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Abstract

In this paper, we study diagnosabilities of multiprocessor systems under two diagnosis

models: the PMC model and the comparison model. In each model, we further consider

two different diagnosis strategies: the precise diagnosis strategy proposed by Preparata

et al. and the pessimistic diagnosis strategy proposed by Friedman. The main result of

this paper is to determine diagnosabilities of regular networks with certain conditions,

which include several widely used multiprocessor systems such as variants of hypercubes

and many others.
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1 Introduction

Fault diagnosis is an important step in the design of multiprocessor systems and VLSI/WSI-

oriented computing systems. And automatic fault diagnosis has been considered an integral

part of the process of achieving fault tolerance. A diagnosis strategy means a process to di-

agnose faults, and it is precise (respectively, pessimistic) if no fault-free processor is mistaken

as a faulty one (respectively, a fault-free processor may be mistaken as a faulty one). In order

to diagnose faults, a number of tests are performed among processors and the collection of

all test results is referred to as a syndrome.

Suppose that S is a system with at most t faulty processors. Based on a precise

diagnosis strategy, S is t-diagnosable if given any syndrome, all faulty processors can be

determined [28]. The maximum t for which S is t-diagnosable is called the diagnosability of S

[3]. On the other hand, based on a pessimistic diagnosis strategy, S is t/s-diagnosable if given

any syndrome, all faulty processors can be confined to a set of at most s processors, where

t ≤ s [18]. The maximum t for which S is t/t-diagnosable is also called the diagnosability of

S [23].

Preparata, Metzem, and Chien [28] first proposed a model, called the PMC model, for

fault diagnosis in a multiprocessor system. Under the PMC model, all tests are performed

between two adjacent processors, and it was assumed that a test result is reliable (respec-

tively, unreliable) if the processor that initiates the test is fault-free (respectively, faulty).

The PMC model was also adopted in [3], [16], [19], [20], [22], [23] and [35].

Malek [27] proposed another model, called the comparison model, under which each test

is initiated by a unique arbitrator. The arbitrator feeds a pair of processors with the same

task and input and then compares their outputs. It is assumed that the outputs are identical

if they are fault-free, and distinct otherwise. Only a fault-free arbitrator can guarantee a

reliable test result. Later, Maeng and Malek [25] modified Malek’s model so that multiple

arbitrators were allowed and each arbitrator can test any two of its adjacent processors.

Maeng and Malek’s model is referred to as the MM model. Sengupta and Dahbura [32]
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further suggested a modification of the MM model, called the MM* model, in which any

processor has to test another two processors if the former is adjacent to the later two. The

MM* model was also adopted in [2], [17] and [36].

Under the PMCmodel with a precise (respectively, pessimistic) strategy, an n-dimensional

hypercube has diagnosability n [3] (respectively, 2n − 2 [23]); an n-dimensional enhanced

hypercube has diagnosability n+1 (respectively, 2n) [35]; an n-dimensional Möbius cube has

diagnosability n (respectively, 2n − 2) [16]; an n-dimensional star graph has diagnosability

n − 1 (respectively, 2n− 4) [22]. On the other hand, under the MM* model with a precise

strategy, an n-dimensional hypercube has diagnosability n [36]; an n-dimensional enhanced

hypercube has diagnosability n+ 1 [36]; an n-dimensional crossed cube has diagnosability n

[17]; a k-ary n-dimensional butterfly graph has diagnosability 2k − 2 if k ≥ 3 and n ≥ 3 [2].

In this paper, we establish sufficient conditions for computing diagnosabilities of regular

networks. Our results are valid for both the PMC and the MM* models with both the precise

and the pessimistic strategies. As consequences, diagnosabilities of many well-known and

unknown but potentially useful multiprocessor systems can be obtained. These include hy-

percubes, enhanced hypercubes, twisted cubes, crossed cubes, Möbius cubes, cube-connected

cycles, tori, star graphs, and many others. Some of these are established in several papers

as described in the previous paragraph, and many are new.

In the next section, we introduce definitions and notations which are used throughout

this paper. We then derive in Section 3 the diagnosabilities of regular networks with certain

conditions under different models and strategies. Consequently, the diagnosabilities of several

widely used multiprocessor systems are determined in Section 4. Finally, in Section 5, we

conclude the paper with some remarks.

2 Preliminaries

In the study of multiprocessor systems, the topology of a system is often adequately repre-

sented by a graph G = (V,E), where each node u ∈ V denotes a processor and each edge
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(u, v) ∈ E denotes a link between nodes u and v. Previously, when the PMC model was

adopted, a self-diagnosable system was often represented by a directed graph in which an

arc directed from node u to node v means that u can test v. On the other hand, when the

MM* model was adopted, a self-diagnosable system was often represented by a multigraph

in which an edge (u, v) labeled with w means that w is an arbitrator for u and v, i.e., w

can test both u and v. Since multiple arbitrators for the same pair of nodes are allowed, the

representing graph can be a multigraph.

Throughout this paper we use a graph G = (V,E) to represent a self-diagnosable

system. For a node u of G, denote by N(u) the set of all its neighboring nodes, i.e., N(u) =

{v ∈ V : v is adjacent to u}. For a subset S of V , let N(S) = ∪v∈SN(v).

Definition 1 Under the PMC model, a syndrome σ for system G is defined as follows. For

any two distinct nodes u and v with v ∈ N(u),

σ(u, v) =

{

0, if v is tested by u to be fault-free;

1, if v is tested by u to be faulty.

Definition 2 Under the MM* model, a syndrome σ for system G is defined as follows. For

any three distinct nodes u, v and w with u, v ∈ N(w),

σ(u, v;w) =

{

0, if the test results of u and v by w are identical;

1, if the test results of u and v by w are distinct.

Notice that the test result initiated by a faulty processor is unreliable, and more than

one syndrome may be produced for G with faulty nodes. For each subset F ⊆ V , let Ω(F )

represent the set of syndromes that can be produced if F is the set of all faulty nodes. When

G has faulty nodes, a syndrome σ is randomly generated for the purpose of fault diagnosis.

