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AbstractÐThe delivered performance on modern processors that employ deep memory hierarchies is closely related to the

performance of the memory subsystem. Compiler optimizations aimed at improving cache locality are critical in realizing the

performance potential of powerful processors. For scientific applications, several loop transformations have been shown to be useful in

improving both temporal and spatial locality. Recently, there has been some work in the area of data layout optimizations, i.e.,

changing the memory layouts of multidimensional arrays from the language-defined default such as column-major storage in Fortran.

The effect of such memory layout decisions is on the spatial locality characteristics of loop nests. While data layout transformations are

not constrained by data dependences, they have no effect on temporal locality. On the other hand, loop transformations are not readily

applicable to imperfect loop nests and are constrained by data dependences. More importantly, loop transformations affect the

memory access patterns of all the arrays accessed in a loop nest and, as a result, the locality characteristics of some of the arrays may

worsen. This paper presents a technique based on integer linear programming (ILP) that attempts to derive the best combination of

loop and data layout transformations. Prior attempts to unify loop and data layout transformations for programs consisting of a

sequence of loop nests have been based on heuristics not only for transformations for a single loop nest but also for the sequence in

which loop nests will be considered. The ILP formulation presented here obviates the need for such heuristics and gives us a bar

against which the heuristic algorithms can be compared. More importantly, our approach is able to transform memory layouts

dynamically during program execution. This is particularly useful in applications whose disjoint code segments demand different

layouts for a given array. In addition, we show how this formulation can be extended to address the false sharing problem in a

multiprocessor environment. The key data structure we introduce is the memory layout graph (MLG) that allows us to formulate the

problems as path problems. The paper discusses the relationship of this ILP approach based on the memory layout graphs to other

work in the area including our previous work. Experimental results on a MIPS R10000-based system demonstrate the benefits of this

approach and show that the use of the ILP formulation does not increase the compilation time significantly.

Index TermsÐData reuse, cache locality, memory layouts, compiler optimizations, cache miss estimation, integer linear

programming.
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1 INTRODUCTION

THE speed of microprocessors has been steadily improv-
ing at a rate of between 50 percent and 100 percent

every year over the last decade. Unfortunately, the memory
speed has not kept pace with this, improving only at the
rate of about 7 percent to 10 percent per year during the
same period [19]. Memory hierarchies in the form of one or
more levels of cache have been used extensively in current
processors in order to minimize the impact of this speed
gap. The performance of applications is determined to a
great extent by the memory access characteristics rather

than simple instruction and operation counts. Therefore,
exploiting the memory hierarchy effectively is key to
achieving good performance on modern computers. But,
the effective use of caches has traditionally been a difficult
problem for scientific applications and will only continue to
become more difficult given the increasing gap between the
speeds of processors and memories.

Current approaches to deal with this problem include
the manual restructuring of programs in order to change
the memory access patterns; this requires a clear under-
standing of the impact of memory hierarchies on the users'
part. Such an approach is tedious and can lead to
nonportable and difficult-to-maintain programs. The lack
of automatic tools has led to much work on compiler
optimizations over the last decade [59]. Compiler analysis
can result in useful global memory access information and
can be used to restructure scientific programs in order to
improve the memory access characteristics. Regular scien-
tific codes exhibit significant amounts of data reuse (due to
their affine references). Therefore, the key issue is the
conversion of this reuse into locality [36], [9] on the target
architecture. Several compiler optimization techniques,
such as loop interchange [1], [59], unimodular [9], [29],
[36], [56] and nonunimodular [36] loop transformations,
loop fusion [38], and loop tiling [6], [10], [58], [34], [59], [33],
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have been proposed to improve memory performance of
loop nests in scientific codes that access large arrays.

These loop transformation techniques attempt to change
the memory access patterns of arrays in loops by reordering
the iterations and can improve both temporal and spatial
locality. Since a single transformation is used for each
nest, the effect of the transformation on each array may be
different, perhaps resulting in good locality for some
arrays at the cost of poor locality for other arrays. Also,
loop transformations must be legal and hence are
constrained by data dependences [41], [59]. In addition,
transformations for imperfectly nested loops require a
different (and also more sophisticated) solution as demon-
strated by Kodukula and Pingali [32] and Kodukula et al. [33].

Some of these drawbacks of loop transformations have
led researchers to consider changing memory layouts of
arrays. Note that spatial locality is exploited by moving a
block of contiguous words from memory to cache and that,
for multidimensional arrays, the storage (or layout) order
determines what the contiguous words are. In Fortran,
arrays are stored in memory using the column-major order
while C uses a row-major order. Recently, some work [9],
[21], [22], [24], [27], [35], [43] has addressed the use of
different layouts for different arrays in a program. This has
led to the development of data transformations, i.e., deriving
good layouts for different arrays. Data transformations can
improve spatial locality significantly and are not
constrained by data dependences unlike loop transfor-
mations, since execution order is unchanged [29], [9].
An added advantage of data transformations is that
they are applicable irrespective of the nesting patterns
(perfectly or imperfectly nested). But data transformations
have no effect on temporal locality [35]. In addition, the
memory layout of an array influences the locality behavior
of every loop nest that accesses the array. Therefore,
deciding the memory layouts of arrays requires a global
view of the memory access pattern of the whole program
and not just a single loop nest. Not surprisingly, deciding
the optimal layouts is NP-complete [28]. Finally, some
problematic constructs, like array aliasing and pointers in
C and the EQUIVALENCE statement in Fortran, may
prevent automatic data layout modifications. We refer the
reader to Chandra et al. [7] for a study of techniques for
ensuring the legality of memory layout transformations.

It seems natural to try and combine the benefits of loop
and data transformations in improving the memory
performance of programs. There have been some efforts
aimed at unifying loop and data transformations [2], [22],
[25], [26], [29], [44]; all these efforts have used some form of
heuristics. For example, these heuristics are used to decide
such things as the order of processing the nests in deciding
layouts and the order in which loop or data transformations
are applied in each nest. In earlier work, we have presented
a heuristic for deciding the order of processing loop nests [25]
and have shown results on using, for each loop nest, loop
transformations followed by data transformations [26].
Obviously, the use of heuristics leads to no guarantee of
optimality and, more importantly, it is not clear how far the
result obtained through a heuristic approach is from the
optimal solution under a given set of assumptions.

Therefore, it would be beneficial to have a framework

that gives us the optimal combination of loop transforma-

tions and array layouts.
In this paper, we present a new approach that uses

integer linear programming (ILP) [42]. We use a structure

called the memory layout graph (MLG) to model locality

characteristics as a function of loop order. The problem of

determining loop and data transformations is then

formulated as an ILP problem, which is equivalent to

finding optimal paths in the MLG that satisfy different

constraints. Unlike other solutions, this approach allows

us to derive optimal solutions (within the bounds of our

cost model and transformation space) and consider layout

changes between parts of a whole program. That is, we

handle both static and dynamic memory layout transfor-

mations. Dynamic layout optimizations might be particu-

larly useful in large codes where different program

segments require different memory layouts for the same

group of arrays. In this paper, we show that deciding the

best combination of loop and data transformations

corresponds to the solution of a path problem on parallel

and series compositions of graphs associated to individual

loops in a nest and loop nests, respectively. In addition,

we also show how the proposed ILP-based solution can be

extended to address the false-sharing problem in multi-

processor architectures with shared memory support.
Our program domain includes perfectly nested loops

with array subscripts and loop bounds being affine

functions enclosing loop indices and loop-invariant

constants. Our current implementation uses a preproces-

sing pass in which the imperfectly nested loops are

converted to perfectly nested ones using a combination of

loop fusion, loop distribution, and code sinking [58].

