
1

A Theoretical View of Linear Backpropagation
and Its Convergence

Ziang Li*, Yiwen Guo*, Haodi Liu, and Changshui Zhang, Fellow, IEEE

Abstract—Backpropagation (BP) is widely used for calculating gradients in deep neural networks (DNNs). Applied often along with
stochastic gradient descent (SGD) or its variants, BP is considered as a de-facto choice in a variety of machine learning tasks including
DNN training and adversarial attack/defense. Recently, a linear variant of BP named LinBP was introduced for generating more
transferable adversarial examples for performing black-box attacks, by Guo et al. [1]. Although it has been shown empirically effective
in black-box attacks, theoretical studies and convergence analyses of such a method is lacking. This paper serves as a complement
and somewhat an extension to Guo et al.’s paper, by providing theoretical analyses on LinBP in neural-network-involved learning tasks,
including adversarial attack and model training. We demonstrate that, somewhat surprisingly, LinBP can lead to faster convergence in
these tasks in the same hyper-parameter settings, compared to BP. We confirm our theoretical results with extensive experiments.
Code for reproducing our experimental results is available at https://github.com/lzalza/LinBP.

Index Terms—Backpropagation, deep neural networks, optimization, convergence, adversarial examples, adversarial training

✦

1 INTRODUCTION

O VER the past decade, the surge of research on deep
neural networks (DNNs) has been witnessed. Powered

with large-scale training, DNN-based models have achieved
state-of-art performance in a variety of real-world applica-
tions. Tremendous amount of research has been conducted
to improve the architecture [2], [3], [4], [5], [6] and the
optimization [7], [8], [9], [10], [11] of DNNs.

The optimization of DNNs often involves stochastic gra-
dient descent (SGD) [12] (that minimizes some training loss)
and backpropagation (BP) [13] (for computing gradients of
the loss function). In the work of Guo et al. published at
NeurIPS 2020 [1], a different way of computing “gradients”
was proposed. The method, i.e., linear BP (LinBP), keeps
the forward pass of BP unchanged while skips the partial
derivative regarding some of the non-linear activations in
the backward pass. It was shown empirically that LinBP led
to improved results in generating transferable adversarial
examples for performing black-box attacks [14], in compari-
son with using the original BP. This paper was written as
a complement and somewhat an extension to Guo et al.’s
paper, in a way that we delve deep into the theoretical
properties of LinBP. Moreover, we target two more appli-
cations of LinBP, i.e., white-box attack and model parameter
training, to study the optimization convergence of learning
with LinBP.

• Z. Li, H. Liu, and C. Zhang are with the Institute for Artificial Intelli-
gence, Tsinghua University (THUAI), State Key Lab of Intelligent Tech-
nologies and Systems, Beijing National Research Center for Information
Science and Technology (BNRist), Department of Automation, Tsinghua
University, Beijing 100084, China.
E-mail: liza19@mails.tsinghua.edu.cn, liuhd21@mails.tsinghua.edu.cn,
zcs@mail.tsinghua.edu.cn.

• Y. Guo is an independent researcher, Beijing 100000, China.
E-mail: guoyiwen89@gmail.com.

• *These two authors contribute equally.
• Correspondence to: Y. Guo and C. Zhang.

In this paper, we will provide convergence analyses for
LinBP, and we will demonstrate that, in white-box adversar-
ial attack scenarios, using LinBP can produce more decep-
tive adversarial examples (similar to the results in black-box
scenarios as given in [1]), than using the standard BP in
the same hyper-parameter settings. Plausible explanations
of such fast convergence will be given. Similarly, we will
also show theoretically that LinBP helps converge faster
in training DNN models, if the same hyper-parameters are
used for the standard BP and LinBP. Simulation experiments
confirm our theoretical results, and extensive results will
verify our findings in more general and practical settings
using a variety of widely used DNNs, including VGG-
16 [2], ResNet-50 [3], DenseNet-161 [4], MobileNetV2 [15],
and WideResNet (WRN) [16].

The rest of this paper is organized as follows. In Sec-
tion 2, we will revisit preliminary knowledge about network
training and adversarial examples, to introduce LinBP and
discuss its applications. In Section 3, we will provide the-
oretical analyses on the convergence of LinBP in both the
white-box attack and model training scenarios. In Section 4,
we will conduct extensive simulation and practical exper-
iments to validate our theoretical findings and test LinBP
with different DNNs. In Section 5, we draw conclusions.

2 BACKGROUND AND PRELIMINARY KNOWLEDGE

2.1 Model Training
Together with SGD or its variant, BP has long been adopted
as a default method for computing gradients in training
machine learning models. Consider a typical update rule
of SGD, we have

wt+1 = wt − η∇wt

∑

k

L(x(k), y(k)), (1)

where {x(k), y(k)} contains the k-th training instance and its
label, ∇w

∑
k L(x(k), y(k)) is the partial gradient of the loss

ar
X

iv
:2

11
2.

11
01

8v
2

 [
cs

.L
G

]
 1

0
Ja

n
20

24

2

function with respect to a learnable weight vector w, and
η ∈ R+ represents the learning rate.

2.2 White-box Adversarial Attack
Another popular optimization task in deep learning is to
generate adversarial examples, which is of particular inter-
est in both the machine learning community and the secu-
rity community. Instead of minimizing the prediction loss
as in the objective of model training, this task aims to craft
inputs that lead to arbitrary incorrect model predictions [17].
The adversarial examples are expected to be perceptually in-
distinguishable from the benign ones. Adversarial examples
can be untargeted or targeted, and in this paper we focus
on the former. In the white-box setting, where it is assumed
that the architecture and parameters of the victim model are
both known to the adversary, we have the typical learning
objectives for generating adversarial examples:

max
∥r∥p≤ϵ

L(x+ r,y) (2)

and

min ∥r∥p, s.t., argmax
j

probj(x+ r) ̸= argmax
j

probj(x)

(3)
where r is a perturbation vector whose lp norm is con-
strained (e.g., ∥r∥p < ϵ) to guarantee that the generated
adversarial example x + r is perceptually similar to the
benign example x, function probj(·) provides the prediction
probability for the j-th class. For solving the optimization
problems in Eq. (2) and (3), a series of methods have been
proposed over the last decade. For instance, with p = ∞, i.e.,
for performing l∞ attack, Goodfellow et al. [17] proposed
the fast gradient sign method (FGSM) which simply cal-
culates the sign of the input gradient, i.e., sign(∇xL(x)),
and adopted r = ϵ · sign(∇xL(x)) as the perturbation.
To enhance the power of the attack, follow-up methods
proposed iterative FGSM (I-FGSM) [18] and PGD [19] that
took multiple steps of update and computed input gradients
using BP in each of the steps. The iterative process of these
methods is similar to that of model training, except that the
update is performed in the input space instead of the param-
eter space, and normally some constraints are required for
attacks. In transfer-based attacks, I-FGSM is widely adopted
as a baseline method while it has been reported that PGD is
capable of bypassing gradient masking [20]. Other famous
attacks include DeepFool [21] and C&W’s attack [22], just to
name a few.

2.3 Linear Backpropagation
Inspired by the hypothesis made by Goodfellow et al. [17]
that the linear nature of modern DNNs causes the trans-
ferability of adversarial samples, LinBP, a method improves
the linearity of DNNs, was proposed. For a d-layer DNN
model, the forward pass includes the computation of

fd(x) = WT
d σ

(
WT

d−1 · · ·σ(WT
1 x)

)
, (4)

where σ(·) is the activation function and it is often set
as the ReLU function, W1, · · · ,Wd are learnable weight
matrices in the DNN model. In order to generate a white-
box adversarial example on the basis of x with fd(x), we

shall further compute the prediction loss L(x,y) for x and
then backpropagate the loss to compute the input gradient
∇xL(x,y), the default BP for computing the input gradient
is formulated as

∇xL(x,y) = M1 · · ·Md−1Wd
∂L(x,y)
∂fd(x)

, (5)

where Mi = Wi∂σ(fi(x))/∂fi(x). LinBP keeps the com-
putation in the forward pass unchanged while remov-
ing the influence of the ReLU activation function (i.e.,
∂σ(fi(x))/∂fi(x)) in the backward pass. That being said,
LinBP computes:

∇̃xL(x,y) = W1 · · ·Wd
∂L(x,y)
∂fd(x)

. (6)

Since the partial derivative of the activation function has
been removed, it is considered linear in the backward pass
and thus called linear BP (LinBP). In practice, LinBP may
only remove some of the nonlinear derivatives, e.g., only
modifies those starting from the (m + 1)-th layer and uses
the following formulation:

∇̃xL(x,y) = M1 · · ·MmWm+1 · · ·Wd
∂L(x,y)
∂fd(x)

. (7)

Experimental results on CIFAR-10 [23] and ImageNet [24]
tested the transferability of generated adversarial examples
on different source models and found that LinBP achieved
state-of-the-arts [1].

In addition to generating adversarial examples, we can
also adopt LinBP to compute the gradient with respect to
model weights for training DNNs. Note that the gradient of
the loss with respect to Wi in the standard BP is formulated
as

∇Wi
L(x,y) =σ (fi−1(x))

(
∂σ(fi(x))

∂fi(x)
Mi+1 · · ·

Md−1Wd
∂L(x,y)
∂fd(x)

)T

,

(8)

where we abuse the notations and define σ(f0(x)) = x for
simplicity. Just like in Eq. (6), LinBP computes a linearized
version of the gradient, which is formulated as

∇̃Wi
L(x,y) = σ (fi−1(x))

(
Wi+1 · · ·Wd

∂L(x,y)
∂fd(x)

)T

.

