
Specifying and Verifying a Broadcast and a
Multicast Snooping Cache Coherence Protocol

Daniel J. Sorin, Student Member, IEEE, Manoj Plakal, Student Member, IEEE, Anne E. Condon,

Mark D. Hill, Fellow, IEEE, Milo M.K. Martin, Student Member, IEEE, and

David A. Wood, Member, IEEE

AbstractÐIn this paper, we develop a specification methodology that documents and specifies a cache coherence protocol in eight

tables: the states, events, actions, and transitions of the cache and memory controllers. We then use this methodology to specify a

detailed, modern three-state broadcast snooping protocol with an unordered data network and an ordered address network that allows

arbitrary skew. We also present a detailed specification of a new protocol called Multicast Snooping [6] and, in doing so, we better

illustrate the utility of the table-based specification methodology. Finally, we demonstrate a technique for verification of the Multicast

Snooping protocol, through the sketch of a manual proof that the specification satisfies a sequentially consistent memory model.

Index TermsÐCache coherence, protocol specification, protocol verification, memory consistency, multicast snooping.

æ

1 INTRODUCTION

A cache coherence protocol is a scheme for coordinating
access to shared blocks of memory. Processors and

memories exchange messages to share data and to
determine which processors have read-only or read-write
access to data blocks that are in their caches. A processor's
access to a cache block is determined by the state of that
block in its cache, and this state is generally one of the five
MOESI (Modified, Owned, Exclusive, Shared, Invalid)
states [32]. Processors issue requests, such as Get Exclusive
or Get-Shared, to gain access to blocks. They can also lose
access to blocks, either by choice (e.g., a cache replacement)
or when another processor's request steals a block away.
Many invalidate protocols maintain the invariant that there
can either be one writer and no readers or no writer and any
number of readers.

What is protocol specification? Cache coherence proto-
cols for shared memory multiprocessors are implemented
via the actions of numerous system components and the
interactions between them. These components include
cache controllers, directory controllers, and networks,
among others. The specification of a cache coherence
protocol must detail the actions of each of these components
for every combination of state it could be in and event that
could happen. For example, it must specify the actions
performed by a cache controller that has Exclusive access to
a cache block when a Get-Shared request for that block
arrives from another node, and it must specify the new state
that the cache controller enters.

What is protocol verification? Verification of a cache
coherence protocol involves proving that a protocol
specification obeys a desired memory consistency model,
such as sequential consistency (SC) [21]. To verify that a
protocol satisfies a consistency model requires proving that
it obeys certain invariants about what value a load from
memory can return. For example, to satisfy SC, the loads
and stores from the different processors must appear to the
programmer to be in some total order where 1) the value of
a load equals the value of the most recent store to the same
address in the total order, and 2) the total order respects the
program order at each of the processors.

Why is verification difficult? At a high level, protocols
can be represented as in Fig. 1, which illustrates the
specification of a cache controller for a three state (Mod-
ified, Shared, Invalid) protocol. There are a handful of
states, with atomic transitions between them.

Since cache coherence protocols are simply finite state
machines, it would appear at first glance that it would be
easy to specify and verify a common three state (MSI)
broadcast snooping protocol. Unfortunately, at the level of
detail required for an actual implementation, even see-
mingly straightforward protocols have numerous transient
states and possible race conditions that complicate the tasks
of specification and verification. While older protocols only
permitted one outstanding miss and required that a request
and its responses were atomic, current protocols allow
transactions to be split and allow multiple outstanding
requests. Thus, other requests and responses can be
interleaved between a request and its response. This
additional concurrency enables higher performance, but it
increases the complexity by often introducing transient
states. For example, a single cache controller in a ªsimpleº
MSI protocol that we will specify in Section 2.1 has 11 states
(8 of which are transient), 13 possible events, and 21 actions
that it may perform. The other system components are
similarly complicated, and the interactions of all of these

556 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

. D.J. Sorin, M. Plakal, M.D. Hill, M.M.K. Martin, and D.A. Wood are
with the Computer Sciences Department, University of Wisconsin, 1210
West Dayton Street, Madison, WI 53706.
E-mail: {sorin, plakal, markhill, milo, david}@cs.wisc.edu.

. A.E. Condon is with the Department of Computer Science, University of
British Columbia, 201-2366 Main Mall, Vancouver, BC V6T1Z4.
E-mail: condon@cs.ubc.ca.

Manuscript received 2 Mar. 2000; revised 8 Mar. 2001; accepted 21 Nov.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 111633.

1045-9219/02/$17.00 ß 2002 IEEE

components are difficult to specify and verify. Moreover,
the number of states in the system is roughly proportional
to the number of states in each coherence controller to the
power of the number of controllers. This state space
explosion makes the use of tools such as model checkers
prohibitive when the number of processors is large, even
when proving that simple invariants are maintained.

Why is verification important? Rigorous verification is
important, since the complexity of a detailed, implemen-
table protocol makes it difficult to design without any
errors. Many protocol errors can be uncovered by simula-
tion. Simulation with random testing has been shown to be
effective at finding certain classes of bugs, such as lost
protocol messages and some deadlock conditions [33].
However, simulation tends not to be effective at uncovering
subtle bugs, especially those related to the consistency
model. Subtle consistency bugs often occur only under
unusual combinations of circumstances, and it is unlikely
that undirected (or random) simulation will drive the
protocol to these situations. Thus, complete and perhaps
more formal verification techniques are needed to expose
these subtle bugs.

What kind of specification is required for verification?
Complete verification of a cache coherence protocol should
be undertaken at a level that is independent of details that
are specific to the hardware, yet models transient states,
queues, and race conditions that typically introduce subtle
bugs. Verifying a high-level specification without transient
states and race conditions may show that invariants hold

for this abstraction of the protocol, but it will not show that
an implementable version of the protocol obeys these
invariants.

What are the limitations of current specifications? In
the industrial groups with which we are familiar, there are
three classes of peopleÐarchitects, implementors, and
verifiersÐwho work together to develop systems. How-
ever, current specifications are generally not accessible to all
three classes. For a specification to be accessible to all three
groups, a balance must be struck between having a concise,
visually informative format while still incorporating suffi-
cient detail. Specifications that have been published in the
literature are often visually accessible, but they have not
been sufficiently detailed for purposes of implementation or
verification. In academia, protocol specifications tend to be
high-level because a complete, detailed specification may
not be necessary for the goal of publishing research [5], [8],
[15]. In industry, low-level, detailed specifications are
necessary and exist, but, to the best of our knowledge,
none have been published in the literature. Moreover, these
detailed specifications often match the hardware closely,
which complicates verification and limits alternative im-
plementations but eliminates the problem of verifying that
the implementation satisfies the specification. Formal
specifications, which are used in both academia and in
industry, are well-suited to verification with tools such as
model checkers, but they are generally unusable by less
mathematically-inclined implementors and architects.

A new, widely-accessible table-based specification

technique. To address the need for concise, detailed
specifications that are widely accessible, we have developed
a table-based specification methodology for cache coher-
ence protocols. While tables have been used widely to
describe state machines [18], the concise format of our tables
allows for substantial detail while retaining visual clarity. It
is useful to have a complete table on one page so that, for
example, a missing entry or an entry that differs slightly
from all others in its column is conspicuous. Other table-
based specification schemes, such as Johnson's behavior
tables [19], are both formal and visually informative, but
they are not tailored for coherence protocols and, as such,
do not represent them concisely.

In our scheme, for each system component that
participates in the coherence protocol, there is a table
that specifies the component's behavior with respect to a
given cache block. As an illustrative example, Table 1

SORIN ET AL.: SPECIFYING AND VERIFYING A BROADCAST AND A MULTICAST SNOOPING CACHE COHERENCE PROTOCOL 557

Fig. 1. High-level specification for cache controller.

TABLE 1
Simplified Atomic Cache Controller Transitions

shows a specification for a simplified atomic cache
controller. The rows of the table correspond to the states
that the component can enter, the columns correspond to
the events that can occur, and the entries themselves are
the actions taken and resulting state that occur for that
combination of state and event. The actions are coded
with letters which are defined below the table. For
example, the entry a/S denotes that a Load event at the
cache controller for a block in state I causes the cache
controller to perform a Get-Shared and enter state S.

This simple example, however, does not show the power
of our specification methodology because it does not
include the many transient states possessed by realistic
coherence protocols. For simple atomic protocols, the
traditional specification approach of drawing up state
transition diagrams is tractable. However, nonatomic
transactions cause an explosion in the state space, since
events can occur between when a request is issued and
when it completes, and numerous transient states are used
to capture this behavior. Section 2 illustrates the methodol-
ogy with a more realistic broadcast snooping protocol and a
multicast snooping protocol [6].

