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Abstract—The sample selection approach is very popular in learning with noisy labels. As deep networks “learn pattern first”, prior
methods built on sample selection share a similar training procedure: the small-loss examples can be regarded as clean examples and
used for helping generalization, while the large-loss examples are treated as mislabeled ones and excluded from network parameter
updates. However, such a procedure is arguably debatable from two folds: (a) it does not consider the bad influence of noisy labels in
selected small-loss examples; (b) it does not make good use of the discarded large-loss examples, which may be clean or have
meaningful information for generalization. In this paper, we propose regularly truncated M-estimators (RTME) to address the above two
issues simultaneously. Specifically, RTME can alternately switch modes between truncated M-estimators and original M-estimators. The
former can adaptively select small-losses examples without knowing the noise rate and reduce the side-effects of noisy labels in them.
The latter makes the possibly clean examples but with large losses involved to help generalization. Theoretically, we demonstrate that our
strategies are label-noise-tolerant. Empirically, comprehensive experimental results show that our method can outperform multiple
baselines and is robust to broad noise types and levels. The implementation is available at https://github.com/xiaoboxia/RTM_LNL.
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1 INTRODUCTION

L EARNING with noisy labels is one of the hottest problems
in weakly supervised learning [1], [2], [3], [4], [5], since

noisy labels are ubiquitous in real-world datasets, which
always arise in mistakes of manual or automatic annotators
[6], [7], [8], [9], [10], [11], [12], [13], [14]. Noisy labels can
impair the performance of models, especially deep learning
models (e.g., convolutional and recurrent neural networks)
which have large model capacities. General regularization
techniques such as dropout and weight decay cannot address
this issue well [15]. Different approaches therefore have been
proposed for robust learning with noisy labels [16], [17],
[18], [19], [20], [21], [22], [23], [24]. Among them, the sample
selection approach attracted a lot of attention from researchers,
since it always has a simple mechanism but promising
performance, and is orthogonal to other approaches [25],
[26], [27]. This approach is also our focus in this paper.
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Fig. 1: Illustrations of training loss distributions. Experiments
were conducted on synthetic CIFAR-10 with instance-dependent
label noise [17]. The noise rate is set to 30%. (a): Loss vs
Proportion of clean/mislabeled data. Here, proportion=(# clean
(resp. mislabeled data)) / (# all training data). The proportion of
clean data is almost negatively related to the values of losses. (b):
Loss vs Number. Noisy labels still exist in the selected small-loss
examples, which hurt generalization.

The sample selection approach is based on selecting
possibly clean examples from noisy examples for training.
Intuitively, if we can exploit less noisy data for network
parameter updates, the network will be more robust. At the
present stage, the sample selection built on the small-loss
criteria is the most common method, and has been verified to
be effective in many circumstances [26], [28], [29], [30], [31].
Specifically, since deep networks learn patterns first [15], they
would first memorize training data of clean labels and then
those of noisy labels with the assumption that clean labels are
of the majority in a noisy class. Small-loss examples can be
regarded as clean examples with high probability. Therefore, in
each iteration for a mini-batch data, the small-loss examples
are selected for robust training with equal importance. By
contrast, the large-loss examples are treated to be mislabeled
and excluded from training.
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However, such a selection procedure is debatable from
two folds. First, the equal importance should not be assigned
to different small-loss examples. Specifically, although we
rank the losses of all examples and regard a proportion of
examples as clean examples, such a way does not guarantee
that selected examples are completely clean [29], especially
the examples have relatively large losses but still are seen
to be clean [32]. Recall the selection procedure, the purity
of an example is negatively correlated with its loss, i.e., the
example with a smaller loss is regarded to be clean with a
higher degree of confidence (Fig. 1). Therefore, we should
assign larger weights to the examples with smaller losses
to make use of these “confirmable” clean examples to help
generalization. Second, the large-loss examples should not
be discarded directly. Specifically, although the large-loss
examples may be mislabeled, the instances (e.g., images)
may be helpful for generalization [33]. This opinion is
motivated by the prior work [30], which shows that the
images of mislabeled data may have meaningful information
(e.g., scene information), even though such images come
from a different instance space. For our task, mislabeled
examples and clean examples share the same instance space.
Such mislabeled examples is thereby more reasonable to be
considered useful, and can be exploited for training.

In this paper, to relieve the above two issues simul-
taneously while keeping end-to-end, we propose regularly
truncated M-estimators. More specifically, we borrow the
statistical robust M-estimators in statistical learning [34],
which can adaptively assign larger weights to examples with
smaller losses. Based on the multiple robust M-estimators,
to perform sample selection, we develop novel truncated
M-estimators. By performing truncation on magnitudes of
losses meanwhile without knowing or estimating the noise rate,
our truncated M-estimators can concern the purity of small-
loss examples and assign zero weights to possibly mislabeled
examples to enhance networks. Since truncated M-estimators
only consider the better use of small-loss examples, but do
not make use of meaningful large-loss examples, we regularly
switch robust M-estimators between truncated ones and
original ones to achieve the proposed regularly truncated
M-estimators. In this way, we can assign different weights
to “clean” examples after sample selection (with truncated
M-estimators). Additionally, the large-loss examples can be
introduced regularly into network parameter updates for
helping generalization (with original robust M-estimators).
As large-loss examples are not introduced into training all
the time, but are introduced regularly, and have smaller
weights compared with small-loss examples, the side effect
of possibly mislabeled examples can be reduced effectively,
following better generalization.

Before delving into details, we highlight the main contri-
butions of this paper in three folds:

• We show that the most frequently used sample selec-
tion procedure still has some potential weaknesses
and discuss them carefully. Based on this, novel
regularly truncated M-estimators are proposed to
address the mentioned issues.

• Theoretical analysis is presented to demonstrate that
the proposed methods are label-noise-tolerant. We
also discuss that this work actually provides a new

and interesting perspective to make one loss function
robust to label noise using the truncation mechanism.

• Extensive experiments on datasets with synthetic
label noise and real-world label noise are conducted
to verify the effectiveness of the proposed methods.
Experimental results justify our claims well. Codes
are open-source for future research.

1.1 Previous work

In this subsection, we briefly review prior approaches to
learning with noisy labels, including robust loss functions,
loss correction, and label correction. Our focus, i.e., the
sample selection approach, will be introduced in detail later.
Robust loss functions. Some efforts have been made to
design robust loss functions to handle noisy labels, e.g., the
generalized cross-entropy loss [35], the normalized loss [36],
the curriculum loss [37], the symmetric (cross-entropy) loss
[38], [39], the negative loss [40], the peer loss [41], and the
mutual information loss [42], etc.
Loss correction. This approach improves the robustness of
networks by modifying the training loss. The modification
can be achieved by reweighting losses [43], [44], estimating
the noise transition matrix [17], [45], [46], [47], [48], [49], [50],
[51], and adding an adaption layer [52], etc.
Label correction. The label correction approach [53], [54]
aims to correct wrong labels into correct ones. The correction
can be obtained by using directed graphical models [55],
conditional random fields [56], knowledge graphs [57], and
joint optimization methods [58], etc.
Integrated approach. Nowadays, state-of-the-art methods of
handling noisy labels [59], [60], [61] are often designed by
integrating various techniques at the same time. For example,
they can simultaneously involve Mixup [62], soft labels
[63], and semi-supervised learning [64], or involve sample
selection and self-supervised learning [65]. We suggest that
the readers refer to [66], [67] for more details about learning
with noisy labels.

Compared with these prior effects, this paper offers an
inspiring perspective to handle noisy labels, i.e., regularly
truncated M-estimators, which successfully connects the
classical statistical M-estimators and learning with noisy
labels. Conceptually, this connection is new and valuable,
and contributes to the research field.

1.2 Organization

The rest of this paper is organized as follows. In Section 2,
we introduce the problem setting and some background of
the proposed methods. In Section 3, we present the proposed
methods formally. Experimental results are discussed in
Section 4. The conclusion is given in Section 5.

2 PRELIMINARIES

In this section, we first introduce the notations (Section 2.1)
and problem setting (Section 2.2). Then the sample selection
approach for learning with noisy labels is discussed in detail
(Section 2.3). Finally, we provide a brief introduction for the
M-estimator (Section 2.4) and employed M-estimators in this
work (Section 2.5).
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2.1 Notations

Vectors and matrices are denoted by bold-faced letters.
We use ∥ · ∥p as the ℓp norm of vectors or matrices. Let
[z] = {1, 2, . . . , z}. For a function g, we use ∇g to denote its
gradient. Let 1{·} be the indicator function and “mod” be
the math operation of taking the remainder.

