SACCS: Scalable Asynchronous Cache Consistency

Scheme for Mobile Environments

Zhijun Wang, Sajal Das, Hao Che and Mohan Kumar
Center for Research in Wireless Mobility and Networking
Department of Computer Science and Engineering
The University of Texas at Arlington, Arlington, TX 76019, USA

Abstract

In this paper, we propose a novel cache consistency main-
tenance scheme, called Scalable Asynchronous Cache
Consistency Scheme (SACCS), for mobile environments. It
relies on the following three key features: (1) Use of flag bits
at server and MU’s cache to maintain cache consistency; (2)
Use of an identifier (ID) for each entry in MU’s cache after
itsinvalidation in order to maximize the broadcast bandwidth
efficiency; (3) Rendering all valid entries of MU’s cache to
uncertain state when it wakes up. These three features
make the SACCS a highly scalable algorithm with minimum
database management overhead. Comprehensive simulation
results show that the performance of SACCS is superior to
those of existing algorithms.

I. Introduction

In the literature, there are two types of cache consistency
maintenance algorithms for wireless mobile computing envi-
ronments: stateless and stateful. In theteless approach,
the server is unaware of client's cache content. The client
needs to check the validity of cached entries from the server
before each query. Even though stateless approaches em-
ploy simple database management, their scalability and abil-
ity to support disconnectedness are poor. On the other hand,
state ful approaches are scalable, but incur significant over-
head due to server database management. Therefore, there
is a need for developing scalable and efficient algorithms for
maintaining cache consistency in mobile environments.

Motivated by the need for a scalable and efficient
cache consistency maintenance mechanism, we propose a
novel algorithm, calledScalable Asynchronous Cache
Consistency Scheme (SACCS) that maintains cache con-
sistency between the mobile support station (MSS) and MU’s

Wireless communication has increasingly become an irmaches. SACCS is a highly scalable, efficient, and low com-
portant means for people to access various kinds of dynarplexity algorithm due to the following three key features:
cally changing data objects, such as news, stock price, i) Use of flag bits at server and MU’s cache to maintain

traffic information.

However, wireless mobile computingache consistency; (2) Use of an ID for each entry in MU’s

environments are limited by communication bandwidth archche after its invalidation in order to maximize the broadcast
battery power [1], and have to live with mobile user's (MUbandwidth efficiency; (3) Rendering all valid entries of MU’s
disconnectedness and mobility. Thus, data communicatioache tauncertain state when it wakes up.

in wireless mobile networks is more challenging than that in Comprehensive simulation results show that SACCS offers

wired networks.

superior performance over existing algorithms. For example,

Caching frequently accessed data objects at the lgn a system with5 types of MU access patterns atidypes
cal buffer of an MU is an efficient way to reduce queryf data object update frequencies, SACCS can support about
delay, save bandwidth and improve system performancg. % and 270% more MUs than AS and Timestamp (TS)
But frequent disconnection and roaming of an MU makschemes, respectively. It also guarantees that the average ac-
cache consistency a difficult issue in wireless mobile com- cess delay is no larger thahseconds.
puting environments. A successful strategy must efficiently The rest of the paper is organized as follows. Section Il
handle both dissconnectedness and mobility. Broadcast lgags a brief overview of the related work. In Section IlI,
the advantage of being able to serve an arbitrary numbereptietailed description of the SACCS algorithm is presented.
MUs with minimum bandwidth consumption. Thus, an effiSection IV presents comprehensive simulation results of our
cient mobile data transmission architecture should carefublygorithm and compares with those of existing approaches.
design its broadcast and cache management schemes to M- conclusions are drawn in Section V.

imize bandwidth utilization and minimizeaverage query

delay. A good mobile data transmission architecture should
also bescalable, in the sense that it works efficiently for large
database systems and supports a large number of MUs.

Acknowledgement: This work is supported by a grant from Texas A

vanced Research Program, TXARP Grant Number: 14-771032.

