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PiCO+: Contrastive Label Disambiguation for
Robust Partial Label Learning

Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, Junbo Zhao

Abstract—Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate
set, which well suits many real-world data annotation scenarios with label ambiguity. Despite the promise, the performance of PLL
often lags behind the supervised counterpart. In this work, we bridge the gap by addressing two key research challenges in
PLL—representation learning and label disambiguation—in one coherent framework. Specifically, our proposed framework PiCO
consists of a contrastive learning module along with a novel class prototype-based label disambiguation algorithm. PiCO produces
closely aligned representations for examples from the same classes and facilitates label disambiguation. Theoretically, we show that
these two components are mutually beneficial, and can be rigorously justified from an expectation-maximization (EM) algorithm
perspective. Moreover, we study a challenging yet practical noisy partial label learning setup, where the ground-truth may not be
included in the candidate set. To remedy this problem, we present an extension PiCO+ that performs distance-based clean sample
selection and learns robust classifiers by a semi-supervised contrastive learning algorithm. Extensive experiments demonstrate that
our proposed methods significantly outperform the current state-of-the-art approaches in standard and noisy PLL tasks and even
achieve comparable results to fully supervised learning.

Index Terms—Partial Label Learning, Contrastive Learning, Prototype-based Disambiguation, Noisy Label Learning.
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1 INTRODUCTION

THE training of modern deep neural networks typi-
cally requires massive labeled data, which imposes

formidable obstacles in data collection. Of a particular chal-
lenge, data annotation in the real-world can naturally be
subject to inherent label ambiguity and noise. For example,
as shown in Figure 1, identifying an Alaskan Malamute
from a Siberian Husky can be difficult for a human anno-
tator. The issue of labeling ambiguity is prevalent yet often
overlooked in many applications, such as web mining [1]
and automatic image annotation [2]. This gives rise to the
importance of partial label learning (PLL) [3], [4], where
each training example is equipped with a set of candidate
labels instead of the exact ground-truth label. This stands
in contrast to its supervised counterpart where one label
must be chosen as the “gold”. Arguably, the PLL problem
is deemed more common and practical in various situations
due to its relatively lower cost to annotations.

Despite the promise, a core challenge in PLL is label
disambiguation, i.e., identifying the ground-truth label from
the candidate label set. Existing methods typically require a
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Fig. 1. An input image with three candidate labels, where the
ground-truth is Malamute.

good feature representation [5], [6], [7], and operate under
the assumption that data points closer in the feature space
are more likely to share the same ground-truth label. How-
ever, the reliance on representations has led to a non-trivial
dilemma—the inherent label uncertainty can undesirably
manifest in the representation learning process—the quality
of which may, in turn, prevent effective label disambigua-
tion. To date, few efforts have been made to resolve this.

This paper bridges the gap by reconciling the intrin-
sic tension between the two highly dependent problems—
representation learning and label disambiguation—in one
coherent and synergistic framework. Our framework,
Partial label learning with COntrastive label disambigua-
tion (dubbed PiCO), produces closely aligned representa-
tions for examples from the same classes and facilitates label
disambiguation. Specifically, PiCO encapsulates two key
components. First, we leverage contrastive learning (CL) [8]
to partial label learning, which is unexplored in previous
PLL literature. To mitigate the key challenge of construct-
ing positive pairs, we employ the classifier’s output and
generate pseudo positive pairs for contrastive comparison
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(Section 3.1). Second, based on the learned embeddings,
we propose a novel prototype-based label disambiguation
strategy (Section 3.2). Key to our method, we gradually
update the pseudo target for classification, based on the
closest class prototype. By alternating the two steps above,
PiCO converges to a solution with a highly distinguishable
representation for accurate classification. Empirically, PiCO
establishes state-of-the-art performance on three benchmark
datasets, outperforming the baselines by a significant mar-
gin (Section 5) and obtains results that are competitive with
fully supervised learning.

Theoretically, we demonstrate that our contrastive rep-
resentation learning and prototype-based label disambigua-
tion are mutually beneficial, and can be rigorously inter-
preted from an Expectation-Maximization (EM) algorithm
perspective (Section 6). First, the refined pseudo labeling
improves contrastive learning by selecting pseudo positive
examples accurately. This can be analogous to the E-step,
where we utilize the classifier’s output to assign each
data example to one label-specific cluster. Second, better
contrastive performance in turn improves the quality of
representations and thus the effectiveness of label disam-
biguation. This can be reasoned from an M-step perspective,
where the contrastive loss partially maximizes the likeli-
hood by clustering similar data examples. Finally, the train-
ing data will be mapped to a mixture of von Mises-Fisher
distributions on the unit hypersphere, which facilitates label
disambiguation by using the component-specific label.

We have presented preliminary results of this work in
[9]. While the earlier version focuses on the standard PLL
setup, it holds a strong assumption that the gold labels
are ensured to be included in the candidate sets. However,
lacking domain knowledge, it is likely the annotators take
the wrong set of labels as the candidates and dismiss the
true one. Lv et al. [10] formalize this problem as noisy
partial label learning (noisy PLL). But, they focus on analyzing
the theoretical robustness of existing PLL methods instead
of providing new solutions. Experimentally, we find that
current best-performing PLL algorithms, including PiCO,
display degenerated performance in the noisy PLL setup
(Section 5.3), e.g. the accuracy of PRODEN drops −10.62%
on CIFAR-10 with 20% wrong candidate sets. The main
reason is that the label disambiguation procedure of current
PLL methods is restricted to the candidate labels, which
causes severe overfitting on wrong labels.

In this work, we propose PiCO+, an extension of PiCO,
to tackle the noisy PLL problem. PiCO+ additionally incor-
porates two mechanisms. First, we present a novel distance-
based clean sample detection technique that chooses near-
prototype examples as clean. Second, to handle the remain-
ing noisy examples, we develop a semi-supervised con-
trastive learning framework that generalizes the two PiCO
modules by (i)-contrastive learning: construct the positive set
by noisy prediction and nearest neighbor embeddings; (ii)-
label disambiguation: guess the prototype-based soft target
for noisy samples. Through extensive experiments, PiCO+
exhibits significant improvement to state-of-the-art PLL ap-
proaches on noisy PLL datasets.

Our main contributions are summarized as follows:
1 (Methodology). To the best of our knowledge, our

paper pioneers the exploration of contrastive learning for

partial label learning and proposes a novel framework
termed PiCO. As an integral part of our algorithm, we
also introduce a new prototype-based label disambiguation
mechanism, that leverages the contrastively learned embed-
dings.

2 (Practicality). Additionally, we propose PiCO+, an
extension of PiCO, that targets to mitigate noisy candi-
date label sets. It further integrates a distance-based clean
sample detection mechanism along with a semi-supervised
contrastive learning module. We believe our work makes
a serious attempt at improving the practicality of PLL in
open-world environments.

3 (Experiments). Empirically, our proposed PiCO frame-
work establishes the state-of-the-art performance on three
PLL tasks. Moreover, we make the first attempt to conduct
experiments on fine-grained classification datasets, where
we show classification performance improvement by up to
9.61% compared with the best baseline on the CUB-200
dataset. We also evaluate our new PiCO+ framework on the
noisy variants of these datasets, where PiCO+ outperforms
the best baseline by up to 12.52% on the noisy PLL version
of the CIFAR-10 dataset.

4 (Theory). We theoretically interpret our framework
from the expectation-maximization perspective. Our deriva-
tion is also generalizable to other CL methods and shows
the alignment property in CL [11] mathematically equals the
M-step in center-based clustering algorithms.

2 BACKGROUND

The problem of partial label learning (PLL) is defined us-
ing the following setup. Let X be the input space, and
Y = {1, 2, ..., C} be the output label space. We consider
a training dataset D = {(xi, Yi)}ni=1, where each tuple
comprises of an image xi ∈ X and a candidate label set
Yi ⊂ Y . Identical to the supervised learning setup, the
goal of PLL is to obtain a functional mapping that predicts
the one true label associated with the input. Yet differently,
the PLL setup bears significantly more uncertainty in the
label space. A basic assumption of PLL is that the ground-
truth label yi is concealed in its candidate set, i.e., yi ∈ Yi,
and is invisible to the learner. For this reason, the learning
process can suffer from inherent ambiguity, compared with
the supervised learning task with explicit ground-truth.

The key challenge of PLL is to identify the ground-
truth label from the candidate label set. During training,
we assign each image xi a normalized vector si ∈ [0, 1]C

as the pseudo target, whose entries denote the probability of
labels being the ground-truth. The total probability mass of
1 is allocated among candidate labels in Yi. Note that si will
be updated during the training procedure. Ideally, si should
put more probability mass on the (unknown) ground-truth
label yi over the course of training. We train a classifier
f : X → [0, 1]C using cross-entropy loss, with si being
the target prediction. The per-sample loss is given by:

Lcls(f ;xi, Yi) =
∑C

j=1
−si,j log(f j(xi))

s.t.
∑

j∈Yi

si,j = 1 and si,j = 0,∀j /∈ Yi,
(1)

where j denotes the indices of labels. si,j denotes the j-
th pseudo target of xi. Here f is the softmax output of



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 2. Illustration of PiCO. The classifier’s output is used to determine the positive peers for contrastive learning. The contrastive
prototypes are then used to gradually update the pseudo target. The momentum embeddings are maintained by a queue structure.
’//’ means stop gradient.

the networks and we denote f j as its j-th entry. In the
remainder of this paper, we omit the sample index i when
the context is clear. We proceed by describing our proposed
framework.

3 THE PICO FRAMEWORK

In this section, we describe our novel Partial label learning
with COntrastive label disambiguation (PiCO) framework
in detail. In a nutshell, PiCO comprises two key components
tackling the representation quality (Section 3.1) and label
ambiguity respectively (Section 3.2). The two components
systematically work as a whole and reciprocate each other.
We further rigorously provide a theoretical interpretation of
PiCO from an EM perspective in Section 6.