(9)

3 THEORETICAL ANALYSES

If we consider skipping ReLU in the backward pass as
finding an approximation to the gradient of a non-smooth
objective function, then LinBP is somewhat related to the
straight-through estimation [25]. However, such a possible
relation does not provide much insight of the convergence
of LinBP, which is the focus of this paper. In this section, we
shall provide convergence analyses for LinBP, and compare
it to the standard BP. There have been attempts for studying
the training dynamics of neural networks [26], [27], [28],
[29]. We follow Tian’s work [28] and consider a teacher-
student framework with the ReLU activation function and
squared l2 loss, based on no deeper than two-layer net-
works. We shall start from theoretical analyses for white-box
adversarial attacks and then consider model training.

3

3.1 Theoretical Analyses for Adversarial Attack

Compared to the two-layer teacher-student frameworks in
Tian’s work [28], we here consider a more general model,
which can be formulated as

g(W,V,x) = Vσ(Wx), (10)

where x ∈ Rd1 is the input data vector, W ∈ Rd2×d1 and
V ∈ Rd3×d2 are weight matrices, σ(·) is the ReLU function
which compares its inputs to 0 in an element-wise manner.
In the teacher-student frameworks, we assume the teacher
network possesses the optimal adversarial example x⋆, and
the student network aims to learn an adversarial example x
from the teacher network, in which the loss function is set
as the squared l2 loss between the output of the student and
the teacher network, i.e.,

L(x) = 1

2
∥g(W,V,x)− g(W,V,x⋆)∥22. (11)

We further define D(W,x) := diag(Wx > 0). From
Eq. (10) and Eq. (11), we can easily obtain the analytic
expression of the gradient with respect to x for the standard
BP:

∇xL(x) =WTD(W,x)VTV(D(W,x)Wx

−D(W,x⋆)Wx⋆).
(12)

Compared with Eq. (12), the gradient obtained from
LinBP removes the derivatives of the ReLU function in the
backward pass, i.e.,

∇̃xL(x) = WTVTV (D(W,x)Wx−D(W,x⋆)Wx⋆) .
(13)

Inspired by Theorem 1 in Tian’s work [28], we introduce
the following lemma to give the analytic expression of the
gradients in expectations in adversarial settings.

Lemma 1. G(e,x) := WTD(W, e)VTVD(W,x)Wx,
where e ∈ Rd1 is a unit vector, x ∈ Rd1 is the input data vector,
W ∈ Rd2×d1 and V ∈ Rd3×d2 are weight matrices. If W and V
are independent and both generated from the standard Gaussian
distribution, we have

E (G(e,x)) =
d3d2
2π

[(π −Θ)x+ ∥x∥ sinΘe],

where Θ ∈ [0, π] is the angle between e and x.

The proof of Lemma 1 can be found in the appendices.
With Lemma 1, the expectation of Eq. (12) and Eq. (13) can
be formulated as

E[∇xL(x)] = G(x/∥x∥,x)−G(x/∥x∥,x⋆)

=
d3d2
2

(x− x⋆) +
d3d2
2π

(
Θx⋆ − ∥x⋆∥

∥x∥ sinΘx

)

(14)
and

E[∇̃xL(x)] = G(x/∥x∥,x)−G(x⋆/∥x⋆∥,x⋆)

=
d3d2
2

(x− x⋆),
(15)

respectively, where Θ ∈ [0, π] is the angle between x and
x⋆. We here focus on l∞ attacks. Different iterative gradient-
based l∞ attack methods may have slightly different update

rules. Here, for ease of unified analyses, we simplify their
update rules as

x(t+1) = Clip(x(t) − η∇x(t)L(x(t))), (16)

where Clip(·) = min(x + ϵ1,max(x − ϵ1, ·)) performs
element-wise input clip to guarantee that the intermediate
results always stay in the range fulfilling the constraint of
∥x(t+1) − x∥∞ ≤ ϵ. We use the updates of the standard
BP and LinBP, i.e., ∇xL(x) and ∇̃xL(x), to obtain {x(t)}
and {x̃(t)}, respectively. Based on all these results above, we
can give the following theorem that provides convergence
analysis of LinBP.

Theorem 1. For the two-layer teacher-student network formu-
lated as in Eq. (10), in which the adversarial attack adopts Eq. (11)
and Eq. (16) as the loss function and the update rule, respectively,
we assume that W and V are independent and both generated
from the standard Gaussian distribution, x⋆ ∼ N(µ1, σ

2
1),

x(0) ∼ N(0, σ2
2), and η is reasonably small 1. Let x(t) and x̃(t)

be the adversarial examples generated in the t-th iteration of attack
using BP and LinBP, respectively, then we have

E∥x⋆ − x̃(t)∥1 ≤ E∥x⋆ − x(t)∥1.
The proof of the theorem is deferred to the appendices.

Theorem 1 shows that LinBP can produce adversarial ex-
amples closer to the optimal adversarial examples x⋆ (when
compared with the standard BP) in the same settings for any
finite number of iteration steps, which means that LinBP can
craft more powerful and destructive adversarial examples
even in the white-box attacks. It is also straightforward to
derive from our proof that LinBP produces a more pow-
erful adversarial example, if starting optimization from the
benign example with low prediction loss. The conclusion is
somewhat surprising since popular white-box attack meth-
ods like FGSM (I-FGSM) and PGD mostly use the gradient
obtained by the standard BP, yet we find LinBP may lead to
stronger attacks with the same hyper-parameters.

From our proof, it can further be derived that the norm
of Eq. (15) is larger than the norm of Eq. (14), which means
LinBP provides larger gradients in expectation. Also, the
direction of the update obtained from LinBP is closer to the
residual x−x⋆ in comparison to the standard BP. These may
cause LinBP to produce more destructive adversarial exam-
ples and more powerful attack in white-box settings. We
conducted extensive experiments on deeper networks using
common attack methods to verify our theoretical findings.
The experimental results will be shown in Section 4.2.

3.2 Theoretical Analyses for Model Training
For model training, we adopt the same framework as in
Section 3.1 to analyze the performance of LinBP. By contrast,
we mainly consider a one-layer teacher-student framework,
since the student network may not converge to the teacher
network with two-layer and deeper models. We will show
in Section 4.2 that many of our theoretical results still hold
in more complex network architectures.

The one-layer network can be formulated as

h(x,w) = σ(xTw), (17)

1. See Eq. (22) for more details of the constraint.

4

where x ∈ Rd is the input vector, w ∈ Rd is the weight
vector, and σ(·) is the ReLU function. Given a set of
training samples, we obtain h(X,w) = σ(Xw), where
X = [xT

1 ; ...;x
T
N] is the input data matrix, xk ∈ Rd is the k-

th training instance, for k = 1, ..., N . We assume the teacher
network has the optimal weight, and the loss function for
optimizing the one-layer network can be formulated as

L(w) =
1

2
∥h(X,w)− h(X,w⋆)∥22, (18)

where w and w⋆ are the weight vectors for the student net-
work and the teacher network, respectively. Therefore, we
can derive the gradient with respect to w for the standard
BP as:

∇wL(w) = XTD(X,w)(D(X,w)Xw −D(X,w⋆)Xw⋆).
(19)

By contrast, the gradient with respect to w obtained from
LinBP is formulated as

∇̃wL(w) = XT (D(X,w)Xw −D(X,w⋆)Xw⋆). (20)

While training the simple one-layer network with SGD, the
update rule can be formulated as

w(t+1) = w(t) − η∇w(t)L(w(t)), (21)

where we use ∇wL(w) and ∇̃wL(w) showed in Eq. (19)
and Eq. (20) to obtain {w(t)} and {w̃(t)} for the standard
BP and LinBP, respectively. The following theorem is given
for analyzing the training convergence, when LinBP is used.

Theorem 2. For the one-layer teacher-student network formu-
lated as in Eq. (17), in which training adopts Eq. (18) and Eq. (21)
as the loss function and the update rule, respectively, we assume
that X is generated from the standard Gaussian distribution,
w⋆ ∼ N(µ1, σ

2
1), w

(0) ∼ N(0, σ2
2), and η is reasonably small2.

Let w(t) and w̃(t) be the weight vectors obtained in the t-th
iteration of training using standard BP and LinBP, respectively,
then we have

E∥w⋆ − w̃(t)∥1 ≤ E∥w⋆ −w(t)∥1.
The proof of Theorem 2 can also be found in the appen-

dices. Theorem 2 shows that LinBP may lead the obtained
weight vector to get closer toward the optimal weight vector
w⋆ compared to the standard BP with the same learning rate
and the same number of training iterations, which means
LinBP can also lead to faster convergence in model training.

3.3 Discussions about η and t

In Theorem 1 and Theorem 2, we assume that the update
step size in adversarial attacks and the learning rate in
model training are reasonably small. Here we would like
to discuss more about these assumptions.