. Related Work

We summarize existing stateless and stateful approachesin

Jhis section. In thestateless approach [2]-[7], an MSS as-

sumes no knowledge of MU’s cache contents. An MSS sim-

ply sends IRs to its MUs periodically. At an MU, a data obSACCS is a hybrid of stateless and stateful approaches in the
jectrequest cannot be serviced until the next IR from the M$®nse that it maintains minimum state information. However,
is received. In thetate ful approach [8], an MSS maintainsunlike the stateful algorithm [8] which requires the MSS to
object state for each MU’s cache and only broadcasts IRs femember all data objects for each and every MU’s cache,
those objects. SACCS only requires the MSS to identify which data objects

Barbara and Imielinksi [2] proposed three stateless algiorits database might be valid in MU’s caches. This makes
rithms: TimestampsI(.S), Amnesic Terminals4T) and Sig- the management of the MSS database much simpler. On the
nature SIG). In these algorithms, the MSS broadcasts IRsther hand, unlike existing synchronous stateless approaches,
which include all data object IDs updated during the paSIACCS does not require periodic broadcast of IRs, thus
kL seconds (wherg is a positive integer), everf seconds. greatly reducing IR messages that need to be sent through
The advantage of these algorithms is that an MSS does tiieé downlink broadcast channel. Moreover, by adding uncer-
maintain any state information about its MU’s caches, whidain and ID-only states in MU’s caches, SACCS allows easy
makes the MSS database easy to manage. However, tHeadling of arbitrary sleep-wakeup patterns and mobility, and
are several drawbacks with these algorithms. First, they dtsong cooperation among all MUs, which greatly improves
not scale well to large databases and/or fast updating dataadcast channel efficiency. The following subsections de-
systems, due to increased number of IR messages. Secaadpe the proposed algorithm in detail.
the average access lantency is always longer than half of
the broadcast period, simply because all requests can be anData Sructures and Message Formats
swered only f';lfter the next IR.. Finally all cached data objects -, every data object with unique identifier the data
are dropped if the sleep time is longer thiaix structure for MSS and MU’s cache are as follows:
algorithms have been propssed. For example, i the bit (lz:ir:Je): daia enuy format for each data object i

: ’ MSS. Hered, is the data objectt, is the last update

si?rlijencflﬁ (‘f)I atlgé)nt:|m\3#ent?] ‘ﬂngr rﬁt ral. f[‘?(’j] ta” (r:]?r‘i:he in time for the data object anf] is a flag bit.
entries are deieted only when hall or more of dala entries (dg, tsz, s;): data entry format in an MU’s cache. Here

the cache have been invalidated. However, the model requires d, is defined aboves, is the time stamp indicating the
’T_I? géﬂg?ncsst (:Ivﬁ I:trgaelr n[lébeJ %fsls dn;isia%ﬁi t\t‘alf’ thS and last updated time for the cached data objégctands,

' ' prop P aldation ¢ 5 two-bit flag identifying four data entry statesilid
check scheme that can deal with long sleep-wakeup patterns d tain d... uncertain d.. with awaiting aquer
better than TS and AT. But this approach requires more up- _*’ uncertain de, . v g query
X : . andID — only, respectively.
link bandwidth and cannot deal witlery long sleep-wakeup I) .
patterns. The communication messages are as defined in Table I.