2.2 Problem setup

Let X and Y be the instance and label space respectively. We
consider a k-class classification problem, i.e., Y = [k]. Let
(x, y) be the random variable pair of interest, and p(x, y) be
the underlying joint density from which test data will be
sampled. In learning with noisy labels, the labels of training
data are corrupted. The training data are sampled from a
corrupted joint density p(x, ỹ) rather than p(x, y), where ỹ
denotes the random variable of the noisy labels. Here, p(x)
remains the same, but p(y|x) is corrupted into p(ỹ|x) [33],
[68]. Therefore, we have an observed noisy training sample
as follows:

S = {(xi, ỹi)}ni=1
i.i.d.∼ p(x, ỹ) = p(ỹ|x)p(x), (1)

where n denotes the sample size of training data.
Let f : X → R

k be a classifier with parameters w. Let ℓ :
R
k → R be a surrogate loss function for k-class classification.

In this paper, we use the softmax cross entropy loss (abbreviated
as the CE loss) [69]. Given an arbitrary training example
(xi, ỹi), with parameters w, we can obtain its CE loss:

Li = ℓ(f(w;xi), ỹi). (2)

2.3 Sample selection for handling noisy labels

Prior effects exploited the sample selection approach to
handle noisy labels [26], [28], [29], [33], [70], [71], which
only used the “clean” examples (with relatively small losses)
from each mini-batch for training. These clean examples
have the same weights to contribute to optimization. Such
methods employ the memorization effects of deep networks
[15], which show that they would first memorize training
data with clean labels and then those with noisy labels. We
use a self-teach version of MentorNet [28] to give a better
understanding for readers. The main procedure is shown in
Algorithm 1.

Let us look at this procedure more closely. When a
mini-batch data are formed (Step 5), we start to select
possibly clean examples. In Step 6, we select a proportion of
small-loss examples (controlled by the function R(T )) based
on the network predictions. The large-loss examples are
abandoned directly from optimization. In Step 7, the selected
small-losses examples in the previous step are exploited
for parameter updates. Their importance is seen to be the
same for generalization. In Step 9, we update R(T ). Note
that the function R(T ) needs to be designed carefully to
better use the memorization effects of deep networks, and
always is task-dependent [25]. For instance, in [26], [29],
[31], R(T ) = 1 − min{T/Tk ∗ τ, τ}, where τ is the noise
rate. In practice, we cannot know the noise rate and have
to estimate it [32]. Unfortunately, in some cases, e.g., the
label noise is instance-dependent, the noise rate is hard to be
estimated accurately [17], [72]. Accordingly, the effect of the

Algorithm 1 The main procedure of self-teach MentorNet
for combating noisy labels.

1: Input: initialized classifier f , epoch Tk and Tmax, itera-
tion tmax.

2: for T = 0, . . . , Tmax − 1 do
3: Shuffle training dataset S;
4: for t = 0, . . . , tmax − 1 do
5: Draw a mini-batch S̄ from S;
6: Select R(T ) small-loss examples S̄f from S̄ based

on classifier’s predictions;
7: Update classifier parameters only using S̄f ;
8: end for
9: Update R(T ) with Tk;

10: end for
11: Output: trained classifier f .

sample selection process will be influenced, which is never
our desideratum.

As mentioned above, it is argued that the sample selection
procedure (Algorithm 1) does not take care of the mislabeled
data in the selected one and does not make use of large-loss
data. Our methods tackle the two issues directly and are
more advanced in that (1) the side-effect of mislabeled data
belonging to selected data is reduced; (2) the meaningful
formation of large-loss examples can be employed to help
generalization. The technical implementation of our methods
will be carefully discussed later.

2.4 The M-estimator
In statistics, M-estimators are a broad class of extremum
estimators for which the objective function is a sample
average [73]. We use a classical example (i.e., the estimation
of the geometric median) to give an explanation for the M-
estimator (cf. [34], [74]). For a dataset A = {ai}Ni=1 ⊂ Rd, the
geometric median is the minimizer of the following function
of b ∈ Rd:

N∑
i=1

∥b− ai∥2. (3)

This is a typical example of an M-estimator, that is a
minimizer of a function of the form

∑N
i=1 ρ(ri), where ri

is a residual of the i-th data point, from the parametrized
object (3). We have ri = ∥b − ai∥2 and ρ(ri) = ri. If there
are some outliers in A, the residuals of some data points may
be unusually large and cause the minimizer to be unable
to be learned accurately. Therefore, we need to give smaller
weights to such data points to make results more robust, i.e.,
using robust M-estimators.

Below, we give a formal definition of the M-estimator in
the context of learning with noisy labels.

Definition 1 (M-estimator). In learning with noisy labels, an
estimator is called the M-estimator, if it is an extremum estimator
and can improve the robustness of the model by mitigating the side
effect of mislabeled data during empirical risk minimization.

For our task, we use the CE loss to measure the difference
between predictions and given labels, the minimizer is the
classifier f . During empirical risk minimization, the loss of
the i-th data point is Li accordingly. The data point with
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M-estimators Φ(L) ∇Φ(L)

CE [69] L ∇L

Catoni’s [75] log
(
1 + L+ L2/2

)
1+L

1+L+L2/2
∇L

Log-sum Penalty [76] log(1 + L/ϵ) ϵ
ϵ+L∇L

Welsch+ [77] 1 − exp{−L/α2} 1
α2 exp{−L/α2}∇L

TABLE 1: The definitions of used robust M-estimators.

an extremum of the loss is likely to be mislabeled. Its bad
impacts on model robustness should be handled with the
M-estimator which is discussed later.

It is worth noting that, for technical implementation,
the M-estimators share a similar idea with prior robust
loss functions in tackling noisy labels, i.e., making the
contributions of mislabeled data into optimization smaller
(but not zero) for robustness enhancement. The difference
between the M-estimators and robust loss functions is that
the original M-estimators perform a subsequent reweighting
process based on the magnitude of the loss, while robust loss
functions output the loss in robust training directly.

2.5 Representative M-estimators

The robustness of statistical M-estimators has been carefully
studied for several decades [34]. One mainstream is to assign
smaller weights to the data points with larger residuals [75]
to make estimation results more robust. The reason for this
is straightforward: the data points with large residuals are
more likely to be outliers. If we reduce their contributions
to the optimization of the objective function, the results will
be less influenced by outliers, and naturally will be more
robust. We borrow some representative examples of robust M-
estimators in this paper, which will be introduced as follows.
The robust M-estimators used are denoted by Φ(·). To make
the description clearer, we will directly use the notations in
learning with noisy labels, i.e., Φ(L).

We compare assigned weights by robust M-estimators
from an optimization viewpoint. That is to say, we compare
the contributions to gradients brought by different examples,
i.e., ∇Φ(L). We exploit three robust M-estimators, i.e.,
Catoni’s [75], Log-sum Penalty [76], and Welsch [77]. For
Welsch, we change L2 to L for weights assignments. The
modified version is named Welsch+. The details of robust
M-estimators used in this paper are provided in Table 1.

Note that ϵ ∈ [1,+∞) and α ∈ (0,+∞) are parameters
of Log-sum Penalty and Welsch+ respectively. For a better
understanding of used robust M-estimators, we provide
illustrations for Φ(L) and ∇Φ(L), which are shown in Fig. 2.
From the illustrations, we can see that robust M-estimators
can change the behaviors of losses integrally. When the loss of
an example is large, the example may be mislabeled. Robust
M-estimators can reduce its loss value and its contribution
to optimization during training.

Besides, the curves of Log-sum Penalty and Welsch+ with
different parameters are plotted in Fig. 3. As can be seen,
different parameters can control different penalties for large-
loss examples. The choices of parameters of the estimators
Log-sum Penalty and Welsch+, i.e., ϵ and α, will be discussed
in more detail later.
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Fig. 2: The illustrations of the used robust M-estimators, with
ϵ = 2 and α = 1.5 for Log-sum Penalty and Welsch+. (a): L vs
Φ(L). (b): L vs Φ(L)/∇L.
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Fig. 3: The illustrations of Log-sum Penalty and Welsch+ with
different parameters, i.e., ϵ and α. (a): Log-sum Penalty L vs
Φ(L). (b): Log-sum Penalty L vs Φ(L)/∇L. (c): Welsch+ L vs
Φ(L). (d): Welsch+ L vs Φ(L)/∇L.

3 METHODOLOGY

In this section, we formally present the proposed methods.
We first propose how to perform truncation on the loss
distribution automatically and achieve regularly truncated
M-estimators (Section 3.1). Afterward, the analyses of pa-
rameters of regularly truncated M-estimators are presented
(Section 3.2).

3.1 The proposed algorithms

We have discussed the mechanism of robust M-estimators.
Nevertheless, we have two aspects that need to be considered
carefully:

• How to reduce the side effects of noisy labels in
selected small-loss examples?

• How to make good use of large-losses examples to
help generalization?