When we have choices, we prefer loop fusion and

distribution over code sinking as the latter introduces

ªif statementsº within loops (which might degrade the

performance).
We used several programs to evaluate the approach

presented in this paper. The experiments show that our

technique is very effective, improving the performance on

the average by 27.5 percent over the original codes,

sometimes by as much as a factor of 8. Since the use of an

ILP solver may in general require significant time, we also

measured the increase in the compilation time needed for

our approach over other solutions. We have found in our

experiments that the compilation time does not increase by

more than 16 percent.
The rest of this paper is organized as follows: Section 2

presents the important concepts used in our approach, such

as the memory layout graph, and reviews the relevant

background, including data reuse, cache locality, and loop

and data transformations. Section 3 presents our approach

in detail, highlighting the ILP formulations we derive.

Experimental results are presented and discussed in

Section 4. In Section 5, we present a discussion of related

work in the areas of loop and data transformations.

Section 6 presents our conclusions along with a discussion

of work in progress.
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2 IMPORTANT CONCEPTS

2.1 Memory Layouts and Loop Transformations

In this work, we assume that the memory layout of an
m-dimensional array can be one of m! forms, each
corresponding to the traversal of the array dimensions in
a predetermined order. For a two-dimensional array, there
are only two possible memory layouts: row-major (as in C)
and column-major (as in Fortran). For a three-dimensional
array, there are six alternatives and so forth. It should be
noted that this layout space subsumes the classical row-
major and column-major layouts found in the conventional
programming languages and higher dimensional equiva-
lents of them and excludes diagonal-like layouts. Although,
we believe that the diagonal-like layouts might be useful for
some banded-matrix applications [3], [36], [24], we
postpone their inclusion in our graph-based solution
framework to a future work. For each layout we associate
a fastest changing dimension (FCD) which represents the
dimension whose indices vary most rapidly in a sequential
traversal of the array elements in memory. For example, for
a three-dimensional row-major array the third dimension is
the FCD. This can easily be seen by observing the indices of
a sequence of consecutive array elements such as

�1; 3; 1�; �1; 3; 2�; �1; 3; 3�; :::; �1; 3; 10�:
Similarly, for the column-major memory layouts the first
dimension is the FCD. It should be stressed that our
approach, if desired, can determine the entire dimension
order (the complete memory layout) for a given array. The
idea behind focusing only on the FCDs is that in many cases
it is sufficient from the locality point of view to determine
the FCD correctly [29]. The order of the remaining
dimensions may not be as important.

As for the loop transformations, we focus on general
permutations of loops [59], [38]. From a given loop nest of
depth n, we can construct n! permutations (loop orders),
though, some of them may not be legal. As with the
memory layouts, we mainly focus on correctly determining
the innermost loop. The orders for the remaining loops in
the nest can also be determined if desired. McKinley et al.
[38] state that the loop permutations are sufficient for a
significant portion of the loop nests found in practice and
the most important issue there is to place the innermost
loop correctly.

2.2 Data Reuse and Cache Locality

When a data item (e.g., an array element) is used more than
once, we say that a temporal reuse occurs [59], [56], [36]. A
spatial reuse, on the other hand, occurs when nearby data
items are used [59], [56], [36]. It should be noted that,
whether spatial or temporal, data reuse is an intrinsic
property of a given program and is independent from the
underlying memory hierarchy and associated hardware
parameters.

Cache locality, on the other hand, means capturing data
reuse in cache memory and is strongly dependent on a
given cache topology [19], [56]. Data reuse translates to
cache locality only if the subsequent uses of data occurs
before the data are displaced from cache. Since, in current
sequential and parallel architectures the cost of a data
access changes dramatically from level to level, it is vital to
convert data reuse into cache locality. Improving cache

locality can also reduce the contention for resources on
parallel systems; therefore, it has a systemwide benefit.

To see how data reuse can translate to cache locality
consider the program fragment shown in Fig. 1a. This
fragment contains two loop nests accessing five arrays. In
this and the following program fragments, the references
used by a loop nest will be enclosed by f and g. The actual
computations performed inside the nests are irrelevant for
our purposes. Assuming that the total size of the arrays is
larger than the cache capacity and the default memory
layout is column-major for all arrays, the cache locality is
poor for all references except for Q�j� k; i� j� in the first
nest and for S�i� k; j� and T �k; i� in the second nest. As a
specific example, the locality for reference Q�i; j� k� is poor
in the second nest as the successive iterations of the
innermost k loop access different columns. The locality for
this program can be improved by making loop i innermost
in the first nest and loop j innermost in the second nest
(provided it is legal to do so) and by assigning the following
memory layouts to the arrays: column-major for P and R
and row-major for Q, S, and T . Doing so improves locality
for all references except for reference R�i� j; j� k; i� k� in
the first nest. Thus, an appropriate combination of loop and
data transformations can change the locality behavior of a
program significantly. It should be noticed that neither pure
loop nor pure data transformations alone can achieve this
performance. This small example also shows that the most
important aspect of optimizing cache locality for an array is
to select a FCD for it such that the innermost loop index
(after the loop transformation) will appear either in none of
the subscript positions (temporal locality, as in S�j; k� in the
first nest and T �k; i� in the second one) or only in the
subscript position corresponding to the FCD (spatial
locality, as in P �i; j; k� in the first nest and R�j; k; i� in the
second one).

Although, the reuse and locality concepts that are
centered around array references and loop orders as used
by the previous researchers are able to capture the general
intuition, we need a finer granularity definition for this
study. Let us concentrate on a reference to an m-dimen-
sional array in an n-deep loop nest. Assume that the loops
in the nest are ordered as j1; j2; . . . ; jn from outermost to
innermost. Assume further that r is a dimension (subscript
position) of this array where 1 � r � m. We define the
locality of the said reference with respect to the dimension r
as follows:

. If jn does not appear in a subscript position
(including r), we say that the reference exhibits
temporal locality with respect to the rth dimension.

. If jn appears only in the rth subscript position with a
coefficient c where c � cache line size and does not
appear in any other subscript position, we say that
the reference exhibits spatial locality with respect to
the rth dimension.1

. In all other cases, we say that the reference exhibits
no locality with respect to the rth dimension.

According to these definitions, it is possible that a reference
will have spatial locality with respect to a subscript position
r but will not have spatial locality with respect to another
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subscript position r0 that is different from r. In contrast, if

the reference has temporal locality with respect to r, it will

have temporal locality with respect to any other dimension.
It is possible to detect the localities with respect to

subscript positions during the analysis of the program. In

order to achieve this, we use a function, called appears, of

the following form:

appears�Loop Nest; Loop Index;Array; Ref; Subs�:
This function returns one (true) if Loop_Index appears in the

subscript position, Subs, of the reference, pointed by Ref, to

the array, Array, in the nest, Loop_Nest; otherwise it returns

zero (false). We determine the locality of a reference Rf to

an m-dimensional array Q in a nest x with respect to a

subscript position r assuming that jn is the innermost loop

as follows: If

appears�x; jn; Q;Rf; r� � 1

and appears�x; jn;Q;Rf; r0� � 0 for all r0 6� r, reference Rf

has spatial locality (SL). If appears�x; jn; Q;Rf; r0� � 0 for all

1 � r0 � m, reference Rf has temporal locality (TL). Other-

wise, it has no locality (NL). We optimize these function
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calls such that the number of the calls necessary to
determine the localities of a given reference with respect
to each subscript position and each candidate innermost
loop is minimized. As an example, consider reference
P �i; j; k� in the first loop nest shown in Fig. 1a. Supposing
that we are considering loop k as the candidate for the
innermost position,

appears�N; k; P ; P �i; j; k�; 1� � 0

appears�N; k; P ; P �i; j; k�; 2� � 0;

and

appears�N; k; P ; P �i; j; k�; 3� � 1:

Consequently, P �i; j; k� has spatial locality (SL) with respect
to the third subscript position and has no locality (NL)
with respect to the first and second subscript positions. If
we consider loop i as the innermost, however, reference
P �i; j; k� has SL only in the first dimension.

