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Abstract 

In this paper, we propose a pair of shape features for 
shape-similarity search of 3D polygonal-mesh models. The 
shape features are extension of the D2 shape functions 
proposed by Osada et al. [Osada01, Osada02].  Our 
proposed shape features are tolerant of topological 
variations and geometrical degeneracies. Our shape 
feature is also invariant to similarity transformation. 
Experiments showed that, with only modest increase in 
computational cost, our shape feature achieved significant 
performance improvement over Osada’s D2.  
Keywords: content-based search and retrieval, geometric 
modeling, polygonal mesh, surface orientation. 

1.  Introduction  

Proliferation of 3D models in the prompted 
development of the technology for effective content-based 
search and retrieval of three-dimensional (3D) models. A 
3D model could be searched by textual annotation by 
using a conventional text-based search engine. This 
approach wouldn’t work in many of the application 
scenarios. The annotations added by human beings depend 
on culture, language, age, sex, and other factors. It is also 
extremely difficult to describe by words shapes that are not 
in the well-known shape or semantic categories. It is thus 
necessary to have a content-based search and retrieval 
systems for 3D models that are based on the features 
intrinsic to the 3D models, most important of which is the 
shape [Paquet97, Suzuki98, Keim99, Elad00, Paquet00, 
Regli00, Suzuki00, McWherter01, Osada01, Novotni01, 
Hilaga01, Veltkamp01, Vranic01, Zahaira01, Corney02, 
Ibato02, Mukai02, Ohbuchi02, Osada02, Zahaira02, 
Funkhouser03, Tangelder03].  

Current focuses in the study of shape similarity search 
of 3D models are the development of robust, concise, yet 
expressive shape features, and the development of 
similarity (or, dissimilarity) comparison methods that 
conforms well to the human notion of shape similarity.  

Compared to 2D shape similarity matching, 3D models 
have higher degree-of-freedom for their pose; orientation 

about three axes and position add up to 6 degrees-of-
freedom. Previous methods either used orientation 
insensitive shape features [Regli00, Hilaga01, Osada01, 
Osada02, McWherter02, Funkhouser03], or performed 
pose normalization prior to using pose orientation sensitive 
shape features [Paquet97, Suzuki98, McWherter01, 
Novotni01, Zaharia01, Mukai01, Corney02, Ohbuchi02].  

Diverse and often “ill-defined” shape representations 
are major cause of difficulty in finding an effective shape 
feature. Consider the VRML, one of the most popular 
shape representations. It is a collection of independent 
polygons, polygonal meshes, predefined parametric 
primitives such as cones and spheres, polylines, points, 
and other geometric objects. Such 3D models are often 
called “polygon soup”. Volume of objects in VRML can’t 
be computed for they are not solids. Surfaces in VRML are 
often not manifold, precluding application of many 
differential geometry operators, such as the computation of 
curvature. Some of the existing methods assumed well-
defined manifolds or even solid models, often targeting 3D 
CAD models [Regli00, McWerter01, Hilaga01, Novotni01, 
Zaharia01, Corney02, Mukai02]. Others tried to cope with 
ill-defined shape representations such as VRML models 
[Paquet97, Suzuki98, Paquet00, Osada01, Osada02, 
Ohbuchi02, Zahaira02, Funkhouser03, Tangelder03].  

Osada et al [Osada01, Osada02] proposed what they 
called shape functions. Osada’s shape functions have the 
advantage of being invariant to similarity transformation. 
Furthermore, they are designed to be applicable to not-so-
well-defined meshes, i.e., polygon soup that may contain 
non-solid objects, non-manifold surfaces, multiple 
connected components, and such degenerate surfaces as 
zero-area polygons. Of several shape functions, the D2 
showed best retrieval performance for its low 
computational cost. However, the shape functions often 
fail to distinguish shapes that are quite different.  