The first question can be answered immediately by using
robust M-estimators on selected small-loss examples. For the
second question, we need to think prudently. Specifically,
large-losses examples may be clean as discussed. Moreover,
even they may be mislabeled, their instances (e.g., images)
still may be helpful [30]. However, due to the harmful
influence of incorrect labels, large-loss examples should be
used conservatively. In this section, we formally present the
proposed regularly truncated M-estimators to handle the
mentioned problems at the same time.
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Fig. 4: Truncated Catoni vs Catoni. The truncation is performed
at σ = 2.

3.1.1 Truncated M-estimators
To handle the first problem, i.e., using robust M-estimators
on selected small-loss examples, we propose truncated M-
estimators. Namely, we perform truncation on the loss distri-
bution. The truncation divides all examples into small-loss
ones and large-loss ones. We then can employ robust M-
estimators to reduce the side effects of noisy labels in selected
small-loss examples. By using the M-estimators Catoni’s, the
truncated M-estimators are defined as follows:

ΦT (L) =

{
log(1 + L+ L2/2) L ≤ σ

log(1 + σ + σ2/2) L > σ
(4)

where σ > 0 is a hyperparameter related to the loss
distribution to control the truncated point (or threshold).
Other truncated robust M-estimators are provided in Table 2.
The comparison between truncated Catoni’s and Catoni’s is
provided in Fig. 4. As can be seen, truncated Catoni’s reserves
the nice properties so that it can assign different weights to
selected small-loss examples to relieve the influence of noisy
labels (Fig. 4a). Meanwhile, in fact, it directly removes large-
loss examples from training since such examples have no
contribution to optimization (Fig. 4b).
Theoretical properties. We discuss the theoretical properties
of the proposed truncated M-estimators. We demonstrate that
they are noise-tolerant. That is, the minimizers of the risk
under the truncated M-estimators with noisy labels would
be the same as those with noise-free labels.

Lemma 1. In a multi-class classification problem, the truncated
M-estimators are noise-tolerant under symmetric (or uniform)
label noise, if c2 − c1 − k∆(ψ, f) > 0 and the noise rate η <
(1−k)∆(ψ,f)

c2−c1−k∆(ψ,f) . Here c1 and c2 denote the lower and upper bounds
of the sum of the losses obtained by predictions on all classes, and
∆(ψ, f) is the gap between the clean risk w.r.t. (ψ, f) and the
minimum clean risk brought by the global minimizer about f .

Note that inspired by [78], the theoretical analysis can
be extended to simple non-uniform noise under some
conditions. Due to the limited page of the main paper, more
background knowledge and detailed proofs of Lemma 1 are
provided in Appendix A.

Remark 1. The philosophy of noise tolerance of the truncated
M-estimators is similar to the noise tolerance of some other robust
loss functions that make the value of the loss sum bounded. For
example, [78] considers the value of loss sum to be a constant
C. Besides, [36] considers it to be 1. Differently, our truncated
M-estimators employ a truncation mechanism to restrain the value
of the loss sum, since the loss that is larger than σ is limited to
be fixed, e.g., log(1 + σ + σ2/2) for truncated Catoni’s. Based on

this, the paper provides a new perspective to make one loss function
robust to noisy labels.

3.1.2 Regularly truncated M-estimators.
As truncated M-estimators cannot handle the second prob-
lem, to handle the first and second problem at the same time,
we further propose regularly truncated M-estimators. Here,
the term “regularly” means that we alternately exploit trun-
cated robust M-estimators and original robust M-estimators.
Formally, we define

ΦR(L) = 1{T mod R ̸= 0}Φ
T (L) + 1{T mod R = 0}Φ(L), (5)

where R ∈ N+ is the hyperparameter about the frequency of
using different kinds of robust M-estimators. Apparently,
if the value of R is large, the large-loss examples will
be involved in optimization infrequently, i.e., truncated M-
estimators are often employed to perform reweighting on
selected small-loss examples. Oppositely, if the value of R is
small, large-loss examples will be involved in optimization
more frequently. Distinctly, we need to choose a suitable
R to achieve a great balance between truncated ones and
original ones, which can be determined with a clean or noisy
validation set. We will discuss this in Section 4.

3.2 Parameters analyses
For the truncated M-estimators, we have two types of
parameters that need to be determined. The first type of
parameter is the truncation point σ. The second type of
parameter is the intrinsic parameter of M-estimators, i.e., ϵ
and α. In this subsection, we discuss how to determine them.

We discuss how to determine σ. We borrow the “three-
sigma” rule from the probability theory and statistics [79]
rather than estimating the noise rate, since the noise rate is
hard to be estimated in some cases [17]. The “three-sigma”
rule has been verified to be effective to remove underlying
outliers [80]. Specifically, let L ⊂ Rn denote the losses of all
training examples for each epoch. We first find the subset Γ =
{0 ≤ Li ≤M |Li ∈ L}, whereM represents the median of the
set L. Then we calculate the mean µ and standard deviation
δ of the losses in Γ. Finally, we set the threshold σ = µ+ 3δ.
The threshold σ can be updated at every epoch according
to the loss distribution. In Section 4, we will provide the
experimental results for the justification of determining σ.

We then discuss how to determine ϵ and α during training.
The parameter determination problem has been studied for
several decades [81]. There are two main ways to determine
this. On the one hand, we can empirically set the parameter
in a reasonable range. On the other hand, we can assume
the distribution of data to help determine. We follow both
ways for the determination of ϵ and α. For the first way, we
simply set ϵ = α = 1. For the second way, we assume
that the outputs of M-estimators for selected small loss
examples (denoted by Γ′) obey a Gaussian distribution. More
specifically, we calculate the mean µ′ and standard deviation
δ′. Then we tune ϵ (resp. α) to make that the distribution of
Γ′ is closer to N (µ′, δ′2).

The overall procedure of the proposed method is pro-
vided in Algorithm 2. As can be seen, in each epoch, we
first determine the needed parameters (Step 4). Then when
the mini-batch data is formed (Step 6), we use the proposed
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Truncated M-estimators ΦT (L) ∇ΦT (L)

Truncated Catoni’s

{
log(1 + L+ L2/2) L ≤ σ

log(1 + σ + σ2/2) L > σ

{
1+L

1+L+L2/2
∇L L ≤ σ

0 L > σ

Truncated Log-sum Penalty

{
log(1 + L/ϵ) L ≤ σ

log(1 + σ/ϵ) L > σ

{
ϵ

ϵ+L∇L L ≤ σ

0 L > σ

Truncated Welsch+

{
1 − exp{−L/α2} L ≤ σ

1 − exp{−σ/α2} L > σ

{
1

α2 exp{−L/α2}∇L L ≤ σ

0 L > σ

TABLE 2: The definitions of proposed truncated M-estimators.

Algorithm 2 The procedure of regularly truncated M-
estimators for learning with noisy labels.

1: Input: initialized classifier f , epoch Tmax, iteration tmax,
and the frequency R.

2: for T = 0, . . . , Tmax − 1 do
3: Shuffle the training dataset S;
4: Determine the truncation parameter σ and intrinsic

parameters ϵ/α as discussed in Section 3.2;
5: for t = 0, . . . , tmax − 1 do
6: Draw a mini-batch S̄ from S;
7: Perform regularly truncated M-estimators on S̄ with

Eq. (5);
8: Update classifier parameters;
9: end for

10: end for
11: Output: trained classifier f .

regularly truncated M-estimators on it (Step 7). The proposed
method is easy to follow and can keep an end-to-end manner.

4 EXPERIMENTS

In this section, we experimentally explore both the robustness
and effectiveness of the proposed method. We first introduce
the methods for comparison in the experiments (Section 4.1).
We then introduce the details of the experiments on synthetic
datasets (Section 4.2). The experiments on real-world datasets
are finally presented (Section 4.3).

4.1 Comparison methods

We compare our method with multiple baselines, which
include broad types of advanced approaches for combating
noisy labels. The overview and publication locations of the
baselines are summarized as follows.

• Robust loss functions. (1). APL (ICML 2020) [36],
which combines two mutually reinforcing robust loss
functions. (2). PCE (ICLR 2020) [82], which boosts the
standard cross entropy loss with a partial trick. The
tuning parameter of PCE is set to 2 in experiments. (3)
AUL (T-PAMI 2023) [83], which are tailored to satisfy
the Bayes-optimal condition and thus are robust to
noisy labels under some conditions. (4) CELC (ICML
2023) [84], which induces a loss bound at the logit
level, thus enhancing the noise robustness of the
softmax cross entropy loss.

• Loss correction. (1). Revision (NeurIPS 2019) [85],
which introduces a slack variable to revise the noise

transition matrix, leading to a better classifier. (2).
Identifiability (ICML 2023) [86], which improves the
estimation of the transition matrix using properly
disentangled features.

• Label correction. (1). Joint (CVPR 2018) [58], which
jointly optimizes the network parameters and the
sample labels. The hyperparameters α and β for Joint
are set to 1.2 and 0.8 respectively.