2.3 Memory Layout Graph

The main data structure in our representation, that is, the
basis for the formulation of the ILP model, is a graph called
memory layout graph (MLG).2 An MLG is built from several
nest graphs (NGs), each corresponding to a loop nest in the
program. The nest graphs, in turn, are constructed from
loop graphs (LGs). An LG is built using node-columns which
correspond to arrays accessed in the nest that contains the
loop in question. For each array, we insert a node-column
into the LG. The nodes in each node-column denote array
subscript positions (dimensions). As an example, for a
three-dimensional array, the node-column has three nodes;
the first node from the top corresponds to the first (leftmost)
dimension, the second node corresponds to the second
(middle) dimension, and the third node corresponds to the
third (rightmost) dimension. For the sake of presentation,
we assume that, in a given nest, each array is referenced
only once. We show how to deal with the general case
in Section 3.3.

In a given LG, the node-columns are placed one after
another. The relative order of the columns is not important
for the purposes of this paper. Between the node-columns P
and Q (that corresponds to arrays P and Q, respectively),
there are dim�P � � dim�Q� edges where dim�:� returns the

dimensionality (the number of subscript positions) for a

given array. Put another way, the edges between P and Q

connect all subscript positions of P to all subscript positions

of Q. In addition to the node-columns, the LG has a start

node (marked with the loop index) and a terminal node.

Each node in the first node-column is connected to the start

node and each node in the last node-column is connected to

the terminal node. Fig. 1b shows the LG for loop i of the first

loop nest, shown in Fig. 1a.
An NG, on the other hand, is obtained by replicating the

LG for each loop in the nest and connecting the start nodes

and the terminal nodes of the individual LGs to build a

single connected graph. Fig. 1c shows the NG for the first

loop nest, given in Fig. 1a. The nodes St and Tr, in Fig. 1c

denote the start and terminal nodes for the NG.

Similarly, Fig. 1e depicts the NG for the second loop

nest given in Fig. 1a.
Finally, an MLG is constructed from the NGs, each

corresponding to a nest in a set of consecutive nests in the

program. Thus, an MLG can be thought of as a series (or a

chain) of NGs such that the start node of the ith NG is

connected to the terminal node of �iÿ 1�th NG. Notice that,

if the program in question contains only a single nest, then

its MLG is the same as the NG of the said nest. Fig. 2 shows

the MLG for the program fragment, shown in Fig. 1a. Note

that the MLG, once built, contains all the memory access

information for every array accessed in every loop nest. It is

inspired by the graph structures used by Garcia et al. [16],

[17] and Kennedy and Kremer [31] to solve the automatic

data distribution problem for distributed-memory message-

passing architectures.
A path in an MLG is defined as a series of connected

paths in each NG. The LG visited by the path on a specific

NG, corresponds to the innermost loop in the nest in

question for best locality and the nodes touched by the path

correspond to the selected FCDs for the arrays accessed in

the nest. As an example, Fig. 2 shows a path on the MLG

from St to Tr.
In the rest of the paper, we use the terms loop (nest) and

loop (nest) graph interchangeably. We abuse notation l 2 x
to indicate that loop l belongs to the nest x. When the

context is clear, we also use the terms node-column,

column, and (its associated) array interchangeably.
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2.4 Node Costs

It is important to estimate the costs of the nodes in a given
MLG as accurately as possible. A node cost in our problem is
the estimation of the cache misses and the cost of a path is
the sum of the costs of the nodes it contains; the edges have
no costs associated with them (unless dynamic layout
transformations are considered). We use notation VQ

xl�j� to
denote jth node of a node-column for array Q in the loop
graph l of the nest graph x. Then, we define Cost�VQxl�j�� as
the number of cache misses incurred due to array Q when the
dimension j is its FCD and loop l is placed in the innermost
position in the nest x.

Although, several methods can be used to estimate
Cost�VQxl�j�� (e.g., see [38], [14], [54], [51], [15], [56], [48]
and the references therein), in our experiments, we use a
slightly modified form of the approach proposed by
Sarkar et al. [51] as this approach is relatively easy to
implement and results in good estimations for the codes
encountered in practice. Sarkar et al.'s approach assumes
a perfectly nested loop nest where array references
contain affine subscript expressions. The approach esti-
mates the total number of cache misses (compulsory,
capacity, and conflict misses) that will be incurred. It also
takes into account the nonlocal memory accesses in a
multiprocessor environment. For each array variable, it
first estimates the number of distinct accesses using a
heuristic bound method or an exact method depending on
the specific instance of the problem. The approach
determines how many loop iterations will fill the whole
cache (called ªlocality groupº) and estimates the number
of misses within a locality group. Then, if the reuse
among distinct locality group instances is conservatively
ignored, the total number of misses can be easily
estimated. A more detailed description of Sarkar et al.'s
approach (including a more precise definition of a
ªlocality groupº) can be found in [51]. Our approach in
estimating misses is also capable of performing symbolic
arithmetic which allows us to handle compile-time un-
known loop bounds and array sizes. Although, our miss
estimation approach mainly focuses on the innermost loop,
in many cases encountered in practice, the innermost loop is
the loop that dictates the cache behavior.

Since we also want to consider both the first level cache
(L1) and second level cache (L2) misses in a single
formulation, (as node costs) we use a metric called weighted
cache misses, which can be defined as

L2 misses� 1

�
L1 misses:

This metric is adapted from the concept of the weighted
cache±hit ratio used by Chong et al. [8]. Note that this
formulation can be extended to include an L3 cache as well.
In this formulation, � is a system dependent parameter and
gives the relative access latency of the L2 cache with respect
to the L1 cache. In the R10000 microprocessor that we use, �
is approximately 11. In other words, using Sarkar et al.'s [51]
formulation we first estimate the L1 misses, then estimate
the L2 misses, compute the metric given above, and use its
value as the cost of the node in question. As an example,
suppose that we have a two-level cache hierarchy, each

cache having a different topology. Assume that for a
reference to an array Q, we want to estimate Cost�VQxl�j��.
This is the number of weighted cache misses when the FCD
of array Q is set to j and loop l is placed in the innermost
position in the nest x. Using the cache parameters
(associativity, capacity, line size) and the bounds of the
loops enclosing the reference, Sarkar's formulae can
compute the number of L1 misses as, say, M1 and the
number of L2 misses as M2. Afterwards, we can compute
the number of weighted cache misses as M2 � �M1=�� and
assign this value as Cost�VQxl�j��. We are currently working
on a more sophisticated cache miss estimation technique
that can also estimate the TLB and false sharing misses
accurately on shared memory parallel architectures [52].

Once the node cost estimations have been made, the rest
of our approach is independent from how the estimations
are made. Therefore, in order to make the description of our
approach more clear and independent of the cost model, we
assume that a node can have only one of three possible
values: TL, corresponding to the number of weighted cache
misses when the subscript position has temporal locality in
the loop assuming that the said loop is innermost, SL,
corresponding to the number of weighted cache misses
when the subscript position has spatial locality in the loop
assuming that the said loop is innermost, and NL,
corresponding to the number of weighted cache misses
when the subscript position has no locality in the loop,
assuming that said loop is innermost.

It should be noted, however, that this is an over-
simplification as, even for two arrays accessed within the
same loop, the number of weighted cache misses can be
drastically different depending on the sizes and the
dimensionalities of the arrays as well as the memory
layouts. Even two costs that appear as SL in our figures can
be of different orders. For example, two references, such as
P �i; j� and Q�i�, will have spatial locality in the first
dimension if the innermost loop in question is i. In the
remainder of the paper, we refer the costs for both of these
references as SL. In reality, depending on the array sizes,
loop bounds, and cache topology, these costs can be quite
different. The point here, however, is to show how to
formulate the cache locality problem and solve it optimally
using ILP. The detailed analysis of the cache miss
estimation techniques is beyond the scope of this paper. It
should be kept in mind that all the costs shown here as TL,
SL, and NL actually correspond to the number of weighted
cache misses and in our experiments the nodes are assigned
appropriate costs using the techniques in Sarkar et al. [51]
and the metric given above.