3.1 Contrastive Representation Learning for PLL

The uncertainty in the label space posits a unique obstacle
for learning effective representations. In PiCO, we couple
the classification loss in Eq. (1) with a contrastive term that
facilitates a clustering effect in the embedding space. While
contrastive learning has been extensively studied in recent
literature, it remains untapped in the domain of PLL. The
main challenge lies in the construction of a positive sample
set. In conventional supervised CL frameworks, the positive
sample pairs can be easily drawn according to the ground-
truth labels [8]. However, this is not straightforward in the
setting of PLL.

Training Objective. To begin with, we describe the
standard contrastive loss term. We adopt the most pop-
ular setups by closely following MoCo [12] and SupCon
[8]. Given each sample (x, Y ), we generate two views—a
query view and a key view—by way of randomized data
augmentation Aug(x). The two images are then fed into
a query network g(·) and a key network g′(·), yielding
a pair of L2-normalized embeddings q = g(Augq(x))
and k = g′(Augk(x)). In implementations, the query net-
work shares the same convolutional blocks as the classifier,
followed by a prediction head (see Figure 2). Following

MoCo, the key network uses a momentum update with the
query network. We additionally maintain a queue storing
the most current key embeddings k, and we update the
queue chronologically. To this end, we have the following
contrastive embedding pool:

A = Bq ∪Bk ∪ queue, (2)

where Bq and Bk are vectorial embeddings corresponding
to the query and key views of the current mini-batch. Given
an example x, the per-sample contrastive loss is defined by
contrasting its query embedding with the remainder of the
pool A,

Lcont(g;x, τ, A)=− 1

|P (x)|
∑

k+∈P (x)

log
exp(q>k+/τ)∑

k′∈A(x)

exp(q>k′/τ)
,

(3)
where P (x) is the positive set and A(x) = A\{q}. τ ≥ 0 is
the temperature.

Positive Set Selection. As mentioned earlier, the
crucial challenge is how to construct the positive set
P (x). We propose utilizing the predicted label ỹ =
arg maxj∈Y f

j(Augq(x)) from the classifier. Note that we
restrict the predicted label to be in the candidate set Y . The
positive examples are then selected as follows,

P (x) = {k′|k′ ∈ A(x), ỹ′ = ỹ}. (4)

where ỹ′ is the predicted label for the corresponding train-
ing example of k′. For computational efficiency, we also
maintain a label queue to store past predictions. In other
words, we define the positive set of x to be those examples
carrying the same approximated label prediction ỹ. Despite
its simplicity, we show that our selection strategy can be
theoretically justified (Section 6) and also lead to superior
empirical results (Section 5). Note that more sophisticated
selection strategies can be explored, for which we discuss
in Appendix B.3. Putting it all together, we jointly train the
classifier as well as the contrastive network. The overall loss
function is:

Lpico = Lcls + λLcont. (5)
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Still, our goal of learning high-quality representation by
CL relies on accurate classifier prediction for positive set
selection, which remains unsolved in the presence of label
ambiguity. To this end, we further propose a novel label
disambiguation mechanism based on contrastive embed-
dings and show that these two components are mutually
beneficial.

3.2 Prototype-based Label Disambiguation
As we mentioned (and later theoretically prove in Section 6),
the contrastive loss poses a clustering effect in the em-
bedding space. As a collaborative algorithm, we introduce
our novel prototype-based label disambiguation strategy.
Importantly, we keep a prototype embedding vector µc cor-
responding to each class c ∈ {1, 2, ..., C}, which can be
deemed as a set of representative embedding vectors. Cat-
egorically, a naive version of the pseudo target assignment
is to find the nearest prototype of the current embedding
vector. Notably this primitive resembles a clustering step.
We additionally soften this hard label assignment version
by using a moving-average style formula. To this end, we
may posit intuitively that the employment of the prototype
builds a connection with the clustering effect in the embed-
ding space brought by the contrastive term (Section 3.1). We
provide a more rigorous justification in Section 6.

Pseudo Target Updating. We propose a softened and
moving-average style strategy to update the pseudo targets.
Specifically, we first initialize the pseudo targets with a
uniform distribution, sj = 1

|Y | I(j ∈ Y ). We then iteratively
update it by the following moving-average mechanism,

s = φs+ (1− φ)z, zc =

{
1 if c = arg maxj∈Y q

>µj ,

0 else
(6)

where φ ∈ (0, 1) is a positive constant, and µj is a pro-
totype corresponding to the j-th class. The intuition is that
fitting uniform pseudo targets results in a good initialization
for the classifier since the contrastive embeddings are less
distinguishable at the beginning. The moving-average style
strategy then smoothly updates the pseudo targets towards
the correct ones, and meanwhile ensures stable dynamics of
training; see Appendix B.1. With more rigorous validation
provided later in Section 6, we provide an explanation for
the prototype as follows: (i)-for a given input x, the closest
prototype is indicative of its ground-truth class label. At
each step, s has the tendency to slightly move toward the
one-hot distribution defined by z based on Eq. (6); (ii)-if an
example consistently points to one prototype, the pseudo
target s can converge (almost) to a one-hot vector with the
least ambiguity.

Prototype Updating. The most canonical way to update
the prototype embeddings is to compute it in every iteration
of training. However, this would extract a heavy computa-
tional toll and in turn cause unbearable training latency. As
a result, we update the class-conditional prototype vector
similarly in a moving-average style:

µc = Normalize(γµc + (1− γ)q),

if c = arg maxj∈Y f
j(Augq(x))),

(7)

where the momentum prototype µc of class c is defined by
the moving-average of the normalized query embeddings

Algorithm 1: Pseudo-code of PiCO (one epoch).
1 Input: Training dataset D, classifier f , query network g,

key network g′, momentum queue, uniform
pseudo-labels si associated with xi in D, class
prototypes µj (1 ≤ j ≤ C).

2 for iter = 1, 2, . . . , do
3 sample a mini-batch B from D

// query and key embeddings generation
4 Bq = {qi = g(Aug

q
(xi))|xi ∈ B}

5 Bk = {ki = g′(Aug
k
(xi))|xi ∈ B}

6 A = Bq ∪Bk ∪ queue
7 for xi ∈ B do

// classifier prediction
8 ỹi = argmaxj∈Yi f

j(Aug
q
(xi))

// momentum prototype updating
9 µc = Normalize(γµc + (1− γ)qi), if ỹi = c

// positive set generation
10 P (xi) = {k′|k′ ∈ A(xi), ỹ′ = ỹi}
11 end

// prototype-based label disambiguation
12 for qi ∈ Bq do
13 zi = OneHot(argmaxj∈Yi q

>
i µj)

14 si = φsi + (1− φ)zi
15 end

// network updating
16 minimize loss Lpico = Lcls + λLcont

// update the key network and momentum
queue

17 momentum update g′ by using g
18 enqueue Bk and classifier predictions and dequeue
19 end

q whose predicted class conforms to c. γ is a tunable
hyperparameter.

3.3 Synergy between Contrastive Learning and Label
Disambiguation

While seemingly separated from each other, the two key
components of PiCO work in a collaborative fashion. First,
as the contrastive term favorably manifests a clustering
effect in the embedding space, the label disambiguation
module further leverages via setting more precise proto-
types. Second, a set of well-polished label disambiguation
results may, in turn, reciprocate the positive set construction
which serves as a crucial part in the contrastive learning
stage. The entire training process converges when the two
components perform satisfactorily. We further rigorously
draw a resemblance of PiCO with a classical EM-style clus-
tering algorithm in Section 6. Our experiments, particularly
the ablation study displayed in Section 5.2.2, further justify
the mutual dependency of the synergy between the two
components. The pseudo-code of our complete algorithm
is shown in Algorithm 1.

4 PICO+ FOR NOISY PARTIAL LABELS

In this section, we investigate a more practical setup called
noisy partial label learning [10], where the true label poten-
tially lies outside the candidate set, i.e., yi /∈ Yi. Empiri-
cally, we observe that the current PLL methods, including
PiCO, exhibit a significant performance drop on noisy PLL
datasets (Section 5.3). One main reason is that these methods
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mostly rely on a within-set pseudo-label updating step, but
the noisy candidate sets in noisy PLL can mislead them
towards overfitting on a wrong label.

To this end, we propose PiCO+, an extension of PiCO,
which learns robust classifiers from noisy partial labels.
First, we introduce a distance-based sample selection mech-
anism that detects clean examples whose candidate sets con-
tain the ground-truth labels. Then, we develop a semi-
supervised contrastive PLL framework to handle data with
noisy candidates. In what follows, we elaborate on our novel
PiCO+ framework in detail.

4.1 Distance-based Clean Example Detection

To remedy overfitting on noisy candidates, we would like
to select those reliable candidates, which contain the true
labels, to run the PiCO method. In the noisy label learning
regime, a widely-adopted strategy is to employ the small-
loss selection criterion [13], which is based on the observa-
tion that noisy examples typically demonstrate a large loss.
However, in the noisy PLL problem, the loss values are less
informative since examples with more candidate labels can
also incur a larger loss, even if the candidate sets are reliable.

To address this problem, we propose a distance-based
selection mechanism as follows,

Dclean = {(xi, Yi)|q>i µỹi > κδ}, (8)

where ỹi = arg maxj∈Yi
f j(Augq(xi))) is the classifier pre-

diction. κδ is the (100−δ)-percentile of the consine similarity
between the query embedding and the ỹi-th prototype. For
example, when δ = 60, it means 60% of examples are above
the threshold. Our motivation is that the clustering effect
of contrastive learning makes the clean examples dominate
the prototype calculation and thus they are distributed close
to at least one prototype inside the candidate set. On the
other hand, the noisy candidates mostly deviate from all
candidate prototypes as their true labels are not contained
in their candidate sets.