We call F an allowable fault set with respect to σ under the PMC model (respectively, the

MM* model) if (1) and (2) hold (respectively, (1∗) and (2∗) hold).

(1) σ(u, v) = 0 for u ∈ V − F and v ∈ V − F .

(2) σ(u, v) = 1 for u ∈ V − F and v ∈ F .
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(1∗) σ(u, v;w) = 0 for u ∈ V − F , v ∈ V − F and w ∈ V − F .

(2∗) σ(u, v;w) = 1 for (u ∈ F or v ∈ F ) and w ∈ V − F .

It is easy to see that F is an allowable fault set with respect to σ if and only if σ ∈ Ω(F ).

Also, the set of all faulty nodes in G is an allowable fault set with respect to σ.

Two subsets F1 and F2 of V are distinguishable if Ω(F1)∩Ω(F2) = ∅, and indistinguish-

able otherwise. When F1 and F2 are distinguishable, for each syndrome σ in Ω(F1)∪Ω(F2),

exactly one of F1 and F2 is an allowable fault set with respect to σ. In this case, F1 and F2

are distinct. On the other hand, when F1 and F2 are indistinguishable, they are allowable

fault sets with respect to each syndrome in Ω(F1) ∩ Ω(F2).

Definition 3 Under the precise diagnosis strategy, a system G = (V,E) is t-diagnosable if

for any two subsets F1 and F2 of V such that |F1| ≤ t and |F2| ≤ t, the sets F1 and F2 are

distinguishable.

Definition 4 Under the pessimistic diagnosis strategy, a system G = (V,E) is t/t-diagnosable

if for any two subsets F1 and F2 of V such that |F1| ≤ t, |F2| ≤ t and |F1 ∪ F2| > t, the sets

F1 and F2 are distinguishable.

The following characterization is useful for the distinguishability of two sets under the

MM* model. The symmetric difference of two sets A and B is defined as the set A∆B =

(A ∪ B)− (A ∩B).

Lemma 1 ([32]) Suppose G = (V,E) is a system under the MM* model. Two distinct

subsets F1 and F2 of V are distinguishable if and only if there is a node v ∈ V − (F1 ∪ F2)

such that at least one of the following conditions holds.

(1) |N(v) ∩ (F1 − F2)| ≥ 2.

(2) |N(v) ∩ (F2 − F1)| ≥ 2.

(3) |N(v)− (F1 ∪ F2)| ≥ 1 and |N(v) ∩ (F1∆F2)| ≥ 1.
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3 Diagnosabilities of regular networks

This section determines diagnosabilities of regular networks with certain conditions. Our

results are for systems under the PMC model and the MM* model each using both the

precise and the pessimistic diagnosis strategies.

3.1 Precise diagnosis strategy

A graph is called r-regular if every node in this graph has the same degree r. A graph

is triangle-free if it does not contain a complete graph of three nodes as a subgraph. All

networks in this subsection are r-regular and triangle-free such that N(u) 6= N(v) for every

two adjacent nodes u and v. With these conditions, we prove the r-diagnosability of networks

under the PMC model and the MM* model each using the precise diagnosis strategy, see

Theorems 3 and 4 respectively. Our plan is as follows.

Suppose to the contrary that G is not r-diagnosable, in either model. Then, there are

two indistinguishable and hence distinct sets F1 and F2 with |F1| ≤ r and |F2| ≤ r. Using

the conditions mentioned above for the networks, we first prove in Lemma 2 that there is a

node w ∈ F1∆F2 adjacent to some node x 6∈ F1 ∪ F2. (For the purpose of discussion below,

let F3 denote the set of all such nodes x.) This is mainly because the conditions on the

networks force that there are not too many edges between the nodes in F1 ∪ F2. Having

this lemma, the result for the PMC model then follows easily from the definition. For the

result under the MM* model, a longer argument is needed. By the aid of Lemma 1 together

with nodes in F3, we first establish that |F1 ∩ F2| is as large as to be either r − 1 or r − 2.

Consequently, F1−F2 and F2−F1 both have at most two elements. These restrict the shape

of G greatly. The rest of the proof is then separated into two cases depending on the size of

F1 ∩ F2.

We now start with the common lemma for the PMC model and the MM* model.

Lemma 2 Suppose r ≥ 2 and G = (V,E) is an r-regular graph satisfying the following two

conditions.
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(a) G is triangle-free.

(b) N(u) 6= N(v) for every two distinct nodes u and v of G.

Then, for any two distinct subsets F1 and F2 of V with |F1| ≤ r and |F2| ≤ r, there exists a

node w ∈ F1∆F2 adjacent to some node x 6∈ F1 ∪ F2.

Proof. Suppose to the contrary that N(w) ⊆ F1∪F2 for all nodes w ∈ F1∆F2. As F1 6= F2,

we may choose u ∈ F1∆F2. In this case, N(u) ⊆ F1 ∪ F2. By the facts that |N(u)| = r and

|F1 ∩ F2| < max{|F1|, |F2|} ≤ r, we know that u has a neighbor v ∈ F1∆F2. Again, we have

N(v) ⊆ F1 ∪ F2. Since G is triangle-free, N(u) ∩N(v) = ∅. Therefore,

2r = |N(u)|+ |N(v)| = |N(u) ∪N(v)| ≤ |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩ F2| ≤ 2r.

Consequently, all inequalities are equalities and so F1 ∩ F2 = ∅ and F1 ∪ F2 is the disjoint

union of N(u) and N(v). Therefore, N(v) = (F1∪F2)−N(u). As r ≥ 2, node u has another

neighbor v′ 6= v. Since F1 ∩ F2 = ∅, we have v′ ∈ F1∆F2. By a similar argument as above,

we have N(v′) = (F1 ∪ F2) − N(u) and so N(v) = N(v′), a contradiction to condition (b).