Precisely, we mean that η should be small enough to sat-
isfy the following constraints: for Theorem 1, it is required
that

|
m−1∑

j=0

ηd3d2
2π

(1−ηd3d2
2

)m−1−jpji|

< |(1− ηd3d2
2

)m(x⋆
i − x

(0)
i)|,

(22)

2. See Eq. (23) for a precious formulation of the constraint.

for m = 1, . . . , t, and i = 1, . . . , d1, where pj = θjx
⋆ −

∥x⋆∥
∥x(j)∥ sin θjx

(j) and i indicates the i-th entry of a d1-
dimensional vector. For Theorem 2, it is required that

|
m−1∑

j=0

ηN

2π
(1− ηN

2
)m−1−jqji| < |(1− ηN

2
)m(w⋆

i −w
(0)
i)|,

(23)
for m = 1, . . . , t, and i = 1, . . . , d, where qj = θjw

⋆ −
∥w⋆∥
∥w(j)∥ sin θjw

(j). It is nontrivial to obtain analytic solutions
for Eq. (22) and Eq. (23). However, we can know that
they are both more likely to hold when t is small. Since
the maximum number of learning iterations for generating
adversarial examples is often set to be small (at most several
hundred) in commonly adopted methods like I-FGSM and
PGD, the assumption in Eq. (22) is easier to be fulfilled than
that in Eq. (23), i.e., in the setting of model training which
can take tens of thousands of iterations, indicating that the
superiority of LinBP can be more obvious in performing
adversarial attacks.

4 EXPERIMENTAL RESULTS

In this section, we provide experimental results on synthetic
data (see Section 4.1) and real data (see Section 4.2) to
confirm our theorem and compare LinBP against BP in more
practical settings for white-box adversarial attack/defense
and model training, respectively. The practical experiments
show that our theoretical results hold in a variety of different
model architectures. All the experiments were performed
on NVIDIA GeForce RTX 1080/2080 Ti and the code was
implemented using PyTorch [30].

4.1 Simulation Experiments

Fig. 1. LinBP leads to more powerful white-box adversarial examples
which are closer to the optimal ones.

(a) l2 normalized updates (b) l∞ normalized updates

Fig. 2. Using normalized gradients, LinBP still leads to more powerful
white-box adversarial examples.

4.1.1 Adversarial attack
We constructed a two-layer neural network and performed
adversarial attack following the teacher-student framework
described in Section 3.1. To be more specific, the victim

5

model is formulated as Eq. (10), the loss function is given as
Eq. (11), and Eq. (16) is the update rule to generate adversar-
ial examples. Following the assumption in Theorem 1, the
weight matrices V and W were independent and both gen-
erated from the standard Gaussian distribution. Similarly,
the optimal adversarial example x⋆ and the initial adversar-
ial example x(0) were obtained via sampling from Gaussian
distributions, i.e., x⋆ ∼ N(µ1, σ

2
1) and x(0) ∼ N(0, σ2

2),
where µ1, σ1, and σ2 can in fact be arbitrary constants. Here
we set µ1 = 1.0, σ1 = 2.0, and σ2 = 1.0. In our experiments,
we set d1 = 100, d2 = 20, d3 = 10, η = 0.001, and ϵ = 0.25.
And the maximum number of the iteration step was set to
100. We randomly sampled 10 sets of parameters (including
weight matrices, optimal adversarial examples, and initial
adversarial examples) for different methods and evaluate
the average performance over 10 runs of the experiment.
The average l1 distance between the obtained student ad-
versarial examples and the optimal adversarial examples
from the teacher network is shown in Figure 1. It shows that
LinBP makes the obtained adversarial examples converge
faster to the optimal ones, indicating that LinBP helps craft
more powerful adversarial examples in the same hyper-
parameter settings, which clearly confirms our Theorem 1.

As we have mentioned in Section 3, the norm of the
update obtained from LinBP is larger than that obtained
from the standard BP, which may cause faster convergence
for LinBP. In this experiment, the l2 norm and l∞ norm of
the gradient obtained using LinBP are ∼ 1.65× and ∼ 1.60×
larger than BP, respectively. For deeper discussions, we have
conducted two more experiments. We used l2 norm and
l∞ norm to normalize the update obtained from LinBP and
standard BP. η was set as 0.05 and 0.005, respectively. The
results are shown in Figure 2a and Figure 2b, where we can
find the conclusion still holds with gradient normalization.

(a) Training loss (b) Approximation to the teacher

Fig. 3. LinBP leads to lower training loss and better approximation to the
teacher model, especially at the early stage of training.

(a) Training loss (b) Approximation to the teacher

Fig. 4. LinBP leads to similar training loss and approximation to the
teacher model with l2 normalized gradients.

4.1.2 Model training
As described in Section 3.2, we constructed the one-layer
neural network formulated as in Eq. (17) and trained it

following the student-teacher framework. Eq. (18) is the
loss function. Similar to the experiments in Section 4.1.1,
the input data matrix X was generated from the standard
Gaussian distribution, the optimal weight vector w⋆ in the
teacher network and the initial weight vector w(0) in the
student network were obtained via sampling from Gaussian
distributions with µ1 = 1.0, µ2 = 0.0, σ1 = 3.0, and
σ2 = 1.0. We used SGD for optimization and set N = 100,
d = 10, and η = 0.001 in our experiments. The maximal
number of optimization iterations was set to 10000 to ensure
training convergence. We used the l1 distance between the
weight vector in the teacher model and that in the student
model to evaluate their difference. Figure 3 illustrates the
average results over 10 runs and compares the two meth-
ods. From the experimental results, we can observe that
LinBP leads to more accurate approximation (i.e., smaller
l1 distance) to the teacher as well as lower training loss in
comparison with BP, which clearly confirms our Theorem 2,
indicating that LinBP can lead to faster convergence in the
same hyper-parameter settings.

We found that the norm of gradient obtained from LinBP
is larger than that obtained from the standard BP in the
early stage of training, similar to the results in Section 4.1.1.
To be specific, the l2 norm of the gradient from LinBP is
∼ 2.2× larger than that from BP in the first 100 iterations,
yet over all 10000 iterations, it is only ∼ 0.75×. We have also
conducted the experiment where the gradient is normalized
by its l2 norm. η was set to 0.0015. The results are shown
in Figure 4. We see that the superiority of LinBP drops a lot
(when compared with Figure 3), which is different from the
results obtained in adversarial attacks.

4.2 More Practical Experiments
We also conducted experiments in more practical settings
for adversarial attack and model training on MNIST [33]
and CIFAR-10 [23], using DNNs with a variety of different
architectures, including a simple MLP, LeNet-5 [33], VGG-
16 [2], ResNet-50 [3], DenseNet-161 [4], MobileNetV2 [15],
and WRN (WRN) [16].

4.2.1 Adversarial attack on DNNs
We performed white-box attacks on CIFAR-10 using dif-
ferent DNNs, including VGG-16, ResNet-50, DenseNet-161,
MobileNetV2, and a robust WRN-28-10 [31] available on
the RobustBench [32]. CIFAR-10 test images that could be
correctly classified by these models were used to gener-
ate adversarial examples, and the attack success rate was
adopted to evaluate the performance of the attack. We
evaluate the results of PGD [19] as it is popular in white-
box attacks, and we report the best attack performance over
5 restarts of PGD. Note that, without restart, PGD and I-
FGSM [18] achieve similar performance. The gradient steps
were normalized by the l∞ norm in PGD by default. The
update step size of the iterative attack η was fixed to be
1/255. We tested different settings of the maximum allowed
number of update steps K and the perturbation budget ϵ,
including K ∈ {10, 20, 100} and ϵ ∈ {8/255, 16/255}. The
attack performance using LinBP and BP following all these
settings is summarized in Table 1.

It is easy to see in Table 1 that LinBP gains consistently
higher attack success rates with PGD, showing that it can

6

TABLE 1
The highest success rate of white-box attacks using PGD with LinBP and BP in different settings over 5 restarts. K is the maxiumum allowed

number of update steps and ϵ is the perturbation budget. Higher success rate (i.e., lower prediction accuracy on the adversarial examples)
indicates more powerful attack. ”WRN(robust)” represents a robust WRN-28-10 model [31] available on the RobustBench [32].

Method K ϵ VGG-16 ResNet-50 DenseNet-161 MobileNetV2 WRN (robust)

BP

10 8/255 72.28% 66.41% 56.89% 92.94% 33.14%
20 8/255 87.07% 80.82% 73.33% 98.19% 38.11%
100 8/255 96.54% 92.53% 86.46% 99.88% 38.94%
10 16/255 77.25% 71.52% 62.79% 94.90% 33.78%
20 16/255 94.88% 91.18% 87.38% 99.44% 44.25%
100 16/255 99.73% 99.81% 98.35% 100.00% 59.38%

LinBP

10 8/255 95.52% 85.83% 61.87% 99.80% 33.48%
20 8/255 98.50% 93.11% 77.72% 99.95% 39.55%
100 8/255 99.25% 95.82% 89.03% 99.99% 40.44%
10 16/255 98.78% 92.68% 69.04% 99.95% 34.21%
20 16/255 99.99% 99.51% 91.18% 100.00% 45.22%
100 16/255 100.00% 99.97% 99.07% 100.00% 60.78%

TABLE 2
The highest success rate of white-box attacks using Auto-PGD with LinBP and BP in different settings over 5 restarts. ϵ is the perturbation budget.

Higher success rate (i.e., lower prediction accuracy on the adversarial examples) indicates more powerful attack. ”WRN(robust)” represents a
robust WRN-28-10 model [31] available on the RobustBench [32].

Method ϵ VGG-16 ResNet-50 DenseNet-161 MobileNetV2 WRN (robust)

BP
8/255 98.06% 95.77% 91.91% 99.97% 39.46%
16/255 99.97% 99.98% 99.58% 100.00% 60.94%

LinBP
8/255 99.65% 97.60% 93.35% 100.00% 41.20%
16/255 100.00% 99.99% 99.81% 100.00% 62.99%

help generate more powerful adversarial examples. For
instance, with K = 10 and ϵ = 8/255, using LinBP improves
the success rate of attacking ResNet-50 by 19.42% (85.83% vs
66.41%). With K = 100, the success rates of attacking some
(non-robust) models approach ∼100%, and LinBP still helps
achieve similar or higher attack performance than using BP.
As gradient normalization was by default adopted in PGD,
the superiority of LinBP has nothing to do with the norm of
gradient, just as in Section 4.1.1.

