
1

SACCS: Scalable Asynchronous Cache Consistency
Scheme for Mobile Environments

Zhijun Wang, Sajal Das, Hao Che and Mohan Kumar
Center for Research in Wireless Mobility and Networking

Department of Computer Science and Engineering
The University of Texas at Arlington, Arlington, TX 76019, USA

Abstract
In this paper, we propose a novel cache consistency main-
tenance scheme, called �������� ���	�
��	�
� ���
�
��	�����	�� ��
��� (SACCS), for mobile environments. It
relies on the following three key features: (1) Use of flag bits
at server and MU’s cache to maintain cache consistency; (2)
Use of an identifier (ID) for each entry in MU’s cache after
its invalidation in order to maximize the broadcast bandwidth
efficiency; (3) Rendering all valid entries of MU’s cache to

	������	 ����� when it wakes up. These three features
make the SACCS a highly scalable algorithm with minimum
database management overhead. Comprehensive simulation
results show that the performance of SACCS is superior to
those of existing algorithms.

I. Introduction
Wireless communication has increasingly become an im-

portant means for people to access various kinds of dynami-
cally changing data objects, such as news, stock price, and
traffic information. However, wireless mobile computing
environments are limited by communication bandwidth and
battery power [1], and have to live with mobile user’s (MU)
disconnectedness and mobility. Thus, data communication
in wireless mobile networks is more challenging than that in
wired networks.

���
�	� frequently accessed data objects at the lo-
cal buffer of an MU is an efficient way to reduce query
delay, save bandwidth and improve system performance.
But frequent disconnection and roaming of an MU make
���
� ��	�����	�� a difficult issue in wireless mobile com-
puting environments. A successful strategy must efficiently
handle both dissconnectedness and mobility. Broadcast has
the advantage of being able to serve an arbitrary number of
MUs with minimum bandwidth consumption. Thus, an effi-
cient mobile data transmission architecture should carefully
design its broadcast and cache management schemes to max-
imize��	�����

���������	 and minimize������� �
���
�����. A good mobile data transmission architecture should
also be��������, in the sense that it works efficiently for large
database systems and supports a large number of MUs.

Acknowledgement: This work is supported by a grant from Texas Ad-
vanced Research Program, TXARP Grant Number: 14-771032.

In the literature, there are two types of cache consistency
maintenance algorithms for wireless mobile computing envi-
ronments: stateless and stateful. In the��������� approach,
the server is unaware of client’s cache content. The client
needs to check the validity of cached entries from the server
before each query. Even though stateless approaches em-
ploy simple database management, their scalability and abil-
ity to support disconnectedness are poor. On the other hand,
������
� approaches are scalable, but incur significant over-
head due to server database management. Therefore, there
is a need for developing scalable and efficient algorithms for
maintaining cache consistency in mobile environments.

Motivated by the need for a scalable and efficient
cache consistency maintenance mechanism, we propose a
novel algorithm, called�������� ���	�
��	�
� ���
�
��	�����	�� ��
��� (SACCS) that maintains cache con-
sistency between the mobile support station (MSS) and MU’s
caches. SACCS is a highly scalable, efficient, and low com-
plexity algorithm due to the following three key features:
(1) Use of flag bits at server and MU’s cache to maintain
cache consistency; (2) Use of an ID for each entry in MU’s
cache after its invalidation in order to maximize the broadcast
bandwidth efficiency; (3) Rendering all valid entries of MU’s
cache to
	������	 ����� when it wakes up.

Comprehensive simulation results show that SACCS offers
superior performance over existing algorithms. For example,
in a system with� types of MU access patterns and� types
of data object update frequencies, SACCS can support about
��� and ���� more MUs than AS and Timestamp (TS)
schemes, respectively. It also guarantees that the average ac-
cess delay is no larger than� seconds.

The rest of the paper is organized as follows. Section II
gives a brief overview of the related work. In Section III,
a detailed description of the SACCS algorithm is presented.
Section IV presents comprehensive simulation results of our
algorithm and compares with those of existing approaches.
The conclusions are drawn in Section V.