In this paper, we propose a pair of shape features for 
polygon soup models. Our shape features are based on 
Osada’s D2 shape function [Osada01, Osada02], having 
identical robustness characteristics. However, our shape 
features are more sensitive to shape variations by 
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measuring not only the distance but mutual orientation of 
the surfaces on which a pair of points are located. 
Experimental evaluation showed that our shape features 
have significantly better retrieval performance than 
Osada’s D2 shape function while having only slightly 
increased computational cost.  

The paper is organized as follows. We review the 
previous work on 3D shape similarity search in the next 
section. Our shape-matching algorithms are described in 
Section 3, and extensive experimental evaluation results of 
our algorithm are presented in Section 4. We conclude and 
discuss future work in Section 5.  

2.  The shape similarity comparison algorithm 

In our prototype content-based 3D model database 
system (Figure 1), an entry in the database stores a 3D 
model along with a pre-calculated feature vectors for the 
model.  
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Figure 1. Overview of the shape similarity search system. 

Query formation: We adopted the simplest of the query 
formation methods, the query-by-example-3D-shape 
approach. A user presents the system with an example 3D 
shape and asks for k-nearest shapes.  
Shape representation: The database accepts a 3D shape 
defined as a collection of polygons and polygonal meshes. 
It may contain non-manifolds or geometrically degenerate 
polygons. One of our shape features also allows models 
having unoriented surfaces.  
Feature vector: If the surface of the input model is 
orientable, we employ mutual Angle-Distance histogram 
(AD). If we can’t assume the surfaces of the models to be 
properly and consistently oriented, we employ mutual 
Absolute-Angle Distance histogram (AAD). Both are the 
extensions of Osada’s D2 [Osada02] shape function. 

Unlike Osada’s D2, which is a 1D histogram, both our AD 
and AAD are 2D histogram.  
Dissimilarity computation: We compared a few different 
methods to compute distance, or dissimilarity, between a 
pair of shape features. In addition to the simple L1 norm 
(Manhattan distance) and L2 norm (Euclidian distance) 
between the vectors, we tried elastic matching.  
Indexing and retrieval: As the testbed for the shape 
features and dissimilarity computation methods, our proof-
of-concept system employs no indexing. In the current 
implementation, the database itself is organized as a one-
dimensional array, and no attempt has been made to speed 
up the database access by indexing and other methods.  

2.1. Shape Features 

As mentioned before, our shape features AD and AAD 
are based on Osada’s D2 [Osada02]. Of several different 
what they called shape functions, the D2 performed the 
best in terms of combined computational cost and retrieval 
performance.  

Our AD and AAD shape feature are 2D histograms, in 
which the additional dimension is an angle formed by the 
surface normal vectors of the surface the pair of points are 
located. The mutual surface orientation is actually 
computed as an inner product of the surface normal 
vectors. The difference between AD and AAD is that the 
AAD ignores the sign of the inner product. Consequently, 
AAD is more robust against models having inconsistent 
surface orientations.  

2.1.2. Osada’s D2  

As mentioned before, our shape features AD and AAD 
are extensions of Osada’s D2 function [Osada02]. The 
most favorable qualities of the D2 is its topological and 
geometrical robustness, and the lack of need for pose 
normalization.  

To compute the D2 shape function for a 3D model, 
points are generated at random location on every surface 
of the model. Then, distance is computed for every 
possible pair, i.e., Np(Np-1)/2 pairs for Np points generated 
(Figure 2a). The 1D feature vector of D2 shape function is 
a histogram generated by counting the population of pairs 
that falls within a certain distance interval. It is robust 
against variation in tessellation, not sensitive to 
connectivity of surfaces nor surface orientation. 

To generate points on triangles, we adopted the method 
by Osada et al. [Osada01], which uses the following 
formula to generate a point P  at a random location on a 
triangle.  
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( ) ( ) ( )1 1 1 2 2 1 2 31 1r r r r r= − + − + ⋅P t t t . (1) 

In the formula, 1t , 2t , and 3t  are vertices of the triangle, 
and 1r  and 2r  are pseudo-random number sequences 
(PRNS). If the model contained a non-triangular polygons, 
they are triangulated prior to the point generation. 