4.2 Semi-supervised Contrastive Learning

While leveraging the clean examples to run a PiCO model is
straightforward, the low data utility restricts it from better
performance. Consequently, we regard noisy examples as
unlabeled ones and develop a semi-supervised learning
framework to learn from the two sets. On clean datasets,
we assume the true labels are included in the candidate and
run our PiCO method. It should be particularly noted that
we also restrict the positive set construction and prototype
updating procedures to merely employ clean examples.
But, the pseudo-target updating is performed over all data
points.

On the noisy dataset, which is denoted by Dnoisy =
D\Dclean, we follow our design patterns in PiCO to syner-
getically train the contrastive branch as well as the classifier.
It is achieved by the following components:

Neighbor-Augmented Contrastive Learning. Recall
that the crucial step for designing contrastive loss is to
construct the positive set, which is challenging for noisy
samples as their candidate sets are unreliable. To this end,
we first propose a label-driven construction approach. By

regarding noisy samples as unlabeled data, it is intuitive to
treat all labels as candidates. This gives rise to the following
noisy positive set,

Pnoisy(x) = {k′|k′ ∈ A(x), ŷ′ = ŷ},

where ŷ =

arg max
1≤j≤L

f j(Augq(x))) if x ∈ Dnoisy,

arg max
j∈Y

f j(Augq(x))) else.
(9)

That is, we choose the within-set classifier prediction for
clean examples and choose the full-label prediction for the
remaining. We apply this noisy positive set to all data in
D and calculate a noisy contrastive loss Ln-cont by Eq. (3).
This objective serves as our ultimate goal of semi-supervised
training that recovers the PiCO algorithm on clean PLL data
and noisy unlabeled data.

Nevertheless, as we are less knowledgeable of noisy
examples, our estimation on Pnoisy(x) can be inaccurate and
assigns wrong cluster centers. To this end, we incorporate
a data-driven technique to regularize the noisy contrastive
loss. In specific, we collect the nearest neighbors of noisy
samples to be positive peers,

Pknn(x) = {k′|k′ ∈ A(x) ∩Nk(x)}, (10)

whereNk(x) is the embedding set of x’s k-nearst neighbors
in the embedding space. Then, we calculate the kNN-based
contrastive loss Lknn on noisy examples. Note that the origi-
nal CL objective naturally encourages the examples to be lo-
cally smooth by aligning augmented copies. Our neighbor-
augmented loss further enhances this effect to ensure the
examples in a local region share the same label. By then, the
noisy examples are aligned to their local neighbors, which
promotes their clustering effect towards the right labels.

Prototype-based Label Guessing. Similarly, we would
also like to identify the true labels on noisy examples to
enhance the classifier training. Although the noisy examples
are treated as unlabeled, it is not appropriate to directly set
their labels to uniform labels 1

L as in PiCO, since the data
separation procedure dynamically changes during training.
To this end, we leverage the class prototypes to guess their
pseudo-targets s′ by,

s′j =
exp(q>µj/τ)∑L
t=1 exp(q>µt/τ)

, ∀1 ≤ j ≤ L. (11)

We calculate the cross-entropy loss on Dnoisy as defined in
Eq. (1), which is term as Ln-cls.

Mixup Training. Recently, the mixup regularization
technique has widely adopted to improve the robustness of
weakly-supervised learning algorithms [14], [15]. Therefore,
we also incorporate it into PiCO+ for boosted performance.
Formally, given a pair of images xi and xj , we create a
virtual training example by linearly interpolating both,

xm = σAugq(xi) + (1− σ)Augq(xj),

sm = σŝi + (1− σ)ŝj ,
(12)

where σ ∼ Beta(ς, ς) and ς is a hyperparameter. Here, we
take the pseudo-target of PiCO on clean examples, and the
guessed label on noisy examples, i.e., ŝ = s if x ∈ Dclean else
ŝ = s′. We define the mixup loss Lmix as the cross-entropy
on xm and sm.
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TABLE 1
Accuracy comparisons on standard PLL datasets. Bold indicates superior results. Notably, PiCO+ achieves comparable results to

the fully supervised learning (less than 1% in accuracy with ≈ 1 false candidate).

Dataset Method q = 0.1 q = 0.3 q = 0.5

CIFAR-10

PiCO+ (ours) 95.99 ± 0.03% 95.73 ± 0.10% 95.33 ± 0.06%
PiCO (ours) 94.39 ± 0.18% 94.18 ± 0.12% 93.58 ± 0.06%

LWS 90.30 ± 0.60% 88.99 ± 1.43% 86.16 ± 0.85%
PRODEN 90.24 ± 0.32% 89.38 ± 0.31% 87.78 ± 0.07%

CC 82.30 ± 0.21% 79.08 ± 0.07% 74.05 ± 0.35%
MSE 79.97 ± 0.45% 75.64 ± 0.28% 67.09 ± 0.66%
EXP 79.23 ± 0.10% 75.79 ± 0.21% 70.34 ± 1.32%

Dataset Method q = 0.01 q = 0.05 q = 0.1

CIFAR-100

PiCO+ (ours) 76.29 ± 0.42% 76.17 ± 0.18% 75.55 ± 0.21%
PiCO (ours) 73.09 ± 0.34% 72.74 ± 0.30% 69.91 ± 0.24%

LWS 65.78 ± 0.02% 59.56 ± 0.33% 53.53 ± 0.08%
PRODEN 62.60 ± 0.02% 60.73 ± 0.03% 56.80 ± 0.29%

CC 49.76 ± 0.45% 47.62 ± 0.08% 35.72 ± 0.47%
MSE 49.17 ± 0.05% 46.02 ± 1.82% 43.81 ± 0.49%
EXP 44.45 ± 1.50% 41.05 ± 1.40% 29.27 ± 2.81%

Finally, we aggregate the above losses together,

Lpico+ = Lmix + αLclean + β(Ln-cont + Lknn + Ln-cls), (13)

where Lclean is the PiCO loss on clean examples. Note that
over-trusting the guessed labels and positive sets on noisy
samples may cause confirmation bias [16] and makes the
model overfit on wrong labels. Empirically, we set a larger
α and a smaller β (e.g. α = 2, β = 0.1), and thus, the
clean samples dominate the learning procedure to ensure
favorable noisy example detection ability.

5 EXPERIMENTS

In this section, we present our main results and part of ab-
lation results to show the effectiveness of PiCO and PiCO+
methods. We refer readers to Appendix B for more experi-
mental results and analysis. Code and data are available at:
https://github.com/hbzju/PiCO.

5.1 Setup
Datasets. First, we evaluate PiCO on two commonly used
benchmarks — CIFAR-10 and CIFAR-100 [17]. Adopting
the identical experimental settings in previous work [18],
[19], we generate conventional partially labeled datasets
by flipping negative labels ȳ 6= y to false positive labels
with a probability q = P (ȳ ∈ Y |ȳ 6= y). In other words,
all C − 1 negative labels have a uniform probability to
be false positive and we aggregate the flipped ones with
the ground-truth to form the candidate set. We consider
q ∈ {0.1, 0.3, 0.5} for CIFAR-10 and q ∈ {0.01, 0.05, 0.1} for
CIFAR-100. In Section 5.4, we further evaluate our method
on fine-grained classification tasks, where label disambigua-
tion can be more challenging.

For the noisy PLL task, we introduce a noise controlling
parameter η = 1− P (y ∈ Y |y) that controls the probability
of the ground-truth label not being selected as a candidate.
As it is possible that some instances are not assigned any

candidate and we simply re-generate the candidate set until
it has at least one candidate label. We select η ∈ {0.1, 0.2} for
both datasets; results with stronger noisy ratios are shown
in Section 5.3.3.

Baselines. We choose the five best-performed partial
label learning algorithms to date: 1) LWS [19] weights the
risk function by means of a trade-off between losses on can-
didate labels and the remaining; 2) PRODEN [18] iteratively
updates the latent label distribution in a self-training style;
3) CC [20] is a classifier-consistent method that assumes set-
level uniform data generation process; 4) MSE and EXP [21]
are two simple baselines that adopt mean square error and
exponential loss as the risks. For the noisy PLL task, we
additionally incorporate one baseline method GCE [10], [22]
that generalizes the cross-entropy loss via negative Box-Cox
transformation. The hyperparameters are tuned according
to the original methods. For all experiments, we report the
mean and standard deviation based on 5 independent runs
(with different random seeds).

Implementation Details. Following the standard exper-
imental setup in PLL [19], [20], we split a clean validation
set (10% of training data) from the training set to select the
hyperparameters. After that, we transform the validation
set back to its original PLL form and incorporate it into the
training set to accomplish the final model training. We use
an 18-layer ResNet as the backbone for feature extraction.
Most of experimental setups for the contrastive network
follow previous works [8], [12]. The projection head of the
contrastive network is a 2-layer MLP that outputs 128-
dimensional embeddings. We use two data augmentation
modules SimAugment [8] and RandAugment [23] for query
and key data augmentation respectively. Empirically, we
find that even weak augmentation for key embeddings also
leads to good results. The size of the queue that stores
key embeddings is fixed to be 8192. The momentum co-
efficients are set as 0.999 for contrastive network updating
and γ = 0.99 for prototype calculation. For pseudo target

https://github.com/hbzju/PiCO
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TABLE 2
Ablation study of PiCO on standard partial label learning datasets CIFAR-10 (q = 0.5) and CIFAR-100 (q = 0.05).

Ablation Lcont Label Disambiguation CIFAR-10 CIFAR-100

PiCO X Ours 93.58 72.74
PiCO w/o Disambiguation X Uniform Pseudo Target 84.50 64.11

PiCO w/o Lcont 7 Uniform Pseudo Target 76.46 56.87
PiCO with φ = 0 X Soft Prototype Probs 91.60 71.07
PiCO with φ = 0 X One-hot Prototype 91.41 70.10

PiCO X MA Soft Prototype Probs 81.67 63.75
Fully-Supervised X N/A 94.91 73.56

(a) Uniform features (b) PRODEN features (c) PiCO features (ours)

Fig. 3. T-SNE visualization of the image representation on CIFAR-10 (q = 0.5). Different colors represent the corresponding classes.

updating, we linearly ramp down φ from 0.95 to 0.8. The
temperature parameter is set as τ = 0.07. The loss weighting
factor is set as λ = 0.5. The model is trained by a standard
SGD optimizer with a momentum of 0.9 and the batch size is
256. We train the model for 800 epochs with cosine learning
rate scheduling. We also empirically find that classifier
warm up leads to better performance when there are many
candidates. Hence, we disable contrastive learning in the
first 100 epoch for CIFAR-100 with q = 0.1 and 1 epoch for
the remaining experiments.