II. Related Work
We summarize existing stateless and stateful approaches in

this section. In the��������� approach [2]-[7], an MSS as-
sumes no knowledge of MU’s cache contents. An MSS sim-

2

ply sends IRs to its MUs periodically. At an MU, a data ob-
ject request cannot be serviced until the next IR from the MSS
is received. In the������
� approach [8], an MSS maintains
object state for each MU’s cache and only broadcasts IRs for
those objects.

Barbara and Imielinksi [2] proposed three stateless algo-
rithms: Timestamps (��), Amnesic Terminals (��) and Sig-
nature (���). In these algorithms, the MSS broadcasts IRs,
which include all data object IDs updated during the past
�� seconds (where� is a positive integer), every� seconds.
The advantage of these algorithms is that an MSS does not
maintain any state information about its MU’s caches, which
makes the MSS database easy to manage. However, there
are several drawbacks with these algorithms. First, they do
not scale well to large databases and/or fast updating data
systems, due to increased number of IR messages. Second,
the average access lantency is always longer than half of
the broadcast period, simply because all requests can be an-
swered only after the next IR. Finally all cached data objects
are dropped if the sleep time is longer than��.

In order to handle the long sleep-wakeup patterns, several
algorithms have been proposed. For example, in the bit-
sequence (��) algorithm due to Jing, et al. [3], all cache
entries are deleted only when half or more of data entries in
the cache have been invalidated. However, the model requires
the broadcast of a larger number of IR messages than TS and
AT schemes. Wu et al. [5] proposed an uplink validation
check scheme that can deal with long sleep-wakeup patterns
better than TS and AT. But this approach requires more up-
link bandwidth and cannot deal with���� long sleep-wakeup
patterns.

Very few stateful cache consistency maintenance algo-
rithms have been proposed for wireless mobile computing
environments. Kahol, et al. [8] proposed an asynchronous
stateful (AS) algorithm to maintain cache consistency. In AS,
an MSS records all retrieved data object for each MU. When
an MU first retrieves a data object after it wakes up, the MSS
sends an IR, based on the MU’s cache content record and
sleep-wakeup time, to that particular MU. Whenever an MSS
receives an update from the original server for each recorded
data object, it immediately broadcasts that data object’s IR
to MUs. The advantage of the AS scheme is that the MSS
avoids unnecessary broadcast of IRs to MUs and can deal
with any sleep-wakeup pattern without losing valid data ob-
jects. However, in order to maintain each MU’s cache state
in the MSS, the MSS must record all cached data objects
for each MU. Hence an MU can only download data objects
which it requested through the uplink. This makes the chan-
nel utility inefficient and sensitive to the number of MUs.

III. Scalable Asynchronous Cache
Consistency Scheme (SACCS)

In this paper, we propose a novel scalable asynchronous
cache consistency scheme (SACCS) to maintain MU’s cache
consistency for a read-only system. Strictly speaking,

SACCS is a hybrid of stateless and stateful approaches in the
sense that it maintains minimum state information. However,
unlike the stateful algorithm [8] which requires the MSS to
remember all data objects for each and every MU’s cache,
SACCS only requires the MSS to identify which data objects
in its database might be valid in MU’s caches. This makes
the management of the MSS database much simpler. On the
other hand, unlike existing synchronous stateless approaches,
SACCS does not require periodic broadcast of IRs, thus
greatly reducing IR messages that need to be sent through
the downlink broadcast channel. Moreover, by adding uncer-
tain and ID-only states in MU’s caches, SACCS allows easy
handling of arbitrary sleep-wakeup patterns and mobility, and
strong cooperation among all MUs, which greatly improves
broadcast channel efficiency. The following subsections de-
scribe the proposed algorithm in detail.

