for
training. For text input, we set the maximum number of tokens to 30. To further speed up pre-training
with large-scale data, we divide the training process into two steps. First, we train X2-VLM with
large-scale image-text pairs. Then, we further train X2-VLM on video-text pairs and the 4M dataset.
The reason behind this is that training on video data is slow. Because of it, we randomly sample
only three frames for a video clip in pre-training. We mix all types of data in a training batch, and
thus for each training iteration, we optimize the model by multi-grained aligning and multi-grained
localization simultaneously.

With 4M data, we pre-train X2-VLMbase for 500K steps with a batch size of 1024 on 8 A100 and
X2-VLMlarge for 250K steps on 16 A100, which takes ∼ 1 week. The learning rate of X2-VLMbase

is warmed-up to 1e−4 in the first 2500 steps and decayed following a linear schedule. The learning
rate is 5e−5 for X2-VLMlarge. With large-scale data, training X2-VLM takes 2-3 weeks on 32 A100
for the base model and 64 A100 for the large model.

A.3 Ablation Study

To ensure a fair comparison, all compared model variants are trained on 4M images for 100K steps.
Following previous studies, we have shortened the training steps to compare different ablated variants
more efficiently. We evaluate model performance on image-text retrieval (Recall@1), visual question
answering, visual grounding, and zero-shot open-vocabulary attribute detection. It is worth noting that
VQA has a large train and test set, which means that even a relatively small difference in performance
is worth considering.

Flickr30K VQA MSRVTT Video-QA
TR IR test-dev IR MSRVTT MSVD

w/ avg pool (ours) 98.5 90.4 80.4 47.6 45.0 52.8
w/ temporal attn 98.2 89.6 80.0 45.6 44.4 52.1

Table 10: Ablation study of temporal modeling methods.

Additionally, we investigate whether better temporal modeling could further improve video under-
standing capabilities while maintaining good image understanding, as presented in Table 10. We use
an established method that adds temporal attention in ViT. The experimental results on image/video-
text retrieval and image/video VQA show that simply averaging the features of each frame achieves

22



better performances on all tasks. We suppose that our approach is more unified in modeling both
image and video features, and thus strong image understanding capability is better transferred to
video understanding.

A.4 Qualitative Study of Multi-Grained Alignments

Figure 5: Visualization of X2-VLM generating captions for images and locating visual concepts
given manual input descriptions.

We provide a qualitative study of what vision language alignments have been learned by X2-VLM.
To this end, we ask X2-VLM to generate image captions or to locate visual concepts. We visualize
the results in Figure 5, where the first two images are from the in-domain COCO dataset. We find
that X2-VLM can capture small objects in the background or objects which have been partly masked.
We also choose out-of-domain images for evaluation. As shown in Figure 6, Figure 7, Figure 8, and
Figure 9, X2-VLM can recognize many visual concepts from different domains.
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Figure 6: Visualization of X2-VLM locating visual concepts in robot grasping scene given text
descriptions: 1) “deep blue cup”; 2) “light blue cup”; 3) “blue cup at the bottom”; 4) “four cups at the
top”; 5) “two small ducks”.

Figure 7: Visualization of X2-VLM locating celebrities and cartoon characters given text descriptions:
1) “Albert Einstein”; 2)“Edison”; 3)“Ultraman”; 4)“Doraemon”.
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Figure 8: Visualization of X2-VLM locating objects in an image from an e-commerce website in
China. The input text descriptions are: 1) “shoes”; 2)“vacuum cleaner”; 3)“lipstick”; 4)“dress”.

Figure 9: Visualization of X2-VLM locating visual concepts in an image from children’s textbooks.
The input text descriptions are: 1) “flying kites in the park”; 2) “watering flowers”; 3) “well dressed
girl”; 4) “Tiananmen Tower”; 5) “drive to work”; 6) “sign”; 7) “traffic lights”.
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