For the relation among these sets, see Figure 1. ✷

✉

✉ ✉ ✉

✉ ✉ ✉ ✉
F1 ∪ F2 = N(u) ∪N(v)

u ∈ F1∆F2

v∈F1∆F2
N(u)

N(v) = (F1 ∪ F2)−N(u)

v′

�
�
�
�
�
�

✁
✁
✁
✁
✁
✁

❆
❆
❆
❆
❆
❆

❅
❅
❅
❅
❅
❅

✁
✁
✁
✁
✁
✁

❅
❅
❅
❅
❅
❅

❆
❆
❆
❆
❆
❆

◗
◗
◗
◗
◗
◗
◗
◗◗

q q q

q q q
Figure 1: Relation among the sets in the proof of Lemma 2.

According to Lemma 2 and the definition of diagnosability of a system under the PMC

model using the precise diagnosis strategy, we have
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Theorem 3 If r ≥ 2 and G is an r-regular graph, then G is r-diagnosable under the PMC

model using the precise diagnosis strategy if the following two conditions hold.

(a) G is triangle-free.

(b) N(u) 6= N(v) for every two distinct nodes u and v of G.

Proof. Suppose to the contrary that G is not r-diagnosable. Then, by Definition 3, there

exist two indistinguishable and hence distinct sets F1 and F2 with |F1| ≤ r and |F2| ≤ r. By

Lemma 2, there exists a node w ∈ F1∆F2 adjacent to some node x 6∈ F1 ∪ F2. Without loss

of generality, we may assume that w ∈ F1 − F2. Choose a syndrome σ ∈ Ω(F1) ∩ Ω(F2). If

σ(x, w) = 0 (respectively, σ(x, w) = 1), then F1 (respectively, F2) is not an allowable fault

set with respect to σ, a contradiction. ✷

For the discussion of the diagnosability under the MM∗ model using the precise diag-

nosis strategy, we need the aid of Lemma 2 as well as Lemma 1. The result is similar to that

for the PMC model, except now there are two exceptional networks defined as follows.

The first graph is G8 obtained from a 8-cycle joining the 4 pairs of the farest vertices.

More precisely, G8 is the graph with vertex set V (G8) = {x1, x2, . . . , x8} and edge set

E(G8) = {(xi, xi+1) : 1 ≤ i ≤ 7} ∪ {(x8, x1)} ∪ {(xj, xj+4) : 1 ≤ j ≤ 4}.

See Figure 2 for the graph G8.

x6 x5 x4

x7 x3

x8 x1 x2

✉ ✉ ✉
✉ ✉
✉ ✉ ✉

�
�
�
�
�
�
�
��❅

❅
❅
❅
❅
❅
❅
❅❅

Figure 2: The graph G8.

The second graph is Gn,n obtained from the complete bipartite graph Kn,n by remov-

ing a perfect matching. More formally, G(n, n) is the graph with vertex set V (Gn,n) =
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{x1, x2, . . . , xn, y1, y2, . . . , yn} and edge set

E(Gn,n) = {(xi, yj) : 1 ≤ i ≤ n, 1 ≤ j ≤ n and i 6= j}.

See Figure 3 for the graph Gn,n.
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Figure 3: The graph Gn,n.

We are now ready to establish diagnosabilities for regular networks under MM* model

using the precise diagnosis strategy.

Theorem 4 If r ≥ 3 and G is an r-regular graph, which is not isomorphic to G8 or Gr+1,r+1,

then G is r-diagnosable under the MM* model using the precise diagnosis strategy if the

following two conditions hold.

(a) G is triangle-free.

(b) N(u) 6= N(v) for every two distinct nodes u and v of G.

Proof. Suppose to the contrary that G is not r-diagnosable. Then, by Definition 3, there

exist two indistinguishable and hence distinct sets F1 and F2 with |F1| ≤ r and |F2| ≤ r.

According to Lemma 2, F1∆F2 has at least one node w adjacent to some node x 6∈ F1 ∪ F2.

Denote F3 the set of all such nodes x. Since F1 and F2 are indistinguishable, none of the

conditions in Lemma 1 holds. It follows that for any node v ∈ F3, we have

(i) |N(v) ∩ (F1 − F2)| ≤ 1,

(ii) |N(v) ∩ (F2 − F1)| ≤ 1,

(iii) N(v) ⊆ F1 ∪ F2.
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Then, F3 is an independent set with N(F3) ⊆ F1 ∪ F2. Also, (i) and (ii) and |N(v)| = r

imply |N(v) ∩ F1 ∩ F2| ≥ r − 2, which gives |F1 ∩ F2| ≥ r − 2 and so |F1 ∩ F2| = r − 1 or

r − 2.

Choose a node w ∈ F1∆F2 which is adjacent to some node x ∈ F3. Then, |F1 ∪ F2| ≥

|N(x)| ≥ r. Suppose |F1 ∪ F2| = r. By (iii), N(v) = F1 ∪ F2 for all nodes v ∈ F3. Condition

(b) then implies that F3 has just one node, which is x. In this case, w must be adjacent to

all other nodes in F ∪ F2. Thus a triangle forms, a contradiction. Hence, |F1 ∪ F2| ≥ r + 1.

Let F3 = {v1, v2, . . . , vs} and consider the following two cases.

Case 1. |F1 ∩ F2| = r − 1. In this case, |F1 ∪ F2| = r + 1 and |F1∆F2| = 2.

Let F1 ∪ F2 = {w1, w2, . . . , wr+1}. As G is r-regular, (iii) and condition (b) imply

s ≤ r + 1 and, without loss of generality, N(vi) = (F1 ∪ F2) − {wi} for 1 ≤ i ≤ s. We

claim that F1 ∪ F2 is independent. Suppose to the contrary that wj is adjacent to wk for

some j < k. Since G is triangle-free, any two neighbors of node vi are not adjacent. Hence,

wjwk ∈ E implies that j = s = 1 or j = 1 < k = s = 2. As |F1∆F2| = 2, we may choose

a vertex wi 6= w1 from F1∆F2. Then N(wi) ⊆ {w1} ∪ F3 and so wi has degree at most

1+ s ≤ 3 and hence exactly 3. Furthermore, s = 2 and wi = w2, which is adjacent to v1 and

v2, contradicting that v2 is not adjacent to w2. So, F1 ∪ F2 is an independent set. In this

case, N(wp) ⊆ F3 and N(wq) ⊆ F3 for the two nodes wp, wq ∈ F1∆F2. Condition (b) and

s ≤ r + 1 then imply that s = r + 1 and so G ∼= Gr+1,r+1, which is impossible.