For PiCO+, we basically follow the original PiCO
method. The clean sample selection ratio parameter δ is set
as 0.8/0.6 for noisy ratio 0.1/0.2, respectively. For neighbor
augmentation, we set k = 16 for CIFAR-10 and a smaller
k = 5 for CIFAR-100. In the beginning, the embeddings can
be less meaningful and thus, we enable kNN augmentation
after the first 100 epochs. We fix the shape parameter of the
Beta distribution to ς = 4 for mixup training. We set the loss
weighting factor α = 2 and β = 0.1. Similar to the standard
PLL setup, we warm up the model by fitting uniform targets
for 5 and 50 epochs on CIFAR-10 and CIFAR-100 datasets
respectively.

5.2 Experimental Results on standard PLL
5.2.1 Main Results
PiCO achieves SOTA results on standard PLL task. As
shown in Table 1, PiCO significantly outperforms all the
rivals by a significant margin on all datasets. Specifically,
on CIFAR-10 dataset, we improve upon the best baseline
by 4.09%, 4.80%, and 5.80% where q is set to 0.1, 0.3, 0.5
respectively. Moreover, PiCO consistently achieves superior
results as the size of the candidate set increases, while
the baselines demonstrate a significant performance drop.

Besides, it is worth pointing out that previous works [18],
[19] are typically evaluated on datasets with a small label
space (C = 10). We challenge this by showing additional
results on CIFAR-100. When q = 0.1, all the baselines fail
to obtain satisfactory performance, whereas PiCO remains
competitive. Moreover, we observe that PiCO achieves re-
sults that are comparable to the fully supervised contrastive
learning model (in Table 2), showing that disambiguation is
sufficiently accomplished. The comparison highlights the
superiority of our label disambiguation strategy. Lastly, we
evaluated the PiCO+ method in the standard PLL setup,
which equals a PiCO model with mixup training. It can
be shown that PiCO+ further improves PiCO by a notable
margin, validating the robustness of the PiCO+ method.

PiCO learns more distinguishable representations. We
visualize the image representation produced by the feature
encoder using t-SNE [24] in Figure 3. Different colors repre-
sent different ground-truth class labels. We use the CIFAR-
10 dataset with q = 0.5. We contrast the t-SNE embeddings
of three approaches: (a) a model trained with uniform
pseudo targets, i.e., sj = 1/|Y | (j ∈ Y ), (b) the best baseline
PRODEN, and (c) our method PiCO. We can observe that
the representation of the uniform model is indistinguishable
since its supervision signals suffer from high uncertainty.
The features of PRODEN are improved, yet with some
class overlapping (e.g., blue and purple). In contrast, PiCO
produces well-separated clusters and more distinguishable
representations, which validates its effectiveness in learning
high-quality representation.

5.2.2 Ablation Studies of PiCO

Effect of Lcont and label disambiguation. We ablate the
contributions of two key components of PiCO: contrastive
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TABLE 3
Accuracy comparisons on noisy PLL datasets. Bold indicates superior results.

Dataset Method q = 0.3 q = 0.5

η = 0.1 η = 0.2 η = 0.1 η = 0.2

CIFAR-10

PiCO+ (ours) 95.11 ± 0.13% 93.98 ± 0.39% 94.45 ± 0.27% 92.59 ± 0.22%
PiCO (ours) 89.47 ± 0.37% 84.13 ± 0.53% 87.79 ± 0.09% 80.07 ± 0.60%

LWS 84.51 ± 0.13% 77.98 ± 0.09% 71.02 ± 7.27% 61.96 ± 3.22%
PRODEN 84.56 ± 0.16% 79.35 ± 0.12% 81.97 ± 0.59% 77.15 ± 0.08%

CC 72.16 ± 0.93% 68.42 ± 0.37% 65.61 ± 0.43% 51.82 ± 4.13%
MSE 53.77 ± 1.44% 49.73 ± 2.94% 46.56 ± 0.18% 39.80 ± 2.82%
EXP 75.81 ± 0.09% 69.97 ± 0.39% 64.26 ± 1.02% 54.93 ± 1.11%
GCE 74.32 ± 1.04% 69.90 ± 0.80% 70.38 ± 7.63% 50.57 ± 0.95%

Dataset Method q = 0.05 q = 0.1

η = 0.1 η = 0.2 η = 0.1 η = 0.2

CIFAR-100

PiCO+ (ours) 74.68 ± 0.15% 72.98 ± 0.22% 67.58 ± 1.05% 62.24 ± 0.97%
PiCO (ours) 66.29 ± 0.10% 59.81 ± 0.24% 66.15 ± 0.03% 45.32 ± 0.89%

LWS 52.20 ± 1.47% 42.31 ± 1.05% 20.54 ± 4.77% 17.76 ± 4.47%
PRODEN 53.40 ± 0.61% 46.11 ± 0.38% 47.34 ± 1.39% 38.03 ± 1.79%

CC 42.06 ± 0.67% 37.90 ± 3.27% 32.11 ± 3.95% 22.28 ± 6.18%
MSE 31.06 ± 2.46% 27.36 ± 0.40% 25.86 ± 1.87% 22.98 ± 1.74%
EXP 23.98 ± 4.25% 22.37 ± 5.45% 23.78 ± 4.59% 22.27 ± 3.38%
GCE 35.85 ± 1.37% 31.65 ± 0.71% 27.79 ± 2.80% 24.21 ± 1.67%

(a) PiCO Ablation on φ
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(b) PiCO+ Ablation on k
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(c) PiCO+ Ablation on β

Fig. 4. (a) Performance of PiCO with varying moving-average factor φ on CIFAR-100 (q = 0.05). (c) Performance of PiCO+ with
varying neighbor number k on CIFAR-10 (q = 0.5, η = 0.2) and CIFAR-100 (q = 0.05, η = 0.2). (b) Performance of PiCO+ with
varying semi-supervised loss weighting factor β on CIFAR-10 (q = 0.5, η = 0.2).

learning and prototype-based label disambiguation. In par-
ticular, we compare PiCO with two variants: 1) PiCO w/o
disambiguation which keeps the pseudo target as uniform
1/|Y |; and 2) PiCO w/o Lcont which further removes the
contrastive learning and only trains a classifier with uniform
pseudo targets. From Table 2, we can observe that variant 1
substantially outperforms variant 2 (e.g., +8.04% on CIFAR-
10), which signifies the importance of contrastive learning
for producing better representations. Moreover, with label
disambiguation, PiCO obtains results close to fully supervised
setting, which verifies the ability of PiCO in identifying the
ground-truth.

Different disambiguation strategy. Based on the con-
trastive prototypes, various strategies can be used to dis-
ambiguate the labels, which corresponds to the E-step in
our theoretical analysis. We choose the following variants:

1) One-hot Prototype always assigns a one-hot pseudo target
s = z by using the nearest prototype (φ = 0); 2) Soft
Prototype Probs follows [25] and uses a soft class probability
si = exp(q>µi/τ)∑

j∈Y exp(q>µj/τ)
as the pseudo target (φ = 0); 3)

MA Soft Prototype Probs gradually updates pseudo target
from uniform by using the soft probabilities in a moving-
average style. From Table 2, we can see that directly using
either soft or hard prototype-based label assignment leads
to competitive results. This corroborates our theoretical
analysis in Section 6, since center-based class probability
estimation is common in clustering algorithms. However,
MA Soft Prototype Probs displays degenerated performance,
suggesting soft label assignment is less reliable in identi-
fying the ground-truth. Finally, PiCO outperforms the best
variant by ≈ 2% in accuracy on both datasets, showing the
superiority of our label disambiguation strategy.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 4
Ablation study of PiCO on noisy partial label learning datasets CIFAR-10 (q = 0.5, η = 0.2) and CIFAR-100 (q = 0.05, η = 0.2).

Ablation Ln-cls Ln-cont kNN Mixup CIFAR-10 CIFAR-100

PiCO+ X X X All Data 92.59 72.98
PiCO+ with Small Loss X X X All Data 91.22 72.54
PiCO+ with Only Clean 7 7 7 Only Clean 87.63 70.72

PiCO+ w/o Ln-cls 7 X X All Data 91.14 71.98
PiCO+ w/o Ln-cont X 7 X All Data 90.87 72.89
PiCO+ w/o kNN X X 7 All Data 87.43 71.19

PiCO+ w/o Mixup X X X No Mixup 89.67 68.51
Fully-Supervised+† - - - All Data 95.96\ 76.36

† These supervised results are evaluated with mixup like PiCO+ and thus are different from Table 2.
\ It is slightly smaller than PiCO+ in Table 1 (q = 0.1) because of randomized running, but they have no

statistically significant difference.

(a) PRODEN features (b) PiCO features (c) PiCO+ features (ours)

Fig. 5. T-SNE visualization of the image representation on noisy PLL version of CIFAR-10 (q = 0.5, η = 0.2). Different colors
represent the corresponding classes.

Effect of moving-average factor φ. We then explore
the effect of pseudo target updating factor φ on PiCO
performance. Figure 4 (a) shows the learning curves of PiCO
on CIFAR-100 (q = 0.05). We can see that the best result
is achieved at φ = 0.9 and the performance drops when
φ takes a smaller value, particularly on the early stage.
When φ = 0, PiCO obtains a competitive result but is much
lower than φ = 0.9. This confirms that trusting the uniform
pseudo targets at the early stage is crucial in obtaining
superior performance. At the other extreme value φ = 1,
uniform pseudo targets are used, and PiCO demonstrates
a degenerated performance and severe overfitting phenom-
ena. In general, PiCO performs well when φ ≈ 0.9.