Fig. 1c shows the node costs for the first nest shown in
Fig. 1a. Notice that no costs are associated with the start and
terminal nodes and with the nodes used to connect
individual LGs to make up a NG. In Fig. 1c, the cost of
the first node of the column for P in the LG i is SL as
reference P �i; j; k� has spatial locality when i is innermost
loop and its FCD is the first dimension. In a similar way, the
first node of the column for Q in the LG j has an NL cost as,
when j is the innermost, Q has no locality (j appears in both
the subscript positions). Similarly, the node costs for the
second loop nest, in Fig. 1a, are shown on the NG, in Fig. 1e.
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3 OUR APPROACH

3.1 Problem Statement

Our goal in this paper is to minimize the number of
weighted cache misses thereby reducing the time spent due
to memory stalls. We achieve this goal by selecting an
innermost loop for each loop nest in the program and
selecting a FCD for each multidimensional array accessed.
Our experiments and experience show that determining the
innermost loops and the FCDs is the most important step in
achieving decent cache locality. The approach described
here constructs a set of linear equalities and inequalities and
solves the locality problem optimally using 0ÿ 1 integer
linear programming (ILP). ILP provides a set of techniques
that solve those optimization problems in which both the
objective function and constraints are linear functions and
the variables are restricted to be integers. The 0ÿ 1 ILP is an
ILP problem in which each variable is restricted to be either
0 or 1 [42]. Our ILP formulation allows us to solve the
locality problem optimally. It should be stressed, however,
that this optimality is within our transformation space and
cost model. As we have said, the transformation space
currently contains loop permutation as loop transformation
and dimension reindexing (array dimension permutation)
as data transformation. Therefore, for a nest that requires
diagonal-like layout(s) for the array(s) it accesses, our
approach cannot derive the optimal solution. Similarly, a
more accurate cost model than [51] (e.g., [57]) can result in
better solutions.

In regular scientific codes, where large multidimensional
arrays are accessed in different fashions in different loop
nests, remapping actions between loop nests can increase the
efficiency of the solution. Taking this observation into
account, our approach also considers the dynamic layouts;
that is, the layouts that can be changed during the course of
a program. Notice that the meaning of the term ªremap-
pingº here is quite different from that of the same term in
message-passing compilers context. Here, a remapping
action is implemented as a simple copy loop, copying one
array into another, thereby creating the effect of a layout
transformation (dimension permutation). This has nothing
to do with redistributing array portions across memories of
multiple processors in a distributed-memory message-
passing environment.

We also assume a linear flow of control through the loop
nests of the program. While this is a common case, our
approach can also be extended to handle the conditional
control flow by assigning probabilities to each loop nest
based on profile data. Notice that these probabilities can
then be multiplied by the node costs to get effective node
costs for the technique to use. In future, we plan to use a
graph structure similar to the one used Garcia et al. [17] for
automatic data-distribution problem.

3.2 Integer Variables and Objective Function

We use notation YPQ
xl to denote all the dim�P � � dim�Q�

edges between columnsP and Q for a loop graph l of a nest
graph x. Notation YPQ

xl�i; j�, on the other hand, denotes the
edge between the ith subscript position of P and the jth
subscript position of Q for a loop graph l of a nest graph x.
We also use YPQ

xl�i; j� to denote the 0ÿ 1 integer variable

associated with the edge in question. Given a path on the
MLG (note that this means a series of paths, one for each
NG x), YPQ

xl�i; j� has a value of 1 if the edge belongs to the
path; otherwise its value is 0. In other words, the final value
for each YPQ

xl�i; j� variable indicates whether the corre-
sponding edge belongs to the optimal solution to the
locality problem in question.

We define

Cost0�V xl
Q �j�� �

Cost�V xl
Q �j� if a Y xl

PQ�i; j� is selected
where P is the array

connected to
Q�1 � i � dim�P ��

0 otherwise:

8>>>><>>>>:
The objective of the locality optimization problem is then to
select a path in the given MLG such that

X
x

X
l

X
Q

Xdim�Q�
j�1

Cost0�V xl
Q �j�� �1�

is minimized,3 where Q iterates over all the arrays accessed
in x and l 2 x. That is, the compiler should select a path
such that the total cost of the selected nodes is minimum.
Notice that this corresponds to selecting a data layout
(actually only a FCD) for each array and selecting an
innermost loop such that the total number of weighted
cache misses will be minimized.

3.3 Single Nest

We first focus on a single loop nest and investigate the
conditions that are required to find a correct solution. In this
particular case, the MLG is simply the NG of the nest in
question. There are two conditions that need to be satisfied
by any correct solution.

(c1) Loop Graph Condition. The selected edges and
nodes should form a path. That is, whenever two nodes
from two consecutive node-columns are included in a path,
we should also include the edge between them. We can
express this condition in terms our integer variables as

8j 2 �1:::dim�Q��
Xdim�P �
i�1

Y xl
PQ�i; j� �

Xdim�R�
k�1

Y xl
QR�j; k�:

This condition should be satisfied for each l of each x. Here,
P , Q, and R are three arrays corresponding to three
consecutive node-columns in the LGs. The nodes connected
to start and terminal nodes are handled using separate
equations (not given here for clarity). For example, an
acceptable case is shown on the top part of Fig. 3a. The
bottom part of Fig. 3a, however, shows an unacceptable
case. The problem here is that for array Q two nodes are
selected.

(c2) Nest Graph Condition. For a given array Q and a
nest graph x of n loops, only a single loop in x can contain
the selected edges. That is, the selected path should come
from a single LG only. We can formalize this condition as
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3. In our implementation, we have also defined VQ
xl�j� variables as

0-1 integer variables and set their value to 1 if and only if one of the
incoming edges is selected. Then, Cost0�VQxl�j�� can be defined as
VQ

xl�j�Cost�VQxl�j��. Since we assume that the Cost values are known at
compile-time, the objective function is clearly linear.



Xdim�P �
i�1

Xdim�Q�
j�1

YPQ
xl1 �i; j� �

Xdim�P �
i�1

Xdim�Q�
j�1

YPQ
xl2 �i; j� � � � �

�
Xdim�P �
i�1

Xdim�Q�
j�1

YPQ
xln �i; j� � 1;

where l1; l2; :::; ln are the loops in x. As an example, Fig. 3b

shows an acceptable case, whereas Fig. 3c and Fig. 3d depict

unacceptable cases. In Fig. 3d, edges from both loops (i and

j) are selected (multiple paths), whereas, in Fig. 3c, no path

is selected. Similarly, two optimal solution paths found by

the solver for the first and second loop nests in Fig. 1a are

shown in Fig. 1d and Fig. 1f, respectively. Let us now

interpret these solutions. The optimal solution, in Fig. 1d,

indicates that loop i should be the innermost in the first

nest, layouts P , R, and S should be column-major, and

layout Q should be row-major. Notice that this optimal

solution is not unique as arrays R and S can assume any

memory layout. The solution in Fig. 1f, on the other hand,

indicates that loop j should be the innermost loop in the

second nest, Q, S, and T should be row-major, and P and R
should be column-major. Again, array T can assume any
layout.

There are three important issues that we need to address.
First, so far we have assumed that each array is referenced
only once in a given loop nest. In practice this may not
necessarily hold. Therefore, we need a mechanism to take
the multiple-reference case into account. Our solution to
this problem is rather simple. We continue to represent each
array using a single node-column, but the costs of the nodes
now reflect the aggregate costs of all references to the array
in question. Consider the nest shown in Fig. 4a. This nest
accesses array Q using two references. In the MLG shown in
Fig. 4b the costs for these two references are summed.
Notice that depending on the subscript functions and loop
bounds, even two references to the same array can incur
very different costs. Of course, in our experiments, we sum
the actual costs (weighted cache misses) obtained using
Sarkar et al.'s approach [51]. Fig. 4c shows an optimal
solution which makes loop j innermost and assigns row-
major memory layouts for all three arrays.
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Fig. 3. (a) (Top) An acceptable solution and (Bottom) an unacceptable solution (Q has no unique FCD). (b) An acceptable solution. (c) An

unacceptable solution (No path is selected). (d) An unacceptable solution (Multiple paths are selected).