Case 2. |F1 ∩ F2| = r − 2. In this case, |F1 − F2| ≤ 2 and |F2 − F1| ≤ 2.

By (i)–(iii), N(vi) = (F1 ∩ F2) ∪ {v′i, v
′′
i } for each vi ∈ F3, where v′i ∈ F1 − F2 and

v′′i ∈ F2 − F1. Notice that the nodes v′i (respectively, v
′′
i ) are not necessarily distinct, but

the sets {v′i, v
′′
i } are distinct. Then, |F1 − F2| ≤ 2 and |F2 − F1| ≤ 2 imply s ≤ 4. For the

relation among these sets, see Figure 4.

Since G is triangle-free, neighbors of v′i and v′′i are in F3 or in (F1∆F2)− {v′i, v
′′
i }. We

first give four observations.

(1) If N(v′i)∩F3 = {vi}, then the other neighbors of v′i are in (F1∆F2)−{v′i, v
′′
i }, which
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F1 − F2 F2 − F1

F3

F1 ∩ F2

v1 v2 vs−1 vs✉ ✉ . . . ✉ ✉
✉ ✉ ✉ ✉

✉ . . . ✉
✥✥✥

✥✥✥
✥✥✥
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❳❳❳❳❳❳❳❳❳❳❳❳

❍❍❍❍❍❍

❅
❅
❅

PPPPPPPPP

✥✥✥
✥✥✥

✥✥✥
✥✥✥

✥✥✥

✏✏✏✏✏✏✏✏✏

❳❳❳
❳❳❳

❳❳❳
❳❳❳

�
�
�

❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤

✟✟✟✟✟✟

✘✘✘✘✘✘✘✘✘✘✘✘

Figure 4: |F1 − F2| ≤ 2 and |F2 − F1| ≤ 2 imply s ≤ 4.

has at most two nodes. Hence, N(v′i) = {vi} ∪ ((F1∆F2)−{v′i, v
′′
i }) has exactly 3 nodes and

r = 3 and |F1∆F2| = 4.

(2) If N(v′i)∩F3 = {vi, vj} with i 6= j, then the other neighbors of v′i are in (F1∆F2)−

{v′i, v
′′
i , v

′′
j }, which has at most one node. Hence, N(v′i) = {vi, vj} ∪ ((F1∆F2)− {v′i, v

′′
i , v

′′
j })

has exactly 3 nodes and r = 3 and |F1∆F2| = 4.

(3) If there are at least 3 distinct nodes vi, vj, vk ∈ N(v′i) ∩ F3, then F2 − F1 contains

at least three distinct nodes v′′i , v
′′
j , v

′′
k , which is impossible.

(4) Similarly, eitherN(v′′i ) = {vi}∪((F1∆F2)−{v′i, v
′′
i }) orN(v′′i ) = {vi, vj}∪((F1∆F2)−

{v′i, v
′
j , v

′′
i }). In either case, N(v′′i ) has exactly r = 3 nodes and |F1∆F2| = 4.

Having the four observations, we now continue our proof. If |N(v′i) ∩ F3| = |N(v′′i ) ∩

F3| = 1 for some i, then N(v′i) = {vi} ∪ ((F1∆F2) − {v′i, v
′′
i }) = N(v′′i ) by (1) and (4),

contradicts condition (b).

Now, by symmetric, assume that N(v′1)∩F3 = {v1} and N(v′′1 )∩F3 = {v1, v2}. By (1)

and (4), the adjacency of the related nodes are shown as in the left of Figure 5. As v′2 is of

degree 3, it must be adjacent to one more node in F3, say v3. This implies that G is in fact

G8 as in the right of Figure 5.

The case of |N(v′1) ∩ F3| = |N(v′′1) ∩ F3| = 2 is similar, except now v′1 is x2. ✷
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Figure 5: G is isomorphic to G8.

3.2 Pessimistic diagnosis strategy

In parallel to the results of last subsection, in this subsection we establish (2r − 2)/(2r −

2)-diagnosability of networks under the PCM model and the MM* model each using the

pessimistic diagnosis strategy, see Theorems 6 and 7 respectively. Arguments here are slightly

more complicated than those in the previous subsection, and stronger conditions on the

networks are necessary. More precisely, all networks considered in this subsection are r-

regular and triangle-free such that |N(u) ∩ N(v)| ≤ 2 for every two distinct nodes u and v.

Notice that the condition |N(u) ∩ N(v)| ≤ 2 is stronger than that N(u) 6= N(v). In fact,

when G is r-regular, the former implies |N(u) ∪N(v)| ≥ 2r − 2 while the later only implies

|N(u)∪N(v)| ≥ r+1. For technical reason, we also have an exceptional graph G5 which is the

graph with vertex set V5 = {z, z1, z2, z3, z4, z5}∪{zI : I ⊆ {1, 2, 3, 4, 5}, |I| = 2} and edge set

E5 = {zzi, zizI , zIzJ : i ∈ {1, 2, 3, 4, 5}, i ∈ I, I, J ⊆ {1, 2, 3, 4, 5}, |I| = |J | = 2, I ∩ J = ∅}.

Our plan is as follows. Suppose to the contrary that G is not (2r − 2)/(2r − 2)-

diagnosable, in either model. Then, there are two indistinguishable and hence distinct sets

F1 and F2 with |F1| ≤ 2r− 2 and |F2| ≤ 2r− 2 but |F1 ∪F2| > 2r− 2. Using the conditions

mentioned above for the networks, we first prove in Lemma 5 that there is a node w ∈ F1∆F2

adjacent to some node x 6∈ F1 ∪ F2. (For the purpose of discussion below, let F3 denote the

set of all such nodes x.) Although the proof for Lemma 5 is longer than that for Lemma

2, the main reason is also that the conditions on the networks force that there are not too
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Figure 6: The graph G5, where zij stands for z{i,j}.

many edges between the nodes in F1∪F2. Having this lemma, again, the result for the PMC

model follows easily from the definition. For the result under the MM* model, again, a longer

argument is needed. By the aid of Lemma 1 together with nodes in F3, we first establish

that |F1∩F2| ≥ r−2 and |F1∪F2| ≤ 3r−2. It is then proved that |N(w)∩F3| ≤ 2 for each

node w ∈ F1∆F2. These restrict the connections between F1∆F2 and F3. The rest of the

proof is then separated into three cases depending on the sizes of F3 and N(p) ∩ (F1∆F2)

for p ∈ F3.