We have also tried using Auto-PGD [34], which was
developed as a stronger method for evaluating the adver-
sarial robustness of models. Similar to the experiment with
PGD, the best attack performance over 5 restarts are shown
(see Table 2). It can be observed that LinBP is still more
effective than BP, even with Auto-PGD which has adaptive
step sizes. To give more discussions on how LinBP enhances
the performance in Auto-PGD, we carefully analyzed when
the optimizer adjusted its step sizes with LinBP/BP. The
results show that LinBP helps Auto-PGD halve the step size
faster. More specifically, the average number of iterations
before Auto-PGD halves its step size using LinBP is 22.95,
42.18, 58.59, and 72.11, compared with 25.85, 45.11, 61.98
and 77.45 for BP when attacking ResNet-50 with ϵ = 8/255.
Since Auto-PGD adjusts its step size when it reaches “con-
vergence” with the current step size, the results show that
LinBP is beneficial to convergence even with such a method
in practice.

LinBP can be effective with other activation functions. To

gain more insight, we further tested with the Swish/SiLU
activation function. For simplicity of experiments, we re-
place the original ReLU activations in ResNet-50 with the
Swish/SiLU activations. With K = 10 and η = 1/255, the
PGD attack success rate for LinBP are 75.85% and 87.97%
when ϵ = 8/255 and ϵ = 16/255, respectively, compared
with 74.24% and 82.65% for BP.

4.2.2 Training DNNs
For experiments of DNN training, we first trained and eval-
uated a simple MLP and LeNet-5 on MNIST. The MLP has
four parameterized and learnable layers, and the numbers
of its hidden layer units are 400, 200, and 100. We used
SGD for optimization and the learning rate was 0.001 and
0.005 for the MLP and LeNet-5, respectively. The training
batch size was set to 64, and the training process lasted for
at most 50 epochs. The training loss and training accuracy
are illustrated in Figure 5, and note that we fix the random
seed to eliminate unexpected randomness during training.
We can easily observe from the training curves in Figure 5
that the obtained MLP and LeNet-5 models show lower
prediction loss and higher accuracy when incorporating
LinBP, especially in the early epochs, which suggests that the
incorporation of LinBP can be beneficial to the convergence
of SGD. The same observation can be made on the test set
of MNIST, and the results are shown in Figure 6.

We further report our experimental results on CIFAR-
10. ResNet-50 [3], DenseNet-161 [4], and MobileNetV2 [15]

7

(a) Training loss (b) Training accuracy

Fig. 5. Compare the training loss and training accuracy of the MLP and
LeNet-5 on MNIST, using LinBP or BP.

(a) Test loss (b) Test accuracy

Fig. 6. Compare the test loss and test accuracy of the MLP and LeNet-5
on MNIST, using LinBP or BP.

were trained and evaluated on the dataset. The architec-
ture of these networks and their detailed settings can be
found in their papers. The optimizer was SGD, and the
learning rate was 0.002. We set the batch size to 128 and
trained for 100 epochs. We evaluated the prediction loss
and prediction accuracy of trained models using LinBP and
BP for comparison. Similar to the experiment on MNIST,
we fixed the random seed. The training results in Figure 7
and test results in Figure 8 demonstrate that, equipped with
LinBP, the models achieved lower prediction loss and higher
prediction accuracy in the same training settings, especially
when the training just got started. Nevertheless, as training
progressed, the superiority of LinBP became less obvious,
and the final performance of LinBP became just comparable
to that of the standard BP, which is consistent with our
theoretical discussions in Section 3.2.

(a) Training loss (b) Training accuracy

Fig. 7. Training loss and training accuracy of ResNet-50, DenseNet-161,
and MobileNetV2 on CIFAR-10, using LinBP or BP.

We also noticed that in certain scenarios, optimization
using LinBP may fail to converge with very large learning
rates. Here we test various learning rate η in training MNIST
models to observe the stability of LinBP. Recall that the
base learning rates for training the MLP and LeNet-5 are
0.001 and 0.005, respectively, for obtaining our previous
results, and we further tried scaling them by 10× and 0.1×
to investigate how the training performance was affected.
The training curves for all these settings of learning rates
are illustrated in Figure 9. Compared with the results in

(a) Test loss (b) Test accuracy

Fig. 8. Test loss and test accuracy of ResNet-50, DenseNet-161, and
MobileNetV2 on CIFAR-10, using LinBP or BP.

(a) 0.1× learning rate (b) 10× learning rate

Fig. 9. The influence of setting different learning rate to LinBP and BP
for training the MLP and LeNet-5 on MNIST.

Figure 5b, it can be seen that, when increasing the base
learning rate by 10×, the training performance of LinBP
and that of BP are similar on the MLP, but, on LeNet-5, the
training failed to converge with LinBP while it could still
converge with BP. Also, the same observation was made
when training VGG-16 on CIFAR-10 using LinBP and a
(relatively large) base learning rate of 0.005. The results con-
form that a reasonably small η helps stabilize training using
LinBP and guarantees its performance. We also tried using
normalized gradients during training and LinBP performed
no better than BP, just like the results in Section 4.1.2.

We used the cosine annealing learning rate scheduler [9]
for obtaining the results in Figure 7 and 8. One may also be
curious about the training performance with other learning
rate scheduler. In this context, we further tested with expo-
nential learning rate scheduler [35] with γ = 0.98 and find
similar results, which are shown in Figure 10.

(a) Training accuracy (b) Test accuracy

Fig. 10. Training ResNet-50 and MobileNetV2 on CIFAR-10 with the
exponential learning rate scheduler, using LinBP or BP.

4.2.3 Adversarial training for DNNs
Since the discovery of adversarial examples, the vulnerabil-
ity of DNNs has been intensively discussed. Tremendous ef-
fort has been devoted to improving the robustness of DNNs.
Thus far, a variety of methods have been proposed, in which
adversarial training [17], [19] has become an indispensable
procedure in many application scenarios. In this context, we
would like to study how LinBP can be adopted to further

8

enhance the robustness of DNNs. We used the adversarial
examples generated by PGD to construct our dataset and we
trained our model using simply SGD. There exist multiple
strategies of adopting LinBP in adversarial training, i.e., 1)
computing gradients for updating model parameters using
LinBP as in the model training experiment and 2) generating
adversarial examples using LinBP just like in the adversarial
attack experiment. We observed that the first strategy is
more beneficial than the second strategy when evaluating
the robustness of DNNs using BP-generated adversarial ex-
amples. Due to overfitting, generating adversarial examples
using LinBP during adversarial training leads to obviously
larger generalization gap between training and test perfor-
mance and degraded test robustness against BP-generated
adversarial examples.

Though effective in the sense of achieving high robust
accuracy after convergence, the first strategy sometimes
suffers from unstable performance as the adversarial ex-
amples and model parameters are updated asynchronously.
Further applying the second strategy in combination with
the first strategy stabilize adversarial training and is helpful
to achieve reliable performance. See Figures 11 and 12 for
performance under the PGD attack and AutoAttack, respec-
tively. In the figures, we applied the classification accuracy
on adversarial examples to evaluate the robustness. The ex-
periment was performed on CIFAR-10 using MobileNetV2
and ResNet-50, where the attack step size was 2/255, ϵ was
8/255, K = 5, and the training learning rate was 0.01.

The figures demonstrate that, benefit from it fast con-
vergence, LinBP can be used as an alternative to BP when
performing adversarial training for achieving robustness (if
used appropriately).

(a) MobileNetV2 (b) ResNet-50

Fig. 11. Compare the PGD robustness of MobileNetV2 and ResNet-50
shielded with different adversarial training methods. We use “LinBP†”,
“LinBP∗”, and “LinBP†∗” to indicate models trained using the first strat-
egy, the second strategy, and the combination of the two strategies as
described in the above paragraph, respectively.

(a) MobileNetV2 (b) ResNet-50

Fig. 12. Compare the AutoAttack robustness of MobileNetV2 and
ResNet-50 shielded with different adversarial training methods.

5 CONCLUSION

In this paper, we have studied the convergence of optimiza-
tion using LinBP, which skips ReLUs during the backward
pass, and compared it to optimization using the standard
BP. Theoretical analyses have been carefully performed in
two popular application scenarios, i.e., white-box attack
and model training. In addition to the benefits in black-
box attacks which has been demonstrated in [1], we have
shown in this paper that LinBP also leads to generating
more destructive white-box adversarial examples and ob-
taining faster model training. Experimental results using
synthesized data confirm our theoretical results. Extensive
experiments on MNIST and CIFAR-10 further show that
the theoretical results hold in more practical settings on a
variety of DNN architectures.

ACKNOWLEDGMENTS

This work is funded by the Natural Science Foundation of
China (NSFC. No. 62176132) and the Guoqiang Institute of
Tsinghua University, with Grant No. 2020GQG0005.

REFERENCES

[1] Y. Guo, Q. Li, and H. Chen, “Backpropagating linearly improves
transferability of adversarial examples,” in NeurIPS, 2020.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in ICLR, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016.

[4] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in CVPR, 2017.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
arXiv preprint arXiv:1706.03762, 2017.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly
et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” in ICLR, 2021.

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[8] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” in ICLR, 2019.

[9] ——, “Sgdr: Stochastic gradient descent with warm restarts,” in
ICLR, 2017.