A. Data Structures and Message Formats
For every data object with unique identifier�, the data

structure for MSS and MU’s cache are as follows:
� ��� 	�
� �: data entry format for each data object in

MSS. Here�� is the data object,	� is the last update
time for the data object and
� is a flag bit.

� ��� 	�� �� �: data entry format in an MU’s cache. Here
�� is defined above,	�� is the time stamp indicating the
last updated time for the cached data object�� , and��
is a two-bit flag identifying four data entry states:�����
��,
	������	 ��,
	������	 �� with a�����	� �
���
and�! � �	��, respectively.

The communication messages are as defined in Table I.

B. MU Cache Management
As the focus on this paper is the cache consistency mainte-

nance design, we simply use the LRU (Least Recently Used)
based replacement algorithm for the management of MU’s
caches. The impact of the cache replacement algorithms on
SACCS is a subject of future study.

In our LRU based replacement scheme, a newly cached
data object or a cached data object which receives a hit, is
moved to the head of the cache list. When a data object needs
to be cached while the cache is full, data entries with�� �� �

from the tail are deleted to make enough space to accommo-
date this new data object (the data object with�� � � must be
kept because some requests are waiting for its confirmation).

Any refreshed data objects from uncertain state or ID-only
state are placed in their original location and again, if neces-
sary, enough data entries from the tail are removed.

C. Algorithm Description
We present two procedures, i.e., MSSMain() and MU-

Main(), for the SACCS. The MSS continuously executes the
MSSMain() and each MU continuously executes the MU-
Main() procedure during its awake period.

The psudocodes MSSMain() and MUMain() are shown in
Figures 1 and 2.

3

TABLE I
COMMUNICATION MESSAGES INSACCS

Name Sender Receiver comments

"#������ �
�

� �
�

�� original
servers

MSS indicating�� has been updated to�
�

� at time�
�

�

$ ������ �� ��� MSS MUs broadcast valid data object�� with update time at��
�%��� MSS MUs indicating cached�� is invalid

��	��������	�� ��� MSS MUs indicating�� is valid if ��� � ��
&
������ MUs MSS query for data object��

"	������	�� ���� MUs MSS verifying if �� in unertain state with update time��� is valid

broadcast

x

x

Vdata(x, d , t)

to all MUsConfirmation(x, t)

x

IF (MSS

IF (MSS

IF (MSS

MSSMain() {

IF (

ELSE

xIF (

broadcast

broadcast

x

Uncertain(x, ts) message)

IF (x

gets

to all MUs

message)

to all MUsVdata(x, d , t)x

x

from original server)x x

fetch data entry from the database

Query(x)

fetch data entry from the databasex

x

x

 == 0) f
 f

IF (=) t ts

 == 0) f
 f

 f
 f

IR(x)

’
 d d x ’

}

’

x

x

set = 1x

gets

x

gets

x

set = 1

Update(x, d , t)

 == 1)
broadcast to all MUs and reset = 0

xx x t ’ t xupdate the database entry with ID as: = and =

Fig. 1. MSSMain

D. Cache Consistency Maintenance

Let us explain how SACCS maintains consistency between
an MSS database and MU caches. We assume that the con-
sistency between the MSS database and original servers is
maintained through wired network consistency algorithms
[9], [10].

For each cached data object, SACCS uses a single flag bit
��, to maintain the consistency between the MSS and MU
caches. When�� is retrieved by an MU,�� is set, indicating
that a valid copy of�� may be available in an MU’s cache.
If and when the MSS receives an updated��, it broadcasts
an�%��� and resets��. This action implies that there are no
valid copies of�� in any MU’s caches. Furthermore, while
�� � �, subsequent updates do not entail broadcast of�%���.
The flag�� is set again when the MSS services a retrieval
(including request and confirmation) for�� by an MU.