5.3 Main Empirical Results on Noisy PLL

5.3.1 Main Results

PiCO+ achieves SOTA results on noisy PLL task. In
Table 3, we compare PiCO+ with competitive PLL methods
on CIFAR datasets, where PiCO+ significantly outperforms
baselines. In specific, on CIFAR-10 dataset with q = 0.5,
PiCO+ improves upon the best competitor by 6.66% and
12.52% when η is set to 0.1, 0.2 respectively. Notably, under
the noisy PLL setup, even when only 10% examples have
wrong candidate sets, the baseline algorithms (including
PiCO) exhibit severe performance degradation. This is fur-
ther aggravated on CIFAR-100 with a larger label space,
while PiCO+ consistently retains its great robustness.

PiCO+ learns compact and distinguishable features. In
Figure 5, we visualize the feature representations of PiCO+
on the noisy PLL CIFAR-10 dataset with q = 0.5, η = 0.2. It
can be shown that PiCO generates compact representations
even with noisy candidate sets, which further supports
the clustering effect of contrastive learning. However, both
PiCO and PRODEN exhibit severe overfitting on wrong
labels. Instead, the features of our PiCO+ is both compact
and distinguishable.

5.3.2 Ablation Studies of PiCO+
Effect of sample selection. We first study the effectiveness
of our distance-based selection mechanism by comparing
PiCO+ with two variants: 1) PiCO+ with Small Loss selects
clean examples by sorting cross-entropy losses; 2) PiCO+
with Only Clean employs the clean samples to run a simple
PiCO method. As reported in Table 4, PiCO+ with only
clean data exhibits better performance than the vanilla PiCO
method (e.g. +7.56%) on CIFAR-10, indicates the selected
examples enjoy high purity. Moreover, PiCO+ with Small
Loss underperforms PiCO+, which verifies that the loss val-
ues are indeed less informative in the presence of candidate
labels and that our strategy is a better alternative.

Effect of semi-supervised contrastive training. Next,
we explore the effect of each component in SSL training.
We compare PiCO+ with three variants: 1) PiCO+ w/o
Ln-cls removes the label guessing technique; 2) PiCO+ w/o
Ln-cont removes the label-driven contrastive loss; 3) PiCO+
w/o kNN disables the neighbor-augmented contrastive loss;
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TABLE 5
Accuracy comparisons on noisy PLL datasets with more noisy samples. Bold indicates superior results.

Method CIFAR-10 (q = 0.5) CIFAR-100 (q = 0.05)

η = 0.3 η = 0.4 η = 0.3 η = 0.4 η = 0.5

PiCO+ (ours) 90.12 ± 0.51% 76.09 ± 3.62% 70.46 ± 0.51% 66.41 ± 0.58% 60.50 ± 0.99%
PiCO (ours) 64.79 ± 2.08% 34.59 ± 7.26% 52.18 ± 0.52% 44.17 ± 0.08% 35.51 ± 1.14%

PRODEN 50.32 ± 1.07% 29.68 ± 13.29% 39.19 ± 0.20% 33.64 ± 0.82% 26.91 ± 0.83%

TABLE 6
Accuracy comparisons on fine-grained classification datasets

with standard PLL labels.

Method
CUB-200

(q = 0.05)
CIFAR-100-H

(q = 0.5)

PiCO+ 72.05 ± 0.80% 75.38 ± 0.52%
PiCO 72.17 ± 0.72% 72.04 ± 0.31%
LWS 39.74 ± 0.47% 57.25 ± 0.02%

PRODEN 62.56 ± 0.10% 60.89 ± 0.03%
CC 55.61 ± 0.02% 42.60 ± 0.11%

MSE 22.07 ± 2.36% 39.52 ± 0.28%
EXP 9.44 ± 2.32% 35.08 ± 1.71%

4) PiCO+ w/o Mixup disables the mixup training. From
Table 4, we can see that all the components of our SSL
framework contribute to the performance improvements. In
particular, Ln-cont has a stronger positive effect on CIFAR-10
and the label guessing component brings extra performance
improvements for both datasets. The mixup and neighbor
augmentation are the most crucial to the final performance.
We note that the mixup training technique also improves
the fully-supervised model (e.g. +1.05% on CIFAR-10). But
the performance improvement is more substantial on the
noisy PLL tasks (e.g. +2.92% on CIFAR-10), indicating its
robustness on noisy data. Lastly, Figure 4 (b) shows the
influence of neighbor number k, where PiCO+ works well
in a wide range of k values. Nevertheless, a too large k
may collect many noisy positive peers and slightly drops
the performance.

Effect of loss weighting factor β. Figure 4 reports
the performance of PiCO+ with varying β values. On the
CIFAR-10 dataset, we observe a severe performance degra-
dation with β being larger. The variance becomes increas-
ingly larger as well. Similar trends can also be observed on
CIFAR-100, though the results are much stabler. It suggests
that the usage of noisy examples should be careful as they
may result in confirmation bias.

5.3.3 The Robustness of PiCO+ with Severe Noise

Finally, we conduct experiments on noisy PLL datasets that
contain much more severe noise to show the robustness of
our PiCO+ method. In particular, we choose η ∈ {0.3, 0.4}
and η ∈ {0.3, 0.4, 0.5} for CIFAR-10 and CIFAR-100 re-
spectively. Accordingly, we adjust the selection ratio to
δ = 0.5, 0.4 when η = 0.4, 0.5, without changing other
setups. Table 5 compares PiCO+ with two most competitive
baselines PiCO and PRODEN, where PiCO+ obtains very

TABLE 7
Accuracy comparisons on fine-grained classification datasets

with noisy PLL labels.

Method
CUB-200

(q = 0.05, η = 0.2)
CIFAR-100-H

(q = 0.5, η = 0.2)

PiCO+ 60.65 ± 0.79% 68.31 ± 0.47%
PiCO 53.05 ± 2.03% 59.81 ± 0.25%
LWS 18.65 ± 2.15% 22.18 ± 6.12%

PRODEN 44.74 ± 2.47% 48.03 ± 0.47%
CC 26.98 ± 1.16% 34.57 ± 0.99%

MSE 20.92 ± 1.20% 35.20 ± 1.03%
EXP 2.81 ± 14.46% 20.80 ± 4.62%
GCE 5.13 ± 38.65% 33.21 ± 2.03%

impressive performance. For example, the gaps between
PiCO+ and the best baseline are 41.50% and 24.99% on
CIFAR-10 with η = 0.4 and CIFAR-100 with η = 0.5.
We conclude that PiCO+ is indeed much more robust than
existing PLL algorithms.

5.4 Further Extension: Fine-Grained Partial Label
Learning

Recall the dog example highlighted in Section 2, where
semantically similar classes are more likely to cause label
ambiguity. It begs the question of whether PiCO is effective
on the challenging fine-grained image classification tasks.
To verify this, we conduct experiments on two datasets: 1)
CUB-200 dataset [26] contains 200 bird species; 2) CIFAR-100
with hierarchical labels (CIFAR-100-H), where we generate
candidate labels that belong to the same superclass1. We
set q = 0.05 for CUB-200 and q = 0.5 for CIFAR-100
with hierarchical labels. In Table 6, we compare PiCO with
baselines, where PiCO outperforms the best method PRO-
DEN by a large margin (+9.61% on CUB-200 and +11.15%
on CIFAR-100-H). In addition, we test the performance of
PiCO+ on both standard and noisy PLL versions of fine-
grained datasets. For the noisy version, we set the number
of neighbors by k = 3 for CUB-200 and η = 0.2 for both.
The results are listed in Table 6 and 7, where PiCO+ achieves
substantially better performance than all the baselines. Our
results validate the effectiveness of our framework, even in
the presence of strong label ambiguity.

1. CIFAR-100 dataset consists of 20 superclasses, with 5 classes in
each superclass.
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6 WHY PICO IMPROVES PARTIAL LABEL LEARN-
ING?
In this section, we provide theoretical justification on why
the contrastive prototypes help disambiguate the ground-
truth label. We show that the alignment property in con-
trastive learning [11] intrinsically minimizes the intraclass
covariance in the embedding space, which coincides with
the objective of classical clustering algorithms. It motivates
us to interpret PiCO through the lens of the expectation-
maximization algorithm. To see this, we consider an ideal
setting: in each training step, all data examples are accessible
and the augmentation copies are also included in the train-
ing set, i.e., A = D. Then, the contrastive loss is calculated
as,

L̃cont(g; τ,D)=
1

n

∑
x∈D

− 1

|P (x)|
∑

k+∈P(x)

log
exp(q>k+/τ)∑

k′∈A(x)
exp(q>k′/τ)


=

1

n

∑
x∈D

− 1

|P (x)|
∑

k+∈P (x)

(q>k+/τ)

︸ ︷︷ ︸
(a)

+
1

n

∑
x∈D

log
∑

k′∈A(x)

exp(q>k′/τ)

︸ ︷︷ ︸
(b)

.

(14)

We focus on analyzing the first term (a), which is often
dubbed as the alignment term [11]. The main functionality of
this term is to optimize the tightness of the clusters in the
embedding space. In this work, we connect it with classical
clustering algorithms. We first split the dataset to C subsets
Sj ∈ DC (1 ≤ j ≤ C), where each subset contains examples
possessing the same predicted labels. In effect, our selection
strategy in Eq. (4) constructs the positive set by selecting
examples from the same subset. Therefore, we have,

(a) =
1

n

∑
x∈D

1

|P (x)|
∑

k+∈P (x)
(||q − k+||2 − 2)/(2τ)

≈ 1

2τn

∑
Sj∈DC

1

|Sj |
∑

x,x′∈Sj

||g(x)− g(x′)||2 +K

=
1

τn

∑
Sj∈DC

∑
x∈Sj

||g(x)− µj ||2 +K,

(15)

where K is a constant and µj is the mean center of Sj . Here
we approximate 1

|Sj | ≈
1

|Sj |−1 = 1
|P (x)| since n is usually

large. We omitted the augmentation operation for simplicity.
The uniformity term (b) can benefit information-preserving,
and has been analyzed in [11].