• Sample selection. (1). Co-teaching (NeurIPS
2018) [29], which trains two networks simultaneously
and cross-updates parameters of peer networks. (2).
SIGUA (ICML 2020) [33], which exploits stochastic
integrated gradient underweighted ascent to handle
noisy labels. We use self-teach SIGUA in this paper.
(3). Co-Dis (ICCV 2023) [87], which selects possibly
clean data that simultaneously have high-variance
prediction probabilities between two networks. For
these methods, we reserve their hyperparameter and
optimization settings for selecting clean examples
during training. Besides, we use an estimated noise
rate [43] for them to ensure a fair comparison.

As a simple baseline, we compare our method with the
standard deep network that directly trains on noisy datasets
by using the softmax cross entropy loss function (abbreviated
as CE). Note that we do not directly compare the proposed
method with some state-of-the-art methods, e.g., SELF [88]
and DivideMix [59]. It is because their proposed methods
are aggregations of multiple techniques, e.g., Mixup [60],
[62], soft labels [63], and semi-supervised learning [64]. We
mainly focus on sample selection in learning with noisy
labels. Therefore, the comparison is not fair. To make a fair
comparison, we combine our method with semi-supervised
learning and self-supervised learning to combat noisy labels.
More details will be shown in Sections 4.2.8 and 4.2.9.

4.2 Experiments on simulated noisy datasets

4.2.1 Experimental setup
Datasets. We verify the effectiveness of our methods on
the manually corrupted version of the following datasets:
MNIST [89], SVHN [90], CIFAR-10 [91], CIFAR-100 [91], and
NEWS [92], because these datasets are popularly used for
the evaluation of learning with noisy labels in the literature
[26], [29], [45], [93]. For NEWS, we borrowed the pre-trained
word embeddings from GloVe [94]. The important statistics
of the used synthetic datasets are summarized in Table 3.
Generating noisy labels. We consider two kinds of class-
dependent label noise and one kind of instance-dependent label
noise here. (1) Symmetric noise (abbreviated as Sym.) [68]:
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Datasets Type # Of training # Of testing # Of class Size

MNIST image 60,000 10,000 10 28×28×1

SVHN image 73,257 26,032 10 32×32×3

CIFAR-10 image 50,000 10,000 10 32×32×3

CIFAR-100 image 50,000 10,000 100 32×32×3

NEWS text 11,314 7,532 20 300-D

TABLE 3: Summary of simulated noisy datasets used in the
experiments.

this kind of label noise is generated by flipping labels in each
class uniformly to incorrect labels of other classes. (2) Pairflip
noise (abbreviated as Pair.) [26], [29]: the noise flips each class
to its adjacent class. (3) Instance noise (abbreviated as Ins.)
[72]: the noise is quite realistic, where the probability that an
instance is mislabeled depends on its instances/features. We
generate this type of label noise as did in [17]. For symmetric
noise and instance noise, we set the noise rate τ to 30% and
50%. While, for pairflip noise, we set the noise rate τ to
30% and 45%, which aims to ensure that clean labels are
diagonally dominant in noisy classes [29], [45], [70]. We leave
out 10% of the noisy training data a validation set, which
is used for model selection. Note that the correct labels are
dominating in each noisy class and that label noise is random,
the accuracy of the noisy validation set and the accuracy of
the clean test data set are positively correlated. The noisy
validation set therefore can be employed in experiments.
Network structure and optimizer. In terms of the five
datasets with synthetic noise, for MNIST, we use a 3-layer
MLP. Following [95], for SVHN and CIFAR-10, a ResNet-
18 network is used. For CIFAR-100, a ResNet-50 network
is used. Also, we employ a 3-layer MLP with the Softsign
active function as did in [45]. We use SGD with momentum
0.9, weight decay 10−3, batch size 128, and an initial learning
rate 10−2 to train the networks. The learning rate is divided
by 10 after the 40th epochs and 80th epochs. The maximum
number of epochs is set to 200. For SVHN, CIFAR-10, and
CIFAR-100, we perform data augmentation by horizontal
random flips and 32×32 random crops after padding with 4
pixels on each side.
Measurement. As for performance measurement, we use
test accuracy, i.e., test accuracy = (# of correct prediction) / (# of
testing). All experiments are repeated five times. Intuitively,
higher test accuracy means that the algorithm is more robust
to noisy labels. We report the mean and standard deviation
of the results. Besides, for fair comparison, we implement all
methods with default parameters by PyTorch, and conduct
all the experiments on NVIDIA Tesla V100 GPUs.

4.2.2 Analyses of experimental results

The results on MNIST, SVHN, CIFAR-10, CIFAR-100, and
NEWS are presented in Table 4. For MNIST, as can be seen,
the proposed methods achieve competitive classification per-
formance. For SVHN, our methods outperform all baselines
in all cases (one of the proposed methods works the best),
which shows the effectiveness of our methods. For CIFAR-
10 and CIFAR-100, our methods also perform best. Lastly,
for NEWS, our methods achieve the best results. Almost all
the experimental results justify our claims well. Note that
the performance on NEWS is a bit different from the results
in [87]. This is because the optimization of the two works is

(a) (b)

Fig. 5: Illustrations of positive correlation between validation
accuracy and test accuracy. Straight lines are achieved by
regression, which reflect the overall trend. The experiments
are conducted on synthetic CIFAR-10 with Pair.-45% noise (sub-
figure (a)) and Ins.-50% noise (subfigure (b)).

different. We use the SGD optimizer with momentum, while
[87] uses the Adam optimizer.

4.2.3 Discussions of method selection
Note that different methods built on different M-estimators
perform variably in different label noise cases. As discussed
before, the differences between different M-estimators lie
in the different ranges with respect to the training loss
and different punishments on larger-loss examples. If we
tend to choose the most suitable M-estimator, we need
prior knowledge of data distributions, network architectures,
and training dynamics (e.g., the loss distribution during
optimization), which is rather hard or even impossible in
practice. Fortunately, all methods built on M-estimators
exhibit superior performance over baselines in most cases,
which demonstrates the effectiveness of our M-estimator-
based framework.

Moreover, here we propose to use the accuracy achieved
on the noisy validation set for the selection of different
methods. It is because the accuracy of the noisy validation
set and the accuracy of the clean test data set are positively
correlated. Therefore, for three methods, with the same
training and validation data, we can choose the method
that overall enjoys the higher validation accuracy. In Fig. 5,
using the regression technology to mitigate the randomness
and reflect the overall trend, we show the positive correlation
between the accuracies of the noisy validation and test sets
for method selection. Also, our RT-Catoni’s enjoys both the
highest validation accuracy and the highest test accuracy,
which matches the results in Table 4.

4.2.4 The stability of our method
The stability about σ. As discussed in Section 3.2, our
methods keep an adaptive manner to perform truncation
and sample selection, i.e., using the “three-sigma” rule to
determine a threshold. As an adaptive method, we do not
need to estimate the noise rate. Prior works on sample
selection show that if the noise rate cannot be estimated
accurately, the classification performance will be affected
largely [25]. Here, we show that our methods are stable even
though the threshold is changed artificially during training.

The experiments are conducted on MNIST and CIFAR-10
with 30% noise rates. Let ∆σ be the disturbance added to
the σ, where σ denotes the threshold determined by the al-
gorithms. As shown in Fig. 6, the truncated M-estimators are
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Datasets Methods / Noise Sym.-30% Sym.-50% Pair.-30% Pair.-45% Ins.-30% Ins.-50%

MNIST

CE 96.29 ± 0.04 94.85 ± 0.12 95.15 ± 0.06 93.92 ± 0.39 95.87 ± 0.12 81.52 ± 5.52
APL 96.22 ± 0.08 95.86 ± 0.26 96.28 ± 0.09 92.40 ± 0.69 90.07 ± 3.91 72.22 ± 15.36
PCE 95.77 ± 0.62 95.07 ± 0.18 96.04 ± 0.17 93.92 ± 1.04 96.02 ± 0.47 78.93 ± 4.07
AUL 94.07 ± 0.15 79.80 ± 3.64 60.42 ± 3.91 60.17 ± 3.69 92.16 ± 0.76 73.55 ± 7.17
CELC 96.19 ± 0.11 95.35 ± 0.35 96.19 ± 0.98 95.84 ± 1.23 96.15 ± 1.38 89.15 ± 3.88
Revision 96.47 ± 0.17 95.79 ± 0.24 96.08 ± 0.14 94.19 ± 0.93 96.49 ± 0.24 85.47 ± 3.04
Identifiability 97.09 ± 0.35 95.86 ± 0.69 97.52 ± 0.47 97.48 ± 0.81 96.28 ± 0.56 88.44 ± 1.04
Joint 96.26 ± 0.15 94.09 ± 0.47 94.02 ± 0.19 93.78 ± 0.92 96.03 ± 0.15 86.49 ± 4.15
Co-teaching 96.04 ± 0.07 95.07 ± 0.24 96.09 ± 0.14 94.37 ± 0.58 94.53 ± 0.29 87.52 ± 2.44
SIGUA 95.37 ± 0.93 95.07 ± 0.84 94.73 ± 0.39 90.04 ± 1.83 93.14 ± 1.29 80.47 ± 9.39
Co-Dis 96.48 ± 0.15 95.37 ± 0.27 96.21 ± 0.14 94.20 ± 1.05 95.55 ± 1.03 90.33 ± 1.11