We now start with the common lemma for the PMC model and the MM* model.

Lemma 5 Suppose r ≥ 5 and G is an r-regular graph, which is not isomorphic to G5 and

satisfies the following two conditions.

(a) G is triangle-free.

(b) |N(u) ∩N(v)| ≤ 2 for every two distinct nodes u and v of G.

Then, for any two distinct subsets F1 and F2 of V with |F1| ≤ 2r − 2 and |F2| ≤ 2r − 2 but

|F1 ∪ F2| > 2r − 2, there exists a node w ∈ F1∆F2 adjacent to some node x 6∈ F1 ∪ F2.

Proof. Suppose to the contrary that N(w) ⊆ F1 ∪ F2 for all w ∈ F1∆F2. By the

assumptions, F1 ∩ F2 is a proper subset of F1 and F2, and so |F1∆F2| ≥ 2. We may choose

two distinct vertices u and v from F1∆F2. If N(u) and N(v) are subsets of F1 ∩ F2, then

13



condition (b) implies that

|F1 ∩ F2| ≥ |N(u) ∪N(v)| = |N(u)|+ |N(v)| − |N(u) ∩N(v)| ≥ r + r − 2 = 2r − 2 ≥ |F1|,

contradicting to that fact that F1 ∩ F2 is a proper subset of F1.

Therefore, either u or v is adjacent to a vertex in F1∆F2. So, we may choose two

adjacent vertices x and y from F1∆F2. If N(x)−{y} and N(y)−{x} are subsets of F1∩F2,

then condition (a) implies that (N(x)− {y}) ∩ (N(y)− {x}) = ∅ and so

|F1∩F2| ≥ |(N(x)−{y})∪(N(y)−{x})| = |N(x)−{y}|+|N(y)−{x}| = (r−1)+(r−1) ≥ |F1|,

again a contradiction.

This proves that F1∆F2 has a vertex adjacent to at least two vertices in F1∆F2. Now,

choose a vertex z ∈ F1∆F2 with a maximum number s of neighbors in F1∆F2, where

2 ≤ s ≤ r. Let these s neighbors of z be z1, z2, . . . , zs, and A = ∪1≤i≤s(N(zi) − {z}).

By condition (a), A does not contain z and its neighbors. Also, each zi has r − 1 neighbors

in A. By condition (b), each vertex in A has at most 2 neighbors in {z1, z2, . . . , zs}. Then

|A| ≥ s(r − 1)/2. Therefore,

|F1 ∪ F2| ≥ 1 + |N(z)| + |A| ≥ 1 + r + s(r − 1)/2.

Also, by the choice of z, each node zi has at most s neighbors in F1∆F2 and hence at

least r − s vertices in F1 ∩ F2, which are not neighbors of z. This further implies that

|F1 ∩ F2| ≥ 2(r − s). Then,

4r−4 ≥ |F1|+ |F2| = |F1∪F2|+ |F1∩F2| ≥ (1+r+s(r−1)/2)+2(r−s) = 3r+1+s(r−5)/2.

As r ≥ 5 and s ≥ 2, this inequality in fact is an equality and also r = 5 or s = 2. It

is also the case that |(F1 ∩ F2) − N(z)| = r − s, and each zi is adjacent to any vertex in

(F1 ∩ F2)−N(z). That is, (F1 ∩ F2) ∩ A = (F1 ∩ F2)−N(z).

If 2 ≤ s ≤ r− 3, then |(F1 ∩F2)−N(z)| ≥ 3 and so |N(z1)∩N(z2)| ≥ 3, contradicting

condition (b). If r = 5 and 2 = r− 3 < s ≤ 4, then |(F1 ∩F2)∩A| = |(F1 ∩F2)−N(z)| ≥ 1

14



and so |N(z) ∩ N(a)| ≥ s > 2 for any a ∈ (F1 ∩ F2) ∩ A, again impossible. Therefore,

r = s = 5 and F1 ∩ F2 = ∅. In this case, A has 10 vertices each adjacent to exactly two

vertices in N(z). Also, by condition (b), two distinct vertices in A have distinct pair of

neighbors in N(z). For I = {i, j}, we can use zI to name the vertex of A adjacent to zi and

zj . By condition (a), we also have that zI is not adjacent to those zJ with I ∩ J 6= ∅ and

hence adjacent to those zK with I ∩K = ∅. So, G is in fact G5, a contradiction. ✷

According to Lemma 5 and the definition of diagnosability of a system under the PMC

model using the pessimistic diagnosis strategy, we have

Theorem 6 If r ≥ 5 and G is an r-regular graph, which is not isomorphic to G5, then G

is (2r − 2)/(2r − 2)-diagnosable under the PMC model using the pessimistic strategy if the

following two conditions hold.

(a) G is triangle-free.

(b) |N(u) ∩N(v)| ≤ 2 for every two distinct nodes u and v of G.

Proof. Suppose to the contrary that G is not (2r − 2)/(2r − 2)-diagnosable. Then,

by Definition 4, there exist two indistinguishable and hence distinct sets F1 and F2 with

|F1| ≤ 2r−2 and |F2| ≤ 2r−2 but |F1∪F2| > 2r−2. According to Lemma 5, there exists a

node w ∈ F1∆F2 adjacent to some x 6∈ F1 ∪ F2. Without loss of generality, we may assume

that w ∈ F1 − F2. Choose a syndrome σ ∈ Ω(F1) ∩ Ω(F2). If σ(x, w) = 0 (respectively,

σ(x, w) = 1), then F1 (respectively, F2) is not an allowable fault set with respect to σ, a

contradiction. ✷

Next, we establish diagnosabilities for regular networks under MM* model using the

precise diagnosis strategy.