[10] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam
and beyond,” arXiv preprint arXiv:1904.09237, 2019.

[11] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the impor-
tance of initialization and momentum in deep learning,” in ICML,
2013.

[12] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp.
177–186.

[13] Y. LeCun, “A theoretical framework for back-propagation,” in
Proceedings of the 1988 connectionist models summer school, vol. 1,
1988, pp. 21–28.

[14] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in ACM on Asia conference on computer and communications security,
2017.

[15] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,”
in CVPR, 2018.

[16] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in ICLR, 2015.

[18] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” in ICLR, 2017.

[19] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
in ICLR, 2018.

9

[20] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial
examples,” in ICML, 2018.

[21] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a
simple and accurate method to fool deep neural networks,” in
CVPR, 2016.

[22] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in IEEE symposium on security and privacy (SP),
2017.

[23] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet
large scale visual recognition challenge,” IJCV, 2015.

[25] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagat-
ing gradients through stochastic neurons for conditional compu-
tation,” arXiv preprint arXiv:1308.3432, 2013.

[26] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds
global minima of deep neural networks,” in ICML, 2019.

[27] S. Arora, S. Du, W. Hu, Z. Li, and R. Wang, “Fine-grained analysis
of optimization and generalization for overparameterized two-
layer neural networks,” in ICML, 2019.

[28] Y. Tian, “An analytical formula of population gradient for two-
layered relu network and its applications in convergence and
critical point analysis,” in ICML, 2017.

[29] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent prov-
ably optimizes over-parameterized neural networks,” in ICLR,
2019.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,” in
NeurIPS, 2019.

[31] J. Zhang, J. Zhu, G. Niu, B. Han, M. Sugiyama, and M. Kankan-
halli, “Geometry-aware instance-reweighted adversarial training,”
in ICLR, 2021.

[32] F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti, N. Flam-
marion, M. Chiang, P. Mittal, and M. Hein, “Robustbench: a
standardized adversarial robustness benchmark,” arXiv preprint
arXiv:2010.09670, 2020.

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[34] F. Croce and M. Hein, “Reliable evaluation of adversarial ro-
bustness with an ensemble of diverse parameter-free attacks,” in
International conference on machine learning. PMLR, 2020, pp. 2206–
2216.

[35] Z. Li and S. Arora, “An exponential learning rate schedule for
deep learning,” arXiv preprint arXiv:1910.07454, 2019.

Ziang Li received the B.E. degree from Ts-
inghua University, Beijing, China, in 2019. He is
currently working toward the PhD degree with
the Department of Automation, Tsinghua Uni-
versity, Beijing, China. His current research in-
terests include pattern recognition and machine
learning.

Yiwen Guo received the B.E. degree from
Wuhan University in 2011, and the Ph.D. de-
gree from Tsinghua University in 2016. He is a
research scientist at ByteDance AI Lab, Beijing.
Prior to this, he was a staff research scientist at
Intel Labs China. His current research interests
include computer vision, pattern recognition, and
machine learning.

Haodi Liu received the B.A. degree from Bard
College and B.S. degree from Columbia Uni-
versity in 2018(Dual degree program). And he
received the M.S. degree from Columbia Uni-
versity in 2020. Now he is currently working to-
ward the Ph.D. degree with the Department of
Automation of Tsinghua University. Prior to this,
he was an algorithm engineer at AiBee.Inc. His
current research interests include pattern recog-
nition, machine learning and computer vision.

Changshui Zhang (M’02-SM’15-F’18) received
the B.S. degree in mathematics from Peking Uni-
versity, Beijing, China, in 1986, and the M.S. and
Ph.D. degrees in control science and engineer-
ing from Tsinghua University, Beijing, in 1989
and 1992, respectively. In 1992, he joined the
Department of Automation, Tsinghua University,
where he is currently a professor. His current re-
search interests include pattern recognition and
machine learning. He has authored more than
200 articles. He is a fellow of the IEEE.

1

Appendices: A Theoretical View of Linear
Backpropagation and Its Convergence

Ziang Li*, Yiwen Guo*, Haodi Liu, and Changshui Zhang, Fellow, IEEE

✦

APPENDIX A
PROOF OF LEMMA 1
We recall the contents of Lemma 1. Assume D(W,x) := diag(Wx > 0).

Lemma 1. Denote G(e,x) := WTD(W, e)VTVD(W,x)Wx, where e ∈ Rd1 is a unit vector, x ∈ Rd1 is the input data vector,
W ∈ Rd2×d1 and V ∈ Rd3×d2 are weight matrices. If W and V are independent and both generated from the standard Gaussian
distribution, we have

E (G(e,x)) =
d2d3
2π

[(π −Θ)x+ ∥x∥ sinΘe],

where Θ ∈ [0, π] is the angle between e and x.

Proof. Assume W = [w1, · · · ,wd2]
T , where wi ∈ Rd1 for i = 1, · · · , d2. For G(e,x), we have

G(e,x) =
∑

i:wT
i x≥0,wT

i e≥0

∑

j:wT
j x≥0,wT

j e≥0

d3∑

d=1

vdivdjwiw
T
j x. (1)

We consider the expectation of G(e,x), there is

E(G(e,x)) =
d2∑

i=1

d2∑

j=1

E(
d3∑

d=1

vdivdj)E(wiw
T
j · I(wT

i x≥0,wT
i e≥0,wT

j x≥0,wT
j e≥0)(x, e)x), (2)

where IA(x) is the indicator function, i.e., IA(x) equals 1 if x ∈ A and equals 0 if x /∈ A. As the assumption that W and
V are independent and both generated from the standard Gaussian distribution, we find E(

∑d3

d=1 vdivdj) = 0 when i ̸= j

and E(
∑d3

d=1 vdivdj) = d3 when i = j. Therefore, Eq. (2) can be simplified as

E(G(e,x)) =
d2∑

i=1

E(wiw
T
i · I(wT

i x≥0,wT
i e≥0)(x, e)x). (3)

We then introduce a coordinate system, where e = [1, 0, · · · , 0]T , x = ∥x∥[cosΘ, sinΘ, 0, · · · , 0]T are hold. Thus, wi =
[r cosϕi, r sinϕi, wi,3, · · · , wi,d1

]T . We then can rewrite Eq. (3) as

E(G(e,x)) = d3E
∑

i:wT
i x≥0,wT

i e≥0

wiw
T
i x

= d3E
∑

i:ϕi∈[−π/2+Θ,π/2]

wiw
T
i x

(4)

We now compute the following equation,

R(ϕ0) = E

 1

d2

∑

i:ϕi∈[0,ϕ0]

wiw
T
i

 = E

[
wwT |ϕ ∈ [0, ϕ0]

]
P [ϕ ∈ [0, ϕ0]]

=

∫ ∞

−∞
. . .

∫ ϕ0

0

∫ ∞

0
wwT p(r)p(ϕ)

d∏

i=3

p(wi)rdrdϕdw3 . . . dwd1
,

(5)

ar
X

iv
:2

11
2.

11
01

8v
2

 [
cs

.L
G

]
 1

0
Ja

n
20

24

2

where p(r) = e−
r2

2 and p(ϕ) = 1
2π . Since W follows gaussian distribution, the off-diagonal and diagonal elements except

the first 2× 2 block are equal to 0 and ϕ0

2π respectively. The first 2× 2 block can be formulated as

R(ϕ0)[1:2,1:2] =

∫ ϕ0

0

∫ ∞

0

[
r cosϕ
r sinϕ

] [
r cosϕ r sinϕ

]
p(r)p(ϕ)rdrdϕ

=

∫ ∞

0

r3e−
r2

2

2π
dr

∫ ϕ0

0

[
cos2 ϕ cosϕ sinϕ

cosϕ sinϕ sin2 ϕ

]
dϕ.

=
1

4π

[
2 + sin 2ϕ0 1− cos 2ϕ0

1− cos 2ϕ0 2− sin 2ϕ0

]
(6)

Further we have

R(ϕ0) =
1

2π
Id +

1

4π

sin 2ϕ0 1− cos 2ϕ0 0
1− cos 2ϕ0 − sin 2ϕ0 0

0 0 0

 (7)

Then Eq. (4) can be formulated as

E(G(e,x)) = d2d3
(
R(

π

2
)−R(−π

2
+ Θ)

)
x

= d2d3
π −Θ

2π
Id +

d2d3
4π

(

[
0 2
2 0

]
−

[
sin(2Θ− π) 1− cos(2Θ− π)

1− cos(2Θ− π) − sin(2Θ− π)

]
)∥x∥

[
cosΘ
sinΘ

]

= d2d3
π −Θ

2π
x+

d2d3∥x∥
4π

[
2 sinΘ

0

]

=
d2d3
2π

[(π −Θ)x+ ∥x∥ sinΘe]

(8)

APPENDIX B
LEMMA FOR PROVING THEOREM 1 AND THEOREM 2
We here propose a lemma before we delve deep into Theorem 1 and Theorem 2. The lemma is described as follows,

Lemma 2. Let αi define as

αi = (u · x⋆
i − v · xi)sgn(x⋆

i − xi) =

{
u · x⋆

i − v · xi, if x⋆
i > xi,

v · xi − u · x⋆
i , if x⋆

i < xi,

where u and v are constants, x⋆
i ∼ N(µ1, σ

2
1) and xi ∼ N(µ2, σ

2
2). The expectation of αi can be formulated as

E(αi) = 2γ(u · σ2
1 + v · σ2

2) + (u · µ1 − v · µ2)(2P(xi < x⋆
i)− 1),

where γ = 1√
2π(σ2

1+σ2
2)
e−(µ1−µ2)

2/2(σ2
1+σ2

2) > 0. Further we have E(αi) > 0 when u > 0, v > 0 and µ2 = 0.