In mobile environments, an MU’s cache is in one of two
states: (i) awake or (ii) sleep. If an MU is����� at the time
of �%��� broadcast, the�� copy is invalidated and an ID-only

MUMain() {

IF (MU

x

move the entry into cache list head
ELSE IF

add ID x

ELSE IF
send
remove the entry in cache
add ID x

ELSE
send Query(x) to MSS

to MSS

add ID

x

ELSE

IF (

IF

ELSE IF
IF x

IF (MU
IF x

x

IF x

remove the uncertain entry if it exists in cache x
add the valid entry at cache list head x

x

send message to MSS Uncertain(x, ts)

x

x(entry is uncertain entry in cache)

(entry is ID−only entry in cache)

(the entry is ID−only entry in cache)x

to query waiting list

to query waiting list

(is in query waiting list)

to query waiting list

}

IF (MU wakes up from the sleep state)

IF (MU

IF x
IF x

IF x

x x

ELSE

(the entry is uncertain entry in cache list)

d
d

receives a request for)

 is valid in cache list)

d(is in uncertain state)

s

d

d

tts

ts

(ID is in query waiting list)
d

s
ts tx(=)

d

d(is valid or uncertain in cache)

s

d

delete and set = 3

Query(x)

x (<)

answer the request with cached data object dx

x

xset = 2 and move the entry into cache list head

x

IF (MU receives a message) Vdata(x, d , t)x x

answer the request with x

xdownload to orginal entry location in cache

dxdownload to orginal entry location in cache
x

s set the entry to valid entry (= 0) x

IR(x)receives a message)

s xdelete and set = 3
receives a

set = 0 x

xanswer the request with

Confirmation(x, t) message) x

set all valid (= 0) entry into uncertain state (= 1) s s

ELSE
xt xsset = and = 0

Fig. 2. MUMain

4

entry is maintained by the MU. The data objects of an MU in
the����# state are unaffected until it wakes up. When an MU
wakes up, it sets all cached valid data objects (including��)
into the uncertain state. Consequently, sleeping MUs and the
cached object are unaffected by missing�%��� broadcast.

E. Efficiency and Cooperation
As mentioned earlier, a good cache consistency mainte-

nance algorithm must be scalable and efficient in terms of the
database size and the number of MUs. SACCS can handle
large and fast updating data systems because the MSS has
some knowledge of MU’s cache. Only data entries which
have flag bits set result in the broadcast of�%s when data ob-
jects are updated. Consequently, the�% broadcast frequency
is the minimum of the uplink query/confirmation frequency
and the data object update frequency. In this way, the broad-
cast channel bandwidth consumption for IRs is minimized.

Besides IR traffic, all other traffic in SACCS is also mini-
mized due to the strong cooperation among the MU’s caches.
Specifically, due to the introduction of the uncertain state and
the ID-only state for the MU’s caches. The retrieval of a data
object,��, from the MSS issued by any given MU brings the
� entries in the uncertain or ID-only state in all the awake
MU’s caches to a valid state. Moreover, a single uplink con-
firmation for � in the uncertain state causes the� entries in
uncertain state for all the awake MU’s caches to either valid
or ID-only state. The addition of the uncertain state also al-
lows an MU’s cache to keep all the valid data objects after it
wakes up from arbitrary duration of sleep time. In contrast,
for AS and TS algorithms, all the invalidated data objects
are completely deleted from the MU’s cache. This allows
little cooperation among the MUs, resulting in a dramatic in-
crease of traffic volume between the MSS and the MUs as
the number of MUs increases (see in Section V). Although
[6] improves the scalability of TS by retaining the invalid
data objects, it reduces the cache efficiency by having to keep
the invalid data objects, rather than IDs as is the case in our
SACCS approach, in the MU’s cache.

In contrast with the AS scheme which requires'�()�
buffer space in the MSS to keep all the MU’s cache state, our
approach only requires�	� ��� per data object in the MSS to
indicate if the�% broadcast is required when the data object
is updated. Moreover, the added management overhead is
minimal requiring only a single bit check and set/reset.