In our specification methodology, we aim for a middle
ground that can be used by architects, implementors, and
verifiers. While the tables themselves do not enable a
specific level of detail, we choose a level of detail that can
be used for many purposes and in which actions that are
specified as atomic could be implemented atomically.
Verification of a protocol at this level must handle many
of the most subtle issues, such as those that arise from
considering the queues between state machines. It is also
important to note that a specification at this level allows
us to verify this level of implementation, but it also aids
the verification of more complex implementations. To
verify a system at a lower level of detail, one must now
only verify that the lower level implementation is
equivalent to this specification. For example, one might
verify that a pipelined implementation of a given set of
actions still appears to be atomic.

We have developed software that automatically maps
specifications in our format to different levels of abstraction,
including simulator code and documentation, and we use
the specifications as input for a manual proof technique
presented in this paper. Mapping specifications to input for
automated verification tools is future work.

A methodology for proving that table-based specifica-
tions are correct. Using our table-based specification
methodology, we present a methodology for proving that
a specification is sequentially consistent, and we show how
this scheme can be used to prove that our multicast protocol
satisfies SC. Our method uses an extension of Lamport's
logical clocks [20] to timestamp the load and store
operations performed by the protocol. Timestamps deter-
mine how operations should be reordered to witness SC, as
intended by the designer of the protocol. Thus, associated
with any execution of the augmented protocol is a sequence
of timestamped operations that witnesses sequential con-
sistency of that execution. Logical clocks and the associated
timestamping actions are, in effect, a conceptual augmenta-
tion of the protocol and are specified using the same table-
based transition tables as the protocol itself. We note that
the set of all possible execution operation traces of the

protocol equals that of the augmented protocol, and that the
logical clocks are purely conceptual devices introduced for
verification purposes and are never implemented in hard-
ware. We consider the process of specifying logical clocks
and their actions to be intuitive for the designer of the
protocol, and indeed the process is a valuable debugging
tool in its own right.

A straightforward invariant of the augmented protocol
guarantees that the protocol is sequentially consistent.
Namely, for all executions of the augmented protocol,
the associated timestamped sequence of loads (LDs) and
stores (STs) is consistent with the program order of
operations at all processors and the value of each LD
equals that of the most recent ST. To prove this invariant,
numerous other ªsupportº invariants are added as
needed. It can be shown that all executions of the protocol
satisfy all invariants by induction on the length of the
execution. This involves a tedious case-by-case analysis of
each possible transition of the protocol that could possibly
be automated with a model checker.

To summarize, the strengths of our methodology are that
the process of augmenting the protocol with timestamping
is useful in designing correct protocols, and an easily-stated
invariant of the augmented protocol guarantees sequential
consistency. However, our methodology also involves
tedious case-by-case proofs that protocol state transitions
respect certain invariants. Because the problem of auto-
matically verifying SC is undecidable, automated ap-
proaches have been proved to work only for a limited
class of protocols [16], [29]. We will discuss other verifica-
tions techniques and compare them to ours in Section 4.

What have we contributed? This paper makes four
contributions. First, we develop a table-based specification
methodology that allows us to concisely describe cache
coherence protocols. Second, we provide a detailed speci-
fication of a modern three-state broadcast snooping proto-
col with an unordered data network and an address
network which allows arbitrary skew. Third, we present a
detailed specification of multicast snooping [6], and, in
doing so, we better illustrate the utility of the table-based
specification methodology. The specification of this more
complicated protocol is thorough enough to warrant
verification. Fourth, we demonstrate a technique for
verification of the multicast snooping protocol, through
the sketch of a manual proof that the specification satisfies a
sequentially consistent memory model.

2 SPECIFYING BROADCAST AND MULTICAST

SNOOPING PROTOCOLS

In this section, we demonstrate our protocol specification
methodology by developing two protocols: a broadcast
snooping protocol and a multicast snooping protocol. Both
protocols are MSI (Modified, Shared, Invalid) and use eight
tables to document and specify:

. the states, events, actions, and transitions of the
cache controller and

. the states, events, actions, and transitions of the
memory controller.

558 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

The controllers are state machines that communicate via
queues, and events correspond to messages being processed
from incoming queues. The actions taken when a controller
services an incoming queue, including enqueuing messages
on outgoing queues, are considered atomic.

2.1 Specifying a Broadcast Snooping Protocol

In this section, we shall specify the behavior of an MSI
broadcast snooping protocol. While three state broadcast
protocols are simple to describe at an abstract level, realistic
protocols can have significant complexity due to transient
states and nonatomic transactions.

2.1.1 System Model and Assumptions

The broadcast snooping system is a collection of processor
nodes and memory nodes (possibly collocated) connected
by two logical networks (possibly sharing the same physical
network), as shown in Fig. 2.

A processor node contains a CPU, cache, and a cache
controller which includes logic for implementing the
coherence protocol. It also contains queues between the
CPU and the cache controller. The Mandatory queue
contains Loads (LDs) and Stores (STs) requested by
the CPU, and they are ordered by program order. LD
and ST entries have addresses, and STs have data. The
Optional queue contains Read-Only and Read-Write
Prefetches requested by the CPU, and these entries
have addresses. The Load/Store Data queue contains the
LD/ST from the Mandatory queue and its associated data
(in the case of a LD). A diagram of a processor node is
also shown in Fig. 2.

The memory space is partitioned among one or more
memory nodes. It is responsible for responding to coher-
ence requests with data if it is the current owner (i.e., no
processor node has the block Modified). It also receives
writebacks from processors and stores this data to memory.

The two logical networks are a totally ordered broadcast
network for address messages and an unordered unicast
network for data messages. The address network supports
three types of coherence requests: GETS (Get-Shared),

GETX (Get-Exclusive), and PUTX (Dirty-Writeback). Cache
controllers issue coherence requests in response to memory
accesses (LD/ST) and prefetches received from the CPUs.
Protocol transactions are address messages that contain a
data block address, coherence request type (GETX, GETS,
PUTX), and the ID of the requesting processor. Data
messages contain the data and the data block address.

All of the components in the system make transitions
based on their current state and current event (e.g., an
incoming request), and we will specify the states, events,
and transitions for each component in the rest of this
section. There are many components that make transitions
on many blocks of memory, and these transitions can
happen concurrently. We assume, however, that the system
appears to behave as if all transitions occur atomically.

2.1.2 Network Specification

The network consists of two logical networks. The address
network is a totally ordered broadcast network, as in all
known broadcast snooping protocols. Total ordering does
not, however, imply that all messages are delivered at the
same time. For example, in an asynchronous implementa-
tion, the path to one node may take longer than the path to
another node. The address network carries coherence
request messages. A transition of the address network is
modeled as atomically transferring a coherence request
from the output queue of a node to the input queues of all
of the nodes, thus inserting the request into the total order
of requests. Note that a total order of requests does not
imply a total order of memory accesses (LD/ST), since
requests are issued to gain permission to access data, but
they are not the accesses themselves.

The data network is an unordered point-to-point net-
work for delivering responses to coherence requests. A
transition of the data network is modeled as atomically
transferring a data message from the output queue of a
node to the input queue of the destination node.

All nodes are connected to the networks via queues, and
all we assume about these queues is that address queues
from the network to the nodes are served in FIFO order.

SORIN ET AL.: SPECIFYING AND VERIFYING A BROADCAST AND A MULTICAST SNOOPING CACHE COHERENCE PROTOCOL 559

Fig. 2. Broadcast snooping system.

Data queues and address queues from the nodes to the
network can be served without this restriction. For example,
this allows a processor node's GETX to pass its PUTX for
the victim block.

2.1.3 CPU Specification

A transition of the CPU occurs when it places a LD or ST in
the Mandatory queue, places a Prefetch in the Optional
queue, or removes data from the LD/ST data queue. It can
perform these transitions at any time.

2.1.4 Cache Controller Specification

In each transition, a cache controller may inspect the heads
of its incoming queues, inject new messages into its queues,
and make appropriate state changes. All we assume about
serving incoming queues is that no queue is starved and
that the Address and Mandatory queues are served in strict
FIFO order. The actions taken when a queue is served are
considered atomic in that they are all done before another
queue (including the same queue) is served. Before any of
the actions are taken, however, the cache controller checks
to ensure that resources, such as space in an outgoing queue
or an allocated TBE, are available for all of the actions. If the
sum of the resources required for all of the actions is not
available, then the cache controller aborts the transition,
performs none of the actions, and waits for resources to
become available (where we define a cache block to be
available for a LD/ST if either the referenced block already
exists in the cache or there exists an empty slot which can
accommodate the referenced block when it is received from
external sources). The exception to this rule is having an
available block in the cache, and this situation is handled by
treating a LD, ST, or Prefetch for which no cache block is
available as a Replacement event for the victim block.