Theorem 7 If r ≥ 6 and G = (V,E) is an r-regular graph, then G is (2r − 2)/(2r − 2)-

diagnosable under the MM* model using the pessimistic strategy if the following two condi-

tions hold.
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(a) G is triangle-free.

(b) |N(u) ∩N(v)| ≤ 2 for every two distinct nodes u and v of G.

Proof. Suppose to the contrary that G is not (2r − 2)/(2r − 2)-diagnosable. Then,

by Definition 4, there exist two indistinguishable and hence distinct sets F1 and F2 with

|F1| ≤ 2r−2 and |F2| ≤ 2r−2 but |F1∪F2| > 2r−2. According to Lemma 5, F1∆F2 has at

least one node w adjacent to some node x 6∈ F1 ∪ F2. Denote F3 the set of all such nodes x.

Since F1 and F2 are indistinguishable, none of the conditions in Lemma 1 holds. It follows

that for any node v ∈ F3,

(i) |N(v) ∩ (F1 − F2)| ≤ 1,

(ii) |N(v) ∩ (F2 − F1)| ≤ 1,

(iii) N(v) ⊆ F1 ∪ F2.

Then, F3 is an independent set with N(F3) ⊆ F1 ∪ F2. Also, (i) and (ii) and |N(v)| = r

imply |N(v) ∩ F1 ∩ F2| ≥ r − 2, which gives |F1 ∩ F2| ≥ r − 2 and so

|F1 ∪ F2| = |F1|+ |F2| − |F1 ∩ F2| ≤ (2r − 2) + (2r − 2)− (r − 2) = 3r − 2.

We first claim that |N(w) ∩ F3| ≤ 2 for each node w ∈ F1∆F2. Assume to the

contrary that F1∆F2 has a node w adjacent to three distinct nodes p1, p2 and p3 in F3.

Then, (i) to (iii) imply |N(pi) ∩ (F1 ∩ F2)| ≥ r − 2 for 1 ≤ i ≤ 3; and condition (b) implies

|N(pi)∩N(pj)∩(F1∩F2)| ≤ 1 for i 6= j. Thus, |F1∩F2| ≥ (r−2)+(r−3)+(r−4) = 3r−9, and

so |F1∪F2| = |F1|+ |F2|−|F1∩F2| ≤ (2r−2)+(2r−2)−(3r−9) = r+5. On the other hand,

condition (b) implies |F1∪F2| ≥ |N(p1)∪N(p2)∪N(p3)| ≥ r+(r−2)+(r−4) ≥ 3r−6 > r+5

as r ≥ 6, a contradiction.

Case 1. |F3| ≥ 2 and |N(p) ∩ (F1∆F2)| = 1 for each node p ∈ F3.

Choose p1 ∈ F3 with N(p1) ∩ (F1∆F2) = {w}. Also choose p2 ∈ (N(w) ∩ F3) − {p1}

if |N(w) ∩ F3| = 2, and any node p2 ∈ F3 − {p1} otherwise. By condition (b), |F1 ∩ F2| ≥

|N({p1, p2})∩F1 ∩F2| ≥ (r− 1) + (r− 3) = 2r− 4. So, |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩F2| ≤

(2r − 2) + (2r − 2)− (2r − 4) = 2r.

16



On the other hand, by condition (a), N(w) ∩ N(p1) = ∅. If w is (respectively, is not)

adjacent to p2, by condition (a) (respectively, condition (b)), N(w)∩N(p2) = ∅ (respectively,

|N(w)∩N(p2)| ≤ 2). In either case, |N(w)− (N({p1, p2})∪F3)| ≥ r− 3. Hence |F1 ∪F2| ≥

|N({p1, p2})|+|N(w)−(N({p1, p2})∪F3)| ≥ r+(r−2)+(r−3) > 2r as r ≥ 6, a contradiction

to |F1 ∪ F2| ≤ 2r.

Case 2. |F3| ≥ 2 and |N(p1) ∩ (F1∆F2)| ≥ 2 for some node p1 ∈ F3.

Assume that p1 is adjacent to two distinct nodes w1 and w2 in F1∆F2. Furthermore,

assume that |N(w1)∩F3| ≥ |N(w2)∩F3|. Choose p2 ∈ (N(w1)∩F3)−{p1} if |N(w1)∩F3| = 2,

or p2 ∈ (N(w2) ∩ F3) − {p1} if |N(w2) ∩ F3| = 2, or p2 ∈ F3 − {p1} otherwise. By (i)–(iii)

and condition (b), |F1 ∩ F2| ≥ |N({p1, p2})∩ (F1 ∩F2)| ≥ (r− 2) + (r− 4) = 2r− 6. Hence,

|F1 ∪ F2| = |F1|+ |F2| − |F1 ∩ F2| ≤ (2r − 2) + (2r − 2)− (2r − 6) = 2r + 2.

On the other hand, condition (b) assures |N({p1, p2})| ≥ r + (r − 2) = 2r − 2. If w1

is adjacent to p2, then by conditions (a) and (b), |N(w1)− (N({p1, p2}) ∪ F3)| ≥ r − 2 and

|N(w2) − (N(w1) ∪ N({p1, p2}) ∪ F3)| ≥ r − 5. See the left of Figure 7. Similarly, if w1 is

not adjacent to p2 (as N(w1) ∩ F3 = 1 ), then |N(w1) − (N({p1, p2}) ∪ F3)| ≥ r − 3 and

|N(w2) − (N(w1) ∪ N({p1, p2}) ∪ F3)| ≥ r − 4. See the right of Figure 7. It follows that

|N(w1)∪N(w2)− (N({p1, p2})∪F3)| ≥ 2r− 7. Hence, |F1 ∪F2| ≥ |N({p1, p2})|+ |N(w1)∪

N(w2)− (N({p1, p2})∪F3)| ≥ 4r−9 ≥ 2r+3 as r ≥ 6, a contradiction to |F1∪F2| ≤ 2r+2.