F. Mobility
Typically, sychronous stateless approaches handle MU’s

mobility by assuming that all MSSs broadcast the same IRs
[7]. However, when the number of MSSs is large, such sys-
tems are not scalable. There is no an efficient way to handle
the MU’s mobility in the literature. In our approach, an MU
roaming into a new cell is treated as if it just woke up from the
sleep state, i.e., all the valid data objects are set to the uncer-
tain state. The consistency is guaranteed with this approach
and all valid data objects are retained. Also SACCS is simple

in the sense that it is transparent to the MSSs involved. In our
approach, the roaming effect is nothing more than the addi-
tion of a new sleep-wakeup pattern and should not have any
significant impact on the overall performance. In this paper,
we emulate the roaming effect by a sleep-wakeup pattern.

IV. Performance Evaluation By
Simulation

A. Simulation Setup

We consider a single cell system with one MSS database
and multiple MUs with identical cache size. The request
process for each MU is assumed to be Poisson distributed
and the update processes for data objects are also Poisson
distributed. Also the sleep-wakeup process is modeled as
a two-state Markov chain. The following parameters are
defined:

� � : the cache size for MU.
�
 : the channel bandwidth (�#�).
� *: the average request arrival rate for an MU.
� �� : the average update interval for a data object (���).
� �� : the period of a sleep-wakeup cycle for an MU (���).
� � : the ratio of the sleep time to the sleep-wakeup period

for an MU.
� �� : the size (�����) of a data object.
� �� : the uplink message size (�����).
� �� : the downlink invalidation or confirm message size

(�����).
� � : the average query delay (���), i.e., the time interval

between the time request is issued and the time the result
is received by the application.

� ��� : the uplink per query.
� �: the invalidation broadcast period (for TS

scheme)(���).
� ��� : the broadcast window size (for TS scheme).

In our simulation, we use a single channel with bandwidth

 for both downlink and uplink data transmission. All mes-
sages are queued and serviced based on a first-come-first-
serve discipline. All requests are ignored when an MU is in
the sleep state. Error recovering cost and software overhead
are ignored. When a requested data object is available at an
MU’s local cache, the delay� is counted as� . A +�#������
distribution MU access pattern[11] is used in the simulation.

In the following subsections, we present a comprehensive
comparison of the proposed SACCS with AS and TS algo-
rithms in terms of metrics! and ",& for three different
cases. The average access delay! is an important measure-
ment of system performance, a shorter!, a better perfor-
mance. The",& is related to cache hit ratio. When an
MU receives a query, if the queried data object is valid in the
cache, a cache hit is counted, and no uplink is needed for the
query. Hence, higher hit ratio, fewer",&.

5

B. Case Studies
We present	���� cases. In each case,�� � �� and

�� � �� for both SACCS and AS, and�� � �� and�� � ��

for TS.
The bandwidth is set as
 � ����� �#�. Cache size�

is in units of the number of data objects and the maximum
number of ID-only entries is also set to� in the first two
cases. Table II shows the parameter values for all cases.
Case 3 has different MU access patterns, data object sizes
and data object update frequencies. We will provide them
later in detail and use @ to denote them in Table II. Each
case study corresponds to a parameter effect indicated by *
in the column.

���� �: Effect of MSS Database Size
Table III presents the simulation results of� and��� for

the three algorithms with different database sizes.
From Table III, we observe that SACCS outperforms the

other two algorithms (AS and TS) on both performance met-
rics for different database sizes ()). When the database size
reaches����� , ! for TS is over��� ���. But for SACCS
and AS, one can see a slow increase of the performance met-
rics as) increases all the way up to� � ����� .

In summary, the performances of SACCS and AS are
not sensitive to the database size) and thus can be scaled
to large database sizes. However, the performance of TS
is sensitive to the database size, especially in terms of the
delay performance, and hence TS cannot be scaled to large
database sizes.