If the request at the head of the Mandatory or Address
queue cannot be serviced (because the block is not present
with the correct permissions or a transaction for the block is
outstanding), then no further requests from that queue can
be serviced. Optional requests can be discarded without
affecting correctness.

The cache controller keeps a count of all outstanding
coherence transactions issued by that node and, for each
such transaction, one Transaction Buffer Entry (TBE) is
reserved. No transactions can be issued if there is no space
in the outgoing address queue or if there is already an
outstanding transaction for that block. A TBE contains the
address of the block requested, the current state of the
transaction, and any data received.1

The possible block states and descriptions of these states
are listed in Table 2. Note that there are two types of
ªstatesº for a cache block: the ªstableº state and the
ªtransientº state. The stable state is one of M (Modified), S
(Shared), or I (Invalid), it is recorded in the cache, and it
indicates the state of the block before the latest outstanding
transaction for that block (if any) started. The transient state,
as shown in Table 2, is recorded in a TBE, and it indicates
the current state of an outstanding transaction for that block
(if any). When future tables refer to the state of a block, it is
understood that this state is obtained by returning the
transient state from a TBE (if there is an outstanding
transaction for this block), or else (if there is no outstanding
transaction) by accessing the cache to obtain the stable state.
Blocks not present in the cache are assumed to have the
stable state of I. Each transient state has an associated
cache state, as shown in Table 2, assuming that the tag
matches in the cache. A cache state of busy implies that
there is a TBE entry for this block, and its state is a
transient state other than MIA or IIA.

To represent the transient states symbolically, we have
developed an encoding of these transient states which
consists of a sequence of two or more stable states (initial,
intended, and zero or more pending states), where the
second state has a superscript which denotes which part(s)
of the transactionÐaddress (A) and/or data (D)Ðare still
outstanding. For example, a processor which has block B in
state I, sends a GETS into the Address-Out queue, and sees
the data response but has not yet seen the GETS, would

560 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

TABLE 2
Broadcast Snooping Cache Controller States

1. The data field in the TBE may not be required. An implementation
may be able to use the cache's data array to buffer the data for the block.
This modification reduces the size of a TBE and avoids specific actions for
transferring data from the TBE to the cache data array.

have B in state ISA. When the GETS arrives, the state
becomes S.

Events at the cache controller depend on incoming
messages. The events are listed and described in Table 3.
Note that, in the case of Replacements, block B refers to the
address of the victim block. The allowed cache controller
actions are listed in Table 4. Cache controller behavior is
detailed in Table 5, where each entry contains a list of
< actions=next state > tuples. When the current state of
a block corresponds to the row of the entry and the next
event corresponds to the column of the entry, then the
specified actions are performed in order and the state of
the block is changed to the specified new state. If only a
next state is listed, then no action is required. All shaded
cases are impossible. The level of detail is such that
actions that are specified as atomic could be implemented
so as to appear atomic. An actual implementation could,
for example, use pipelining with bypassing and still
appear atomic.

2.1.5 Memory Node Specification

One of the advantages of broadcast snooping protocols is
that the memory nodes can be quite simple. The memory
nodes in this system, like those in the Synapse [11],
maintain some state about each block for which this
memory node is the home, in order to make decisions
about when to send data to requestors. This state includes
the state of the block and the current owner of the block.

Memory states are listed in Table 6, events are in Table 7,
actions are in Table 8, and transitions are in Table 9.

2.2 Specifying a Multicast Snooping Protocol

In this section, we will specify an MSI multicast snooping
protocol with the same methodology used to describe the
broadcast snooping protocol. Multicast snooping is a
promising new protocol that requires less snoop bandwidth
and provides higher throughput of address transactions,
thus enabling larger systems than are possible with broad-
cast snooping. Multicast snooping also has many features,
which will be discussed later, that pose new challenges for
verification.

2.2.1 System Model and Assumptions

Multicast snooping, as described by Bilir et al. [6],
incorporates features of both broadcast snooping and
directory protocols. It differs from broadcast snooping in
that coherence requests use a totally ordered multicast
address network instead of a broadcast network. Multicast
masks are predicted by processors, and they must always
include the processor itself and the directory for this block
(but not any other directories), yet they are allowed to be
incorrect. A GETS mask is incorrect if it omits the current
owner, and a GETX mask is incorrect if it omits the current
owner or any of the current sharers. This scenario is
resolved by a simple directory which can detect mask
mispredictions and retry these requests (with an improved

SORIN ET AL.: SPECIFYING AND VERIFYING A BROADCAST AND A MULTICAST SNOOPING CACHE COHERENCE PROTOCOL 561

TABLE 3
Broadcast Snooping Cache Controller Events

mask) on behalf of the requestors. In the common case of a
correct prediction, multicasting reduces network band-
width and processor snoop bandwidth, as compared to
broadcasting.

The multicast snooping protocol described here differs
from that specified in Bilir et al. in a few significant
ways. First, we specify an MSI protocol here instead of
an MOSI protocol. Second, we specify the protocol here
at a lower, more detailed level. Third, the directory in
this protocol can retry requests with incorrect masks on
behalf of the original requester. The directory can also
nack such requests, as specified by Bilir et al., to avoid
deadlock in the case where there the address network
cannot accept the retry.

A multicast system is shown in Fig. 3. The processor
nodes are structured like those in the broadcast snooping
protocol. Instead of memory nodes, though, the multicast
snooping protocol has directory nodes, which are memory
nodes with extra protocol logic for handling retries, and
they are also shown in Fig. 3. In the next two sections, we
will specify the behaviors of processor and directory
components in an MSI multicast snooping protocol.

2.2.2 Network Specification

The data network behaves identically to that of the
broadcast snooping protocol, but the address network
behaves slightly differently. As the name implies, the
address network uses multicasting instead of broadcasting
and, thus, a transition of the address network consists of
taking a message from the outgoing address queue of a
node and placing it in the incoming address queues of the
nodes specified in the multicast mask, as well as the
requesting node and the memory node that is the home of
the block being requested (if these nodes are not already
part of the mask).

Address messages contain the coherence request type
(GETS, GETX, or PUTX), requesting node ID, multicast
mask, block address, and a retry count. Data messages
contain the block address, sending node ID, destination
node ID, data message type (DATA or NACK), data block,
and the retry count of the request that triggered this data
message.

2.2.3 CPU Specification

The CPU behaves identically to the CPU in the broadcast
snooping protocol.

562 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

TABLE 4
Broadcast Snooping Cache Controller Actions

2.2.4 Cache Controller Specification

Cache controllers behave much like they did in the
broadcast snooping protocol, except that they must deal

with retried and nacked requests and they are more
aggressive in processing incoming requests. This added
complexity leads to additional states, TBE fields, protocol
actions, and protocol transitions.

There are additional states in the multicast protocol
specified here due to the more aggressive processing of
incoming requests. Instead of buffering incoming requests
(with the ªzº action) while in transient states, a cache
controller in this protocol ingests some of these requests,
thereby moving into new transient states. An example is the
state IMDI, which occurs when a processor in state IMD

ingests an incoming GETX request from another processor
instead of buffering it. The notation signifies that a
processor started in I, is waiting for data to go to M, and

will then go to I immediately (except for in cases in which
forward progress issues require the processor to perform a

LD or ST before relinquishing the data, as will be discussed

below). There are also three additional states that are

necessary to describe situations where a processor sees a

nack to a request that it has not seen yet.
There are four additional fields in the TBE: ForwardPro-

gress, ForwardID, RetryCount, and ForwardIDRetryCount.

The ForwardProgress bit is set when a processor sees its

own request that satisfies the head of the Mandatory queue.