Very few stateful cache consistency maintenance algo-
rithms have been proposed for wireless mobile computiﬁg MU Cache Management
environments. Kahol, et al. [8] proposed an asynchronousAs the focus on this paper is the cache consistency mainte-
stateful (AS) algorithm to maintain cache consistency. In A®ance design, we simply use the LRU (Least Recently Used)
an MSS records all retrieved data object for each MU. Whdrased replacement algorithm for the management of MU’s
an MU first retrieves a data object after it wakes up, the MSSches. The impact of the cache replacement algorithms on
sends an IR, based on the MU’s cache content record an8iCCS is a subject of future study.
sleep-wakeup time, to that particular MU. Whenever an MSS In our LRU based replacement scheme, a newly cached
receives an update from the original server for each recordéata object or a cached data object which receives a hit, is
data object, it immediately broadcasts that data object’s rRoved to the head of the cache list. When a data object needs
to MUs. The advantage of the AS scheme is that the MSg&be cached while the cache is full, data entries wijth 2
avoids unnecessary broadcast of IRs to MUs and can dé&aim the tail are deleted to make enough space to accommo-
with any sleep-wakeup pattern without losing valid data olglate this new data object (the data object with= 2 must be
jects. However, in order to maintain each MU’s cache stakept because some requests are waiting for its confirmation).
in the MSS, the MSS must record all cached data objectsAny refreshed data objects from uncertain state or ID-only
for each MU. Hence an MU can only download data objecgate are placed in their original location and again, if neces-
which it requested through the uplink. This makes the chagary, enough data entries from the tail are removed.
nel utility inefficient and sensitive to the number of MUs.

C. Algorithm Description

. Scalable Asynchronous Cache We present two procedures, i.e., MSSMain() and MU-

: Main(), for the SACCS. The MSS continuously executes the
ConS|stency Scheme (SACCS) MSSMain() and each MU continuously executes the MU-

In this paper, we propose a novel scalable asynchronadain() procedure during its awake period.
cache consistency scheme (SACCS) to maintain MU’s cacheThe psudocodes MSSMain() and MUMain() are shown in
consistency for a read-only system. Strictly speakingigures 1 and 2.

TABLE |

COMMUNICATION MESSAGES INSACCS

| Name | Sender | Receiver| comments
Update(z,d,,t,) | original | MSS | indicatingd, has been updated t, at timet,,
servers
Vdata(z,dy,ts;) MSS MUs broadcast valid data objed} with update time at,,
IR(x) MSS MUs indicating cached,, is invalid
Confirmation(z,t;) | MSS MUs indicatingd,, is valid if ts, = t,
Query(z) MUs MSS | query for data objeat,
Uncertain(z,ts;) MUs MSS | verifying if d, in unertain state with update tinte, is valid
MSSMain() {
IF (MSS getsQuery(x) message MUMain() {
fetch data entryk from the database IF (MU receives a request fo,)
broadcast/data(x, d ., t,) to all MUs IF (d, is valid in cache list)
IF(f,==0) answer the request with cached data objbct
setfy =1 move the entry into cache list head
. ELSE IE (dy is in uncertain state)
IF(M
(MSS getsUncertain(x, tsy,) message sendUncertain(x, ts,) message to MSS
fetch data entryx ~ from the database add IDx to query waiting list
IF (tc=tsy) sets, =2 and move the entry into cache list heal
broadcasConfirmation(x, t,) to all MUs ELSE IF (the entry x is ID-only entry in cache)
ELSE send Query(x) to MSS
broadcastVdata(x, d, , ty) to all MUs remove the entry in cache
IF (f,==0) add IDx to query waiting list
=1 ELSE
Setk = sendQuery(x) to MSS
IF (MSSgets Update(x, dx , t) from original server) add ID x to query waiting list
update the database entry with D G!;(s:d’x = tandy |= IF (MU receives &vdata(x, d, ty) message)
IF(f,==1) IF (x is in query waiting list)
broadcastr(x) toallMUsandreget =0 answer the request wiithx
remove the uncertain entsy if it exists in cache
add the valid entrx at cache list head

Fig. 1. MSSMain

D. Cache Consistency Maintenance

Let us explain how SACCS maintains consistency between
an MSS database and MU caches. We assume that the con
sistency between the MSS database and original servers is
maintained through wired network consistency algorithms
[9], [10].

For each cached data object, SACCS uses a single flag bit
fz,» to maintain the consistency between the MSS and MU
caches. Whed,, is retrieved by an MUY, is set, indicating
that a valid copy ofl, may be available in an MU’s cache.
If and when the MSS receives an updatgd it broadcasts
anIR(z) and resety,. This action implies that there are no
valid copies ofd, in any MU’s caches. Furthermore, while
f= = 0, subsequent updates do not entail broadcaBR(f:).