We are now ready to interpret the PiCO algorithm as
an expectation-maximization algorithm that maximizes the
likelihood of a generative model. At the E-step, the classifier
assigns each data example to one specific cluster. At the
M-step, the contrastive loss concentrates the embeddings
to their cluster mean direction, which is achieved by min-
imizing Eq. (15). Finally, the training data will be mapped
to a mixture of von Mises-Fisher distributions on the unit
hypersphere.

EM Perspective. Recall that the candidate label set is a
noisy version of the ground-truth. To estimate the likelihood

P (Yi,xi), we need to establish the relationship between
the candidate and the ground-truth label. Following [5], we
make a mild assumption,

Assumption 1. All labels yi in the candidate label set have the
same probability of generating Yi, but no label outside of Yi can
generate Yi, i.e. P (Yi|yi) = ~(Yi) if yi ∈ Yi else 0. Here ~(·) is
some function making it a valid probability distribution.

Then, we show that the PiCO implicitly maximizes the
likelihood as follows,

E-Step. First, we introduce some distributions over all
examples and the candidates πji ≥ 0 (1 ≤ i ≤ n, 1 ≤ j ≤ C)
such that πji = 0 if j /∈ Yi and

∑
j∈Yi

πji = 1. Let θ be
the parameters of g. Our goal is to maximize the likelihood
below,

arg max
θ

∑n

i=1
logP (Yi,xi|θ)

=argmax
θ

∑n

i=1
log
∑

yi∈Yi

P (xi, yi|θ)+
∑n

i=1
log(~(Yi))

=argmax
θ

∑n

i=1
log
∑

yi∈Yi

πyii
P (xi, yi|θ)

πyii

≥argmax
θ

∑n

i=1

∑
yi∈Yi

πyii log
P (xi, yi|θ)

πyii
.

(16)

The last step of the derivation uses Jensen’s inequality. By
using the fact that log(·) function is concave, the inequality
holds with equality when P (xi,yi|θ)

π
yi
i

is some constant. There-
fore,

πyii =
P (xi, yi|θ)∑

yi∈Yi
P (xi, yi|θ)

=
P (xi, yi|θ)
P (xi|θ)

= P (yi|xi, θ),

(17)

which is the posterior class probability. In PiCO, it is esti-
mated by using the classifier’s output.

To estimate P (yi|xi, θ), classical unsupervised cluster-
ing methods intuitively assign the data examples to the
cluster centers, e.g. k-means. As in the supervised learning
setting, we can directly use the ground-truth. However,
under the setting of PLL, the supervision signals are situated
between the supervised and unsupervised setups. Based on
empirical findings, the candidate labels are more reliable
for posterior estimation at the beginning; yet alongside the
training process, the prototypes tend to become more trust-
ful. This empirical observation has motivated us to update
the pseudo targets in a moving-average style. Thereby, we
have a good initialization in estimating class posterior, and
it will be smoothly refined during the training procedure.
This is verified in our empirical studies; see Section 5.2.2
and Appendix B.1. Finally, we take one-hot prediction ỹi =
arg maxj∈Y f

j(xi) since each example inherently belongs
to exactly one label and hence, we have πji = I(ỹi = j).

M-Step. At this step, we aim at maximizing the likeli-
hood under the assumption that the posterior class prob-
ability is known. We show that under mild assumptions,
minimizing Eq. (15) also maximizes a lower bound of likeli-
hood in Eq. (16).

Theorem 1. Assume data from the same class in the contrastive
output space follow a d-variate von Mises-Fisher (vMF) distri-
bution whose probabilistic density is given by f(x|µ̄i, κ) =
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cd(κ)eκµ̄
>
i g(x), where µ̄i = µi/||µi|| is the mean direction, κ is

the concentration parameter, and cd(κ) is the normalization fac-
tor. We further assume a uniform class prior P (yi = j) = 1/C.
Let nj = |Sj |. Then, optimizing Eq. (15) and Eq. (16) equal to
maximize R1 and R2 below, respectively.

R1 =
∑

Sj∈DC

nj
n
||µj ||2 ≤

∑
Sj∈DC

nj
n
||µj || = R2. (18)

The proof can be found in the Appendix A. Theorem 1
indicates that minimizing Eq. (15) also maximizes a lower
bound of the likelihood in Eq. (16). The lower bound is tight
when ||µj || is close to 1, which in effect means a strong
intraclass concentration on the hypersphere. Intuitively,
when the hypothesis space is rich enough, it is possible to
achieve a low intraclass covariance in the Euclidean space,
resulting in a large norm of the mean vector ||µj ||. Then,
normalized embeddings in the hypersphere also have an
intraclass concentration in a strong sense, because a large
||µj || also results in a large κ [27]. Regarding the visualized
representation in Figure 3, we note that PiCO is indeed
able to learn compact clusters. Therefore, we have that
minimizing the contrastive loss also partially maximizes the
likelihood defined in Eq. (16).

7 RELATED WORKS

Partial Label Learning (PLL) allows each training exam-
ple to be annotated with a candidate label set, in which
the ground-truth is guaranteed to be included. The most
intuitive solution is average-based methods [3], [4], [28],
which treat all candidates equally. However, the key and
obvious drawback is that the predictions can be severely
misled by false positive labels. To disambiguate the ground-
truth from the candidates, identification-based methods
[29], which regard the ground-truth as a latent variable,
have recently attracted increasing attention; representative
approaches include maximum margin-based methods [30],
[31], graph-based methods [6], [7], [32], [33], and clustering-
based approaches [5]. Recently, self-training methods [18],
[19], [20] have achieved state-of-the-art results on various
benchmark datasets, which disambiguate the candidate la-
bel sets by means of the model outputs themselves. But, few
efforts have been made to learn high-quality representations
to reciprocate label disambiguation.

Contrastive Learning (CL) [12], [34] is a framework
that learns discriminative representations through the use
of instance similarity/dissimilarity. A plethora of works has
explored the effectiveness of CL in unsupervised representa-
tion learning [12], [34], [35]. Recently, [8] propose supervised
contrastive learning (SCL), an approach that aggregates data
from the same class as the positive set and obtains im-
proved performance on various supervised learning tasks.
The success of SCL has motivated a series of works to
apply CL to a number of weakly supervised learning tasks,
including noisy label learning [25], [36], semi-supervised
learning [37], [38], etc. Despite promising empirical results,
however, these works, lack theoretical understanding. [11]
theoretically show that the CL favors alignment and unifor-
mity, and thoroughly analyzed the properties of uniformity.
But, to date, the terminology alignment remains confusing;
we show it inherently maps data points to a mixture of vMF
distributions.

Noisy Label Learning (NLL) [39] aims at mitigating
overfitting on mislabeled samples. One popular strategy
is to design robust risk functions, including but does not
limit to robust cross-entropy losses [22], [40], [41], sample
re-weighting [42], [43], [44] and noise transition matrix-
based loss correction [45], [46], [47]. Another active line of
research relies on selecting clean samples from noisy ones
[48]. Most of them adopt the small-loss selection criterion
[13], [49] which is motivated by the fact that deep neural
networks tend to memorize easy patterns first [50]. Based
on that, the state-of-the-art NLL algorithms [15], [25], [51]
regard the unchosen samples as unlabeled and incorporate
semi-supervised learning (SSL) for boosted performance. In-
spired by these works, PiCO+ incorporates a new distance-
based selection criterion and extends the contrastive learn-
ing framework to facilitate SSL training. The most related
one to our work is [10] which theoretically analyzes the
robustness of average-based loss functions for the noisy
PLL task. But, [10] does not provide a new empirically
strong solution. Instead, our PiCO+ framework establishes
promising results against label noise that makes the PLL
problem more practical for open-world applications.

8 CONCLUSION

In this work, we propose a novel partial label learning
framework PiCO. The key idea is to identify the ground-
truth from the candidate set by using contrastively learned
embedding prototypes. Empirically, we conducted extensive
experiments and show that PiCO establishes state-of-the-
art performance. Our results are competitive with the fully
supervised setting, where the ground-truth label is given
explicitly. Theoretical analysis shows that PiCO can be in-
terpreted from an EM-algorithm perspective. Additionally,
we extend the PiCO framework to PiCO+ which is able to
learn robust classifiers from noisy partial labels. Applica-
tions of multi-class classification with ambiguous labeling
can benefit from our method, and we anticipate further
research in PLL to extend this framework to tasks beyond
image classification. We hope our work will draw more
attention from the community toward a broader view of
using contrastive prototypes for partial label learning.
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APPENDIX A
THEORETICAL ANALYSIS

Derivation of Eq. (15). We provide the derivation of the
second equality in Eq. (15). It suffices to show that LHS =

1
2nj

∑
x,x′∈Sj

||g(x) − g(x′)||2 =
∑
x∈Sj

||g(x) − µj ||2 =
RHS. We have,

LHS =
1

2nj

∑
x∈Sj

∑
x′∈Sj

(||g(x)||2 − 2g(x)>g(x′) + ||g(x′)||2)

=
1

nj

∑
x∈Sj

(nj − g(x)>(
∑
x′∈Sj

g(x′)))

=
1

nj

∑
x∈Sj

(nj − g(x)>(njµj)))

= nj − (
∑
x∈Sj

g(x))>µj) = nj(1− ||µj ||2).

(19)

On the other hand,

RHS =
∑
x∈Sj

(||g(x)||2 − 2g(x)>µj + ||µj ||2)

= (nj − 2(
∑
x∈Sj

g(x))>µj + nj ||µj ||2)

= nj(1− ||µj ||2) = LHS.