This flag is used to determine when a processor must

perform a single load or store on the cache line before

relinquishing the block.2 Being able to perform at least a

single access is necessary to avoid livelock when a cache

line is highly contended for by multiple processors. For

example, when data arrives in state IMDI, a processor can

service a LD or ST to this block before forwarding the block

if and only if ForwardProgress is set. The ForwardID field

records the node to which a processor must send the block

in cases such as this. In this example, ForwardID equals the

ID of the node whose GETX caused the processor to go from

IMD to IMDI. RetryCount records the retry number of the

most recent message, and ForwardIDRetryCount records

SORIN ET AL.: SPECIFYING AND VERIFYING A BROADCAST AND A MULTICAST SNOOPING CACHE COHERENCE PROTOCOL 563

2. Another viable scheme would be to set this bit when a processor
observes its own address request and this request corresponds to the
address of the head of the Mandatory queue. It is also legal to set
ForwardProgress when a LD/ST gets to the head of the Mandatory queue
while there is an outstanding transaction for which we have not yet seen the
address request. However, sequential consistency is not preserved by a
scheme where ForwardProgress is set when data returns for a request and
the address of the request matches the address at the head of the Mandatory
queue.

TABLE 5
Broadcast Snooping Cache Controller Transitions

zOnly change the cache state to I if the tag matches.

TABLE 6
Broadcast Snooping Memory Controller States

the retry count associated with the block that will be

forwarded to the node specified by ForwardID.
We use the same table-driven methodology as was used

to describe the broadcast snooping protocol. Tables 10, 11,
12, and 13 specify the states, events, actions, and transitions,
respectively, for processor nodes.

2.2.5 Directory Node Specification

Unlike broadcast snooping, the multicast snooping protocol
requires a simplified directory to handle incorrect masks. A
directory node, in addition to its incoming and outgoing
queues, maintains state information for each block of
memory that it controls. The state information includes
the block state, the ID of the current owner (if the state is
M), and a bit vector that encodes a superset of the sharers (if
the state is S). The possible block states for a directory are
listed in Table 14. As before, we refer to M, S, and I as stable
states and others as transient states. Initially, for all blocks,
the state is set to I, the owner is set to memory, and the bit-
vector is set to encode an empty set of sharers. The state
notation is the same as for processor nodes, although the
state MXA refers to the situation in which a directory is in M
and receives data, but has not seen the corresponding
coherence request yet and, therefore, does not know (or
care) whether it is PUTX data or data from a processor that
is downgrading from M to S in response to another
processor's GETS.

A directory node inspects its incoming queues for the
address and data networks and removes the message at the
head of a queue (if any). Depending on the incoming
message and the current block state, a directory may inject a
new message into an outgoing queue and may change the
state of the block. For simplicity, a directory currently
delays all requests for a block for which a PUTX or
downgrade is outstanding.3

The directory events, actions and transitions are listed in
Tables 15, 16, and 17, respectively. The action ªzº (ªdelay
transactions to this blockº) relies on the fact that a directory
can delay address messages for a given block arbitrarily
while waiting for a data message. Conceptually, we have

one directory per block. Since there is more than one block
per directory, an implementation would have to be able to
delay only those transactions which are for the specific
block. Note that consecutive GETS transactions for the same
block could be coalesced.

2.3 Online Interactive Protocol Tables

We have developed software that automatically maps
protocol specifications to interactive web documentation.
Specifications for both protocols are available at url:
http://www.cs.wisc.edu/multifacet/public/ieeetpds2002.
The specifications are interactive in a couple of ways.
First, clicking on states, actions, and events provides
descriptions of them. Second, clicking on a state shows all
ways to reach that state by highlighting transition table
entries for which that state is the next state. This Web
documentation has proven useful to us in debugging the
protocols as well as communicating the protocols with
collaborators.

3 VERIFICATION OF SNOOPING PROTOCOLS

In this section, we present a methodology for proving that a
specification is sequentially consistent, and we show how
this methodology can be used to prove that our multicast
protocol satisfies SC. Our method uses an extension of
Lamport's logical clocks [20] to timestamp the load and
store operations performed by the protocol. Timestamps

564 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

3. This restriction maintains the invariant that there is at most one data
message per block that the directory can receive, thus eliminating the need
for buffers and preserving the sanity of the protocol developers.

TABLE 7
Broadcast Snooping Memory Controller Events

TABLE 8
Broadcast Snooping Memory Controller Actions

determine how operations should be reordered to witness
SC, as intended by the designer of the protocol. Logical
clocks and the associated timestamping actions are a
conceptual augmentation of the protocol and are specified
using the same table-based transition tables as the protocol
itself. We note that the set of all possible execution traces of
the protocol equals that of the augmented protocol.

The process of developing a timestamping scheme is a
valuable debugging tool in its own right. For example, an
early implementation of the multicast protocol did not
include a ForwardProgress bit in the TBE, and, upon
receiving the data for a GETX request when in state IMDI,
always satisfied an OP at the head of the mandatory queue
before forwarding the data. Attempts to timestamp OP
revealed the need for a forward progress bit, roughly to
ensure that OP can indeed be timestamped so that it
appears to occur just after the (ªearlierº) time of the GETX,
and that this OP's logical timestamp also respects program
order.

In brief, our methodology for proving sequential con-
sistency consists of the following steps.

. Augment the system with logical clocks and with
associated actions that assign timestamps to LD and
ST operations as the protocol operates. The logical

clocks are purely conceptual devices introduced for
verification purposes and are never implemented in
hardware.

. Associate a global history with any execution of the
augmented protocol. Roughly, the history includes
the configuration at each node of the system (states,
TBEs, cache contents, logical clocks, and queues), the
totally ordered sequence of transactions delivered by
the network, and the memory operations serviced so
far, in program order, along with their logical
timestamps.

. Using invariants, define the notion of a legal global
history. The invariants are quite intuitive when
expressed using logical timestamps. It follows
immediately from the definition of a legal global
history that the corresponding execution is sequen-
tially consistent.

. Finally, prove that the initial global history of the
system is legal, that each transition of the protocol
maps legal global histories to legal global histories,
and that the entries labeled ªimpossibleº in the
protocol specification tables are indeed impossible. It
then follows by induction that the protocol is
sequentially consistent.

SORIN ET AL.: SPECIFYING AND VERIFYING A BROADCAST AND A MULTICAST SNOOPING CACHE COHERENCE PROTOCOL 565

TABLE 9
Broadcast Snooping Memory Controller Transitions

Fig. 3. Multicast snooping system.

The first step above, that of augmenting the system with
logical clocks, can be done hand in hand with development
of the protocol. Thus, it is, on its own, a valuable debugging
tool. The second step is straightforward. It is also
straightforward to select a core set of invariants in the
third step that are strong enough to guarantee that the
execution corresponding to any legal global history is
sequentially consistent. The final step of the proof metho-
dology above requires a proof for every transition of the
protocol and every invariant, and may necessitate the
addition of further invariants to the definition of legal. This
step of the proof, while not difficult, is certainly tedious.

In the rest of this section, we describe the first three steps
of this process in more detail, namely how the multicast
protocol is augmented with logical clocks, and what is a
global history and a legal global history. We include
examples of the cases covered in the final proof step in
Appendix A.

3.1 Augmenting the System with Logical Clocks

In this section, we shall describe how we augment the
system specified earlier with logical clocks and with actions
that increment clocks and timestamp operations and data.
These timestamps will make future definitions (of global
states and legal global states) simpler and more intuitive.
These augmentations do not change the behavior of the system as
originally specified.

3.1.1 The Augmented System

The system is augmented with the following counters, all of
which are initialized to zero:

. One counter (global pulse number) associated with
the multicast address network.

. Two counters (global and local clocks) associated
with each processor node of the system.

. One counter (pulse number) added to each data field
and to each ForwardID field of each TBE.

. One counter (pulse number) field added to each data
message.

. One counter (global clock) associated with each
directory node of the system.

3.1.2 Behavior of the Augmented System

In the augmented system, the clocks get updated and
timestamps (or pulses) are assigned to operations and
data upon transitions of the protocol according to the
following rules.

Network. Each new address transaction that is ap-
pended to the total order of address transactions by the
network causes the global pulse number to increment by 1.
The new value of the pulse number is associated with the
new transaction.

Processor. Tables 18 and 19 describe how the global and
local clocks are updated. The TBE counter is used to record

566 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

TABLE 10
Multicast Snooping Cache Controller States

the timestamp of a request that cannot be satisfied until the
data arrives. When the data arrives, the owner sends the
data with the timestamp that was saved in the TBE.

Directory. Briefly, upon handling any transaction, the
directory updates its clock to equal the global pulse of that
transaction. The pulse attached to any data message is set to
be the value of the directory's clock.

3.2 Global Histories

The global history associated with an execution of the
protocol is a 3-tuple < TransSeq; Config; Ops > . TransSeq
records information on the sequence of transactions
requested to date: the type of transaction, requester,
address, mask, retry-number, pulse (possibly undefined),
and status (successful, unsuccessful, nack, or undeter-
mined). Config records the configuration of the nodes: state
per block, cache contents, queue contents, TBEs, and logical
clock values. Ops records properties of all operations
generated by the CPUs to date: operations along with

address, timestamp (possibly undefined), value, and rank in
program order.