✉ ✉ ✉ ✉ ✉
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Figure 7: Relation among N(w1), N(w2), N({p1, p2}) and F3.

Case 3. |F3| = 1, say F3 = {p}.
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Since |F1∆F2| ≥ 2, we may choose two nodes u and v from F1∆F2 such that p ∈ N(u).

Let A = {u, v}. Notice that A ∪ (N(A) − F3) ∪ N(F3) ⊆ F1 ∪ F2. By conditions (a) and

(b), |A ∪ (N(A) − F3)| ≥ 2r − 1 and |N(F3) − (A ∪ N(A))| ≥ r − 3. Then, |F1 ∪ F2| ≥

(2r − 1) + (r − 3) = 3r − 4. We assume that |F1 ∪ F2| = 3r − 4 + s, where s ≥ 0. Hence,

|F1 ∩ F2| = |F1| + |F2| − |F1 ∪ F2| ≤ (2r − 2) + (2r − 2) − (3r − 4 + s) = r − s. Also,

|N(F3) ∩ (F1 ∩ F2)| ≥ r − 2. By condition (a), |N(u) ∩ (F1∆F2)| ≥ |N(u)| − (|F1 ∩ F2| −

|N(F3) ∩ (F1 ∩ F2)|) − |F3| ≥ r − ((r − s) − (r − 2)) − 1 = r − 3 + s. Refer to Figure

8. Let F4 = N(u) ∩ (F1∆F2) and α = |(N(F4) − (A ∪ N(A))) ∪ N(F3)|. By conditions

(a) and (b), for each node x ∈ F4, |N(x) − (A ∪ N(A))| ≥ r − 3. Then, by condition (b),

α ≥ (|F4|(r−3)−|N(F3)−A|)/2 ≥ ((r−3+s)(r−3)−(r−1))/2 ≥ 2+3s/2 as r ≥ 6. Hence,

|F1 ∪F2| ≥ |A∪ (N(A)−F3)∪N(F3)|+α ≥ (2r− 1)+ (r− 3)+ (2+ 3s/2) = 3r− 2+ 3s/2,

a contradiction to |F1 ∪ F2| = 3r − 4 + s. ✷

✉

✉✉

F3
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F4

F1∆F2
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Figure 8: Relation among N(u), N(F3)∩F1∩F2 and F4 for Case 3. The two arrows represent

that p and u are adjacent to all nodes in N(F3) ∩ F1 ∩ F2 and F4, respectively.

4 Application to multiprocessor systems using regular

networks

In this section we apply the four theorems in Section 3 to eight popular multiprocessor

systems, while it is also possible to apply them to many other potentially useful ones not
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shown here. To introduce these systems, we need the following notations. Define [m] =

{0, 1, . . . , m − 1} and [m]n = {xn−1xn−2 . . . x0 : xi ∈ [m] for i ∈ [n]}, where m and n are

positive integers. Let x = xn−1xn−2 . . . x0 ∈ [m]n and y = yn−1yn−2 . . . y0 ∈ [m]n. The

Hamming distance of x and y, denoted by H(x, y), is the number of indices i such that

xi 6= yi.

Example 1 Hypercube Qn [31]

A hypercube of n dimensions can be expressed by a graph Qn = (V,E) with V = [2]n

and E = {(x, y) : H(x, y) = 1}.

Example 2 Enhanced hypercube EQn,s [34]

An enhanced hypercube is just a hypercube augmented with certain extra links. More

precisely, an (n, s)-enhanced hypercube can be expressed by a graph EQn,s = (V,E) with

V = [2]n and E = {(x, y) : H(x, y) = 1 or y = xn−1xn−2 . . . xs+1x̄sx̄s−1 . . . x̄0 for some

0 ≤ s ≤ n− 1}, where x̄i = 1− xi for 0 ≤ i ≤ s.

Example 3 Twisted cube TQn [15]

Assume that n is odd. Define Pj(x) = (xj+xj−1+ . . .+x0) mod 2, where 0 ≤ j ≤ n−1.

A twisted cube of n dimensions can be expressed by a graph TQn = (V,E) with V = [2]n and

E consisting of all (x, y)’s that satisfy the following two conditions for some 0 ≤ k ≤ (n−1)/2:

(1) x2kx2k−1 = ȳ2ky2k−1 or (x2kx2k−1 = y2kȳ2k−1 and P2k−2(x) = 1) or (x2kx2k−1 = ȳ2kȳ2k−1

and P2k−2(x) = 0);

(2) x2jx2j−1 = y2jy2j−1 for all j 6= k,

where x0x−1 is regarded as x0 when k = 0.

Example 4 Möbius cube MQn[12]
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A Möbius cube of n dimensions can be expressed by a graph MQn = (V,E) with

V = [2]n and E containing those (x, y)’s with y = xn−1xn−2 . . . xi+2 0 x̄ixi−1 . . . x0 or

y = xn−1xn−2 . . . xi+2 1 x̄ix̄i−1 . . . x̄0 for some 0 ≤ i ≤ n − 2. Besides, E contains (x,

x̄n−1xn−2 . . . x0) or (x, x̄n−1x̄n−2 . . . x̄0) but not both.

Example 5 Crossed cube CQn [14]

A crossed cube of n dimensions can be expressed by a graph CQn = (V,E) with V = [2]n

and E consisting of all (x, y)’s that satisfy the following conditions for some 1 ≤ m ≤ n:

(1) xn−1xn−2 . . . xmxm−1 = yn−1yn−2 . . . ymȳm−1;

(2) xm−2 = ym−2 if m is even;

(3) (x2i+1x2i, y2i+1y2i) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)} for 0 ≤ i ≤ ⌊(m− 1)/2⌋ − 1.

Example 6 Cube-connected cycles CCCn [29]

Cube-connected cycles can be obtained by replacing each node of a hypercube with

a cycle. More precisely, cube-connected cycles of n dimensions can be expressed by a

graph CCCn = (V,E) with V = {[x, i] : x ∈ [2]n and i ∈ [n]} and E = {([x, i], [x, j]) :

x ∈ [2]n, i, j ∈ [n] and j ≡ (i ± 1) mod n} ∪ {([x, i], [y, i]) : x, y ∈ [2]n, i ∈ [n] and

y = xn−1xn−2 . . . xi+1x̄ixi−1 . . . x0}.