Proof. From the definition of αi, the expectation of αi can be formulated as

E(αi) = E(u · x⋆
i − v · xi|x⋆

i > xi)P(x⋆
i > xi) + E(v · xi − u · x⋆

i |x⋆
i < xi)P(x⋆

i < xi). (9)

Further, we have x⋆
i − xi ∼ N(µ1 − µ2, σ

2
1 + σ2

2). Therefore, we can conclude that P(x⋆
i > xi) = 1 − F (0) and P(x⋆

i <
xi) = F (0), where F (·) denotes the cumulative distribution function for N(µ1 − µ2, σ

2
1 + σ2

2).
We then solve the conditional cumulative distribution function for x⋆

i when x⋆
i > xi. We define f1(·), f2(·) denote the

probability density function of x⋆
i and xi and F1(·), F2(·) denote the cumulative distribution function of x⋆

i and xi. There
we have

G1(x) = P(x⋆
i ≤ x|x⋆

i > xi)

=
P(xi < x⋆

i ≤ x)

P(xi < x⋆
i)

=
1

P(xi < x⋆
i)

∫ x

−∞
P(y < x⋆

i ≤ x)f2(y)dy

=
1

P(xi < x⋆
i)

∫ x

−∞
(F1(x)− F1(y))f2(y)dy.

(10)

Therefore, the probability density function can be formulated as

g1(x) =
1

P(xi < x⋆
i)

[
(F1(x)

∫ x

−∞
f2(y)dy)

′ − (

∫ x

−∞
(F1(y)f2(y)dy)

′
]

=
1

P(xi < x⋆
i)

[
(f1(x)

∫ x

−∞
f2(y)dy) + F1(x)f2(x)− F1(x)f2(x)

]

=
f1(x)F2(x)

P(xi < x⋆
i)
.

(11)

3

Similarly, we first solve the conditional cumulative distribution function for xi when x⋆
i > xi. There we have,

G2(x) = 1−P(xi > x|x⋆
i > xi)

= 1− P(x < xi < x⋆
i)

P(xi < x⋆
i)

= 1− 1

P(xi < x⋆
i)

∫ ∞

x
P(x < xi < y)f1(y)dy

= 1− 1

P(xi < x⋆
i)

∫ ∞

x
(F2(y)− F2(x))f1(y)dy.

(12)

The probability density function can be formulated as

g2(x) =
1

P(xi < x⋆
i)

[
(F2(x)

∫ ∞

x
f1(y)dy)

′ − (

∫ ∞

x
(F2(y)f1(y)dy)

′
]

=
1

P(xi < x⋆
i)

[
(f2(x)

∫ ∞

x
f1(y)dy)− F2(x)f1(x) + F2(x)f1(x)

]

=
f2(x)(1− F1(x))

P(xi < x⋆
i)

.

(13)

We assume ϕ(·) and Φ(·) represent the probability density function and cumulative distribution function for standard
gaussian distribution, respectively. There we have

E(x⋆
i |x⋆

i > xi) =

∫ ∞

−∞
xg1(x)dx

=
1

P(xi < x⋆
i)

∫ ∞

−∞

x

σ1
ϕ(

x− µ1

σ1
)Φ(

x− µ2

σ2
)dx

=
1

P(xi < x⋆
i)

∫ ∞

−∞

x√
2πσ1

e−(x−µ1)
2/2σ2

1Φ(
x− µ2

σ2
)dx

=
1

P(xi < x⋆
i)

∫ ∞

−∞

[
x− µ1√
2πσ1

+
µ1√
2πσ1

]
e−(x−µ1)

2/2σ2
1Φ(

x− µ2

σ2
)dx

(14)

The integral can be devided into two part. The first part can be formulated as
∫ ∞

−∞

x− µ1√
2πσ1

e−(x−µ1)
2/2σ2

1Φ(
x− µ2

σ2
)dx =

σ1√
2π

∫ ∞

−∞
Φ(

x− µ2

σ2
)
d(−e−(x−µ1)

2/2σ2
1)

dx
dx

=
σ1√
2π

∫ ∞

−∞
e−(x−µ1)

2/2σ2
1
dΦ(x−µ2

σ2
)

dx
dx

=
σ1

2σ2π

∫ ∞

−∞
e−(x−µ1)

2/2σ2
1−(x−µ2)

2/2σ2
2dx

=
σ1

2σ2π
e−(µ1−µ2)

2/2(σ2
1+σ2

2)
σ1σ2

√
2π√

σ2
1 + σ2

2

=
σ2
1√

2π(σ2
1 + σ2

2)
e−(µ1−µ2)

2/2(σ2
1+σ2

2)

(15)

Step 3 equals Step 4 because there is
∫∞
−∞ e−(ax2+bx+c)dx = e(b

2−4ac)/4a
√

π
a . The second part can be formulated as

∫ ∞

−∞

µ1√
2πσ1

e−(x−µ1)
2/2σ2

1Φ(
x− µ2

σ2
)dx = µ1

∫ ∞

−∞
f1(x)F2(x)dx (16)

From Eq. (11) we have ∫ ∞

−∞
g1(x)dx =

∫∞
−∞ f1(x)F2(x)dx

P(xi < x⋆
i)

= 1 (17)

Therefore we have ∫ ∞

−∞

µ1√
2πσ1

e−(x−µ1)
2/2σ2

1Φ(
x− µ2

σ2
)dx = µ1

∫ ∞

−∞
f1(x)F2(x)dx = µ1P(xi < x⋆

i) (18)

As the result in Eq. (15) and Eq. (18), Eq. (14) can be formulated as

E(x⋆
i |x⋆

i > xi) =

σ2
1√

2π(σ2
1+σ2

2)
e−(µ1−µ2)

2/2(σ2
1+σ2

2)

P(xi < x⋆
i)

+ µ1

=
γσ2

1

P(xi < x⋆
i)

+ µ1,

(19)

4

where γ = 1√
2π(σ2

1+σ2
2)
e−(µ1−µ2)

2/2(σ2
1+σ2

2) > 0.

Similarly, we have

E(xi|x⋆
i > xi) =

∫ ∞

−∞
xg2(x)dx

=
1

P(xi < x⋆
i)

∫ ∞

−∞

x

σ2
ϕ(

x− µ2

σ2
)(1− Φ(

x− µ1

σ1
))dx

=
1

P(xi < x⋆
i)

∫ ∞

−∞

x√
2πσ2

e−(x−µ2)
2/2σ2

2 (1− Φ(
x− µ1

σ1
))dx

=
1

P(xi < x⋆
i)

∫ ∞

−∞

[
x− µ2√
2πσ2

+
µ2√
2πσ2

]
e−(x−µ2)

2/2σ2
2 (1− Φ(

x− µ1

σ1
))dx

(20)

The integral can also be devided into two part. The first part can be formulated as
∫ ∞

−∞

x− µ2√
2πσ2

e−(x−µ2)
2/2σ2

2 (1− Φ(
x− µ1

σ1
))dx

=
σ2√
2π

∫ ∞

−∞
[1− Φ(

x− µ1

σ1
)]
d(−e−(x−µ2)

2/2σ2
2)

dx
dx

=
σ2√
2π

∫ ∞

−∞
e−(x−µ2)

2/2σ2
2
d(1− Φ(x−µ1

σ1
))

dx
dx

=
−σ2

2σ1π

∫ ∞

−∞
e−(x−µ1)

2/2σ2
1−(x−µ2)

2/2σ2
2dx

=
−σ2

2σ1π
e−(µ1−µ2)

2/2(σ2
1+σ2

2)
σ1σ2

√
2π√

σ2
1 + σ2

2

=
−σ2

2√
2π(σ2

1 + σ2
2)
e−(µ1−µ2)

2/2(σ2
1+σ2

2)

(21)

The second part can be formulated as
∫ ∞

−∞

µ2√
2πσ2

e−(x−µ2)
2/2σ2

2 (1− Φ(
x− µ1

σ1
))dx = µ2

∫ ∞

−∞
f2(x)(1− F1(x))dx (22)

From Eq. (13) we have ∫ ∞

−∞
g2(x)dx =

∫∞
−∞ f2(x)(1− F1(x))dx

P(xi < x⋆
i)

= 1 (23)

Therefore we have
∫ ∞

−∞

µ2√
2πσ2

e−(x−µ2)
2/2σ2

2 (1− Φ(
x− µ1

σ1
))dx = µ2

∫ ∞

−∞
f2(x)(1− F1(x))dx

= µ2P(wi < w⋆
i)

(24)

Therefore, Eq. (20) can be formulated as

E(xi|x⋆
i > xi) =

−σ2
2√

2π(σ2
1+σ2

2)
e−(µ1−µ2)

2/2(σ2
1+σ2

2)

P(xi < x⋆
i)

+ µ2

=
−γσ2

2

P(xi < x⋆
i)

+ µ2.

(25)

Due to symmetry, we also have

E(xi|x⋆
i < xi) =

γσ2
2

P(xi > x⋆
i)

+ µ2,

and

E(x⋆
i |x⋆

i < xi) =
−γσ2

1

P(xi > x⋆
i)

+ µ1.