The global history is defined inductively on the sequence
of transitions in the execution. In the initial global history,
TransSeq and Ops are empty. In Config, all processors are in
state I for all blocks, have empty queues, no TBEs, and
clocks initialized to zero. For all blocks, the directory is in
state I, the owner is set to the directory, and the list of
sharers is empty. All incoming queues are empty. Upon
each transition, TransSeq, Ops, and Config are updated in a
manner consistent with the actions of that transition.

3.3 Legal Global Configurations and Legal Global
Histories

There are several requirements for a global history such as
< TransSeq; Config;Ops > to be legal. Briefly, these are as
follows. The first requirement is sufficient to imply
sequential consistency. The remaining four requirements
supply additional invariants that are useful in building up
to the proof that the first requirement holds.

SORIN ET AL.: SPECIFYING AND VERIFYING A BROADCAST AND A MULTICAST SNOOPING CACHE COHERENCE PROTOCOL 567

TABLE 11
Multicast Snooping Cache Controller Events

. Ops is legal with respect to program order. That is,
the following should hold:

3.3.1. Ops respects program order. That is, for any two
operations O1 and O2, if O1 has a smaller timestamp than
O2 in Ops, then O1 must also appear before O2 in
program order.

3.3.2. Every LD returns the value of the most recent ST to
the same address in timestamp order.

. TransSeq is legal. To describe the type of constraints
that TransSeq must satisfy, we introduce the notion of
A-state vectors. The A-state vector corresponding to
TransSeq for a given block B records, for each processor
N, whether TransSeq confers Shared (S), Modified (M),
or no (I) access to block B to processor N. For example,
in a system with three processors, if TransSeq consists
of a successful GETS to block B by processor 1,
followed by an unsuccessful GETX to block B by
processor 2, followed by a successful GETS to block B
by processor 3, then the corresponding A-state for

568 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

TABLE 12
Multicast Snooping Cache Controller Actions

block B is (S,I,S). The constraints on TransSeq require,
for example, that a GETX on block B should not be
successful if its mask does not include all processors
that, upon completion of the transaction just prior to
the GETX, may have Shared or Modified access to B.
That is, if TransSeq consist of TransSeq' followed by
GETX on block B and A is the A-state for block B
corresponding to TransSeq', then the mask of the

GETX should contain all processors whose entries inA
are not equal to I. The precise definition of a legal
transaction sequence is included in Appendix A.

. Ops is legal with respect to TransSeq. Intuitively, for
all operations op in Ops, if op is performed by
processor N at global timestamp t, then the A-state
for processor N at logical time t should be either S or
M and should be M if op is a ST.

SORIN ET AL.: SPECIFYING AND VERIFYING A BROADCAST AND A MULTICAST SNOOPING CACHE COHERENCE PROTOCOL 569

TABLE 13
Multicast Snooping Cache Controller Transitions

zOnly change the cache state to I if the tag matches.

. Config is legal with respect to TransSeq. This involves
several constraints, since there are many compo-
nents to Config. For example, if processor N is in
state ISAD for block B, then a GETS for block B,
requested by N, with timestamp greater than that of
N (or undefined) should be in TransSeq.

. Config is legal with respect to Ops. That is, for all
blocks B and nodes N, the following should hold:

3.3.3. If N is a processor and its state for block B is one of
S, M, MIA, SMAD, or SMA, then the value of block B in
N's cache equals that of the most recent ST in Ops,
relative to N's clock. By ªmost recent ST relative to N's
clock,º we mean a ST whose timestamp is less then or
equal to N's clock.

3.3.4. If N is a processor and block B is in one of N's TBEs, then

its value equals that of the most recent ST in Ops, relative to

p.0.0, where p is the pulse in the data field of the TBE.

3.3.5. If data for block B is in N's incoming data queue, its

value equals the most recent ST in Ops (relative to the

data's timestamp, not N's current time).

3.3.6. If N is the directory of block B, then for each block B
for which N is the owner, its value equals that of the
most recent ST in Ops (relative to N's clock).

3.4 Properties of Legal Global Histories

It is not hard to show that the global history of the system is
initially legal. The main task of the proof is to show the
following:

Theorem 1. Each protocol transition takes the system from a
legal global history to a legal global history.

To illustrate how Theorem 1 is proven, we include in
Appendix A the proof of why the transition at each entry of
Table 13 (cache controller transitions) maps a legal global
history, < TransSeq;Ops; Config > , to a new global

570 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

TABLE 14
Multicast Snooping Memory Controller States

TABLE 15
Multicast Snooping Memory Controller Events

history, < TransSeq0; Ops0; Config0 > in which TransSeq' is
legal.

4 RELATED WORK

We focus on papers that specify and prove a complete
protocol correct, rather than on efforts that focus on
describing many alternative protocols and consistency
models, such as [2], [12]. There is a large body of literature
on the subject of formal protocol verification,4 which we
have classified into a taxonomy along two independent
axes: automation and completeness [27]. We distinguish
verification methods based on the level of automation they

support: manual, semiautomated or automated. Manual
methods involve humans who read the specification and
construct the proofs. Semiautomated methods involve some
computer programs (a model checker or theorem prover)
which are guided by humans who understand the
specification and provide the programs with the invariants
or lemmas to prove. Automated methods take the human
out of the loop and involve a computer program that reads
a specification and produces a correctness proof completely
automatically. For our classification, we also consider a
technique to be automated if it uses human-written
specification invariants which are reusable across multiple
protocols. We also distinguish techniques that are complete
(i.e., prove that a system implements a particular consis-
tency model) from those that are incomplete (i.e., prove
coherence or selected invariants). Table 20 provides a

SORIN ET AL.: SPECIFYING AND VERIFYING A BROADCAST AND A MULTICAST SNOOPING CACHE COHERENCE PROTOCOL 571

TABLE 17
Multicast Snooping Memory Controller Transitions

TABLE 16
Multicast Snooping Memory Controller Actions

4. Formal methods involve construction of rigorous mathematical proofs
of correctness while informal methods include such techniques as
simulation and random testing which do not guarantee correctness. We
only consider formal methods in this review.

summary of our taxonomy. We discuss each column of the
table separately below.

Manual Techniques. Lazy caching [3] is one of the
earliest examples of a formal specification and verification
of a protocol (lazy caching) that implements sequential
consistency. The authors use I/O automata as their formal
system models and provide a manual proof that a lazy
caching system implements SC. Their use of history
variables in the proof is similar to the manner in which
we use Lamport Clock timestamps in our proofs. Verifica-
tion of the Alpha 21264 [4], [34] is a manual proof that the
implementation conforms to the Alpha memory model.
Both the implementation and memory model are specified
in TLA+ (a form of temporal logic). Although they did find
a bug that would not have been caught by simulation, their
manual proofs are quite large and only a small portion
could be finished even with 4 people and 7 person-months
of effort. Gibbons et al. [14] provide a framework for
verifying that shared memory systems implement relaxed
memory models. The method involves specifying both the
system to be verified as well as an operational definition of
a memory model as I/O automata and then proving that the
system automaton implements the model automaton. As an
example, they provide a specification of the Stanford DASH
memory system and manually prove that it implements the
Release Consistency memory model. Our table-based
specification methodology is complementary in that it
could also be used to describe I/O automata.

Our previous papers [31], [25], [7], [17] specified various
shared memory systems (directory and bus protocols) at a
high level, and employed manual proofs using our Lamport
Clocks technique to show that these systems implemented
various memory models (SC, TSO, Alpha). This paper is our
latest effort which demonstrates our technique applied to
more detailed table-based specifications of snooping proto-
cols. Shen and Arvind [30] propose using term rewriting
systems (TRSs) to both specify and verify memory system

protocols. Their verification technique involves showing
that the system under consideration and the operational
definition of a memory model, when expressed as TRSs,
can simulate each other. This proof technique is similar to
the I/O automata approach used by Gibbons et al. [14].
Both TRSs and our table-based specification method can
be used in a modular and flexible fashion. A drawback of
TRSs is that they lack the visual clarity of our table-based
specification. Although their current proofs are manual,
they mention the possibility of using a model checker to
automate tedious parts of the proof.