RT-Catoni’s 96.56 ± 0.04 96.33 ± 0.17 96.87 ± 0.12 95.72 ± 0.82 96.08 ± 0.18 93.25 ± 0.66
RT-Log-sum 96.53 ± 0.12 96.21 ± 0.19 96.92 ± 0.09 95.70 ± 0.82 96.06 ± 0.14 93.77 ± 0.72
RT-Welsch+ 96.44 ± 0.06 95.90 ± 0.25 96.96 ± 0.04 96.56 ± 0.14 96.26 ± 0.05 93.02 ± 3.53

SVHN

CE 92.75 ± 0.31 90.63 ± 0.71 93.82 ± 0.13 70.95 ± 2.38 93.31 ± 0.37 63.16 ± 8.12
APL 93.82 ± 0.19 91.34 ± 0.37 94.69 ± 0.19 86.77 ± 0.41 94.01 ± 0.36 67.61 ± 9.80
PCE 93.81 ± 0.64 90.73 ± 0.19 94.24 ± 0.61 87.16 ± 1.14 93.31 ± 0.52 63.10 ± 7.26
AUL 94.44 ± 0.52 92.75 ± 0.39 94.80 ± 1.20 82.77 ± 2.61 94.35 ± 0.16 64.33 ± 5.23
CELC 95.06 ± 0.41 92.51 ± 0.89 94.36 ± 0.52 88.78 ± 1.37 94.16 ± 0.61 66.12 ± 3.44
Revision 94.20 ± 0.22 94.06 ± 0.19 94.78 ± 0.30 81.36 ± 1.82 94.53 ± 0.57 67.21 ± 4.94
Identifiability 93.18 ± 0.71 92.06 ± 1.33 92.66 ± 0.95 85.56 ± 1.40 92.01 ± 1.90 66.04 ± 5.71
Joint 93.37 ± 0.27 92.11 ± 0.63 93.79 ± 0.29 75.86 ± 1.73 94.63 ± 0.82 62.19 ± 6.95
Co-teaching 93.79 ± 0.67 92.63 ± 0.43 94.15 ± 0.62 88.36 ± 0.95 93.14 ± 0.12 61.55 ± 8.75
SIGUA 94.04 ± 1.31 90.55 ± 2.44 92.19 ± 1.21 74.44 ± 5.72 92.66 ± 0.61 57.92 ± 11.68
Co-Dis 94.77 ± 0.58 93.02 ± 0.82 94.78 ± 0.29 90.06 ± 1.03 93.77 ± 0.29 63.32 ± 8.80

RT-Catoni’s 95.54 ± 0.17 94.70 ± 0.20 95.29 ± 0.10 92.69 ± 0.83 94.69 ± 0.24 68.00 ± 13.15
RT-Log-sum 95.51 ± 0.15 94.54 ± 0.21 95.25 ± 0.22 91.59 ± 2.17 94.92 ± 0.19 66.96 ± 12.57
RT-Welsch+ 95.44 ± 0.08 94.47 ± 0.16 95.16 ± 0.36 92.89 ± 0.71 94.99 ± 0.23 61.60 ± 15.63

CIFAR-10

CE 82.67 ± 0.48 76.01 ± 1.43 84.97 ± 1.04 61.76 ± 4.53 83.15 ± 0.55 54.29 ± 3.90
APL 85.54 ± 0.51 78.36 ± 0.47 85.40 ± 0.14 80.84 ± 0.72 77.57 ± 0.15 39.45 ± 6.51
PCE 86.12 ± 0.85 74.03 ± 4.96 85.03 ± 0.77 65.08 ± 3.41 85.64 ± 0.72 64.82 ± 4.13
AUL 88.09 ± 0.78 82.81 ± 1.16 71.34 ± 1.91 56.80 ± 2.69 86.35 ± 0.90 60.75 ± 3.77
CELC 89.46 ± 2.13 85.08 ± 3.95 89.77 ± 2.56 85.72 ± 4.52 86.67 ± 1.47 61.85 ± 4.98
Revision 88.39 ± 0.38 83.40 ± 0.65 90.70 ± 0.47 83.61 ± 1.06 89.07 ± 0.35 66.93 ± 4.14
Identifiability 87.12 ± 1.69 83.43 ± 2.11 86.45 ± 1.93 83.65 ± 2.46 80.47 ± 1.54 55.25 ± 3.78
Joint 89.34 ± 0.52 85.06 ± 0.29 89.75 ± 0.63 80.52 ± 1.90 88.41 ± 1.02 64.12 ± 3.89
Co-teaching 88.93 ± 0.56 85.73 ± 0.12 88.72 ± 0.61 84.19 ± 0.68 87.07 ± 0.35 60.09 ± 3.31
SIGUA 83.19 ± 1.26 77.92 ± 3.11 83.93 ± 0.49 70.39 ± 1.94 82.90 ± 2.00 30.95 ± 9.70
Co-Dis 89.20 ± 0.13 85.36 ± 0.94 89.20 ± 0.37 85.02 ± 1.33 87.13 ± 0.25 62.77 ± 3.90

RT-Catoni’s 89.39 ± 0.28 87.00 ± 0.08 90.83 ± 0.20 86.57 ±0.92 89.34 ± 0.32 69.77 ± 2.14
RT-Log-sum 89.60 ± 0.44 87.41 ± 0.30 90.49 ± 0.12 83.60 ± 1.38 89.65 ± 0.88 68.97 ± 3.82
RT-Welsch+ 90.65 ± 0.22 86.60 ± 0.51 90.15 ± 0.38 77.29 ± 6.52 89.56 ± 0.62 60.86 ± 10.60

CIFAR-100

CE 51.25 ± 0.50 40.28 ± 0.53 51.71 ± 0.63 38.54 ± 0.53 52.02 ± 0.44 36.35 ± 0.87
APL 55.78 ± 0.91 46.96 ± 0.81 56.34 ± 0.68 49.55 ± 1.05 43.30 ± 1.57 29.01 ± 0.09
PCE 58.84 ± 1.32 42.63 ± 2.02 54.23 ± 1.76 41.05 ± 2.83 55.72 ± 1.96 38.72 ± 3.01
AUL 69.89 ± 0.21 60.00 ± 0.40 64.96 ± 0.55 39.37 ± 1.61 67.75 ± 1.84 40.27 ± 1.76
CELC 67.96 ± 1.88 60.71 ± 2.39 67.96 ± 2.10 52.53 ± 3.17 66.25 ± 1.93 47.52 ± 3.93
Revision 62.97 ± 0.46 43.60 ± 0.94 60.09 ± 1.21 49.33 ± 1.10 56.46 ± 1.45 40.78 ± 1.75
Identifiability 50.53 ± 1.52 34.87 ± 2.36 52.88 ± 1.15 38.16 ± 2.68 52.48 ± 1.93 36.72 ± 3.10
Joint 63.69 ± 0.84 55.62 ± 1.68 65.11 ± 1.79 49.77 ± 1.15 64.15 ± 1.11 45.47 ± 2.73
Co-teaching 59.49 ± 0.36 52.19 ± 1.42 54.92 ± 2.84 47.53 ± 1.39 56.71 ± 1.26 42.09 ± 1.73
SIGUA 54.22 ± 0.90 50.64 ± 3.92 47.92 ± 2.93 39.92 ± 2.33 53.19 ± 2.64 38.50 ± 1.69
Co-Dis 64.02 ± 1.37 54.55 ± 2.06 58.72 ± 2.11 50.02 ± 2.80 59.15 ± 1.92 43.38 ± 1.25

RT-Catoni’s 70.04 ± 0.28 64.87 ± 0.52 71.75 ± 0.33 50.02 ± 0.95 71.66 ± 0.53 53.97 ± 0.45
RT-Log-sum 70.30 ± 0.32 65.20 ± 0.44 71.68 ± 0.18 48.16 ± 1.26 71.22 ± 0.50 54.09 ± 0.37
RT-Welsch+ 69.17 ± 0.60 57.63 ± 0.92 69.34 ± 0.50 54.00 ± 1.50 69.22 ± 0.17 56.44 ± 1.78