In our implementation of the D2, which we call 
modified D2 (mD2) to distinguish from Osada’s, we used 
the low-discrepancy sequence or quasi-random number 
sequence (QRNS) by Sobol [Press92], instead of the PRNS. 
Compared to PRNS, the Sobol’s QRNS produces feature 
vectors that are more consistent, i.e., low-variance. That is, 
using the Sobol’s sequence, generated points are more 
spatially uniformly distributed on the triangle. We 
compared the retrieval performance using the PRNS 
(drand48()) and the Sobol’s QRNS. We chose the 
QRNS for generating point for the mD2, as well as the AD 
and AAD methods in the experiment described in 
Section 4.  

 

 
 

Figure 2. Points generated on the surface of a model. 

For a proper comparison among the models having 
different size, the histograms need to be normalized. We 
normalize the histogram by using the maximum, minimum, 
and the average of the point pair distance. Of the total Id 
intervals of the histogram, Id/2 equally spaced intervals are 
allocated for distance values that ranges from the 
minimum to the average. The remaining Id/2 equally 
spaced intervals are allocated to the values from average to 
the maximum. Note that the intervals are in general 
different from the upper half (i.e., above average) to the 
lower half (i.e., below average).   

2.1.2. AD 
The mD2 computed and used only the distance among a 

pair of points. In our Angle and Distance (AD) shape 
feature, we measure both distance between a pair of points 
and angle formed by the surfaces the pair of points are 
located (Figure 3.) Then, the AD is a 2D histogram using 
the angle and distance as the two independent variables.  

As in the case of the mD2 function, computation of the 
AD shape feature starts by generating Np points on 
triangles of the model using the equation (1) and the 
Sobol’s QRNS. As with the mD2, for every pair of points, 
we compute Euclidian distance. In addition, we compute 
inner product of the surface normal vectors of the triangles 

on which the pair of points are located.  
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(b) AD and AAD 

Figure 3. While the D2 (a) computes distance only of the 
pair of points, AD and AAD computes an inner product of 
surface normal vectors of the surfaces on which the points 
are located.  

The 2D histogram of the AD shape feature must be 
normalized against the size of the model for proper 
comparison. We experimented with four different 
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 （a） The AD normalized using the maximum.   
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 （b） The AD normalized using the average.  
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 (c) The AD normalized using the median.  
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 (d) The AD normalized using the mode.  

Figure 4. The 2D histograms of the AD shape feature using 
various normalization methods.  
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normalization methods; (1) by maximum, (2) by average, 
(3) by median, and (4) by mode, of the distance values.  
Normalization by Maximum: In this method, the distance 
value ranging from the minimum to the maximum is 
divided into Id equally spaced intervals. The range of the 
inner product [ 1,1]−  is divided into Ia equally spaced 
intervals. The result is a 2D histogram having a dI I×  
elements. An example of the histogram generated from the 
bunny model of Figure 2 is shown in Figure 4a. In this 
example, 2000 points are generated, and the number of 
intervals are set to Id = 64, and Ia = 8.  
Normalization by Average: Normalization using average 
subdivides values below and above the average value into 
Id/2 equally spaced intervals. The sizes of the interval may 
differ above and below the average. The range of the inner 
product [ 1,1]−  is divided into Ia equally spaced intervals. 
The result is a 2D histogram having a dI I×  elements as 
above. An example of the histogram generated from the 
bunny model of Figure 2 using the normalization by 
average is shown in Figure 4b. In this example, 2000 
points are generated, and the number of intervals are set to 
Id = 64, and Ia = 8. 
Normalization by Median or Mode: These two 
normalization methods are similar to the normalization 
methods using average above. Only difference is, instead 
of the average value, either median or mode of the distance 
values is used. 
Examples of the histograms are shown in Figure 4c for the 
median and in Figure 4d for the mode. The histogram 
interval having higher population is shown in dark colors. 
The D2 function, a 1D histogram, can be obtained by 
collapsing the angular axis.  