Semiautomated Techniques. Henzinger et al. [16]
provide semiautomated proofs of lazy caching and a certain
snoopy cache coherence protocol using the MOCHA model
checker. Their protocol specificationsÐwith the system
being expressed in a language similar to a typical
imperative programming language and the proof require-
ments expressed in temporal logicÐare augmented with a
(manually constructed) specification of a ªfinite observerº
which can reorder protocol transactions in order to produce
a witness ordering which satisfies the definition of a
memory model. They provide such observers for the two
protocols they specify in the paper. However, the general
problem of automatically verifying sequential consistency is
undecidable and such finite observers do not exist for the
protocols we specify in this paper or in the protocols used in
modern high-performance shared-memory multiproces-
sors. Park and Dill [24] express both the definition of the
memory model and the system being verified in the same
specification language and then use manually constructed
aggregation functions to map the system specification to the
model specification (similar to the use of TRSs by Shen and
Arvind [30] and I/O automata by Gibbons et al. [14]). As an
example, they specify the Stanford FLASH protocol in the
language of the PVS theorem prover (the language is a
typed high-order logic) and use this aggregation technique
to prove that the ªDelayedº mode of the FLASH memory

572 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

TABLE 18
Processor Clock Actions

system is sequentially consistent. Akhiani et al. [4] and Yu

and Tuttle [34] summarize their experience with using

TLA+ and a TLA+ model checker (TLC) to specify and

verify the Compaq Alpha 21364 memory system protocol.

The TLA+ specification is complete and formal, but it

requires nearly two thousand lines to specify this compli-

cated protocol. The invariants are hardware-dependent

and, thus, need to be constructed manually in a protocol-

specific fashion.
Automated Techniques. Qadeer [29] develops a model

checking algorithm that proves that a memory system

conforms to a memory model, given assumptions about

fixed system size and certain properties of the system and

the memory model. The state space explosion is still a

problem for the model checker, but this is a promising

technique. Eiriksson et al. [10], [9] describe a methodology

which integrates design and verification where common

state machine tables drive a model checker and generators

of simulators and documentation. The protocol specifica-

tion tables they describe were designed to be consumed by

automated generators rather than by humans, and they do

not describe the format of the text specifications generated

from these tables. They use the SMV model checker (which

accepts specifications in temporal logic) to prove the

coherence of the protocol used in the SGI Origin 2000.

However, the system verified had only one cache block

(which is sufficient to prove coherence, but not consistency).

Nalumasu et al. [13], [22] propose an extension of Collier's

ArchTest suite which provides a collection of programs that

test certain properties of a memory model. Their extension

SORIN ET AL.: SPECIFYING AND VERIFYING A BROADCAST AND A MULTICAST SNOOPING CACHE COHERENCE PROTOCOL 573

TABLE 19
Processor Clock Updates

creates the effect of having infinitely long test programs
(and, thus, checking all possible interleavings of test
programs) by abstracting the test programs into nondeter-
ministic finite automata which drive formal specifications
of the system being verified. Both the automata and the
implementations are specified in Verilog and the VIS
symbolic model checker is used to verify that various
invariants are satisfied by the system when driven by these
automata. The technique is useful in practice and has been
applied to commercial systems such as the HP PA-8000
Runway bus protocol. However, it is incomplete in that the
invariants being tested do not imply SC (they are necessary,
but not sufficient). Park and Dill [23] provide an executable
specification of the Sun RMO memory model written in the
language of the Mur' model checker. They use this
specification to verify properties of small synchronization
routines. Pong et al. [26] verify the memory system of the
Sun S3.mp multiprocessor using the Mur' and SSM
(Symbolic State Model) model checkers, but again the
verified system had only one cache block and, thus, their
method cannot verify whether the system satisfies a
memory model. Pong and Dubois [28] use SSM to verify
the coherence, but not the consistency, of a system that
implements delayed consistency. Abts et al. [1] specify the
Cray SV2 protocol in the Mur' input language, and they
then verify that the protocol and its implementation
(specified in RTL) meet certain requirements, but they do
not verify that either satisfy a consistency model. The
protocol verification uses Mur' to ensure that several
coherence invariants are satisfied, and the implementation
verification uses protocol execution traces as input to an
RTL simulator.

5 CONCLUSIONS

In this paper, we have developed a specification
methodology that documents and specifies a cache
coherence protocol in eight tables: the states, events,
actions, and transitions of the cache and memory
controllers. We have used this methodology to specify
in detail a modern three-state broadcast snooping proto-
col with an unordered data network and an ordered
address network which allows arbitrary skew. We have

also presented a detailed specification of the Multicast
Snooping protocol [6], and, in doing so, we have shown
the utility of the table-based specification methodology.
Lastly, we have demonstrated a technique for verification
of the Multicast Snooping protocol, through the sketch of
a manual proof that the specification satisfies a sequen-
tially consistent memory model.

APPENDIX A

EXCERPT FROM PROOF OF

SEQUENTIAL CONSISTENCY

In this appendix, we include a precise definition of a legal
transaction sequence, and we prove that processor transi-
tions map legal histories to histories in which the transac-
tion sequence is legal. Other parts of the proof can be done
in a similar manner.

A.1 Legal Transaction Sequences

Intuitively, the definition of a legal transaction sequence
rules out sequences that do not make sense. For example, a
GETX on block B in which the mask does not include all
processors that ªcurrentlyº may have Shared or Modified
access to B should not be successful. By ªcurrently,º we are
referring to a moment in which all transactions occurring
before the GETX to block B in the transaction sequence are
completed, and no further transactions are yet handled. We
use an A-state vector to record the type of access each
processor may have to a given block upon completion of a
sequence of transactions. The A-state vector for block B has
P elements, each of which is either Invalid, Shared, or
Modified. Also, throughout the appendix, we denote an
entry of the transaction sequence as a tuple

< Trans;Mask;RetryNum;Pulse; Status >;

where Trans is a triple denoting the requester, address, and
transaction type (GETX, GETS, or PUTX) and the meaning
of the remaining entries of the tuple should be clear from
the description in Section 3.2.

We first define the notion of a determined legal
transaction sequence and its associated A-state. Here,
determined simply refers to the fact that the outcomes of

574 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

TABLE 20
Classification of Related Work

all transactions in the sequence have been determined to
be success, failure, or nack.

. The empty sequence () is a determined legal
transaction sequence with associated A-state vectors
A �< I; I; . . . ; I > for each block.

. If TransSeq denotes a determined legal transaction
sequence, then

TransSeq0 � �TransSeq;
< Trans;Mask;RetryNum;Pulse; Status >�

is also a determined legal transaction sequence if
the following conditions are true. In what follows,
let Trans be on block B, and let the requester of
Trans be r.

A.1.1. Status cannot be UNDETERMINED.

A.1.2. If Status = SUCCESS, then Mask is sufficient with
respect to TransSeq. A mask M is sufficient with respect
to TransSeq if, when A is the A-state vector for block B
associated with TransSeq, we have Mi � 1 for all nodes i
with Ai �M or Ai � S.

A.1.3. If RetryNum is 0, then the most recent tuple in
TransSeq with requester = N on block B (if any) has status
that is either SUCCESS or NACK. If RetryNum is greater
than 0 then the most recent tuple in TransSeq with
requester = N on block B must have the same transaction
type as Trans, must have a retry number that is less than
RetryNum, and must have Status = FAILURE.

The A-state associated with TransSeq' for all blocks other
than block B is the same as that associated with TransSeq.
For block B, the A-state A0 associated with TransSeq' is the
same as A except for the changes in Table 21).

Finally, a transaction sequence TransSeq is a legal
transaction sequence if the following conditions hold:

A.1.4. TransSeq is a concatenation of a determined legal
transaction sequence, TransSeqD, with a sequence of
tuples whose Status is UNDETERMINED.

A.1.5. Tuples in TransSeq are ordered by Pulse, with
UNDEFINED pulses occurring in arbitrary order at the
end of the sequence.

A.1.6. Tuples in TransSeq with determined Status must also
have a defined Pulse.

A.1.7. For all N and B there is at most one tuple in TransSeq
with requester=N, address=B, and Status=UNDETER-
MINED.

A.1.8. For each tuple T in TransSeq with Status=UNDETER-
MINED, if the Status of T is replaced by FAILURE or

NACK and Pulse is set to a defined value, then
TransSeqD, T is a determined legal transaction sequence.

A.1.9. For each tuple T in TransSeq with Status=UNDE-
TERMINED, if the mask of T is sufficient with respect to
TransSeqD (as defined in Condition A.1.2 above), the
status of T is replaced by SUCCESS, and Pulse is set to a
defined value, then TransSeqD, T is a determined legal
transaction sequence.