(20)

Proof of Theorem 1. By regarding πji as constants w.r.t

θ, we can get the following derivation from Eq. (16),

arg max
θ

n∑
i=1

∑
yi∈Yi

πyii log
P (xi, yi|θ)

πyii

= arg max
θ

n∑
i=1

∑
yi∈Yi

πyii logP (xi|yi, θ)P (yi)

= arg max
θ

n∑
i=1

∑
yi∈Yi

I(ỹi = yi) logP (xi|yi, θ)

= arg max
θ

∑
Sj∈DC

∑
x∈Sj

logP (x|y = j, θ)

= arg max
θ

∑
Sj∈DC

∑
x∈Sj

(κµ̄>j g(x) + log(cd(κ)))

= arg max
θ

∑
Sj∈DC

nj
n
||µj ||

(21)

where nj = |Sj |. Here we ignore the constant factor
−
∑n
i=1

∑
yi∈Yi

πyii log πyii w.r.t. θ in the first equality. In the
last equality, we use the fact that µj = 1

nj

∑
x∈Sj

g(x) and
µ̄j is the unit directional vector of µj . From Eq. (15), we
have that,

arg min
θ

∑
Sj∈DC

∑
x∈Sj

||g(x)− µj ||2

= arg min
θ

∑
Sj∈DC

∑
x∈Sj

(||g(x)||2 − 2g(x)>µj + ||µj ||2)

= arg min
θ

∑
Sj∈DC

(nj − nj ||µj ||2)

= arg max
θ

∑
Sj∈DC

nj
n
||µj ||2.

(22)

Note that the contrastive embeddings are distributed on the
hypersphere Sd−1 and thus ||µj || ∈ [0, 1]. It can be directly
derived that,

R1 =
∑

Sj∈DC

nj
n
||µj ||2 ≤

∑
Sj∈DC

nj
n
||µj || = R2. (23)

Therefore, maximizing the intraclass covariance in Eq. (15)
is equivalent to maximizing a lower bound of the likeli-
hood in Eq. (16). It can also be shown that (R2)2 ≤ R1

followed by the convexity of the squared function. Since
arg maxR2 = arg max(R2)2, we have that the contrastive
loss also maximizes an upper bound of R2.

Unfortunately, there is no guarantee that the lower
bound is tight without further assumptions. To see this,
assume that we have two classes y ∈ {1, 2} with equal-
sized samples and their mean vectors have the norm of
||µ1|| = 0.5 and ||µ1|| = 1. We have that R1 = 0.625 and
R2 = 0.75, which demonstrates a large discrepancy. It is
interesting to see that when the norm of the mean vectors
are the same, i.e. ||µj || = ||µk|| for all 1 ≤ j ≤ k ≤ C ,
we have (R2)2 = R1 by the Jensen’s inequality, making the
upper bound tight. But, it is not a trivial condition.

To obtain a tight lower bound, what we need is a
rich enough hypothesis space to achieve a low intraclass
covariance in Eq. (15), and hence a large R1. We show that
it inherently produces compact vMF distributions. To see
this, it should be noted that the concentration parameter κ
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Fig. 6. A large norm of Euclidean’s mean vector also leads to a
strong concentration of unit vectors to its mean direction.

of a vMF distribution is given by the inverse of the ratio of
Bessel functions of mean vector µj . Though it is not possible
to obtain an analytic solution of κ, we have the following
well-known approximation [27],

κ ≈ d− 1

2(1− ||µj ||)
, valid for large ||µj ||,

κ ≈ d||µj ||
(

1 +
d

d+ 2
||µj ||2 +

d2(d+ 8)

(d+ 2)2(d+ 4)
||µj ||4

)
,

valid for small ||µj ||.
(24)

The above approximations show that a larger norm of Eu-
clidean’s meanµj typically leads to a stronger concentration
on the hypersphere. By Eq. (22), we know that contrastive
loss encourages a large norm of µj , and thus also tightly
clusters the embeddings on the hypersphere; see Figure 6.

We further note that we do not include a k-means
process in our PiCO method. PiCO is related to center-
based clustering algorithms in our theoretical analysis. Since
we restrict the gold label to be included in the candidate
set, we believe that this piece of information could largely
help avoid the bad optimum problem that occurs in a pure
unsupervised setup. For the convergence properties of our
PiCO algorithm, we did not empirically find any issues
with PiCO converging to a (perhaps locally) optimal point.
However, we want to refer the readers to the proof of k-
means clustering in [52] for the convergence analysis.

Discussion. Regarding our empirical results where
PiCO does indeed learn compact representations for each
class, we can conclude that PiCO implicitly clusters data
points in the contrastive embeddings space as a mixture
of vMF distributions. In each iteration, our algorithm can
be viewed as alternating the two steps until convergence,
though different in detail. First, it is intractable to handle the
whole training dataset, and thus we accelerate via a MoCo-
style dictionary and MA-updated prototypes. Second, the
contrastive loss also encourages the uniformity of the em-
beddings to maximally preserve information, which serves
as a regularizer and typically leads to better representation.
Finally, we use two copies of data examples such that data
are also aligned in its local region. Moreover, our theoretical
result also answers why merely taking the pseudo-labels
to select positive examples also leads to superior results,
since the selected positive set will be refined as the training
procedure proceeds.

Our theoretical results are also generalizable to other
contrastive learning methods. For example, the classical
unsupervised contrastive learning [12] actually assumes n-
prototypes to cluster all locally augmented data; proto-
typical contrastive learning [53] directly assigns the data

TABLE 8
Performance of PiCO with varying γ on CIFAR-10 (q = 0.5) and

CIFAR-100 (q = 0.05).

Dataset γ = 0.1 0.5 0.9 0.99 0.999

CIFAR-10 93.61 93.51 93.52 93.58 93.66
CIFAR-100 72.87 73.09 72.54 72.74 67.33

TABLE 9
Training accuracy of pseudo targets on CIFAR-10 and

CIFAR-100.

Dataset CIFAR-10 CIFAR-100

q 0.1 0.3 0.5 0.01 0.05 0.1

Accuracy 98.28 98.26 96.79 99.06 96.27 90.58
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Fig. 7. More ablation results on CIFAR-10 (q = 0.5) and CIFAR-
100 (q = 0.05). (a) Performance of PiCO with varying φ. (b)
Performance of PiCO with varying λ.

examples to one cluster to get the posterior, since there are
no supervision signals; supervised contrastive learning [8]
chooses the known ground-truth as the posterior. In our
problem, we follow two extreme settings to progressively
obtain an accurate posterior estimation. Finally, it is also
noteworthy that the objective in Eq. (15) has a close con-
nection to the intraclass deviation [54], minimizing which is
proven to be beneficial in obtaining tighter generalization
error bound on downstream tasks. It should further be
noted that our work differs from existing clustering-based
CL methods [53], [55], which explicitly involves clustering to
aggregate the embeddings; instead, our results are derived
from the loss itself.

APPENDIX B
MORE EXPERIMENTAL RESULTS

B.1 Ablation Studies

Moving-average updating factor φ. We first present more
ablation results about the effect of pseudo target updating
factor φ on PiCO performance. Figure 7 (a) shows the
results on two datasets CIFAR-10 (q = 0.5) and CIFAR-
100 (q = 0.05). The overall trends on both datasets follow
our arguments in Section 5.2.2. Specifically, performance
on CIFAR-100 achieves the best result when φ = 0.7, and
slight drops when φ = 0.9. Therefore, in practice, we may
achieve a better result with careful fine-tuning on φ value.
In contrast, PiCO works well in a wide range of φ values on
CIFAR-10. The reason might be that CIFAR-10 is a simpler
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TABLE 10
Accuracy comparisons on fine-grained datasets. Bold indicates superior results.

Dataset Method q = 0.1 q = 0.5 q = 0.8

CIFAR-100-H

PiCO (ours) 73.41 ± 0.27% 72.04 ± 0.31% 66.17 ± 0.23%
LWS 62.41 ± 0.03% 57.25 ± 0.02% 20.64 ± 0.48%

PRODEN 62.91 ± 0.01% 60.89 ± 0.03% 43.64 ± 1.82%
CC 50.40 ± 0.20% 42.60 ± 0.11% 37.80 ± 0.09%

MSE 46.05 ± 0.17% 39.52 ± 0.28% 15.18 ± 0.73%
EXP 45.73 ± 0.22% 35.08 ± 1.71% 22.31 ± 0.39%

Dataset Method q = 0.01 q = 0.05 q = 0.1

CUB-200

PiCO (ours) 74.14 ± 0.24% 72.17 ± 0.72% 62.02 ± 1.16%
LWS 73.74 ± 0.23% 39.74 ± 0.47% 12.30 ± 0.77%

PRODEN 72.34 ± 0.04% 62.56 ± 0.10% 35.89 ± 0.05%
CC 56.63 ± 0.01% 55.61 ± 0.02% 17.01 ± 1.44%

MSE 61.12 ± 0.51% 22.07 ± 2.36% 11.40 ± 2.42%
EXP 55.62 ± 2.25% 9.44 ± 2.32% 7.3 ± 0.99%

Fully Supervised 76.02 ± 0.19%
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(a) CIFAR-10 (q = 0.5)
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(b) CIFAR-100 (q = 0.05)

Fig. 8. The mean max confidence curves of different label disam-
biguation strategies.

version of CIFAR-100, and thus the prototypes can be high-
quality quickly. But, setting φ to either 0 or 1 leads to a
worse result, which has been discussed earlier.

Loss weight λ. Figure 7 (b) reports the perfor-
mance of PiCO with varying λ values that trade-off the
classification and contrastive losses. λ is selected from
{0.01, 0.1, 0.5, 5, 50}. We can observe that on CIFAR-10, the
performance is stable, but on CIFAR-100, the best perfor-
mance is obtained at λ = 5. When λ = 50, PiCO shows
inferior results on both two datasets. In general, a relatively
small λ (< 10) usually leads to good performance than a
much larger value. When λ is large, the contrastive network
tends to fit noisy labels at the early stage of training.