2.1.3. AAD 
The AD shape feature described above is sensitive to 

the orientation (front/back) of the surface. If the models to 
be compared have properly oriented surfaces with a 
consistent representation (i.e., both using clockwise 
traversal of vertices), the AD shape feature performs quite 
well. If, however, the database contains models having 
surfaces that are inconsistently oriented, the performance 
of the AD shape feature suffers. In fact, for the models 
collected from the Internet, it is quite common for them to 
have either unoriented surfaces or surfaces oriented with 
different rules.  

The Absolute Angle and Distance (AAD) shape feature 
takes absolute value of the inner product in order to 
increase robustness of the shape feature against models 
having such unoriented or inconsistently-oriented surfaces. 
Consequently, orientation axis of the 2D histogram of the 
AD takes the value in the range [0,1]. Other than that, 

AAD is computed in the identical manner as the AD.  
Figure 5 shows an example of the AAD shape feature 

computed for the same bunny model of Figure 2 using the 
maximum value normalization, Np=2000 points, Id = 64, 
and Ia = 8. 

|A| 
+1

0
 Minimum  Maximum L 
 Figure 5. The AAD normalized by the maximum.  

2.2.  Dissimilarity computation 

We have implemented three feature distance 
computation methods, L1 norm, L2 norm, and elastic 
matching.  

2.2.1.  L1 norm and L2 norm 

The L1 norm (Manhattan distance) and the L2 norm 
(Euclidian distance) are two of the simplest distance 
computation methods. Let )( , jixX =  and )( , jiyY =  
be the feature vectors for the model A and B, respectively. 
Assuming the number of intervals for the distance be Id 
and the mutual angle (inner product) Ia, the L1 norm 

1( , )LD X Y  and the L2 norm 2 ( , )LD X Y  are defined as 
follows; 

 1 , ,
1 1

( , ) ( )
d aI I

L i j i j
i j

D X Y x y
= =

= −∑∑  (3) 

 2
2 , ,

1 1
( , ) ( )

d aI I

L i j i j
i j

D X Y x y
= =

= −∑ ∑  (4) 

2.2.2. Elastic matching distance 
In the past, elastic matching had been used extensively 

in speech recognition. We performed elastic matching 
along the distance axis, using the dynamic programming 
technique for its implementation to compute the distance 

( , )ED X Y . It locally stretches and shrinks the distance axis 
of the histogram in order to find minimal distance matches. 
If the matching is too elastic, however, a pair of shapes 
having very different histograms could have a low distance 
value. We implemented and experimentally compared the 
performance of the linear and the quadratic penalty 
functions, the latter of which is depicted in the equation (7). 
We used the better performing quadratic penalty function 
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for the experiments described later in Section 4.  

 ( ) ( ), ,E n nD g=X Y X Y  (5) 
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3.  Experiments and results 

We implemented the experimental system using C++ on 
a Linux operating system.  

3.1.  Evaluation method 

For the experiment, we used a database consisting of 
215 VRML models provided by Patrick Min and Prof. 
Funkhouser at the Princeton University. The model 
database were categorized a priori into 42, one of which 
being “the other”. Many of the categories contained only a 
few models.   

As the objective measures of performance, we used the 
First Tier (FT), Second Tier (ST), and Nearest Neighbor 
(NN), as well as the recall-precision.  
First Tier (FT): Assume that the query belongs to the 
class Cq containing k models. The FT figure is the 
percentage of the models from the class Cq in the top (k-1) 
matches. As the query model is excluded, (k-1) models 
from the class Cq in the top (k-1) results produces the 
figure 100%.  
Second Tier (ST): The ST figure is the percentage of the 
models from the class Cq in the top 2(k-1) matches. 
Nearest Neighbor (NN): The percentage of the cases in 
which the top match is drawn from the query’s class Cq.  

Recall and precision are well known in the literature of 
content-based search and retrieval. Precision is the number 
of retrieved models that are in the class Cq divided by the 
number of all the retrieved models. Recall is the number of 
retrieved models that are in the class Cq divided by the 
number of models in the class Cq. In general, recall and 
precision are in trade-off relationship. If one goes up, the 
other usually comes down.  