The flag f, is set again when the MSS services a retrieval

(including request and confirmation) fdg by an MU.

In mobile environments, an MU’s cache is in one of two
states: (i) awake or (ii) sleep. If an MU igvake at the time
of IR(z) broadcast, thé, copy is invalidated and an ID-only

o

ELSE
|F (entry x is ID—-only entry in cache)
downloadd, to orginal entry location in cache
ELSE |F (entry x is uncertain entry in cache)

IF (tsy <ty)
downloadd, to orginal entry location in cache
setts, £, anfx =

ELSE

set the entry to valid entrys{
IF (MU receives dR(x) message)
IF (dx is valid or uncertain in cache)
deleted, andsef =3
IF (MU receives &onfirmation(x, ty) message)
IF (the entryx is uncertain entry in cache list)
IF (ts,=t)
setsy, =0
IF (ID x isin query waiting list)
answer the request witt,
ELSE
deleted, andsgf =3

IF (MU wakes up from the sleep state)
set all valid 6 = 0) entry into uncertain state (

0)

=1

Fig. 2. MUMain

entry is maintained by the MU. The data objects of an MU im the sense that it is transparent to the MSSs involved. In our
the sleep state are unaffected until it wakes up. When an Midpproach, the roaming effect is nothing more than the addi-
wakes up, it sets all cached valid data objects (includipg tion of a new sleep-wakeup pattern and should not have any
into the uncertain state. Consequently, sleeping MUs and tsignificant impact on the overall performance. In this paper,

cached object are unaffected by missiig(x) broadcast. we emulate the roaming effect by a sleep-wakeup pattern.

E. Efficiency and Cooperation Perf Evaluation B
As mentioned earlier, a good cache consistency mainte- Iv. Performance Evaluation y

nance algorithm must be scalable and efficient in terms of the Simulation
database size and the number of MUs. SACCS can handle o lati
large and fast updating data systems because the MSS a§ mulation Setup

some knowledge of MU’s cache. Only data entries which We consider a single cell system with one MSS database
have flag bits set result in the broadcast & when data ob- and multiple MUs with identical cache size. The request
jects are updated. Consequently, fiiebroadcast frequency process for each MU is assumed to be Poisson distributed
is the minimum of the uplink query/confirmation frequencind the update processes for data objects are also Poisson
and the data object update frequency. In this way, the broafistributed. Also the sleep-wakeup process is modeled as

cast channel bandwidth consumption for IRs is minimized.a two-state Markov chain. The following parameters are
Besides IR traffic, all other traffic in SACCS is also minigefined:

mized due to the strong cooperation among the MU’s caches.
Specifically, due to the introduction of the uncertain state and
the ID-only state for the MU’s caches. The retrieval of a data
object,d,, from the MSS issued by any given MU brings the
x entries in the uncertain or ID-only state in all the awake

MU'’s caches to a valid state. Moreover, a single uplink con- T,: the period of a sleep-wakeup cycle for an Midd).

firmation for z in the uncertain state causes thentries in s: the ratio of the sleep time to the sleep-wakeup period
uncertain state for all the awake MU'’s caches to either valid for an MU.

or ID-only state. The addition of the uncertain state also al- | } . ha size Lytes) of a data object.

lows an MU’s cache to keep all the valid data objects after it | bii the uplink message sizéiftes).

wakes up from arbitrary duration of sleep time. In contrast, | by: the downlink invalidation or confirm message size
for AS and TS algorithms, all the invalidated data objects (bytes).

are completely deleted from the MU’s cache. This allows
little cooperation among the MUs, resulting in a dramatic in-
crease of traffic volume between the MSS and the MUs as g (aceived by the application.

the number of MUs increases (see in Section V). Although UPQ: the uplink per query.