Fig. 4. (a) An example loop nest. (b) The MLG. (c) An optimal solution. (d) The reduced MLG. (e) An optimal solution for the reduced MLG.



The second issue to be addressed is related to temporal
reuse. Notice that the memory layout for array R in Fig. 4c
is selected somewhat arbitrarily as, when we make loop j
innermost, reference R�i� k; k� has temporal reuse in the
innermost loop. We can extend our approach to determine
the next innermost loop and to assign a possibly better layout
for array R. We do this by eliminating the innermost loop
(the j loop) from the MLG and all the node columns whose
associated arrays have references with j in at least one of
their subscript positions. The resulting reduced MLG is
shown in Fig. 4d. When we run the solver on this reduced
MLG, we obtain an optimal solution shown in Fig. 4e,
which indicates that the layout of array R should be
column-major rather than row-major and loop i should be
the second innermost loop. This example shows how our
approach can be used to determine a complete loop order.
Notice that two applications of the solver are sufficient here
to determine that the complete loop order should be k, i,
and j, from outermost to innermost. It should also be noted
that, after selecting an innermost loop and an FCD for a
given array, if we omit the innermost loop (graph), omit
only the FCD from the node-column of said array, and run
the solver, we can determine the second fastest changing
dimension for this array. To sum up, our approach can be
easily extended to determine complete memory layout and
complete loop order.

The third issue is about the data dependences [59].
Unfortunately, arbitrary permutations of the loops in a
given nest can lead to incorrect programs. The data
dependence theory [59], [41] can be used to determine
what permutations are legal (i.e., semantics-preserving).
Our approach uses this information to prune the search
space for possible loop permutations. For example, if the
compiler determines that loop l in a given nest x cannot be
placed in the innermost position we can omit the LG for
loop l from the NG of x, thereby reducing the size of the
search space and the time to find an optimal solution.

3.4 Multiple Nests with Static Layouts

What we mean by static layouts is that the memory layouts
of arrays will be fixed at specific forms for the entire duration
of the program execution. Typically, it is very difficult to
select appropriate memory layouts satisfying as many loop
nests as possible simultaneously [29], [24], [43]. In the
following, we discuss the conditions necessary for an
optimal solution. We start by observing that the conditions
(c1) and (c2) given above are also valid here for each nest
(graph) in the MLG. In addition to these two conditions, in
the multiple loop nest case we have the following condition
that need to be satisfied by all the nests collectively:

(c3) Multiple Nest Condition. If a node of array Q is
selected in nest x, the same node should also be selected in

any nest x0 that is different from x and that accesses array Q.
In terms of our variables,

8j 2 �1:::dim�Q�� :Xdim�P1�

i�1

YP1Q
x1l1

1 �i; j� �
Xdim�P1�

i�1

YP1Q
x1l2

1 �i; j� � � � �

�
Xdim�P2�

i�1

YP2Q
x2l1

2 �i; j� �
Xdim�P2�

i�1

YP2Q
x2l2

2 �i; j� � � � � � � � �

�
Xdim�Pn�
i�1

YPvQ
xvl1

v �i; j� �
Xdim�Pn�
i�1

YPvQ
xvl2

v �i; j� � � � � :

Here, P1; P2; :::; Pv are the arrays whose node-columns are
connected to that of array Q in the nests x1; x2; :::; xv,
respectively, and l1

k; l2
k; ::: are the loops in nest xk. Fig. 5a

shows an acceptable case, whereas Fig. 5b shows an
unacceptable one. The problem in Fig. 5b is that, for array Q,
different nodes are selected in different nests. Similarly,
Fig. 2 shows a static optimal solution for the program
fragment shown in Fig. 1a. One important point should be
noted. In Fig. 1d when we consider the first nest alone (in an
isolated manner), layout S is selected (arbitrarily) as
column-major. Notice that, for this array, both column-
major and row-major layouts are equally optimal as far as
the locality in the innermost loop is concerned. In Fig. 2,
however, the layout of this array in the first nest is forced
to be row-major because the second nest requires a row-
major layout for this array and we consider only static
layouts. In general, an optimal solution for an MLG could
be one with suboptimal solutions for some of the
constituent NGs. Notice that the path shown in Fig. 2
corresponds to the solution discussed at the beginning of
Section 2.2.

3.5 Multiple Nests with Dynamic Layouts

In a dynamic layout selection problem, we allow the same
array to have different layouts in different loop nests
provided that it is beneficial to do so from the cache locality
viewpoint. Assume that x and x0 are two nests (with l 2 x
and l0 2 x0) accessing array Q and there is no other nest
between them which accesses Q. Let ZQ

xlx0l0 �i; j� denote a
conversion edge between the ith node of the node-column for
array Q in loop l of nest x and the jth node of the node-
column for array Q in loop l0 of nest x0. The value of this
edge is 1 if it is selected; that is, if layout Q is dynamically
transformed between x and x0, from the FCD i to the FCD j;
otherwise, its value is 0.

As in the static layout selection case, (c1) and (c2) should
be satisfied by the individual nests involved. In addition to
those two conditions, the following condition needs to be
satisfied by all the nests collectively:
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Fig. 5. (a) An acceptable solution. (b) An unacceptable solution (array Q is assigned different layouts in different nests).



(c3') Multiple Nest Condition. Edge ZQ
xlx0l0 �i; j� will be

selected if and only if both YPQ
xl�k; i� and YP 0Q

x0l0 �0; j� for a

k 2 �1:::dim�P �� and k0 2 �1:::dim�P 0�� are selected. In terms

of our Y and Z variables, this condition can be stated as4

YPQ
xl�k; i� � YP 0Qx0l0 �k0; j�ÿZQxlx0l0 �i; j� � 1

ZQ
xlx0l0 �i; j� � YPQxl�k; i�

ZQ
xlx0l0 �i; j� � YP 0Qx0l0 �k0; j�:

Here, P and P 0 are the arrays whose node-columns are

connected to that of Q in x and x0, respectively. The

objective of the locality optimization problem needs to be

restated now. We first define Cost(ZQ
xlx0l0 �i; j�) as the cost of

converting the FCD of array Q from i (in loop l of nest x) to j

(in loop l0 of nest x0). Of course, if i � j then the conversion

cost is zero; that is, there is no dynamic layout conversion.

Then, we define

Cost0�ZQxlx0l0 �i; j�� �
Cost�ZQxlx0l0 �i; j�� if ZQ

xlx0l0 �i; j�
is selected

0 otherwise:

8<:
The objective of the locality problem now is to select a

path from each nest graph of a given MLG and a conversion

edge for each array between pairs of nests that access the

said array such that

X
x

X
l

X
Q

Xdim�Q�
j�1

Cost0�VQxl�j��

�
X
x;x0

X
l2x

X
l02x0

X
Q

Xdim�Q�
i�1

Xdim�Q�
j�1

Cost0�ZQxlx0l0 �i; j��
�2�

is minimized, where x; x0 denotes two nests accessing array

Q and have no other such nest between them.
As an example consider the solution given in Fig. 6 for a

program that consists of two nests. The first nest accesses

arrays P , Q, and R while the second nest accesses arrays P 0,
Q, and R. Notice that the layout of array R is different in

two nests (column-major in the first nest and row-major in

the second nest). The figure also shows the conversion

edges. (Due to clarity, not all the conversion edges are

attached to their destinations). Assuming the optimal path

shown in the figure, the conversion edge between the first

node of the node-column for R in loop j of the first nest and

the second node of the node-column for R in loop i of the

second nest is selected. Notice that since Q and R are the

only common arrays between these two nests the conver-

sion edges are put only between their columns. In this

example, we have assumed that the optimal solution does

not involve any layout conversion for array Q between the

nests.
An important issue now is to decide exactly at what

point in the program layout transformations should take

place. We believe that this problem is itself a research topic.