Example 7 Torus Tn(m) [6]

An m-sided torus of n dimensions can be expressed by a graph Tn(m) = (V,E) with

V = [m]n and E = {(x, y) : yi ≡ (xi ± 1) mod m for some i ∈ [n] and xj = yj for all j 6= i}.

Example 8 Star graph Sn [1]

A star graph of n dimensions can be expressed by a graph Sn = (V,E) with V being

the set of all permutations of {1, 2, . . . , n}, and E consisting of all (u, v)’s such that u =

u1u2 . . . uk . . . un and v = uku2 . . . uk−1u1uk+1 . . . un (i.e., swap u1 and uk) for some 2 ≤ k ≤ n.
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The diagnosabilities of these multiprocessor systems can be determined by the aid

of Theorems 3, 4, 6 and 7. We first have to check if they satisfy the conditions in these

theorems. As the checking is easy, we only summarize the results in Table I. Consequently,

we have their diagnosabilities, as shown in Table II.

Table I: Properties of multiprocessor systems.

system r-regular triangle-free Gr+1,r+1 G8 G5 N(u) 6= N(v) |N(u) ∩N(v)| ≤ 2

Qn r = n yes 6∼= 6∼= 6∼= yes if n ≥ 3 yes if n ≥ 2

EQn,s r = n+ 1 yes if s ≥ 2 6∼= 6∼= 6∼= yes if n ≥ 3 yes if n ≥ 2, s 6= 2

TQn r = n yes 6∼= 6∼= if n 6= 3 6∼= yes if n ≥ 3 yes if n ≥ 2

CQn r = n yes 6∼= 6∼= if n 6= 3 6∼= yes if n ≥ 3 yes if n ≥ 2

MQn r = n yes 6∼= 6∼= if n 6= 3 6∼= yes if n ≥ 3 yes if n ≥ 2

CCCn r = 3 if n ≥ 3 yes if n 6= 3 6∼= 6∼= 6∼= yes yes

Tn(m) r = 2n yes if m 6= 3 6∼= 6∼= 6∼= yes if n ≥ 3 yes if n ≥ 2

Sn r = n− 1 yes 6∼= 6∼= 6∼= yes yes

6∼=: not isomorphic.

N(u) 6= N(v): N(u) 6= N(v) for any two distinct nodes u and v in V .

|N(u) ∩N(v)| ≤ 2: |N(u) ∩N(v)| ≤ 2 for any two distinct nodes u and v in V .

Table II: Diagnosabilities of multiprocessor systems.

system PMC MM*

precise pessimistic precise pessimistic

Qn n [3] 2n− 2/2n− 2 [23] n [36] 2n− 2/2n− 2

EQn,s n+ 1 [35] 2n/2n [35] n + 1 [36] 2n/2n

TQn n 2n− 2/2n− 2 n 2n− 2/2n− 2

CQn n 2n− 2/2n− 2 n [17] 2n− 2/2n− 2

MQn n [16] 2n− 2/2n− 2 [16] n 2n− 2/2n− 2

CCCn n+ 2 2n+ 2/2n+ 2 n+ 2 2n+ 2/2n+ 2

Tn(m) 2n 4n− 2/4n− 2 2n 4n− 2/4n− 2

Sn n− 1 [22] 2n− 4/2n− 4 [22] n− 1 2n− 4/2n− 4

[i]: also obtained in [i]; all others are results of this paper.
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5 Conclusion

Fault diagnosis of multiprocessor systems has received much attention since Preparata et al.

[28] introduced the concepts of one-step diagnosis and sequential diagnosis. The one-step

diagnosis requires that all faulty nodes are found out by decoding the syndrome, whereas

the sequential diagnosis consists of several diagnosis and repair phases. In each phase, one

or more faulty nodes will be determined and then repaired. The process is iterated until all

faulty nodes are repaired.

The one-step diagnosability of a multiprocessor system S was defined to be the max-

imum number of faulty nodes allowed in S such that the one-step diagnosis of S can be

performed. The sequential diagnosability of S was defined similarly. In [30], the problem of

computing the sequential diagnosability for a general system was proved co-NP complete.

In [24], lower bounds on sequential diagnosabilities of grids and hypercubes were suggested.

In [26], Maheshwari and Hakimi introduced a probabilistic model for fault diagnosis.

A p-probabilistically diagnosable system requires that any set of faulty processors having a

priori probability greater than or equal to p of occurring is uniquely diagnosable. In [33], the

problem of determining whether a general system is p-probabilistically diagnosable or not

was proved co-NP complete. A method of achieving an optimal diagnosis with maximum

probability was presented in [8]. In [7], a probabilistic diagnosis algorithm was proposed

whose probability of correct diagnosis could approach one if a slightly greater than linear

number of tests were performed.

Another probabilistic diagnosis algorithm was proposed and evaluated in [10], on the

basis of the concept that an aggregate of maximum cardinality is fault-free with probability

approaching one if the cardinality of the actual fault set is smaller than the syndrome-

dependent diagnosability. The syndrome-dependent diagnosability of a multiprocessor system

is determined by evaluating the cardinality of the smallest consistent fault set that contains

an aggregate of maximum cardinality. Lower bounds on syndrome-dependent diagnosabilities

of toroidal grids and hypercubes were derived in [9].
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In this paper, we have successfully computed one-step diagnosabilities of eight regular

multiprocessor systems for two diagnosis models (i.e., the PMC and comparison models)

and two diagnosis strategies (i.e., the precise and pessimistic diagnosis strategies). Our

results were obtained as a consequence of four sufficient conditions. Compared with most

of previous works which computed diagnosabilities only for individual systems, the four

sufficient conditions can derive diagnosabilities for a class of regular systems. Our further

research interests include computing sequential diagnosabilities and syndrome-dependent

diagnosabilities of various systems for different diagnosis models and diagnosis strategies.

Acknowledgements. The authors thank the referees for many constructive suggestions

which make the paper much more readable.
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