In what follows, suppose that a determined legal

transaction sequence of length at least t is fixed and a block

B is fixed. Let A be the A-state for block B associated with

the prefix of this transaction sequence of length t. Then, we

say that the A-state of processor i at time t is Ai and we

denote it by Ai�t�.
A.2 Cache Controller Transitions Map Legal Histories
to Histories with Legal Transaction Sequences

Each entry of Table 22 points to the proof of why the
transition at the corresponding entry of 13 (cache
controller transition specification), maps a legal global
history, <TransSeq,Ops,Config>, to a new global history,
<TransSeq',Ops',Config'> in which TransSeq' is legal. As
usual, the transition is done by node N on block B, and we
assume that the logical time of N (in Config) is t.

In the case of (a) in Table 22, processor N's state is I, S, or

M. By construction of the protocol, Tables 12 and 13, actions

f, g, or p, a transaction T is issued with type GETS, GETX, or

PUTX. By action a, the retry number must be 0. Therefore,

TransSeq' = TransSeq, T, where

T � << B; TY PE;N >;M; 0; UNDEFINED;

UNDETERMINED > :

For each condition of the definition of a legal transaction

sequence, we list the reasons why TransSeq' satisfies that

condition. Throughout, we denote the determined legal

prefix of TransSeq by TransSeqD; note that this is also the

determined prefix of TransSeq'.

A.1.4. TransSeq' is a concatenation of a determined legal

transaction sequence with a sequence of tuples whose

status is UNDETERMINED, since TransSeq is such a

sequence and since T has UNDETERMINED status.

A.1.5. Tuples in TransSeq' are ordered by pulse, with

UNDEFINED pulses occurring in arbitrary order at the

end of the sequence, since TransSeq satisfies this property

and T has UNDEFINED pulse.

A.1.6. Tuples in TransSeq' with determined status must

also have a defined pulse, since all tuples of TransSeq'

with determined status are in TransSeq and TransSeq

satisfies A.1.6.

SORIN ET AL.: SPECIFYING AND VERIFYING A BROADCAST AND A MULTICAST SNOOPING CACHE COHERENCE PROTOCOL 575

TABLE 21
Successful Transactions

A.1.7. For (node, block) pairs other than (N,B), TransSeq' has

at most one tuple with requester=node, address=block,

and UNDETERMINED status since TransSeq satisfies this

condition and since T has requester = N and address = B.

It remains to show that among the tuples in TransSeq

with status = UNDETERMINED, there are none with

both requester = N and address = B. This follows because

the definition of legal configuration (not included in this

document) states that, if a processor N at logical time t is

in one of states I, S, or M, then there is no transaction in

TransSeq with requester = N, address = B, and pulse

either > t or undefined.

A.1.8. TransSeq satisfies A.1.8; thus it remains to show that

TransSeqD, << B; TY PE;N >;M; 0; P ; FAILURE > is

a determined legal transaction sequence. This is true for

the following reasons. First, TransSeqD is a determined

legal transaction sequence, and so we need to show that

Conditions A.1.1-A.1.3 are satisfied.

A.1.1. The status of T00 is not UNDETERMINED since it is

FAILURE.

A.1.2. This does not apply, since the status is FAILURE.

A.1.3. Since RetryNum equals 0 it is sufficient to show that
the most recent transaction in TransSeqD with requester
= N and address = B has status equal to either SUCCESS
or NACK. As in A.1.7 above, this follows because the
definition of legal configuration states that, if a processor
N at logical time t is in one of states I, S, or M, then there
is no transaction in TransSeq with requester = N, address
= B, and pulse either > t or undefined; moreover, the most
recent transaction with requester = N and address = B is
either SUCCESS or NACK. Since TransSeqD is a sub-
sequence of TransSeq of length at least t, the same two
properties must hold for TransSeqD.

A.1.9. TransSeq satisfies A.1.9; thus it remains to show that
TransSeqD, << B;TYPE;N >;M ; 0;P; SUCCESS > is a
determined legal transaction sequence, assuming that the

576 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

TABLE 22
Legality of Transition from < Trans;Ops; Config > to < Trans0; Ops0; Config0 > ,

where the Transition Is Done by Processor N at Logical Time t, with Respect to Block B

Mask of T is sufficient. First, TransSeqD is a determined
legal transaction sequence, and so we need to show that
conditions A.1.1-A.1.3 are satisfied.

A.1.1. The status of T'' is not UNDETERMINED since it is

SUCCESS.

A.1.2. The mask M is sufficient by assumption.

A.1.3. Identical argument as for A.1.8 above.

In the case of (z) in Table 22, TransSeq0 � TransSeq and

TransSeq is legal. Therefore, TransSeq0 is legal.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation with grants EIA-9971256, MIPS-9625558, MIP-
9225097, CCR 9257241, and CDA-9623632, a Wisconsin
Romnes Fellowship, and donations from Sun Microsystems
and Intel Corporation. D. Sorin is supported by an Intel
graduate fellowship. M. Martin is supported by an IBM
graduate fellowship. Members of the Wisconsin Multifacet
Project contributed significantly to improving the protocols
and protocol specification model presented in this paper,
especially Anastassia Ailamaki, Ross Dickson, Charles
Fischer, and Carl Mauer.

REFERENCES

[1] D. Abts, D.J. Lilja, and S. Scott, ªToward Complexity-Effective
Verification: A Case Study of the Cray SV2 Cache Coherence
Protocol,º Proc. 27th Int'l Symp. Computer Architecture Workshop
Complexity-Effective Design, June 2000.

[2] S.V. Adve, ªDesigning Memory Consistency Models for Shared-
Memory Multiprocessors,º PhD thesis, Computer Sciences Dept.,
Univ. of Wisconsin-Madison, Nov. 1993.

[3] Y. Afek, G. Brown, and M. Merritt, ªLazy Caching,º ACM Trans.
Programming Languages and Systems, vol. 15, no. 1, pp. 182-205, Jan.
1993.

[4] H. Akhiani, D. Doligez, P. Harter, L. Lamport, J. Scheid, M. Tuttle,
and Y. Yu, ªCache Coherence Verification with TLA+,º FM '99-
Formal Methods, Volume II, 1999.

[5] J. Archibald and J.-L. Baer, ªCache Coherence Protocols: Evalua-
tion Using a Multiprocessor Simulation Model,º ACM Trans.
Computer Systems, vol. 4, no. 4, pp. 273-298, Nov. 1986.

[6] E.E. Bilir, R.M. Dickson, Y. Hu, M. Plakal, D.J. Sorin, M.D. Hilland,
D.A. Wood, ªMulticast Snooping: A New Coherence Method
Using a Multicast Address Network,º Proc. 26th Ann. Int'l Symp.
Computer Architecture, pp. 294-304, May 1999.

[7] A.E. Condon, M.D. Hill, M. Plakal, and D.J. Sorin, ªUsing Lamport
Clocks to Reason About Relaxed Memory Modelsº Proc. Fifth IEEE
Symp. High-Performance Computer Architecture, pp. 270-278, Jan.
1999.

[8] D.E. Culler and J.P. Singh, Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann, 1999.

[9] A. Eiriksson, A. Silbey, S. Venkataraman, and M. Woodacre,
ªOrigin System Design Methodology and Experience: 1M-Gate
ASICs and Beyond,º Proc. COMPCON '97, 1997.

[10] A.T. Eiriksson and K.L. McMillan, ªUsing Formal Verification/
Analysis Methods on the Critical Path in Systems Design: A Case
Study,º Proc. Computer Aided Verification Conf., pp. 367-380, 1995.

[11] S.J. Frank, ªTightly Coupled Multiprocessor System Speeds
Memory-access Times,º Electronics, vol. 57, no. 1, pp. 164-169,
Jan. 1984.

[12] K. Gharachorloo, ªMemory Consistency Models for Shared-
Memory Multiprocessors,º PhD thesis, Computer System Labora-
tory, Stanford Univ., Dec. 1995.

[13] R. Ghughal, A. Mokkedem, R. Nalumasu, and G. Gopalakrishnan,
ªUsing `Test Model-Checking' to Verify the Runway-PA800
Memory Model,º Proc. 10th ACM Symp. Parallel Algorithms and
Architectures, pp. 231-239, June 1998.

[14] P.B. Gibbons, M. Merritt, and K. Gharachorloo, ªProving
Sequential Consistency of High-Performance Shared Memories,º
Proc. Third ACM Symp. Parallel Algorithms and Architectures,
pp. 292-303, July 1991.

[15] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, second ed. Morgan Kaufmann, 1996.