In our experiments, we only considered two alternatives:

first point, in which the transformations take place at the

earliest point possible and last point, in which the

transformations take place at the latest point possible.

Although, there is no guarantee that these approaches will

result in optimal solutions, the hope is that by transforming

the data in points close to where they are used will help to

improve internest temporal locality [39].
Another important issue is to determine the cost of

dynamic layout transformation nest which is used to

transform memory layout from a form (a FCD) into

another. Since it is simply a copy loop nest, we treat this

nest as an ordinary nest and use the approach proposed

by Sarkar et al. [51] to estimate its cost. Notice, however,

that this loop nest is a pure overhead and its cost should

be minimized as much as possible. Our experience

suggests two optimizations for this purpose. First, this

loop nest should definitely be tiled. Notice that tiling this

nest is always legal as there are no data dependences.

Second, if possible, the transformations for multiple

(dynamically transformed) arrays should be done using

a single (or minimum number of) nest(s). Notice that this

approach (which can reduce the loop overhead signifi-

cantly) may contradict with the first point and last point

approaches mentioned above. We believe that determining

optimal transformation points for multiple arrays is an

open research problem.

KANDEMIR ET AL.: STATIC AND DYNAMIC LOCALITY OPTIMIZATIONS USING INTEGER LINEAR PROGRAMMING 931

4. Note that the formulation problem here is simply to form a set of linear
inequalities connecting three integer variables, a, b, and c, such that when
the inequalities are solved, c (corresponding to the variable Z) will be one
(i.e., will be selected) if and only if both a and b (corresponding to the
variables Y ) are one (i.e., are selected).

Fig. 6. A solution with the dynamic layouts.



3.6 False Sharing

In shared memory multiprocessors, an important issue
besides optimizing spatial locality is the elimination of false
sharing [13], [55]. False sharing occurs when two processors
access the same coherence unit (at least one of them writes)
without sharing a data element. In other words, they share
the coherence unit (e.g., cache line, page) but each accesses
different elements in it [13], [21]. Most of the previous
approaches aimed at optimizing spatial locality (e.g., [35],
[24]) do not take the effect of false sharing into account. This
does not cause much of a problem as long as the compiler
(after locality optimizations) is able to find large granularity
parallelism; that is, it is able to parallelize the outermost
loop in the nest. Since, after the locality transformations,
most of the reuse will be exploited in the innermost loops,
parallelizing outermost loops will not cause severe false
sharing. Obviously, this may not always work since it may
not be possible to parallelize the outermost loops due to
data dependence constraints. In those cases where a loop
index that is present in the FCD of an (written) array is
parallelized, it is very likely that the coherence unit will be
false-shared by a number of processors. Therefore, an
important rule is to not parallelize a loop that carries spatial
reuse for an array being written in the nest. The effect of
false sharing (when it occurs) is known to worsen with an
increase in the number of processors [21] as well as with
larger block sizes [55].

We now show how to extend our approach explained so
far to take into account the effects of false sharing. Using
data dependence analysis [59], [61], we can obtain paralle-
lism information; that is, which loops can be parallelized.
For the simplicity of presentation, we assume a single loop
nest and each array that is subject to false sharing is
referenced only once in the LHS and we do not consider the
potential false sharing that may occur between different
references. We also assume that we will parallelize at least a
single loop in the nest. It is relatively straightforward to
remove these restrictions. For each parallelizable loop i,
whose index sits in a subscript position j of array U subject
to false sharing, we associate variable Fi;U;j. The value of
this variable is 1 if node j of U is selected (i.e., is part of the
solution path); otherwise Fi;U;j is 0.

Let fi1; i2; � � � ; ihg be the set of parallelizable loops where
i1 is the outermost and so forth and let fU1; U2; � � � ; Ugg be
the set of arrays subject to false sharing. For simplicity, we
also assume that, for every array, there are m possible
values for j mentioned above.

Now we impose two new conditions to ensure the
correctness of the solution in addition to the conditions
discussed earlier in the paper.

1'. A given loop ik will be either parallelized or not.
In terms of our variables, we can express this
condition as

Fik;Ul;j � Fik;U 0l ;j0
for each l; l0 2 �1::g� and for each j; j0 2 �1::m�:

2'. There will be at least one parallelized loop. In
mathematical terms,

Xh
k�1

Xg
l�1

Xm
j�1

Fik;Ul;j � 1:

For example, if two LHS references, V �i; j� andW�i; j; k� j�,
appear in a three-deep loop nest with loop indices i; j; k
from the outermost to the innermost, we have the following
conditions:

1'. Fi;V ;1 � Fi;W;1 and Fj;V ;2 � Fj;W;2 � Fj;W;3:
2'. Fi;V ;1 � Fi;W;1 � Fj;V ;2 � Fj;W;2 � Fj;W;3 � Fk;W;3 � 1:

Let FCost�i; U; j� be the additional cost in terms of false
sharing misses [27] when loop i sits in subscript position j
(which is the FCD) of an array U . Also let FCost0�i; U; j� be
FCost�i; U; j� if Fi;U;j is 1 (i.e., it is selected, meaning that
loop i is parallelized and dimension j is the FCD for array
U). Then, the objective is to minimize

Xh
k�1

Xg
l�1

Xm
j�1

FCost0�ik; Ul; j�: �3�

It is now clear that this cost formulation takes care of false
sharing effects and can be added to the cost formulations
derived earlier for good cache locality. Work is underway in
deriving accurate cost formulations for the false sharing
given specific architectural characteristics of the underlying
parallel machine [52].

4 EXPERIMENTS

In this section, we report our experimental results obtained on
a single processor of an SGI Origin 2000 distributed shared
memory multiprocessor. The Origin 2000 uses 195 MHz
R10000 microprocessors from MIPS Technologies. Each
processor has a four-way superscalar architecture, which
can fetch and decode four instructions per cycle to be run
on its five independent, pipelined execution units: a
nonblocking load store unit, two 64-bit integer ALUs, a
32-/64-bit pipelined floating point adder, and a 32-/64-bit
pipelined floating point multiplier. The R10000 has a two-
level cache hierarchy. Located on the microprocessor chip
are a 32 KB, two-way set associative L1 instruction cache
and a 32 KB, two-way set associative, two-way interleaved
L1 data cache. Off-chip is a two-way set associative, unified
L2 cache which is 4 MB. The L1 data cache has a line size of
32 Bytes whereas the line size of the L2 cache is 128 Bytes.
The latency ratio between the L1 and L2 caches is about 1:11.

For this study, we selected 12 programs whose
characteristics are shown in Table 1. All of the programs
manipulate double-precision arrays, are written in C, and
compiled using the native compiler MIPSpro version 7.2.1.1.
MxM is classic ijk matrix-multiply code and LU is an
LU-decomposition program. The codes Amhmtm, Bmcm,
Aps, and Tsf are subroutines from several programs in
Perfect Club benchmarks. Vpenta and Tomcatv are from
Spec. MxMxM is a routine from [9] that multiplies three
matrices. ADI is one of Livermore kernels.; Htribk is from
Eispack library. And, finally, Transpose is a routine from
a large computational chemistry application [20]. The third
column gives the number of arrays and the fourth column
shows the total size of the declared arrays in MBytes. The
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next four columns give the number of nodes in the
MLG (Nodes), the number of edges (Edges), the
number of 0-1 integer variables (Var), and the number
of constraints (Constr) for both static (S) and dynamic (D)
optimization cases. These numbers are obtained by taking
the data dependence information into account; otherwise,
they would be much higher. The Time column gives the
times (in seconds) required to find optimal solutions using
the Omega library [30]. Our initial evaluation is that these
times are not very high and (except for Vpenta and ADI)
they will bring at most a 16 percent increase in the
compilation times as compared to a faster heuristic
approach [25] that uses both loop and data transformations
to improve cache locality. In our experiments, the time
taken to find a solution constituted at most 33 percent of the
total compilation time (excluding Vpenta). Notice that the
total array sizes used are larger than the L2 cache size but
smaller than the node memory size, which is 256 MBytes.