NEWS

CE 43.16 ± 1.95 32.92 ± 0.86 42.86 ± 1.06 28.33 ± 3.58 44.08 ± 1.70 30.06 ± 7.92
APL 54.04 ± 1.09 45.12 ± 2.17 51.98 ± 0.27 36.86 ± 2.31 52.18 ± 0.63 44.82 ± 3.61
PCE 55.12 ± 0.94 49.77 ± 0.32 54.17 ± 0.98 37.92 ± 2.02 54.37 ± 0.95 46.14 ± 1.29
AUL 53.77 ± 0.25 48.78 ± 1.62 53.72 ± 1.77 39.23 ± 1.06 55.19 ± 1.09 47.73 ± 2.11
CELC 52.15 ± 0.86 47.25 ± 1.00 52.50 ± 0.84 38.10 ± 1.06 53.70 ± 1.81 47.00 ± 2.06
Revision 55.19 ± 0.63 50.65 ± 0.97 53.77 ± 0.64 38.91 ± 1.38 53.29 ± 0.62 46.37 ± 2.94
Identifiability 53.65 ± 1.65 50.84 ± 2.27 53.16 ± 1.95 39.16 ± 2.62 52.35 ± 1.92 44.87 ± 3.92
Joint 53.15 ± 0.92 48.77 ± 1.47 51.90 ± 1.35 33.29 ± 3.45 52.92 ± 0.64 43.47 ± 2.94
Co-teaching 53.81 ± 0.76 51.22 ± 0.61 53.90 ± 0.45 39.24 ± 1.19 53.99 ± 0.47 48.92 ± 2.04
SIGUA 51.33 ± 1.41 47.47 ± 2.35 50.81 ± 2.19 32.12 ± 4.37 51.22 ± 2.61 30.82 ± 7.75
Co-Dis 54.20 ± 0.39 51.97 ± 0.46 54.30 ± 0.15 41.04 ± 1.77 54.25 ± 0.25 49.03 ± 1.76

RT-Catoni’s 57.83 ± 0.45 53.16 ± 0.74 54.95 ± 0.85 44.25 ± 2.36 56.68 ± 0.58 48.85 ± 1.21
RT-Log-sum 58.07 ± 0.32 53.30 ± 0.48 55.22 ± 0.31 44.21 ± 1.61 56.95 ± 0.75 49.01 ± 1.49
RT-Welsch+ 58.08 ± 0.67 54.22 ± 0.83 56.32 ± 0.27 42.75 ± 2.35 57.98 ± 0.57 50.13 ± 1.83

TABLE 4: Mean and standard deviations of test accuracy (%) on synthetic MNIST, SVHN, CIFAR-10, CIFAR-100, and NEWS. The
best 3 experimental results are in bold while the best is underlined.

very sensitive to the values of thresholds. In particular, when
∆σ = −20%, the classification performance of truncated M-
estimators is greatly affected. On synthetic CIFAR-10, the test

accuracies are reduced by almost 20%. As a comparison, the
proposed regularly truncated M-estimators are very stable
when the disturbance is added to the threshold. It is because
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Methods RT-Catoni’s RT-Log-sum RT-Welsch+

Sym.-30% Pair.-30% Ins.-30% Sym.-30% Pair.-30% Ins.-30% Sym.-30% Pair.-30% Ins.-30%

Gaussian 89.36 ± 0.04 90.77 ± 0.27 89.25 ± 0.37 89.42 ±0.10 90.65 ± 0.21 89.66 ± 0.17 90.38 ± 0.34 89.19 ± 0.09 88.77 ± 0.42

Fixed 89.05 ± 0.14 90.83 ± 0.20 89.07 ± 0.77 89.60 ± 0.44 90.49 ± 0.12 89.65 ± 0.88 90.65 ± 0.22 90.15 ± 0.38 89.56 ± 0.62

TABLE 5: Mean and standard deviations of test accuracy (%) with different parameter determination ways.

Methods Catoni’s Based Log-sum Based Welsch+ Based

Sym.-30% Pair.-30% Ins.-30% Sym.-30% Pair.-30% Ins.-30% Sym.-30% Pair.-30% Ins.-30%

Original 84.95 ± 0.59 85.37 ± 0.78 84.25 ± 0.66 85.31 ± 0.56 54.64 ± 0.58 84.19 ± 0.86 85.51 ± 0.40 71.91 ± 5.79 50.85 ± 18.60

T-CE 85.07 ± 0.31 86.32 ± 0.19 86.15 ± 1.48 85.77 ± 0.35 82.30 ± 1.95 86.33 ± 1.37 85.55 ± 0.89 84.12 ± 2.93 70.50 ± 4.05

T-M-estimators 86.43 ± 0.35 90.25 ± 0.22 88.37 ± 1.71 86.60 ± 0.41 88.44 ± 1.45 88.43 ± 1.72 86.74 ± 0.33 88.41 ± 1.48 88.50 ± 1.53

RT-M-estimators 89.39 ± 0.28 90.83 ± 0.20 89.34 ± 0.32 89.60 ± 0.44 90.49 ± 0.12 89.65 ± 0.88 90.65 ± 0.22 90.15 ± 0.38 89.56 ± 0.62

TABLE 6: Mean and standard deviations of test accuracy (%) with M-estimators (i.e., “Original”), truncated CE (abbreviated
as “T-CE”), truncated M-estimators (abbreviated as “T-M-estimators”), and regularly truncated M-estimators (abbreviated as
“RT-M-estimators”). The experiments are conducted on synthetic CIFAR-10.

we regularly introduce large-loss examples into training. The
underlying clean examples can be exploited. Also, such a way
can address the covariate shift issue effectively mentioned in
[28], and therefore helps generalization.
The stability about ϵ and α. We present the sensitivity anal-
yses on the intrinsic parameters of exploited M-estimators,
i.e., ϵ in Log-sum Penalty and α in Welsch+. The experiments
are conducted on MNIST and CIFAR-10 with 30% noise
rates. The range of ϵ and α is {1.5,2,2.5,3}. As can be seen in
Tables 7 and 8, the M-estimators are robust to the choice of
intrinsic parameters in a certain range, which implies that
the proposed methods can be easily applied in practice.

4.2.5 Ablation study

We conduct detailed ablation studies to analyze and show
the effects of different components to provide insights into
what makes our methods successful.
The influence of R. We first analyze the effect of the
frequency of using different kinds of robust M-estimators,
i.e., R. The experimental results are shown in Fig. 7. As
can be seen, with the increase of R, the test accuracies
decrease clearly. In other words, the introduction of large-loss
examples in a conservative way can improve the algorithm
performance, which verifies the effectiveness of our methods.
Impact of each component. We then compare the results
of M-estimators, truncated CE, truncated M-estimators, and
the proposed regularly truncated M-estimators. The results
are shown in Table 5. We can see that original M-estimators
cannot work well when there are noisy labels, and truncated
M-estimators can better handle noisy labels. Also, comparing
the truncated CE with truncated M-estimators, we can see
that assigning different weights on small-loss examples can
improve performance. Additionally, the proposed regularly
truncated M-estimators outperform truncated M-estimators,
which shows the effectiveness of introducing large-loss
examples into training. Note that compared with the results
in Fig. 7 and Table 5, we can know that both the truncation
and the introduction of large-loss examples are of importance
against noisy labels. Besides, there is a trade-off switching
frequency with a relatively small value.
Adaptive determination of ϵ and α. As discussed in
Section 3.2, we can adaptively determine the ϵ and α by
introducing a Gaussian distribution assumption. We use the

ℓ2 distance to measure the distribution Γ′ to N (µ′, δ′2) in
this paper. The results are provided in Table 6. Accordingly,
we can know that our methods are able to avoid tuning the
hyperparameters ϵ and α artificially. Instead, they can be
determined automatically by using the Gaussian distribution
assumption. Also, our methods work well in such a way.

4.2.6 A closer look on the memorization effect
The memorization effect of the deep network [96] shows
that it would first memorize clean data and then memorize
mislabeled data. Therefore, in early training, the network is
relatively robust with noisy labels, i.e., more memorization
of clean data and less memorization of mislabeled data,
following good test accuracy on clean test data. Here, we
provide a closer look and show that exploited M-estimators
(i.e., original M-estimators) can strengthen the memorization
effect. The results in Fig. 8 show that used M-estimators make
the deep network less memorize mislabeled data, leading to
better test accuracy in early training. Interestingly, we find
that the ways of enhancing model robustness of multiple
M-estimators are slightly different, though all of them can
tackle noisy labels successfully. In more detail, Catoni’s and
Log-sum can strengthen the memorization of clean data and
reduce the memorization of mislabeled data at the same
time. Differently, Welsch+ works well in largely reducing the
memorization of mislabeled data.

4.2.7 Visualization of experimental results
We use 2D t-SNE [97] to visualize the experimental results
which are presented in Fig. 9. We can see that the proposed
methods work well, and can distinguish different classes
clearly when there are noisy labels.