[6] improves the scalability of TS by retaining the invalid | ;. " 4o invalidation broadcast period (for TS
data objects, it reduces the cache efficiency by having to keep scheme)ec).

the invalid data objects, rather than IDs as is the case inour, = .« o 'broadcast window size (for TS scheme).
SACCS approach, in the MU’s cache.

In contrast with the AS scheme which requi@$M N) |
buffer space in the MSS to keep all the MU’s cache state, oy
approach only requirase bit per data object in the MSS to
indicate if thel R broadcast is required when the data obje
is updated. Moreover, the added management overhea
minimal requiring only a single bit check and set/reset.

« (' the cache size for MU.

o W: the channel bandwidtlbgs).

« Al the average request arrival rate for an MU.

« T,: the average update interval for a data objeet).

D: the average query delaydc), i.e., the time interval
between the time request is issued and the time the result

n our simulation, we use a single channel with bandwidth
for both downlink and uplink data transmission. All mes-
Spges are queued and serviced based on a first-come-first-
eLve discipline. All requests are ignored when an MU is in
he sleep state. Error recovering cost and software overhead
are ignored. When a requested data object is available at an
- MU'’s local cache, the dela® is counted a®. A Zipf—like
F. Mobility distribution MU access pattern[11] is used in the simulation.
Typically, sychronous stateless approaches handle MU’sIn the following subsections, we present a comprehensive
mobility by assuming that all MSSs broadcast the same IRemparison of the proposed SACCS with AS and TS algo-
[7]. However, when the number of MSSs is large, such sydthms in terms of metricd®) and U PQ for three different
tems are not scalable. There is no an efficient way to handiases. The average access ddbaig an important measure-
the MU’s mobility in the literature. In our approach, an MUment of system performance, a shorfer a better perfor-
roaming into a new cell is treated as if it just woke up from thmance. TheJ/ PQ is related to cache hit ratio. When an
sleep state, i.e., all the valid data objects are set to the unddtd receives a query, if the queried data object is valid in the
tain state. The consistency is guaranteed with this approawdthe, a cache hit is counted, and no uplink is needed for the
and all valid data objects are retained. Also SACCS is simpigiery. Hence, higher hit ratio, fewrPQ.

B. Ca.% SUdleS » R igccs ! x T Ty

We presentthree cases. In each casé, = 6/ and N
bq = 64 for both SACCS and AS, ani, = 10 andby = 10
for TS.

The bandwidth is set a®/ = 10000 bps. Cache siz&”
is in units of the number of data objects and the maximum
number of ID-only entries is also set @ in the first two
cases. Table Il shows the parameter values for all cases.
Case 3 has different MU access patterns, data object sizes

Average Access Latency (second)
5

and data object update frequencies. We will provide them Y P

later in detail and use @ to denote them in Table Il. Each T esrrrrrtiie

case study corresponds to a parameter effect indicated by * % ; m % »
in the column. mberers a0

Fig. 3. Average Access Delay for 5 class MUs with 5 class data

Case 1: Effect of MSS Database Size

Table Ill presents the simulation resultsidfand UP(Q for !
the three algorithms with different database sizes. ol Xk

From Table Ill, we observe that SACCS outperforms the
other two algorithms (AS and TS) on both performance met-
rics for different database size&’). When the database size
reaches’ 2800, D for TS is over160 sec. But for SACCS
and AS, one can see a slow increase of the performance met-
rics asN increases all the way up ¥ = 12800.