���� �: Effect of Data Update Rate
Table IV gives the simulation results of the effect of update

interval��. Again, as can be seen, SACCS outperforms AS
and TS for all these performance metrics. As expected, as
�� reduces, both performance metrics increase for all the
algorithms. However, SACCS and AS exhibit slower rates
of increase than TS for all the metrics. In particular, when
�� is reduced to�� ���, the delay performance of TS is
unacceptably large (about�� ���). At this update interval,
SACCS achieves more than��� delay performance gain
over AS. For",&, SACCS outperforms AS and TS by��
to ���.

���� �:Effect of the Number of MUs
In this case study, we consider a system similar to a real
situation. We assume that a cell has 5 different MU query
patterns as:* � �-��� � �� � ��, � � �.� � �.	 � � and
�� � ��� � �� � �� ��� with � � 0,1,2,3 and 4.

Each query pattern group has� -� MUs in it. We assume
the query patterns for all the groups follow Zipf-like (� � �)
distribution. The access popularity ranking for the neighbor-
ing groups is shifted by�� , i.e., group� has decreasing pop-
ularity from data object� to ���� and group� from �� to
���� and then from� to �� , and so on.

We also assume that there are� types of data objects in the
MSS as:�� � ��� � �� � �� and�� � ����� ��� with � �

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 A
cc

es
s

La
te

nc
y

(s
ec

on
d)

Number of MUs (x10)

SACCS
AS
TS

Fig. 3. Average Access Delay for 5 class MUs with 5 class data

0 5 10 15 20 25 30 35
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
ve

ra
ge

 U
pl

in
k

P
er

 Q
ue

ry

Number of MUs (x10)

COAS
AS
TS

Fig. 4. Average Uplink per query for 5 class MUs with5 class data

0,1,2,3 and 4. Each data type group has� -� data objects.
The parameter values chosen above are based on the under-

standing that a more frequent query of MU normally means
a shorter awake time and a faster updated data object usually
has smaller size. The cache size� � ��� ���	�� . The max-
imum number of data ID-only entries that can be kept in each
MU cache is set at��� .

Figures 3 and 4 depict! and ",& versus(for the
three algorithms, respectively. As one can see, SACCS scales
much better than TS and AS in terms of both performance
metrics. For example, at� � � ���, the number of MUs
that can be supported by TS, AS, and SACCS are about�� ,
��� , and��� , respectively. This means that SACCS can sup-
port about��� and���� more MUs than AS and TS, re-
spectively. Also as(increases,",& stays a constant for
both TS and AS, meaning that there is no cooperation among
MUs. In contrast,",& drops almost linearly as(increases
due to the strong cooperation among MUs. Once again, this
implies SACCS is a highly scalable algorithm.

V. Conclusions and Future Work
In this paper, we proposed a Scalable Asynchronous Cache

Consistency Scheme (SACCS) for mobile environments.
Three key features of SACCS are: (i) use of flag bits at MSS

6

TABLE II
SIMULATION PARAMETER SET UP

Cases N M C * T� T� s L wsz bp
���� � � ��� ��� �-�� ���� 	��� �.� 	� � ��	

���� 	 ���� ��� ��� �-�� � ���� �.
 	� � ��	

���� � ���� � � � � � � �� �� �

TABLE III
EFFECTS OF DATABASE SIZE FORZIPF-LIKE (� � �) ACCESS PATTERN

N 100 200 400 800 1600 3200 6400 12800
!������� �.�
� �.	�� �.
	� �.��� �.��� �.
�� �.��� �.��

!���� �.��
 �.	�
 �.
�� �.��� �.��� 	.��
 	.��
 	.���
!���� �	.��
 ��.�
� ��.��	 �
.
	� �
.��
 ��.
�	 �
.
�� ���.��

",&������� �.		
 �.�	
 �.
�� �.
�� �.�
� �.��
 �.��� �.�
�
",&���� �.��� �.
�
 �.

� �.��� �.��
 �.�
� �.�

 �.��

", &���� �.