4.2.8 Combination with semi-supervised learning
Recall that we discussed the comparison between the pro-
posed methods and some methods comprising multiple
techniques is unfair. Therefore, to make it fair, here we boost
our methods with semi-supervised learning. Specifically, we
develop the framework of DivideMix [59]. Different from
the original DivideMix which just uses the cross-entropy
loss for follow-up sample selection and semi-supervised
learning, we employ our regularly truncated M-estimators
for warm-up. Results are provided in Table 9. As can be
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Methods Sym.-30% Pair.-30% Ins.-30%

RT-Log-sum ϵ = 1.5 ϵ = 2 ϵ = 2.5 ϵ = 3 ϵ = 1.5 ϵ = 2 ϵ = 2.5 ϵ = 3 ϵ = 1.5 ϵ = 2 ϵ = 2.5 ϵ = 3

96.54 ± 0.35 96.47 ± 0.40 96.49 ± 0.40 96.52 ± 0.38 96.50 ± 0.23 96.40 ± 0.25 96.35 ± 0.24 96.31 ± 0.25 96.26 ± 0.32 96.22 ± 0.36 96.17 ± 0.32 96.14 ± 0.41

RT-Welsch+ α = 1.5 α = 2 α = 2.5 α = 3 α = 1.5 α = 2 α = 2.5 α = 3 α = 1.5 α = 2 α = 2.5 α = 3

96.55 ± 0.19 96.68 ± 0.33 96.71 ± 0.29 96.72 ± 0.33 96.52 ± 0.27 96.50 ± 0.24 96.32 ± 0.18 96.31 ± 0.30 96.42 ± 0.33 96.41 ± 0.33 96.35 ± 0.36 96.35 ± 0.42

TABLE 7: The sensitivity analyses on the intrinsic parameters of exploited M-estimators. The experiments are conducted on
synthetic MNIST with 30% noise rates.

Methods Sym.-30% Pair.-30% Ins.-30%

RT-Log-sum ϵ = 1.5 ϵ = 2 ϵ = 2.5 ϵ = 3 ϵ = 1.5 ϵ = 2 ϵ = 2.5 ϵ = 3 ϵ = 1.5 ϵ = 2 ϵ = 2.5 ϵ = 3

89.46 ± 0.11 88.93 ± 0.19 88.94 ± 0.21 88.94 ± 0.09 90.73 ± 0.15 90.70 ± 0.15 90.66 ± 0.10 90.71 ± 0.21 89.35 ± 0.39 89.39 ± 0.49 88.86 ± 0.33 88.96 ± 0.49

RT-Welsch+ α = 1.5 α = 2 α = 2.5 α = 3 α = 1.5 α = 2 α = 2.5 α = 3 α = 1.5 α = 2 α = 2.5 α = 3

90.81 ± 0.15 90.64 ± 0.11 90.15 ± 0.14 89.77 ± 0.19 89.76 ± 0.19 90.46 ± 0.20 90.40 ± 0.06 90.61 ± 0.28 89.48 ± 0.41 89.44 ± 0.72 89.63 ± 0.36 89.53 ± 0.21

TABLE 8: The sensitivity analyses on the intrinsic parameters of exploited M-estimators. The experiments are conducted on
synthetic CIFAR-10 with 30% noise rates.

(a)

(b)

Fig. 6: Illustrations of the test accuracy with different distur-
bances. The experimental results reveal that regularly truncated
M-estimators are more stable. The experiments are conducted
on synthetic MNIST (subfigure (a)) and synthetic CIFAR-10
(subfigure (b)) with 30% noise rates.

(a)

(b)

Fig. 7: Illustrations of the test accuracy with different values
of R. These experiments reveal a smaller R, which means
that introducing large-loss examples frequently can lead to
better classification performance in general. The experiments
are conducted on synthetic MNIST (subfigure (a)) and synthetic
CIFAR-10 (subfigure (b)) with 30% noise rates.

seen, in almost all cases, the proposed methods can bring
performance improvements. Especially in the cases of Pair.-

(a)

(b)

Fig. 8: Illustrations of the training and test accuracy achieved
by different methods with the increase of epochs. Experiments
are conducted on synthetic CIFAR-10 with Sym.-30% noise. (a):
Training accuracy vs Epoch. (b): Test accuracy vs Epoch.

Methods Sym.-50% Pair.-45% Ins.-50%

DivideMix 95.00 ± 1.12 86.55 ± 2.74 92.90 ± 2.26

DivideMix+RT-Catoni’s 95.01 ± 1.01 94.88 ± 1.63 94.56 ± 2.84
DivideMix+RT-Log-sum 95.18 ± 0.84 94.84 ± 1.36 94.78 ± 1.29
DivideMix+RT-Welsch 95.02 ± 1.28 95.21 ± 2.77 91.51 ± 2.29

TABLE 9: Mean and standard deviations of test accuracy (%)
on CIFAR-10 compared DivideMix with the methods boosted by
the proposed algorithms. The best 3 experimental results are in
bold while the best is underlined.

Methods Sym.-50% Pair.-45% Ins.-50%

CL 82.56 ± 1.14 58.97 ± 1.52 56.51 ± 2.82

CL+RT-Catoni’s 87.75 ± 1.90 90.16 ± 2.64 75.45 ± 3.05
CL+RT-Log-sum 87.73 ± 1.59 88.96 ± 2.21 72.88 ± 3.15
CL+RT-Welsch 88.26 ± 1.41 80.99 ± 2.31 72.91 ± 4.43

TABLE 10: Mean and standard deviations of test accuracy (%) on
CIFAR-10 compared contrastive learning (CL) with the methods
boosted by the proposed algorithms. The best 3 experimental
results are in bold while the best is underlined.



REGULARLY TRUNCATED M-ESTIMATORS FOR LEARNING WITH NOISY LABELS 11

Methods Food-101 Clothing1M CIFAR-10N-1 CIFAR-10N-2 CIFAR-10N-3 CIFAR-10N-W

CE 85.15 68.88 85.41 ± 0.24 86.79 ± 0.15 85.41 ± 0.24 80.77 ± 0.24
APL 80.37 54.46 84.40 ± 0.26 84.45 ± 0.50 84.35 ± 0.43 78.16 ± 0.17
PCE 85.72 69.48 63.06 ± 0.37 62.26 ± 0.36 35.47 ± 0.36 33.80 ± 0.33
AUL 82.77 66.25 76.26 ± 0.28 75.24 ± 0.20 75.48 ± 0.40 63.61 ± 1.62
CELC 86.38 69.05 89.77 ± 0.39 89.19 ± 0.46 90.06 ± 0.33 81.16 ± 1.86
Revision 85.70 70.97 90.39 ± 0.12 90.15 ± 0.11 90.07 ± 0.08 83.47 ± 0.27
Identifiability 82.21 67.07 82.52 ± 0.87 81.97 ± 0.85 82.09 ± 0.73 71.62 ± 1.16
Joint 84.74 70.26 88.20 ± 0.29 87.54 ± 0.33 87.67 ± 0.22 84.29 ± 0.40
Co-teaching 83.73 67.94 90.26 ± 0.22 89.82 ± 0.63 90.64 ± 0.47 75.64 ± 4.04
SIGUA 79.68 65.37 87.67 ± 1.18 89.01 ± 0.34 88.40 ± 0.42 80.65 ± 1.29
Co-Dis 86.13 71.60 90.77 ± 0.35 90.22 ± 0.30 90.35 ± 1.12 76.12 ± 3.19

RT-Catoni’s 86.13 72.69 91.31 ± 0.25 91.22 ± 0.40 91.23 ± 0.41 84.46 ± 0.41
RT-Log-sum 86.15 72.64 91.37 ± 0.07 91.38 ± 0.23 91.19 ± 0.10 85.03 ± 0.54
RT-Welsch+ 85.86 70.81 91.49 ± 0.11 91.26 ± 0.17 91.09 ± 0.17 85.96 ± 1.56

TABLE 11: Test accuracy (%) on three real-world noisy datasets, i.e., Food-101, Clothing1M, and CIFAR-10N. The best 3 experimental
results are in bold while the best is underlined.
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Fig. 9: Visualizations of experimental results using 2D t-SNE
[97]. The experiments are conducted on synthetic CIFAR-10.

45%, the improvement is significant.

4.2.9 Combination with self-supervised learning
There are some works that employ self-supervised learn-
ing [98] to enhance network robustness [60], [99]. Hence, here
we follow them and show that our methods can be combined
with self-supervised learning to enhance network robustness.
Specifically, we use MOCO V2 [100]. After the self-supervised
representation learning, the baseline employs the cross-
entropy loss and noisily labeled data to fine-tune the linear
head. In contrast, our strategies utilize the regularly truncated
M-estimators for fine-tuning. Experimental comparisons are
provided in Table 10, which demonstrates the utility of our
methods. Note that compared with the results in Table 4, we
claim that one of the advantages of our methods is plug-and-
play for robustness improvement.