Therefore, Eq. (9) can be formulated as

E(αi) =γ(u · σ2
1 + v · σ2

2) + (u · µ1 − v · µ2)P(xi < x⋆
i)

+ γ(v · σ2
2 + u · σ2

1) + (v · µ2 − u · µ1)P(xi > x⋆
i)

=2γ(u · σ2
1 + v · σ2

2) + (u · µ1 − v · µ2)(2P(xi < x⋆
i)− 1),

(26)

5

where γ = 1√
2π(σ2

1+σ2
2)
e−(µ1−µ2)

2/2(σ2
1+σ2

2) > 0. When µ2 = 0, we have

E(αi) = 2γ(u · σ2
1 + v · σ2

2) + uµ1(2P(xi < x⋆
i)− 1). (27)

If u > 0 and v > 0, we have γ(u · σ2
1 + v · σ2

2) > 0, and

uµ1(2P(xi < x⋆
i)− 1) = uµ1(1− 2F (0)), (28)

where F is the cumulative distribution function for x⋆
i −xi, and follows the gaussian distribution N(µ1, σ

2
1+σ2

2). If µ1 > 0,
we have F (0) < 0.5, and Eq. (28) is greater than 0. If µ1 < 0, we have F (0) > 0.5, and Eq. (28) is also greater than 0.
Therefore, we have uµ1(1− 2F (0)) ≥ 0. In sum, we have E(αi) > 0 when u > 0, v > 0 and µ2 = 0.

APPENDIX C
PROOF OF THEOREM 1
We first recall the framework of the two-layer network, which can be formulated as

g(W,V,x) = Vσ(Wx), (29)

where x ∈ Rd1 is the input data vector, W ∈ Rd2×d1 and V ∈ Rd3×d2 are weight matrices, σ(·) is the ReLU function. In
the teacher-student frameworks, we assume the teacher network possesses the optimal adversarial example x⋆, and the
student network learns the adversarial example x from the teacher network, in which the loss function is set as

L(x) = 1

2
∥g(W,V,x)− g(W,V,x⋆)∥22. (30)

The update rules is formulated as
x(t+1) = Clip(x(t) − η∇x(t)L(x(t))), (31)

where Clip(·) = min(x + ϵ1,max(x − ϵ1, ·)) and we use the update of standard BP and LinBP, i.e., ∇xL(x) and ∇̃xL(x),
to obtain {x(t)} and {x̃(t)}, respectively. The expectation of the gradient obtained by BP and LinBP can be computed from
Lemma 1, i.e.,

E[∇xL(x)] = G(x/∥x∥,x)−G(x/∥x∥,x⋆) =
d2d3
2

(x− x⋆) +
d2d3
2π

(
Θx⋆ − ∥x⋆∥

∥x∥ sinΘx

)
, (32)

and
E[∇̃xL(x)] = G(x/∥x∥,x)−G(x⋆/∥x⋆∥,x⋆) =

d2d3
2

(x− x⋆), (33)

respectively. Note Θ ∈ [0, π] is the angle between x and x⋆. Then we begin our proof.

Theorem 1. For the two-layer teacher-student network formulated as Eq. (29), the adversarial attack sets Eq. (30) and Eq. (31) as the
loss function and the update rule, respectively. Assume that W and V follow are independent and both generated from the standard
Gaussian distribution, x⋆ ∼ N(µ1, σ

2
1), x

(0) ∼ N(0, σ2
2), and η is reasonably small 1. Let x(t) and x̃(t) be the adversarial examples

generated in the t-th iteration of attack using BP and LinBP, respectively, then we have

E∥x⋆ − x̃(t)∥1 ≤ E∥x⋆ − x(t)∥1.
Proof. The update rules for BP and LinBP are formulated as

x(t+1) = Clip(x(t) − η∇x(t)L(x(t))), (34)

and
x̃(t+1) = Clip(x̃(t) − η∇̃(t)

x̃ L(x̃(t))), (35)

respectively. We first analyse the property of the Eq. (35). Assume x̃(v) is the first {x̃(t)} to satisfy |x̃(v)
i − x

(0)
i | = ϵ, which

also means |x̃(v−1)
i − x

(0)
i | < ϵ. If x̃(v)

i = x
(0)
i + ϵ, from Eq. (35), we have

x̃
(v)
i = Clip(x̃(v−1)

i − ηd2d3
2

(x̃
(v−1)
i − x̃⋆

i))

= Clip((1− ηd2d3
2

)x̃
(v−1)
i +

ηd2d3
2

x̃⋆
i)

= x
(0)
i + ϵ.

(36)

1. See Eq. (48) for more details of the constraint.

6

As |x̃(v−1)
i − x

(0)
i | < ϵ, we have x̃⋆

i > x
(0)
i + ϵ. Therefore, for the v + 1-th step, we have

x̃
(v+1)
i = Clip(x̃(v)

i − ηd2d3
2

(x̃
(v)
i − x̃⋆

i))

= Clip((1− ηd2d3
2

)x̃
(v)
i +

ηd2d3
2

x̃⋆
i)

= Clip((1− ηd2d3
2

)(x
(0)
i + ϵ) +

ηd2d3
2

x̃⋆
i)

= x
(0)
i + ϵ.

(37)

Note that the final step is established because (1− ηd2d3

2)(x
(0)
i + ϵ) + ηd2d3

2 x̃⋆
i > x

(0)
i + ϵ. Further we have x̃

(t)
i = x

(0)
i + ϵ,

for ∀t > v. If x̃(v)
i = x

(0)
i − ϵ, from Eq. (35), we have

x̃
(v)
i = Clip((1− ηd2d3

2
)x̃

(v−1)
i +

ηd2d3
2

x̃⋆
i)

= x
(0)
i − ϵ.

(38)

As |x̃(v−1)
i − x

(0)
i | < ϵ, we have x̃⋆ < x(0) − ϵ. Therefore, for the v + 1-th step, we have

x̃
(v+1)
i = Clip((1− ηd2d3

2
)x̃

(v)
i +

ηd2d3
2

x̃⋆
i)

= Clip((1− ηd2d3
2

)(x
(0)
i − ϵ) +

ηd2d3
2

x̃⋆
i)

= x
(0)
i − ϵ.

(39)

Then we have for ∀t > v, x̃(t)
i = x

(0)
i − ϵ. In sum, for ∀t > v, we have |x̃(t)

i − x
(0)
i | = ϵ. Similar conclusion can be for made

for Eq. (34), further we can find that if a x(t) (or x̃(t)) achieve the bound of Clip, the following steps will keep the bounded
value. We then let pj = θjx

⋆ − ∥x⋆∥
∥x(j)∥ sin θjx

(j), the l1 distance bewteen x(t) (x̃(t)) and x⋆ can be formulated as

E∥x⋆ − x(t+1)∥1 = E∥x⋆ − Clip(x(t) − η∇x(t)L(x(t)))∥1
= E∥H

(
(1− ηd2d3

2
)(x⋆ − x(t)) +

ηd2d3
2π

pt

)
∥1

= E∥H

(1− ηd2d3

2
)t+1(x⋆ − x(0)) +

t∑

j=0

ηd2d3
2π

(1− ηd2d3
2

)t−jpj

 ∥1,

(40)

and
E∥x⋆ − x̃(t+1)∥1 = E∥x⋆ − Clip(x̃(t) − η∇̃(t)

x̃ L(x̃(t)))∥1
= E∥H

(
(1− ηd2d3

2
)t+1(x⋆ − x̃(0))

)
∥1,

(41)

where H(·) = min(x⋆ − x(0) + ϵ1,max(x⋆ − x(0) − ϵ1, ·)). From Eq. (40) and Eq. (41), further we have

E∥x⋆ − x(t+1)∥1 = E∥H

(1− ηd2d3

2
)t+1(x⋆ − x(0)) +

t∑

j=0

ηd2d3
2π

(1− ηd2d3
2

)t−jpj

 ∥1

=
d∑

i=0

E|H

(1− ηd2d3

2
)t+1(x⋆

i − x
(0)
i) +

t∑

j=0

ηd2d3
2π

(1− ηd2d3
2

)t−jpji

i

|,
(42)

and
E∥x⋆ − x̃(t+1)∥1 = E∥H

(
(1− ηd2d3

2
)t+1(x⋆ − x̃(0))

)
∥1

=
d∑

i=0

E|H
(
(1− ηd2d3

2
)t+1(x⋆

i − x̃
(0)
i)

)

i

|.
(43)

Note that x(0) = x̃(0) in the theorem. If |x⋆
i − x

(0)
i | < ϵ, then for ∀t, |x⋆

i − x
(0)
i | < ϵ and |x⋆

i − x̃
(0)
i | < ϵ, where the Clip

function can be removed in this case. Eq. (42) and Eq. (43) can be formulated as

E∥x⋆ − x(t+1)∥1 =
d∑

i=0

E|(1− ηd2d3
2

)t+1(x⋆
i − x

(0)
i) +

t∑

j=0

ηd2d3
2π

(1− ηd2d3
2

)t−jpji|

=
d∑

i=0

E

(1− ηd2d3

2
)t+1(x⋆

i − x
(0)
i) +

t∑

j=0

ηd2d3
2π

(1− ηd2d3
2

)t−jpji

 sgn(x⋆

i − x
(0)
i),

(44)

7

and

E∥x⋆ − x̃(t+1)∥1 =
d∑

i=0

E
(
(1− ηd2d3

2
)t+1(x⋆

i − x̃
(0)
i)

)
sgn(x⋆

i − x
(0)
i). (45)

If |x⋆
i −x

(0)
i | ≥ ϵ, the sign of H(·)i is determined by the sign of x⋆

i −x
(0)
i . Therefore Eq. (42) and Eq. (43) can be formulated

as

E∥x⋆ − x(t+1)∥1 =
d∑

i=0

E|(1− ηd2d3
2

)t+1(x⋆
i − x

(0)
i) +

t∑

j=0

ηd2d3
2π

(1− ηd2d3
2

)t−jpji|

=
d∑

i=0

EH

(1− ηd2d3

2
)t+1(x⋆

i − x
(0)
i) +

t∑

j=0

ηd2d3
2π

(1− ηd2d3
2

)t−jpji

i

sgn(x⋆
i − x

(0)
i),

(46)

and

E∥x⋆ − x̃(t+1)∥1 =
d∑

i=0

EH
(
(1− ηN

2
)t+1(x⋆

i − x̃
(0)
i)

)

i

sgn(x⋆
i − x

(0)
i). (47)

Recall the assumption that η is sufficiently small, to be exact, it should satisfy the following constraints,

|
m−1∑

j=0

ηd2d3
2π

(1− ηd2d3
2

)m−1−jpji| < |(1− ηd2d3
2

)m(x⋆
i − x

(0)
i)|, (48)

for m = 1, . . . , t and i = 1, . . . , d. Under the constraints, we find the sign of x⋆
i−x

(0)
i determine the sign of

(
(1− ηd2d3

2)t−jpji

)
i
.