°
©
T

+ + B 4t +

o
@
&

Average Uplink Per Query
°
&
T

In summary, the performances of SACCS and AS are
not sensitive to the database si¥eand thus can be scaled
to large database sizes. However, the performance of TS Lo
is sensitive to the database size, especially in terms of the o .
delay performance, and hence TS cannot be scaled to large umberer e 010
database sizes. Fig. 4. Average Uplink per query for 5 class MUs with5 class data

Case 2: Effect of Data Update Rate

Table IV gives the simulation results of the effect of updat@,1,2,3 and 4. Each data type group #g&5 data objects.
interval T,,. Again, as can be seen, SACCS outperforms AS The parameter values chosen above are based on the under-
and TS for all these performance metrics. As expected, standing that a more frequent query of MU normally means
T, reduces, both performance metrics increase for all teshorter awake time and a faster updated data object usually
algorithms. However, SACCS and AS exhibit slower ratdsas smaller size. The cache siZe= 150 kbytes. The max-
of increase than TS for all the metrics. In particular, wheimum number of data ID-only entries that can be kept in each
T, is reduced to10 sec, the delay performance of TS isMU cache is set at00.
unacceptably large (abod® sec). At this update interval, Figures 3 and 4 depicD and UPQ versusM for the
SACCS achieves more thaf0% delay performance gain three algorithms, respectively. As one can see, SACCS scales
over AS. ForU PQ, SACCS outperforms AS and TS By much better than TS and AS in terms of both performance

to 30%. metrics. For example, ab = 8 sec, the number of MUs
that can be supported by TS, AS, and SACCS are aliout
Case 3:Effect of the Number of MUs 180, and260, respectively. This means that SACCS can sup-

In this case study, we consider a system similar to a rgabrt about/4 % and 270% more MUs than AS and TS, re-
situation. We assume that a cell has 5 different MU quespectively. Also as\/ increaseslJ P(Q) stays a constant for
patterns asA = 1/(10+ 50 % 3), s = 0.9 — 0.2 x ¢ and both TS and AS, meaning that there is no cooperation among
T, =500 * (i + 1) sec with ¢ = 0,1,2,3 and 4. MUs. In contrast{/ P drops almost linearly a&/ increases
Each query pattern group ha$/5 MUs in it. We assume due to the strong cooperation among MUs. Once again, this
the query patterns for all the groups follow Zipf-like £ 1) implies SACCS is a highly scalable algorithm.
distribution. The access popularity ranking for the neighbor-
ing groups is shifted by, i.e., group! has decreasing pop- :
ularity from data object’ to 1000 and group2 from 11 to v. Conclusions and Future Work
1000 and then from? to 10, and so on. In this paper, we proposed a Scalable Asynchronous Cache
We also assume that there @réypes of data objects in the Consistency Scheme (SACCS) for mobile environments.
MSS as:b, = 500 (i + 1) andT,, = 10°*! sec with i = Three key features of SACCS are: (i) use of flag bits at MSS

TABLE Il
SIMULATION PARAMETER SET UP

| Cases| N |M [C | X | T, | T, [s | L |[wsz|] bp |
Casel * 100 | 100 1/50 1000 | 2000 | 0.5 | 20 5 1024
Case 2 | 1000 | 100 | 100 1/50 * 1500 | 0.4 | 20 5 1024
Case 3 | 1000 * Q Q Q Q @ | 10| 10 Q
TABLE 1l

EFFECTS OF DATABASE SIZE FORZIPF-LIKE (z = 1) ACCESS PATTERN

N | 100 | 200 | 400 | 800 | 1600 | 3200 | 6400 | 12800 |
D(SACCS) 0.175 | 0.296 | 0.429 | 0.561 | 0.669 | 0.783 | 0.898 1.014
D(AS) 1.014 1.234 1.458 1.688 1.901 2.117 2.394 2.688
D(TS) 12.364 | 13.176 | 13.862 | 14.429 | 14.984 | 15.492 | 17.455 | 161.987
UPQ(SACCS) | 0.224 0.324 0.418 0.493 0.548 0.597 0.638 0.670
UPQ(AS) 0.690 0.737 0.779 0.815 0.837 0.849 0.877 0.887
UPQ(TS) 0.746 | 0.791 | 0.822 | 0.851 | 0.873 | 0.885 | 0.902 0.904
TABLE IV
EFFECTS OF DATA UPDATE FREQUENCY FORIPF-LIKE (z = 1) ACCESS PATTERN
| Ty | 10 | 40 | 160 | 640 | 2560 | 10240 |
D(SACCYS) 3.004 | 1.600 | 0.934 | 0.667 | 0.596 | 0.573
D(AS) 6.622 | 5.950 | 5.170 | 3.349 | 1.729 | 0.856
D(TS) 50.006 | 36.900 | 17.139 | 15.488 | 15.096 | 14.879
UPQ(SACCS) | 0.839 | 0.707 | 0.585 | 0.512 | 0.507 | 0.512
UPQ(AS) 0.986 | 0.972 | 0.932 | 0.852 | 0.726 | 0.566
UPQ(TS) 0.998 | 0.985 | 0.946 | 0.883 | 0.837 | 0.815
and MU’s caches to maintain cache consistency; (ii) use of REFERENCES