The FT, ST, NN figures as well as the recall-precision 
plots shown later are the average produced by querying 
every one of the 215 models in the database once. Also 

note that performance figures depends on the model 
database; change in the model database or the categories 
used will result in different performance figures.  

3.2.  Parameter Selection for the Shape Features 

The number of points generated on the surfaces Np, the 
number of distance intervals Id and angle intervals Ia 
affects the performance of the AD and AAD shape 
features. For example, if we increase the number of 
angular intervals to 16 for AD (or 8 for AAD), the feature 
became too sensitive to polygonal approximation; for 
example, a circle and its hexagonal approximation would 
have a relatively large distance. We varied these three 
parameters to find a parameter combination that are nearly 
optimal both in terms of performance and computational 
cost.. 

For the AD, we tested the total of 27 cases, in which 
Np={512, 1024, 2048}, Id={32, 64, 128}, Ia={4, 8, 16}. 
For the AAD, we tested total of 27 cases, in which 
Np={512, 1024, 2048}, Id={32, 64, 128}, Ia={2, 4, 8}. In 
both cases, histograms are normalized by using the 
average, and the distance among features are computed by 
using the L2 norm. We compared the results using the FT, 
ST, NN, and the computation cost. The performances of 
two parameter combinations being equal, we chose the 
combination having lower computational cost. The 
combination of parameters we found to be the best are 
shown in Table 1.  

Table 1. Selected parameters for the shape feature vectors. 

Features Np Id Ia 
AD 1024 64 8 

AAD 1024 64 4 

3.3. Comparison among the proposed methods 

We compared the performance of various variations of 
our proposed methods. We tested (1) two shape features 
AD and AAD, (2) four histogram normalization methods 
(by maximum, by average, by median, and by mode), and 
(3) three distance computation method (L1, L2, and elastic 
matching).  

Table 2 shows the results of the experiment that 
compared retrieval performance and computation time of 
the shape features AD and AAD. We used the average 
normalization for histogram normalization and the L2 
norm for feature distance computation. The figure shows 
that the AAD has the higher NN value, while its FT value 
is slightly lower, than the AD. Due to its smaller feature 
vector size (64×4 instead of 64×8), the AAD is somewhat 
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faster than the AD. Figure 6 shows an example of queries 

using the AD and the AAD shape features. The top-left 
box surrounded by a bold line is the query, and the other 
five are the retrieved results. The AAD produced more 
models with circular cross sections in the top five. The 
black surface of the model of a pot in Figure 6b is the 
result “flipped” surface normal.  

Table 3 shows the results of comparison among the 
histogram normalization methods. For this experiment, the 
AAD shape feature and the L2 norm are used. This 
experiment shows that histogram normalization using 
average performed the best in all the performance figures. 
In terms of computational cost, maximum normalization 
was the least expensive, followed closely by the average 
normalization method. 

Table 4 shows the comparison among the three distance 
computation methods. In this experiment, we used the 
AAD shape feature with the average normalization method. 
The figures in the table show that the L2 norm performed 
the best. The elastic matching improved the results for 
certain kind of models and queries. But overall, the simple 
L2 norm performed better than the elastic matching.  

3.4. Comparison with the other methods 

We compared the performance of the AD, AAD and the 
mD2 shape features. The parameters used for the 
experiment are as follows; 
mD2: Np=1024 points, Id=512 intervals, L1 norm.  
AD: Np=1024, Id=64, Ia=8, normalized using average, 
distance computed using L2 norm. 
AAD: Np=1024, Id=64, Ia=4, normalized using average, 
distance computed using L2 norm.  

The FT, ST, and NN figures and computational costs in 
time are shown in Table 5, and the recall-precision plot is 
shown in Figure 7.  

Table 5 shows that the AD and AAD methods 
outperformed the mD2 in all of the FT, ST, and NN 
figures by the margin of 6% to 7%. The numbers are the 
average of all the models and categories in the database.  

Table 5. Comparison among the mD2, AD, and AAD shape 
features. 