[16] T.A. Henzinger, S. Qadeer, and S.K. Rajamani, ªVerifying
Sequential Consistency on Shared-Memory Multiprocessor Sys-
tems,º Lecture Notes in Computer Science, pp. 301-315, 1999.

[17] M.D. Hill, A.E. Condon, M. Plakal, and D.J. Sorin, ªA System-
Level Specification Framework for I/O Architectures,º Proc. 11th
ACM Symp. Parallel Algorithms and Architectures, pp. 138-147, June
1999.

[18] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Apr. 1979.

[19] S.D. Johnson, ªA Tabular Language for System Design,º Proc.
Fourth NASA Langley Formal Methods Workshop, Sept. 1997.

[20] L. Lamport, ªTime, Clocks and the Ordering of Events in a
Distributed System,º Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[21] L. Lamport, ªHow to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Programs,º IEEE Trans. Compu-
ters, vol. 28, no. 9, pp. 690-691, Sept. 1979.

[22] R. Nalumasu, R. Ghughal, A. Mokkedem, and G. Gopalakrishnan,
ªThe `Test Model-checking' Approach to the Verification of
Formal Memory Models of Multiprocessors,º Proc. Computer
Aided Verification, 10th Int'l Conf., A.J. Hu and M.Y. Vardi, eds.,
pp. 464-476, June 1998.

[23] S. Park and D.L. Dill, ªAn Executable Specification, Analyzer and
Verifier for RMO (Relaxed Memory Order),º Proc. Seventh ACM
Symp. Parallel Algorithms and Architectures, pp. 34-41, July 1995.

[24] S. Park and D.L. Dill, ªVerification of FLASH Cache Coherence
Protocol by Aggregation of Distributed Transactions,º Proc. Eighth
ACM Symp. Parallel Algorithms and Architectures, pp. 288-296, June
1996.

[25] M. Plakal, D.J. Sorin, A.E. Condon, and M.D. Hill, ªLamport
Clocks: Verifying a Directory Cache-Coherence Protocol,º Proc.
10th ACM Symp. Parallel Algorithms and Architectures, pp. 67-76,
June 1998.

[26] F. Pong, M. Browne, A. Nowatzyk, and M. Dubois, ªDesign
Verification of the S3.mp Cache-Coherent Shared-Memory Sys-
tem,º IEEE Trans. Computers, vol. 47, no. 1, pp. 135-140, Jan. 1998.

[27] F. Pong and M. Dubois, ªVerification Techniques for Cache
Coherence Protocols,º ACM Computing Surveys, vol. 29, no. 1,
pp. 82-126, Mar. 1997.

[28] F. Pong and M. Dubois, ªFormal Automatic Verification of Cache
Coherence in Multiprocessors with Relaxed Memory Models,º
IEEE Trans. Parallel and Distributed Systems, vol. 11, no. 9, pp. 989-
1006, Sept. 2000.

[29] S. Qadeer, ªOn the Verification of Memory Models of Shared-
Memory Multiprocessors,º Proc. Tutorial and Workshop on Formal
Specification and Verification Methods for Shared Memory Systems,
Oct. 2000.

[30] X. Shen and Arvind, ªSpecification of Memory Models and
Design of Provably Correct Cache Coherence Protocols,º Group
Memo 398, Mass. Inst. of Technology, June 1997.

[31] D.J. Sorin, M. Plakal, M.D. Hill, and A.E. Condon, ªLamport
Clocks: Reasoning About Shared-Memory Correctness,º Technical
Report CS-TR-1367, Univ. of Wisconsin-Madison, Mar. 1998.

[32] P. Sweazey and A.J. Smith, ªA Class of Compatible Cache
Consistency Protocols and their Support by the IEEE Futurebus,º
Proc. 13th Ann. Int'l Symp. Computer Architecture, pp. 414-423, June
1986.

[33] D.A. Wood, G.A. Gibson, and R.H. Katz, ªVerifying a Multi-
processor Cache Controller Using Random Test Generation,º IEEE
Design and Test of Computers, Aug. 1990.

[34] Y. Yu and M. Tuttle, ªAnalyzing Cache Coherence with TLA+,º
Proc. Tutorial and Workshop on Formal Specification and Verification
Methods for Shared Memory Systems, Oct. 2000.

SORIN ET AL.: SPECIFYING AND VERIFYING A BROADCAST AND A MULTICAST SNOOPING CACHE COHERENCE PROTOCOL 577

Daniel J. Sorin received the MS degree in
electrical and computer engineering from the
University of Wisconsin-Madison in 1998 and
the BSE degree in electrical and computer
engineering from Duke University in 1996. He
is currently a graduate student and research
assistant in the Electrical Engineering Depart-
ment at the University of Wisconsin-Madison.
His research interests are in multiprocessor
memory systems, with an emphasis on avail-

ability, verification, and analytical performance evaluation. He is a
student member of the ACM, IEEE, and the IEEE Computer Society.

Manoj Plakal received the BTech degree in
computer science and engineering from the
Indian Institute of Technology, Kanpur, in 1996,
and the MS degree in computer sciences from
the University of Wisconsin-Madison in 1998. He
is currently a PhD candidate in the Computer
Sciences Department at the University of Wis-
consin-Madison. His primary research interests
lie in the interactions between compilers and
modern computer architectures. He is currently

working with Professor Charles Fischer on innovative uses of software
assist threads for multithreaded processors. Through his work with
Professors Condon, Hill, and Wood, he also retains an interest in the
design and verification of cache coherence protocols and shared-
memory multiprocessors. He is a student member of the IEEE and the
IEEE Computer Society.

Anne E. Condon received the BSc degree from
University College, Cork, Ireland, in 1982, and
the PhD from the University of Washington in
1987. Her thesis, a study of game-theoretic
complexity classes, won an ACM Distinguished
Dissertation Award in 1988. Condon received a
National Young Investigator Award in 1992. She
was named Distinguished Alumna of University
College Cork in 2001, for her contributions in the
area of DNA computing. Her research contribu-

tions are in the areas of probabilistic and interactive complexity classes,
design and analysis of algorithms for computationally intractable
problems, and DNA computing. She is currently a professor in the
Department of Computer Science at the University of British Columbia.
She was a faculty member of the Computer Sciences Department at the
University of Wisconsin from 1987 to 1999.

Mark D. Hill received the BSE in computer
engineering from the University of Michigan in
1981, the MS degree in computer science from
the University of California±Berkeley in 1983,
and the PhD degree in computer science from
the University of California±Berkeley in 1987. He
is professor and Romnes Fellow in both the
Computer Sciences Department and the Elec-
trical and Computer Engineering Department at
the University of Wisconsin-Madison. He cur-

rently codirects the Wisconsin Multifacet project with Prof. David Wood.
He has made contributions to cache design, cache simulation,
translation buffers, memory consistency models, parallel simulation,
and parallel computer design. He won a US National Science
Foundation Presidential Young Investigator award in 1989, was named
an IEEE Fellow in 2000 for "contributions to cache memory design and
analysis," and co-won the best paper award in VLDB 2001.

Milo M.K. Martin received the BA degree in
computer science from Gustavus Adolphus
College in 1996, the MS in computer science
from the University of Wisconsin-Madison in
1998, and is currently a PhD candidate and
member of the Wisconsin Multifacet Project in
the Department of Computer Sciences at the
University of Wisconsin-Madison. His research
interests include memory system performance
of commercial workloads, techniques to improve

multiprocessor availability, and the use of dynamic feedback to build
adaptive and robust systems. He is supported by an IBM Graduate
Fellowship and is a student member of the ACM, the IEEE, and the IEEE
Computer Society.

David A. Wood received the BS in 1981 and his
PhD in 1990, both at the University of California,
Berkeley. He is a professor and Romnes Fellow
in both the Computer Sciences and Electrical
and Computer Engineering Departments at the
University of Wisconsin, Madison. He joined the
faculty at the University of Wisconsin in 1990.
He is a 1991 recipient of the US National
Science Foundation's Presidential Young In-
vestigator award, area editor (computer sys-

tems) of ACM Transactions on Modeling and Computer Simulation,
and a member of the ACM, IEEE, and the IEEE Computer Society.
He has published more than 50 papers, is an inventor on six US
and international patents, and was awarded an H.I. Romnes Faculty
Fellowship by the University of Wisconsin in 1999. He coleads the
Wisconsin Multifacet project with Professor Mark Hill (http://
www.cs.wisc.edu/multifacet) which is exploring techniques for ex-
ploiting prediction and speculation in multiprocessor memory
systems.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

578 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 6, JUNE 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