an ID-only state for each entry in MU’s cache after a datd1]
object becomes invalidated; (iii) all valid data entries are s
to the uncertain state after an MU wakes up. These key fea-
tures make the proposed algorithm highly scalable and effi-

cient. Strictly speaking, SACCS is a hybrid of stateful and®!
However, unlike stateful algorithms,

SACCS maintains one flag bit for each data object in MS$
to determine when to broadcast IRs. On the other hand, u

stateless algorithms.

G. Forman and J. Zahorjan, “The challenge of mobile computing”,
|EEE Computer, 27(6), pp38-47, April 1994.
] D. Barbara and T. Imielinksi,“ Sleeper and Workaholics: caching strat-
egy in mobile environments 'In Proceedings of the ACM SGMOD

Conference on Management of Data, pp1-12, 1994.

J. Jing, A. Elmagarmid, A. Heal, and R. Alonso. “Bit-sequences: an
adaptive cache invalidation method in mobile client/server environ-
ments”,Mobile Networks and Applications, pp 115-127, 1997.

Q. Huand D.K. Lee, “Cache algorithms based on adaptive invalidation
reports for mobile environmentsGluster Computing, pp 39-50, 1998.

fk] K.L. Wu, P.S. Yu and M.S. Chen, “Energy-efficient caching for wire-

like existing synchronous stateless approaches, SACCS does less mobile computing’ln 20th International Conference on Data En-

not require periodic broadcast of IRs. Hence SACCS greatl
reduces IR messages that need to be sent through the do

gineering, pp 336-345, 1996
. Cao, “A scalable low-latency cache invalidation strategy for mobile
~environments” ACM Intl. Conf. on Computing and Networking (Mo-

link broadcast channel. SACCS inherits the positive features bicom), pp200-209, August, 2001

from both stateful and statless algorithms. Comprehensivé!
simulation results show that the proposed algorithm has sig-

nificantly better performance than TS and AS schemes.

An LRU based cache replacement is used in this paper.
Further work will include studying the impact of different (]
replacement algorithms on the performance of SACCS. Fyg
ture study will also investigate the MSS cache management
algorithm and the effective transfer cached data objeq_ta]

among MSSs when MUs roam among different MSSs.

K. Tan, J. Cai and B. Ooi, “An evaluation of cache invalidation strate-
gies in wireless environments|EEE Trans. on Parallel and Dis-
tributed System, 12(8), pp789-897, 2001

A. Kahol, S. Khurana, S.K.S. Gupta and P.K. Srimani,“ A strategy
to manage cache consistency in a distributed mobile wireless environ-
ment”,IEEE Trans. on Parallel and Distributed System, 12(7), pp 686-
700, 2001.

H. Yu, L. Breslau and S. Shenker, “A scalable web cache consistency
architecture”|n Proceedings of the ACM S GCOMM, August, 1999.

J. Gwertzman and M. Seltzer, “World-Wide Web cache consistency”,
In Proceedings of The USENIX Symposium on Internet Technologies

and Systems, December, 1997.

L. Breslau, P. Cao, J. Fan, G. Phillips and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implicationsPtoceedings

of IEEE INFOCOM’ 99,pp126-134, 1999