Our experimental methodology, which is shown in Fig. 7,
is as follows: First, we take the original (unoptimized) code
and incrementally optimize it using the techniques shown
in Table 2. When prefetching, tiling, and unrolling turned
on, we let the native compiler select the best prefetch style,
the best blocking factor, and the best unrolling factor. Then,

we optimize the original (unoptimized) code using the
approach proposed in this paper, and afterwards, we again
apply all the optimizations shown in Table 2 taking this
version as input.5 That is, in that case, our approach acts as
a front-end to the native compiler. In contrast to the
previous studies, this methodology allows us to compare
our layout-based approach with the production-quality
loop tiling and loop unrolling techniques.

The performance results are presented in Table 3 and
Table 4. The columns in these tables show the total
execution cycles, miss rates (including the weighted
missesÐW Misses) as well as the achieved Mflops rates.
All the numbers are obtained using the hardware perfor-
mance counters [60] in the R10000. It is important to note
that the R10000 is a complex superscalar processor (with
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TABLE 1
Programs in Our Experiment Set

Fig. 7. Different versions used in the experiments.

5. Our approach is currently being built (as a proof-of-concept
implementation) on top of Parafrase-2 [47] using the Omega Library [30]
as solver. It should be mentioned that the Omega library is not an ILP solver
and generates only the loops that enumerate possible solutions. By putting
the objective function as the first element of the tuples enumerated, after
running the loops once, we obtain the solution. In future, we plan to connect
our compiler to either the Cplex, Lingo, or LpSolve [4] integer programming
tools. Our initial experiments with the LpSolve tool indicate that the time
taken by the Omega library (to generate the loops) and the time taken by the
ILP tools will be of the same orders. We believe that using the library version
of LpSolve will reduce the time spent in finding the optimal solution.



nonblocking caches) in which service times for misses can
get overlapped with the ongoing computation inside the
chip. Therefore, the cache miss rates may not reflect the
overall performance and the Mflops rates are the final
criterion. However, we tried to ensure that the number of
TLB misses are not significant by making the page size
larger when necessary. Note, however, that, in cases where
TLB misses constitute a large percentage of performance
penalty, our cost formulations can be modified to take them
into account. Consequently, in all of the applications, except
ADI and Aps, the L1 and L2 cache misses were the main
performance bottlenecks. In Table 3 and Table 4, for each
column (corresponding to cycles, misses, or Mflops rates)
the first (left) subcolumn denotes the versions obtained
using the original (unoptimized) code as input and the
second (right) subcolumn denotes the versions obtained
using the code optimized using our approach as input (see
Fig. 7). In two codes (Bmcm and Tsf), the solver selected the
dynamic layouts as optimal. In Tsf, the static layout
detection technique could not optimize the code, so in
Table 4c, the first (left) subcolumn refers to the original case
and the second (right) is the result of dynamic layout
optimization. In Table 4a, on the other hand, the first
subcolumn corresponds to the unoptimized case, the
second to the static optimized version, and the third to
the dynamic optimized version. We believe that this is the
first approach that determines dynamic memory layouts
with accompanying loop transformations and is a definite
improvement over the previous unified approaches pre-
sented in [25], [43], [9], and [26] which do not take the
possibility of dynamic memory layouts into account. We
also expect that as scientific codes get larger, the importance
of dynamic layout modifications (at runtime) will be more
critical. This is because the larger the code, the higher the
probability that we will have different code segments
demanding different memory layouts for a given array.
Tomcatv is the only example that our approach could not
optimize because the locality of the original code was quite
good on a single processor. From these results, we infer the
following:

. The performance of unoptimized codes (the original
codes with No-Opt version) is extremely poor. In
seven out of twelve codes, the performance is below
10 Mflops.6

. With no optimization turned on (No-Opt), our
approach improves the performance of the original
codes on average by a factor of 15. In four codes
(Transpose, Aps, LU, and Htribk) the code
generated with our approach without any additional
optimizations (No-Opt) outperforms the best
compiler-optimized version (L+P+U+T) of the
original code. The main reason for this result is
that the native compiler could not improve the
locality of arrays for which the layout transforma-
tions are necessary (e.g., Transpose and Htribk)
and, in some codes (e.g., Aps and LU) the imperfect
nest structure prevented the loop transformations,
including tiling. Also, in some cases, the compiler-
tiled program leads to poor intertile locality [36] as
not all the spatial locality is exploited using loop
transformations alone.

. Applying loop unrolling and tiling does not always
improve the performance. In the versions starting
with the unoptimized programs, tiling and unrolling
could not improve the performance in four cases
over the L+P version. In the versions starting with
our optimized programs, the tiling could not
improve the performance in two cases and the loop
unrolling could not improve the performance in
three cases. Saavedra et al. [50] also observed similar
problems in codes optimized using tiling and
prefetching together.

. When we consider the best optimized versions
(L+P+U+T), the versions starting with our optimized
code outperform the versions starting with the
unoptimized codes by an average 27.5 percent,
excluding two extreme cases, Transpose and Aps,
in which the performance is improved by a factor of
8.5 and 7, respectively. This shows that optimizing
data layouts is very important even in the cases
where tiling and/or loop unrolling are applicable.

. Finally, in all the cases the best Mflops rates (shown
in boldface) are obtained using the code generated
taking our optimized version as input. Also, in all
cases except ADI, Aps, and Bmcm, the best weighted
miss rates (shown in boldface) correspond to the best
Mflops rates indicating that the data locality plays a
major role in the overall performance.

Finally, in Fig. 8, we show the MFLOPS rates for three

different versions on eight processors of the Origin. opt is

the version that uses all native compiler optimizations

(L+P+U+T) taking the original code as input. opt+ is the

version that uses all native compiler optimizations

(L+P+U+T) taking as input the code that is optimized using
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TABLE 2
Different Versions and the Associated Native Compiler Flags

6. This is the ratio of the ªgraduated loating point instructionsº and the
total program runtime. Note that while a multiply-add carries out two
floating operations, it only counts as one instruction in the R1000 processor,
so the Mflops figures reported here may underestimate the number of
floating point operations per second. In any case, however, these results are
pathetic for a processor with 390 Mflops peak performance.
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TABLE 3
Performance Results

For each columnÐCycles, L1 Misses, L2 Misses, W Misses, and MflopsÐthe first (left) subcolumn denotes the versions obtained using the
original (unoptimized) code as input and the second (right) subcolumn denotes the versions obtained using the code optimized by our approach as
input. (B) means in billions and (M) means in millions. (a) MxM. (b) MxMxM. (c) Vpenta. (d) ADI. (e) Transpose. (f) Amhmtm.
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TABLE 4
Performance Results

For each columnÐCycles, L1 Misses, L2 Misses, W Misses, and MflopsÐthe first (left) subcolumn denotes the versions obtained using the
original (unoptimized) code as input and the second (right) subcolumn denotes the versions obtained using the code optimized by our approach as
input. (B) means in billions and (M) means in millions. (a) Bmcm. (b) Aps. (c) Tsf. (d) LU. (e) Tomcatv. (f) Htribk.



the approach explained in this paper. It also uses dynamic
layout transformations whenever necessary. These two
versions do not perform any optimizations to specifically
eliminate false sharing. opt++ is, on the other hand, the
same as opt+ except that it also takes false sharing
constraints into account as explained in Section 3.6. We
observe from these results that opt++ is roughly 60 percent
better than opt and 9 percent better than opt+. The reason
that there is not a large difference between the opt+ and
opt++ versions is the fact that, in many cases, the best
alternative from the false-sharing point of view is
different from the data locality viewpoint. Consequently,
the ILP-based approach favors one objective over the
other (in many but not all cases) taking into account the
costs.