Performance Computational cost 
Features

FT ST NN Retrieval 
total 

Feature 
computation 

mD2 33% 44% 47% 0.70s 0.41s 
AD 39% 51% 56% 0.84s 0.54s 

AAD 38% 51% 60% 0.70s 0.54s 
 
The recall-precision plots of Figure 7 shows that the 

AD and AAD clearly outperformed the mD2 method. Also, 
while it is difficult to discern, the AAD method slightly 
outperformed the AD method for this experiment.  

Please note that, in a recall-precision plot, a curve closer 
to the upper right corner means a better retrieval 
performance. Also note that, if the experiment is ideal, the 
recall-precision plot converges to the two axes. In Figure 7, 
however, the minimum value for the recall is about 0.2 
since the database contains categories having quite small 
cardinalities. For example, if a category contained only 
two members, the minimum recall value for the category is 
0.5. Many of the 42 categories created using 215 models 
have only a few models as their members. 

In terms of computational cost for extracting features, 
the AD and the AAD have somewhat higher cost than the 
D2. However, the cost differences among the three shape 
features are only modest. The added costs for the AD and 
AAD are well justified considering their performance 
advantage. In terms of distance computation cost, the AAD 
has the lowest cost due to its small feature vector size.  

Table 2. Comparison among the proposed shape features.

Features FT ST NN Retrieval 
time 

AD 39% 51% 56% 0.84s 
AAD 38% 51% 60% 0.70s 

Table 3. Performance comparison among the histogram 
normalization methods. 

Normalization 
methods FT ST NN 

Feature 
comput’n 

time 
Max-Min 36% 49% 58% 0.52s 
Average 38% 51% 60% 0.54s 
Median 36% 48% 58% 0.60s 
Mode 33% 47% 54% 0.60s 

Table 4. Performance comparison among the distance 
computation methods. 

Distance 
computation 

methods 
FT ST NN Retrieval 

time 

L1 norm 38% 49% 58% 0.68s 
L2 norm 38% 51% 60% 0.70s 

Elastic matching 37% 50% 54% 0.77s 
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Figure 8 and Figure 9 show example queries using D2 
(Figure 8a and Figure 9a) and the AD (Figure 8b and 
Figure 9b). Each figure lists the top 8 matches including 
the query. The query model is always the top match. Note 

that examples in Figure 8 and Figure 8 are obtained by 
using an expanded database containing 1213 models. The 
expanded database is created by combining the models 
from Patrick Min at the Princeton University, models from 
Johan Tangelder et al at the University of Utrecht 
[Tangelder03b], and our own set of models (about 300). 
Note also that the black faces (e.g., the model of vase in 
Figure 9a, rank 8) are due to “back-facing” polygons 
having flipped normal vectors. 

In these examples, the AAD seem to perform better than 
the mD2. In Figure 8, for example, the AAD seems to 
retrieve more of the chair-like models than the mD2. In the 
example of Figure 9, compared to the mD2, the AAD 
retrieved models that appear to have “smooth and 
continuous” surfaces configurations.  

4.  Summary and conclusion 

In this paper, we proposed and evaluated a pair of shape 
features for shape similarity search of 3D models. The 
shape features, called AD and AAD, are robust against 
topological and geometrical irregularities and degeneracies, 
which make them applicable to VRML and other so called 
“polygon soup” models. While AD and AAD have 

computational cost somewhat higher (about 1.5 times) than 
the D2, they significantly outperformed D2 in our 
evaluation experiment. While the AD and AAD might 
have the performance lower than the more elaborate shape 
features, such as the spherical harmonics based feature 
used in [Funkhouser03]. However, the computational costs 
of AD and AD2 estimated to be significantly lower than 
that of the sophisticated shape feature used in 
[Funkhouser03].  

As the future work, we’d like to improve our 
performance evaluation method, for example by 
developing more extensive database and categories. We 
also would like to improve our shape feature, for example 
by adding some form of multi-resolution approach to 
matching 3D shapes. 
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Figure 8a. Query result by using the mD2 shape feature. Figure 8b. Query result by using the AAD shape feature. 
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Figure 9a. Query result by using the mD2 shape feature. Figure 9b. Query result by using the AAD shape feature. 

 