Prototype updating factor γ. Then, we show the effect
of γ that controls the speed of prototype updating and
the results are listed in Table 8. On the CIFAR-10 dataset,
the performance is stable with varying γ. But, on CIFAR-
100, it can be seen that too large λ leads to a significant
performance drop, which may be caused by insufficient
label disambiguation.

The disambiguation ability of PiCO. Next, we evaluate
the disambiguation ability of the proposed PiCO. To see this,
we calculate the max confidence to represent the uncertainty
of an example, which has been widely used in recent works
[56]. If one example is uncertain about its ground-truth, then
it typically associates with low max confidence maxj sj . To
represent the uncertainty of the whole training dataset, we
calculate the mean max confidence (MMC) score. In Figure
8, we plot the MMC scores of different label disambiguation

TABLE 11
Performance of PiCO+ with varying α on CIFAR-10

(q = 0.5, η = 0.2) and CIFAR-100 (q = 0.05, η = 0.2).

Dataset α = 0.1 0.5 1 2 10

CIFAR-10 67.41 76.16 92.77 92.59 90.92
CIFAR-100 75.46 74.83 73.93 72.98 69.75

strategies in different training epochs. First, we can observe
the MMC score of PiCO smoothly increases and finally
achieves near 1 results, which means most of the labels are
well disambiguated. In contrast, the Soft Prototype Probs
strategy oscillates at the beginning, and then also increases
to a certain value, which means that directly adopting
the soft class probability also helps disambiguation. But,
it is worth noting that it ends with a smaller MMC score
compared with PiCO. The reason might be that the cosine
distances to non-ground-truth prototypes are still at a scale.
Hence, the Soft Prototype Probs strategy always holds a
certain degree of ambiguity. Finally, we can see that the
MA Soft Prototype Probs strategy fails to achieve great
disambiguation ability. Compared with the non-moving-
average version, it fails to get rid of severe label ambiguity
and will finally converge to uniform pseudo targets again.

Furthermore, we evaluated the accuracy of the pseudo
targets over training examples. From Table 9, we can find
that the pseudo targets achieve high training accuracy. Com-
bined with the fact that the mean max confidence score of
the pseudo target is close to 1, the training examples finally
become near supervised ones. Thus, the proposed PiCO
is able to achieve near-supervised learning performance,
especially when the label ambiguity is not too high. These
results verify that PiCO has a strong label disambiguation
ability to handle the PLL problem.

Clean loss weight α for PiCO+. Lastly, we show the
effect of clean loss weight α for PiCO+ in Table 11. With a too
large α, the performance of PiCO+ typically drops since the
regularization effect of mixup training and semi-supervised
learning becomes weak. When α is too small, we observe
that PiCO+ exhibits degenerated performance on CIFAR-
10. The reason is that the clean examples are dominated
by unreliable samples, resulting in severe confirmation bias



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

TABLE 12
Accuracy comparisons with different data generation processes

on CIFAR-10.

Method Case (1) Case (2)

PiCO 94.49 ± 0.08% 94.11 ± 0.25%
LWS 90.78 ± 0.01% 68.37 ± 0.04%

PRODEN 90.53 ± 0.01% 87.02 ± 0.02%
CC 75.81 ± 0.13% 66.51 ± 0.11%

MSE 68.11 ± 0.23% 39.49 ± 0.41%
EXP 71.62 ± 0.79% 48.87 ± 2.32%

and wrong selection.

B.2 Additional Results on Fine-Grained Classification
In the sequel, we show the full setups and experimental
results on fine-grained classification datasets. In particular,
on CUB-200, we set the length of the momentum queue
as 4192. For CUB-200, we set the input image resolu-
tion as 224 × 224 and select q ∈ {0.01, 0.05, 0.1}. When
q = 0.05/0.1, we warm up for 20/100 epochs and train the
model for 200/300 epochs, respectively. For CIFAR-100-H,
we select q ∈ {0.1, 0.5, 0.8} and warm up the model for 100
epochs when q = 0.8. Other hyperparameters are the same
as our default setting. The baselines are also fine-tuned to
achieve their best results.

From Table 10, we can observe that PiCO significantly
outperforms all the baselines on all the datasets. Moreover,
as the size of candidate sets grows larger, PiCO consistently
leads by an even wider margin. For example, on CIFAR-
100-H, compared with the best baseline, performance im-
provement reaches 9.50%, 11.15% and 22.53% in accu-
racy when q = 0.1, 0.5, 0.8, respectively. The comparison
emerges the dominance of our label disambiguation strategy
among semantically similar classes.

B.3 Strategies for Positive Selection
While our positive set selection strategy is simple and ef-
fective, one may still explore more complicated strategies to
boost performance. We have empirically tested two strate-
gies: 1) Filter-based: we set a filter |Yi∩Yj |

|Yi∪Yj | ≤ ρ (ρ = 0.5) to
remove example pairs who have dissimilar candidate sets
at the early stage. 2) Threshold-based: we set a threshold
max f j(Augq(x)) ≤ δ (δ = 0.95) to remove those uncertain
examples at the end of training, which has been widely used
in semi-supervised learning [57]. Our basic principle is that
contrastive learning is robust to noisy negative pairs and
thus, we can flip those less reliable positive pairs to negative.
Unfortunately, we did not observe statistically significant
improvement to our vanilla strategy in experiments. These
negative results suggest that the proposed PiCO has a strong
error correction ability, which corroborates our theoretical
analysis.

B.4 The Influence of Data Generation
In practice, some labels may be more analogous to the true
label than others, which makes their probability of label
flipping q larger than others. In other words, the data gen-
eration procedure is non-uniform. In Section 5.4, we have

Algorithm 2: Pseudo-code of PiCO+.
1 Input: Training dataset D, selection ratio δ, number of

nearest neighbors k, beta distribution shape parameter
ς , loss weighting factors α, β.

2 warm up by running PiCO on D
3 for epoch = 1, 2, . . . , do
4 split a clean set by Dclean = {(xi, Yi)|q>i µỹi > κδ}
5 set Dnoisy = D\Dclean
6 for iter = 1, 2, . . . , do
7 sample a mini-batch B from D
8 Bclean = B ∩ Dclean, Bnoisy = B ∩ Dnoisy
9 run PiCO on Bclean to get loss Lclean

10 for xi ∈ B do
// label-driven positive set

11 Pnoisy(xi) = {k′|k′ ∈ A(xi), ŷ′i = ŷi}
12 end
13 for xi ∈ Bnoisy do

// neighbors-based positive set
14 Pknn(xi) = {k′|k′ ∈ A(xi) ∩Nk(xi)}

// label guessing

15 s′ij =
exp(q>i µj/τ)∑L

t=1 exp(q>i µt/τ)
, ∀1 ≤ j ≤ L

16 end
17 for (xi, (xj) ∈ B do
18 σ ∼ Beta(ς, ς)

// mixup samples and pseudo-targets
19 xmij = σAug

q
(xi) + (1− σ)Aug

q
(xj)

20 smij = σŝi + (1− σ)ŝj
21 end
22 calculate Ln-cont, Lknn, Ln-cls, Lmix
23 minimize loss

Lpico+ = Lmix+αLclean+β(Ln-cont+Lknn+Ln-cls)
24 end
25 end

shown one such case on CIFAR-100-H, where semantically
similar labels have a larger probability of being a false
positive. Moreover, we follow [19] to conduct empirical
comparisons on data with alternative generation processes.
In particular, we test two commonly used cases on CIFAR-10
with the following flipping matrix, respectively:

(1) =


1 0.5 0 · · · 0
0 1 0.5 · · · 0
... · · ·

...
0.5 0 0 · · · 1

 ,

(2) =


1 0.9 0.7 0.5 0.3 0.1 0 · · · 0
0 1 0.9 0.7 0.5 0.3 0.1 · · · 0
... · · ·

...
0.9 0.7 0.5 0.3 0.1 0 0 · · · 1


where each entry denotes the probability of a label being a
candidate. As shown in Table 12, PiCO outperforms other
baselines in both cases. It is worth noting that in Case (2),
each ground-truth label has a maximum probability of 0.9
of being coupled with the same false positive label. In such a
challenging setup, PiCO still achieves promising results that
are competitive with the supervised performance, which
further verifies its strong disambiguation ability.

B.5 The Influence of Prototype Calculation
There are several ways to calculate the prototypes and
hence, we further test a variant of PiCO that re-computes
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TABLE 13
Training time (min/epoch) and accuracy of different prototype

calculation methods.

Dataset Method Time Accuracy

CIFAR-10
(q = 0.5)

PiCO 0.94 93.58
Re-Compute 1.39 93.55

CIFAR-100
(q = 0.05)

PiCO 0.96 72.74
Re-Compute 1.40 72.35

the prototypes by averaging embeddings of all training
examples at the end of each epoch. We train the models
using one Quadro P5000 GPU respectively and evaluate the
average training time per epoch. From Table 13, we can
observe that the Re-Compute variant achieves competitive
results, but is much slower than PiCO.

APPENDIX C
PSEUDO-CODE OF PICO+
We summarize the pseudo-code of our PiCO+ method in
Algorithm 2.

APPENDIX D
THE LITERATURE OF PROTOTYPE LEARNING

Prototype learning (PL) aims to learn a metric space where
examples are enforced to be closer to its class prototype. PL
is typically more robust in handling few-shot learning [58],
zero-shot learning [59], and out-of-distribution samples [60].
Recently, PL has demonstrated promising results in weakly-
supervised learning, such as semi-supervised learning [61],
noisy-label learning [25], etc. For example, USADTM [61]
shows that informative class prototypes usually lead to
better pseudo-labels for semi-supervised learning than clas-
sical pseudo-labeling algorithms [57] which reuse classifier
outputs. Motivated by this, we also employ contrastive
prototypes for label disambiguation.
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