From this experience, we emerge with the following
suggestions for optimizing compiler implementors:

. They should consider data layout optimizations. In
cases where data layout optimizations are necessary
for the best performance, the nonlinear optimiza-
tions such as tiling and unrolling could not enhance
the poor performance of linear loop-level transfor-
mation techniques. Codes, such as Transpose, Aps,
LU,7 and Htribk are examples supporting this
claim. In particular, the cases where the spatial
locality can be improved by data transformations
without distorting the inherent temporal locality
should be taken care of (as in MxM and MxMxM codes).

. They should focus more on imperfectly nested loops.
In a number of codes in our experimental suite (e.g.,
LU and Aps), the potential of loop transformations
could not be realized due to imperfect nests. We
believe that the research for optimizing cache
locality for imperfectly nested loops (e.g.,
Kodukula et al. [33]) is extremely important
for future architectures.

. They should develop algorithms that couple loop
unrolling and tiling with the linear loop and data
transformations. Even in a sophisticated native
compiler such as the one we used here, we have
found that sometimes loop unrolling and tiling
could not improve the performance over linear loop
transformations. Therefore, the works such as the
one done by Carr [5] for combining optimizations for
cache and instruction-level parallelism are very
important.

. They should attempt to combine the techniques
designed for optimizing locality with those designed
for minimizing false sharing.

5 RELATED WORK

Significant work related to optimizing cache locality has
been done by several research groups. We discuss the most
related of this in three categories.

Loop Transformations. Exploiting the memory hierar-
chy through loop transformations has been the subject of
several papers. Abu-Sufah et al. [1] were among the first to
address the systematic use of program transformations to
improve locality in the context of virtual memory systems.
Based on the notion of reuse space composed of reuse
vectors, Wolf and Lam [56] show how to use unimodular
loop transformations followed by tiling loops that carry
some form of reuse in order to improve locality. Their
method is expensive (uses exhaustive search) and approx-
imate since the reuse space cannot always be computed
exactly. Li [36] uses the notion of reuse distance and the
level of the loop carrying reuse, which refines the notion of
reuse space. He uses a simple heuristic to derive linear loop
transformations to improve reuse and was the first to
demonstrate that one way to decrease the sensitivity of
tiling to tile sizes is to improve spatial locality first before
applying tiling. McKinley et al. [38] present a method that
considers loop fusion, distribution, permutation, and
reversal for improving memory locality. In addition to

KANDEMIR ET AL.: STATIC AND DYNAMIC LOCALITY OPTIMIZATIONS USING INTEGER LINEAR PROGRAMMING 937

Fig. 8. MFLOPS rates for different versions.

7. The LU code that we optimize uses three arrays; the version that uses
only a single array is not amenable to layout optimizations.



these linear loop transformations, tiling [6], [10], [34], [33],
[58], [59] has been found to be very useful in improving
memory performance. Tiling is orthogonal to these loop
transformations and is typically used after these. The
effectiveness of tiling is critically dependent on the values
of tile sizes chosen [34], [10]; the tile size selection problem
is in general difficult to solve. It is important to note that
none of these above mentioned approaches considers
memory layout transformations for improving locality.
Our results in this paper show that layout transformations
can also play a major role in overall performance of
scientific codes.

Data Transformations. Recently there has been some
work in using memory layout optimizations to improve
spatial locality. Leung and Zahorjan [35] demonstrate cases
where loop transformations fail (for a variety of reasons) for
which data transformations are useful. The data transforma-
tions they consider correspond to nonsingular linear trans-
formations of the data space. O'Boyle and Knijnenburg [43]
present code generation techniques for several data optimi-
zations, such as linear transformations for memory layouts,
alignment of arrays to page boundaries, and page replication.
Ju and Dietz [22] use data transformations to reduce the
overhead coming from coherence activity in shared memory
machines. Rivera and Tseng [49] consider array padding to
eliminate conflict misses to help the program to enjoy cache
locality fully. Eggers and Jeremiassen [13], [21] discuss the
use of data transformations for reducing the impact of false
sharing. Anderson et al. [2] derive a layout transformationÐ-
consisting only of array dimension permutation and strip
miningÐfor shared memory machines that ensures that the
data accessed by one processor are contiguous in the shared
address space; this results in enhanced spatial locality.
Kandemir et al. [24] present a hyperplane representation of
memory layouts of multidimensional arrays and show how to
use this representation to derive very general data transfor-
mation matrices (nonsingular). Recall that the the memory
layout of an array has an impact on the spatial locality
characteristic of all the loop nests in the program which access
the array. This implies the need for a global view of memory
access patterns. The approaches to handling a sequence of
loop nests presented by Kandemir et al. [24] and Leung and
Zahorjan [35] rely on a conflict resolution scheme that may fail
to derive the best solution when there are competing layout
preferences for an array due to different accesses to the
array. It is important to note that the data transformation
approaches discussed above do not consider loop trans-
formations at all. Therefore, they may fail to improve
temporal locality.

Combined Loop and Data Transformations. Some
authors have addressed unifying loop and data transforma-
tions into a single framework, as done in this paper.
Cierniak and Li [9] use loop permutations and array
dimension permutations in an exhaustive search to deter-
mine the appropriate loop and data transformations for a
single nest. In earlier work [29], [25], we have addressed
this problem. The approach used is based on a heuristic for
processing a sequence of loop nests; this heuristic orders
loop nests based on cost. The loop nests are processed in
order. In processing a loop nest, the memory layouts of

some arrays may be determined, which are then propagated
to the next nest considered and so on. There is no guarantee
of optimality here. In addition, we consider the use of loop
transformations for improving temporal locality, followed
by data transformations for improving spatial locality for a
single nest (on uniprocessors) in a recent paper [26].
Multiple loop nests are handled using the same heuristic
as in [25]. Note that none of these approaches considers
dynamic layout transformations which might be useful for
large scientific codes.

Our Approach. Unlike all these solutions, the framework
presented in this paper formulates the problem of simulta-
neously determining data and loop transformations for a
sequence of loop nests using integer linear programming
(ILP). Thus, it avoids the use of heuristics such as ordering
nests for processing. It is useful to note that determining
memory layouts bears similarity to the problem of auto-
matic data distribution in distributed-memory message-
passing machines [16], [17], [18], [31], [37], [45], [53]. The
solution for data and loop transformations presented in this
paper uses the memory layout graph that shares many
features with the graph structure used in [16], [17], we
believe that it is possible to include the effects of data
distribution as well.

6 CONCLUSIONS AND FUTURE WORK

The performance of applications on modern processors
depends on the memory access patterns to a large extent.
Loop (iteration space) and memory layout (data space)
transformations have been shown to be useful in improving
the memory performance of loops in scientific computa-
tions. This paper presented an integer linear programming
(ILP)-based approach to the problem of detecting memory
layouts of different arrays along with the best loop permutation
for each loop nest in a sequence of loop nests. This allows the
handling of whole programs. Unlike other approaches that
rely on ad hoc heuristics for the various subproblems, the
ILP approach used here allows us to derive exact solutions
(without resorting to any heuristics) to the problem. In
addition, the ILP formulation allows to infer when it is
beneficial to change the memory layouts of some arrays
dynamically. Since we handle both loop and data layout
transformations in a single framework, the result is
significant improvements in both spatial and temporal
locality. Experimental results have shown significant
improvement and demonstrate the clear superiority of our
solution. We have also shown in this paper how the
ILP-based framework can be made to work with false-
sharing constraints as well.

We are in the process of including other loop transfor-
mations, such as tiling and fusion in our framework. The
investigation of the effects of our approach on tile size
selection is under way. Whole program compilation requires
effective interprocedural optimization as well; we plan to
study this problem, focusing in particular on the formulation
proposed recently by O'Boyle and Knijnenburg [44]. In
addition to spatial and temporal locality, the issues of
parallelism and false sharing are extremely important in
distributed shared memory (DSM) machines. We are
working on extending our ILP model using the memory
layout graphs to better deal with these added issues. We
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see our work as an important first step in a multifrontal
attack on the problem of optimizing the performance of
large scientific codes on a variety of modern computing

platforms.
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