� �.
�� �.�		 �.��� �.�
� �.��� �.��	 �.��

TABLE IV
EFFECTS OF DATA UPDATE FREQUENCY FORZIPF-LIKE (� � �) ACCESS PATTERN

T� 10 40 160 640 2560 10240
!������� �.��
 �.��� �.��
 �.��
 �.��� �.�
�

!���� �.�		 �.��� �.�
� �.�
� �.
	� �.���
!���� ��.��� ��.��� �
.��� ��.
�� ��.��� �
.�
�

",&������� �.��� �.
�
 �.��� �.��	 �.��
 �.��	
",&���� �.��� �.�
	 �.��	 �.��	 �.
	� �.���
",&�� �� �.��� �.��� �.�
� �.��� �.��
 �.���

and MU’s caches to maintain cache consistency; (ii) use of
an ID-only state for each entry in MU’s cache after a data
object becomes invalidated; (iii) all valid data entries are set
to the uncertain state after an MU wakes up. These key fea-
tures make the proposed algorithm highly scalable and effi-
cient. Strictly speaking, SACCS is a hybrid of stateful and
stateless algorithms. However, unlike stateful algorithms,
SACCS maintains one flag bit for each data object in MSS
to determine when to broadcast IRs. On the other hand, un-
like existing synchronous stateless approaches, SACCS does
not require periodic broadcast of IRs. Hence SACCS greatly
reduces IR messages that need to be sent through the down-
link broadcast channel. SACCS inherits the positive features
from both stateful and statless algorithms. Comprehensive
simulation results show that the proposed algorithm has sig-
nificantly better performance than TS and AS schemes.

An LRU based cache replacement is used in this paper.
Further work will include studying the impact of different
replacement algorithms on the performance of SACCS. Fu-
ture study will also investigate the MSS cache management
algorithm and the effective transfer cached data objects
among MSSs when MUs roam among different MSSs.

REFERENCES
[1] G. Forman and J. Zahorjan, “The challenge of mobile computing”,

IEEE Computer, 27(6), pp38-47, April 1994.
[2] D. Barbara and T. Imielinksi,“ Sleeper and Workaholics: caching strat-

egy in mobile environments ”,In Proceedings of the ACM SIGMOD
Conference on Management of Data, pp1-12, 1994.

[3] J. Jing, A. Elmagarmid, A. Heal, and R. Alonso. “Bit-sequences: an
adaptive cache invalidation method in mobile client/server environ-
ments”,Mobile Networks and Applications, pp 115-127, 1997.

[4] Q. Hu and D.K. Lee, “Cache algorithms based on adaptive invalidation
reports for mobile environments”,Cluster Computing, pp 39-50, 1998.

[5] K.L. Wu, P.S. Yu and M.S. Chen, “Energy-efficient caching for wire-
less mobile computing”,In 20th International Conference on Data En-
gineering, pp 336-345, 1996

[6] G. Cao, “A scalable low-latency cache invalidation strategy for mobile
environments”,ACM Intl. Conf. on Computing and Networking (Mo-
bicom), pp200-209, August, 2001

[7] K. Tan, J. Cai and B. Ooi, “An evaluation of cache invalidation strate-
gies in wireless environments”,IEEE Trans. on Parallel and Dis-
tributed System, 12(8), pp789-897, 2001

[8] A. Kahol, S. Khurana, S.K.S. Gupta and P.K. Srimani,“ A strategy
to manage cache consistency in a distributed mobile wireless environ-
ment”,IEEE Trans. on Parallel and Distributed System, 12(7), pp 686-
700, 2001.

[9] H. Yu, L. Breslau and S. Shenker, “A scalable web cache consistency
architecture”,In Proceedings of the ACM SIGCOMM, August, 1999.

[10] J. Gwertzman and M. Seltzer, “World-Wide Web cache consistency”,
In Proceedings of The USENIX Symposium on Internet Technologies
and Systems, December, 1997.

[11] L. Breslau, P. Cao, J. Fan, G. Phillips and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implications, ”,Proceedings
of IEEE INFOCOM’99,pp126-134, 1999