Therefore, when we compare Eq. (44) and Eq. (45), Eq. (46) and Eq. (47), we actually compare the sign of E(pjisgn(w⋆
i −

w
(0)
i). We first solve the expectation of x(t). There is

Ex(t) = E
(
(1− ηd2d3

2
)x(t−1) +

ηd2d3
2

x⋆ − ηd2d3
2π

pt

)

= E

(1− ηd2d3

2
)tx(0) + (1− (1− ηd2d3

2
)t)x⋆ − ηd2d3

2π

t−1∑

j=0

(
(1− ηd2d3

2
)(t−1−j)pj

)
 .

(49)

We then solve the following equation,

E
(
psisgn(x⋆

i − x
(0)
i)

)
=E

(
(θsx

⋆
i −

∥x⋆∥
∥x(s)∥ sin θsx

(s)
i)sgn(x⋆

i − x
(0)
i)

)

=E
((

θs −
∥x⋆∥
∥x(s)∥ sin θs(1− (1− ηd2d3

2
)s)

)
x⋆
i −

∥x⋆∥
∥x(s)∥ sin θs(1−

ηd2d3
2

)sx
(0)
i

)
sgn(x⋆

i − x
(0)
i)

+ E

ηd2d3

2π

s−1∑

j=0

(
(1− ηd2d3

2
)(s−1−j)pji

)
 sgn(x⋆

i − x
(0)
i).

(50)
From Eq. (48), we have θs − ∥x⋆∥

∥x(s)∥ sin θs > 0. Recall that x⋆ ∼ N(µ1, σ
2
1) and x(0) ∼ N(0, σ2

2), using the Lemma 2, we first
have

E
(
p0isgn(x⋆

i − x
(0)
i)

)
= E

(
θjx

⋆ − ∥x⋆∥
∥x(0)∥ sin θjx

(0)

)
sgn(x⋆

i − x
(0)
i) > 0. (51)

Using the mathematical induction, we have

E
(
pjisgn(w⋆

i −w
(0)
i)

)
> 0. (52)

With Eq. (52), we find Eq. (44) and Eq. (46) are greater than Eq. (45) and Eq. (47), respectively. That is to say, we have

E∥x⋆ − x̃(t+1)∥1 ≤ E∥x⋆ − x(t+1)∥1.

APPENDIX D
PROOF OF THEOREM 2
The one-layer network is formulated as

h(x,w) = σ(xTw), (53)

where x ∈ Rd is the input vector, w ∈ Rd is the weight vector, and σ(·) is the ReLU function. Therefore, h(X,w) = σ(Xw)
where X = [xT

1 ; ...;x
T
N] is the input data matrix and xk ∈ Rd is the k-th training instance, for k = 1, ..., N . We assume the

teacher network has the optimal weight, and the loss function can be formulated as

L(w) =
1

2
∥h(X,w)− h(X,w⋆)∥22, (54)

8

where w and w⋆ are the weight vector for the student network and teacher network, respectively. While training the simple
one-layer network with SGD, The update rule for training one-layer network with SGD can be formulated as

w(t+1) = w(t) − η∇w(t)L(w(t)), (55)

where we use the gradients of standard BP and LinBP, i.e., ∇wL(w) and ∇̃wL(w), to obtain {w(t)} and {w̃(t)}, respectively.

Theorem 2. For the one-layer teacher-student network formulated as Eq. (53), the training task sets Eq. (54) and Eq. (55) as the
loss function and the update rule, respectively. Assume that X is generated from standard Gaussian distribution, w⋆ ∼ N(µ1, σ

2
1),

w(0) ∼ N(0, σ2
2), and η is reasonably small2. Let w(t) and w̃(t) be the weight vectors obtained in the t-th iteration of training using

standard BP and LinBP respectively. Then we have

E∥w⋆ − w̃(t)∥1 ≤ E∥w⋆ −w(t)∥1.
Proof. We first recall the partial gradient to W for BP and LinBP, which are formulated as

∇wL(w) = XTD(X,w)(D(X,w)Xw −D(X,w⋆)Xw⋆), (56)

and
∇̃wL(w) = XT (D(X,w)Xw −D(X,w⋆)Xw⋆), (57)

respectively. From Theorem 1 in [1], we can calculate the expectation of Eq. (56) and Eq. (57) as

E[∇wL(w)] =
N

2
(w −w⋆) +

N

2π

(
θw⋆ − ∥w⋆∥

∥w∥ sin θw

)
, (58)

and
E[∇̃wL(w)] =

N

2
(w −w⋆), (59)

where θ ∈ [0, π] is the angle between w and w⋆. The expectation of l1 distance between w(t+1) (w̃(t+1)) and w⋆ can be
formulated as

E∥w⋆ −w(t+1)∥1 = E∥w⋆ −w(t) + η∇w(t)L(w(t))∥1
= E∥(1− ηN

2
)(w⋆ −w(t)) +

ηN

2π

(
θw⋆ − ∥w⋆∥

∥w(t)∥ sin θw(t)

)
∥1,

(60)

and
E∥w⋆ − w̃(t+1)∥1 = E∥w⋆ − w̃(t) + η∇̃w(t)L(w(t))∥1

= E∥(1− ηN

2
)(w⋆ − w̃(t))∥1.

(61)

We assume qj = θjw
⋆ − ∥w⋆∥

∥w(j)∥ sin θjw
(j). Therefore, Eq. (60) can be formulated as

E∥w⋆ −w(t+1)∥1 = E∥(1− ηN

2
)(w⋆ −w(t)) +

ηN

2π
qt∥1

= E∥(1− ηN

2
)2(w⋆ −w(t−1)) + (1− ηN

2
)
ηN

2π
qt−1 +

ηN

2π
qt∥1

= E∥(1− ηN

2
)t+1(w⋆ −w(0)) +

t∑

j=0

ηN

2π
(1− ηN

2
)t−jqj∥1.

(62)

And Eq. (61) can be formulated as

E∥w⋆ − w̃(t+1)∥1 = E∥(1− ηN

2
)(w⋆ − w̃(t))∥1

= E∥(1− ηN

2
)t+1(w⋆ − w̃(0))∥1.

(63)

Note that w̃(0) = w(0). As mentioned in Theorem 1, we assume η is sufficiently small, to be exact, it should satisfy the
following constraints,

|
m∑

j=0

ηN

2π
(1− ηN

2
)m−jqji| < |(1− ηN

2
)m+1(w⋆

i −w
(0)
i)|, (64)

2. See Eq. (64) for a precious formulation of the constraint.

9

for m = 1, . . . , t and i = 1, . . . , d. Under the constraints, w⋆
i −w

(0)
i determines the sign of w⋆

i −w
(t+1)
i in Eq. (62), then

Eq. (62) and Eq. (63) can be calculated as

E∥w⋆ −w(t+1)∥1

=
d∑

i=0

E

(1− ηN

2
)t+1(w⋆

i −w
(0)
i) +

t∑

j=0

ηN

2π
(1− ηN

2
)t−jqji

 sgn(w⋆

i −w
(0)
i)

=
d∑

i=0

E

(1− ηN

2
)t+1|w⋆

i −w
(0)
i |+

t∑

j=0

ηN

2π
(1− ηN

2
)t−jqjisgn(w⋆

i −w
(0)
i)

 ,

(65)

and

E∥w⋆ − w̃(t+1)∥1 =
d∑

i=0

E
(
(1− ηN

2
)t+1(w⋆

i − w̃
(0)
i)sgn(w⋆

i − w̃
(0)
i)

)

=
d∑

i=0

E
(
(1− ηN

2
)t+1(w⋆

i −w
(0)
i)sgn(w⋆

i −w
(0)
i)

)

=
d∑

i=0

E
(
(1− ηN

2
)t+1|w⋆

i −w
(0)
i |

)
.

(66)

Similar to Theorem 2, using Lemma 2, we have

E
(
qjisgn(w⋆

i −w
(0)
i)

)
> 0. (67)

With Eq. (67), we find Eq. (65) is greater than Eq. (66), i.e.,

E∥w⋆ − w̃(t+1)∥1 ≤ E∥w⋆ −w(t+1)∥1.

REFERENCES

[1] Y. Tian, “An analytical formula of population gradient for two-layered relu network and its applications in convergence and critical point
analysis,” in ICML, 2017.