4.3 Experiments on real-world noisy datasets
4.3.1 Experimental setup
Datasets. We exploit three real-world noisy datasets to justify
our claims, i.e., Food-101 [101], Clothing1M [55], and CIFAR-
10N [102]1, which consist of heterogeneous noisy labels. Food-
101 consists of 101 food categories, with 101,000 images.

1. http://competition.noisylabels.com/

For each class, 250 manually reviewed clean test images are
provided as well as 750 training images. Clothing1M has
1M images with real-world noisy labels, and 50k, 14k, 10k
images with clean labels for training, validating, and testing,
but with 14 classes. Note that we do not use the 50k and 14k
clean data in all the experiments, since it is more practical that
there is no available clean data. For preprocessing, we resize
the image to 256×256, crop the middle 224×224 as input,
and perform normalization. CIFAR-10N provides CIFAR-10
images with human-annotated noisy labels obtained from
Amazon Mechanical Turk. Four versions of CIFAR-10N label
sets are employed here, three of which are labeled by three
independent workers (named CIFAR-10N-1/2/3) and one of
which is negatively aggregated from the above three sets
(named CIFAR-10N-W). We leave 10% noisy training data as
a validation set for model selection.
Network structure and optimizer. We exploit the ResNet-50
network pretrained on ImageNet for Food-101 and Cloth-
ing1M. For Food-101, we use SGD with momentum 0.9,
weight decay 10−4, batch size 128, and an initial learning rate
10−2 to train the networks. The learning rate is also divided
by 10 after the 40th epoch and 80th epoch. The maximum
number of epochs is set to 200. For Clothing1M, we also use
SGD with momentum 0.9. The batch size and weight decay
are adjusted to 32 and 5× 10−3. The learning rate is initially
set to 10−3 and then divided by 10 after the 5th epoch. The
maximum number of epochs is set to 20. The experiments
on Food-101 and Clothing1M are performed once due to the
huge computational cost. For CIFAR-10N, a PreAct-ResNet-
18 network is exploited. We use SGD with momentum 0.9,
weight decay 10−3, batch size 128, and an initial learning rate
10−2. The learning rate is divided by 10 after the 100th epoch.
The maximum number of epochs is set to 200. Experiments
on CIFAR-10N are repeated five times.

4.3.2 Discussions of experimental results
Experimental results on real-world noisy datasets are shown
in Table 11. For Food-101, the proposed methods achieve
great performance. Although the baseline CELC achieves
the best performance, the proposed RT-Catoni’s and RT-
Log-sum achieve competitive performance. For Clothing1M,
the proposed methods, e.g., RT-Catoni’s and RT-Log-sum,
achieve clear leads over baselines. For the proposed RT-
Welsch+, although it does not outperform the best baseline
Co-Dis, it still receives competitive performance. Moreover,
since the training procedure of Co-Dis consists of two stages
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(estimating the noise rate and performing sample selection),
our method can keep an end-to-end manner, and is thus
arguably easier to implement. At last, for CIFAR-10N, our
methods consistently outperform baselines.

5 CONCLUSION

In this paper, we focus on exploiting the sample selection
approach to handle noisy labels. We discuss that the prior
sample selection procedure has some weaknesses, i.e., ig-
noring the concerns of noisy labels in selected small-loss
examples and neglecting the values of discarded large-
loss examples. To relieve two issues at the same time,
we propose regularly truncated M-estimators, which can
assign different weights to selected small-loss examples
and enable large-loss examples to periodically participate
in optimization. Theoretically, we discuss the noise-tolerant
of truncated M-estimators. Empirically, we conduct a series
of experiments to verify the effectiveness of the proposed
methods. Extensive experimental results support our claims
well. In the future, we are interested in applying our method
to data cleaning and robustness enhancement of large-scale
pre-trained models [103], [104].
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A SUPPLEMENTARY THEORETICAL ANALYSIS

A.1 Preliminary knowledge

We denote the underlying clean dataset corresponding to the noisy dataset S, as S∗ = {(xi, yi)}ni=1, where yi is the
unobserved clean label of ỹi. Given any loss function, ψ, and a classifier, f , we define the ψ-risk

Rψ(f) := E(x,y)∼S∗ [ψ(f(x), y)]. (6)

Under the risk minimization framework, the objective is to learn a classifier, f , which is a global minimizer of Rψ . Note that
the ψ-risk, Rψ , depends on ψ, the loss function. When ψ happens to be the 0–1 loss, Rψ would be the usual Bayes risk. Let
f∗ be the global minimizer (over the chosen function class) of Rψ(f). In this paper, ψ will be the loss function composed of
the cross-entropy loss and truncated M-estimators.

Then the notion and notations about the label noise model are introduced. We have

ỹi =

{
yi with probability (1− ηxi

)

j, j ∈ [k], j ̸= yi with probability η̄x,j .
(7)

Note that for all x, conditioned on y = i, we have
∑
j ̸=i η̄x,j = ηx. The label noise model is termed symmetric or uniform if

ηx = η, and η̄x,j =
η
k−1 , ∀j ̸= y, ∀x, where η is a constant. Noise is said to be simple non-uniform when the noise rate ηx is

a function of x. A simple special case is when η̄x,j =
ηx
k−1 , ∀j ̸= y. We define it as simple non-uniform noise. Then ψ-risk of

a classifier f under noisy data is defined
Rηψ(f) := E(x,ỹ)∼S [ψ(f(x), ỹ)]. (8)

A.2 Proof of Lemma 1

Our proofs are inspired by [78]. Recall that Rψ(f) := E(x,y)∼S∗ [ψ(f(x), y)]. For symmetric noise, we have, for any f ,

Rηψ(f) = E(x,ỹ)∼S [ψ(f(x), ỹ)] (9)

= ExEy|xEỹ|x,yψ(f(x), ỹ)

= ExEy|x[(1− η)ψ(f(x), y) +
η

k − 1

∑
i ̸=y

ψ(f(x), i)].

Note that in this paper, ψ will be the loss function that is composed of the cross-entropy loss and truncated M-estimators.
Although the cross-entropy loss is not upper-bounded, with our truncation mechanism, ψ will be upper-bounded, since the
largest value of ψ is limited. Therefore, for any ψ, we denote its lower and upper bounds of the sum of loss values as c1 and
c2 respectively, i.e., c1 ≤

∑
i ψ(f(x), i) ≤ c2. In this way,

Rηψ(f
∗)−Rηψ(f) (10)

≤ c2η

k − 1
+ (1− ηk

k − 1
)Rψ(f

∗)− c1η

k − 1
− (1− ηk

k − 1
)Rψ(f)

≤ (c2 − c1)η

k − 1
+
k − 1− ηk

k − 1
(Rψ(f

∗)−Rψ(f))

=
(c2 − c1)η

k − 1
+
k − 1− ηk

k − 1
∆(ψ, f)

=
(c2 − c1 − k∆(ψ, f))η + (k − 1)∆(ψ, f)

k − 1

If the noise rate η < (1−k)∆(ψ,f)
c2−c1−k∆(ψ,f) , we will have

Rηψ(f
∗)−Rηψ(f) (11)

≤ (1− k)∆(ψ, f) + (k − 1)∆(ψ, f)

k − 1
= 0.

This proves f∗ is also a minimizer of the risk under symmetric noise. Proof completed.

A.3 Proof of Corollary 1

Corollary 1. In a multi-class classification problem, the truncated M-estimators are noise-tolerant under the simple non-uniform noise,
if c2 − c1 − k∆(ψ, f,x) > 0 and the noise rate ηx <

(1−k)∆(ψ,f,x)
c2−c1−k∆(ψ,f,x) . Here c1 and c2 denote the lower and upper bounds of the sum

of the losses obtained by predictions on all classes, and ∆(ψ, f,x) = sup(ψ(f∗(x), y)− ψ(f(x), y)).
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The proof of Corollary 1 is as follows. For the simple non-uniform noise, we derive that

Rηψ(f) = ExEy|x[(1− ηx)ψ(f(x), y) +
ηx
k − 1

∑
i ̸=y

ψ(f(x), i)] (12)

= ExEy|x[(1− ηx)ψ(f(x), y)

+
ηx
k − 1

(
∑
i

ψ(f(x), i)− ψ(f(x), y)]

= E[
k − 1− ηxk

k − 1
ψ(f(x), y) +

ηx
k − 1

∑
i

ψ(f(x), i)].

Therefore,

Rηψ(f
∗)−Rηψ(f) (13)

≤ (c2 − c1 − k∆(ψ, f,x)η + (k − 1)∆(ψ, f,x)

k − 1
,

where ∆(ψ, f,x) = sup(ψ(f∗(x), y) − ψ(f(x), y)). Therefore, if the noise rate ηx <
(1−k)∆(ψ,f,x)

c2−c1−k∆(ψ,f,x) , we have Rηψ(f
∗) −

Rηψ(f) ≤ 0. This proves f∗ is also a minimizer of the risk under the simple non-uniform noise.


